
Advanced Software Engineering

Build for ten years and more

DI Dr. techn. Mario Bernhart

INSO - Industrial Software

Institut für Rechnergestützte Automation | Fakultät für Informatik | Technische Universität Wien

Advanced Software Engineering (first 5 lectures)

 Example Project: Vienna
International Airport AODB Core
System

 Release your stuff 3 times a day
 Dependency Management

 Build Management and -Automation

 Continuous Integration, Continuous
Delivery

 Five challenges you solve for every
project

 Error Management

 Transaction Management

 Logging

 Auditing

 Declarative Authentication and
Authorization

 Build for ten years and more
 Layered Software Design / API

Design

 Modularization / Service Design

 Decoupling / Event Driven Design

 Interfacing / Integration

 From prototype to product (make it
work 24/7)

 Clustering

 Performance

 Monitoring

 Automating Operational Tasks

2

INSO – Advanced Software Engineering

Key Problems

 How to build for an extended lifycycle?

 Key factor is change:

 Reuse

 Extendability

 Feature Changes

 Scaleability (Change in load / throughput)

 Maintainability (Robustness of change)

 Testing for regressions

 Objective: Design software to minimize the cost of

change

3

INSO – Advanced Software Engineering

Fundamental approach

 Decomposition of a system into independent parts

 Recomposition of parts into a coherent system

 Context aware

 Multiple system instances

 Static (build-time) vs. Dynamic (run-time)

4

INSO – Advanced Software Engineering

Component vs. Service (after Fowler)

 I use component to mean a glob of software that's
intended to be used, without change, by an application
that is out of the control of the writers of the component.
By 'without change' I mean that the using application
doesn't change the source code of the components,
although they may alter the component's behavior by
extending it in ways allowed by the component writers.

 A service is similar to a component in that it's used by
foreign applications. The main difference is that I expect
a component to be used locally (think jar file, assembly,
dll, or a source import). A service will be used remotely
through some remote interface, either synchronous or
asynchronous (eg web service, messaging system,
RPC, or socket.)

5

INSO – Advanced Software Engineering

AODB example archticture

6

AODB Core System

F
lig

h
t

D
a
ta

 I
n
te

rf
a
c
e
s

Flight Inform.

Display

System (FIDS)

Accounting

AODB User Interface

Master

Data

Services

...

Planning tools

Other User

Interfaces

E
x
te

rn
a
l
M

e
s
s
a
g
in

g
 (

IA
T
A

,
IC

A
O

,
A

T
C

,
…

)

Flights and

Data
Messages

Planning Services

Operations Services

Accounting Services

Notification Engine

Message Processing

Security

Services

INSO – Advanced Software Engineering

AODB LOC development

7

INSO – Advanced Software Engineering

AODB technical features

 Separation between user interface and business

services

 via REST (Integration!)

 Support for future UI-technologies

 Auto-refresh UIs (via JS-polling)

 Customizable workflows for all business processes

 Customizable rules and layouts for the notification

system

 Customizable templates for message sending

 100% open-source based

8

INSO – Advanced Software Engineering

„Anatomy“ of a core system (dependency graph)

9

INSO – Advanced Software Engineering

Interfacing / Integration

 Key design decision for integration is

 Service (pull),

 message (push)

 or data coupling

10

INSO – Advanced Software Engineering

Interfacing / Integration

 Design decisions for a service interface

 Runtime (eg. webservice) vs. Build-Time (eg. Java
library)

 General vs. Specific interfaces

 Synchronous (request-response) vs. Asynchronous (call-
back)

 ID vs. Natural Key object identifiers

 Primitive type parameters vs. DTOs

 Delta vs. Full updates of data/informaton set

 Transformation (legacy interfaces/views)

 Versioning of interfaces

 Validations, Return values, Error codes

 Reuse of components/ressources e.g. through a R/O
Project

11

INSO – Advanced Software Engineering

Interfacing / Integration

 Design decitions for a message interface
 Synchronous vs. Asynchronuos

 Event data models (payload)

 Internal vs. external events

 Primitive vs. complex (compound) event types

 Typical event payload

 Reference to a primary object

 Actual value(s)

 Previous value(s)

 Associated action (e.g. BLOCK_OFF)

 Time of event creation

 Source of event creation

12

INSO – Advanced Software Engineering

Interfacing / Integration

 Design decisions for data coupling

 Separation of schemata

 Read access through views

 Write access through procedures

 The easiest type of integration to achieve and the
hardest to get rid of

13

INSO – Advanced Software Engineering

REST Example for /baggage/belt

14

INSO – Advanced Software Engineering

Layered Software Design / API Design

 Why to cut software into layers / modules
 Separation of Concerns

 Abstraction

 Testability

 Error Handling

 Transaction management (What is the exact transaction scope?)

 Reuse
- Frameworks
- Custom (e.g. DAOs in other projects)

 How to cut software into layers / modules
 Separate UI from Logic

 Separate Model from Logic

 Separate Data Access from Logic (via a common interface)

 Separate Connectors from Logic (via a common interface)

INSO – Advanced Software Engineering

Single Service, Multiple-Consumers

 Callstack:

 Clients
- GUI
- external system
- Telex

 REST Layer, JMS Consumer

 Business Service

 Data Access Layer

 Tx-Boundry (commit)

 Postprocessing
- Notifications
- Connected systems (data push)
- Legacy system sync

16

INSO – Advanced Software Engineering

Example software stack

 Glue: Spring 3.0 (core, tx, security, integration, jms,
orm, oxm)

 REST (JSR-311): Apache CXF 2.4

 JSON: Jackson 1.6

 JPA 2.0 (JSR-317): Hibernate 3.6

 Bean Mapping: Dozer 5.3

 Clustering: Hazelcast 1.9

 Database: Oracle 10.x

 JMS: Oracle AQ

 UI: HTML + JavaScript (jQuery) + CSS

17

INSO – Advanced Software Engineering

Key Questions for choosing the right level of
modularization

 Fine grained vs. Business Services

 Requirements on transactional capabilities

 Requirements on high availability & distribution

 Release and deployment scenarios

 Lifecycle (e.g. legacy connectors)

18

INSO - Industrial Software

Institut für Rechnergestützte Automation | Fakultät für Informatik | Technische Universität Wien

JVMJVM

ContainerContainer

Forms of modularization

19

Module

1

Module

2

JVM

Container

Module

1

Module

2

JVM

ContainerContainer

Module

1

Module

2

Build Time:

• Multiple JARs possible

• Single Bundle

• Update requires

complete redeploy

• Easy operation

• Easy & fast inter-

module communication
Runtime (single VM):

• Multiple JARs required

• Multiple Bundles

• Update requires partial

redeploy

• Medium complex

operation

• More complex but fast

inter-module

communication

Runtime (multi VM):

• Multiple JARs required

• Multiple Bundles

• Update requires partial

redeploy

• Highly complex operation

• Complex and possibly

slow inter-module

communication

INSO – Advanced Software Engineering

Java technologies for modularization

 OSGI (runtime)

 Initially created for the embedded systems domain

 Recent release of Enterprise OSGI (R4.2) specification

 Additional control over how classpath is constructed (fine

grained export of packages/services)

 (Still) targeted for single-VM operation (e.g. Eclipse

Platform)

 Maven (build time)

 Support for simultaneous assmebly of multiple modules

(possibly with multiple levels of hierarchy)

 Management of direct and transitive dependencies

 Project Jigsaw (language level modularization)

20

INSO – Advanced Software Engineering

Build-time modularization in mach2info

21

INSO – Advanced Software Engineering

Dependency Injection (DI)

 Dependency Injection (DI) is a pattern, where the gluing
of objects is separated from the implementation.

 All implementation is against the API (!)

 There is a central definition and container that creates
and binds objects togeher.

 DI supports code reuse and independently testing
classes.

 DI support different bindings for different environments.

 DI supports laizy creation of objects and (e.g. useful for
limited memory environments)

 A DI framework (often based on AOP) provides the
runtime services for DI. e.g. the Spring Framework

22

INSO – Advanced Software Engineering

About the Spring Framework

 A popular application development
framework for enterprise Java

 Spring Framework (Architecture) is modular
and allows you to pick and choose modules
that are applicable to your application.

 POJO’s (plain old java object) are called
‘beans’ and those objects instantiated,
managed, created by Spring IoC container.

 The Spring IoC container makes use of
Java POJO classes and configuration
metadata to produce a fully configured and
executable system or application.

 DI helps in gluing loosely coupled classes
together and at the same time keeping
them independent

 Spring supports the utilization of existing
frameworks e.g. for logging, ORM etc.

23

INSO – Advanced Software Engineering

Spring Framework cornerstones

 Spring Framework is a well-designed web model-view-
controller (MVC) framework

 provides a coherent transaction management interface that
be applicable to a local transactions() local transactions or
global transactions (JTA)

 provides a suitable API for translating technology-specific
exceptions (for instance, thrown by JDBC, Hibernate, or
JDO,) into consistent, unchecked exceptions.

 The Inversion of Control (IoC) containers are lightweight,
especially when compared to EJB containers.
 Being lightweight is beneficial for developing and deploying
applications on computers with limited resources (RAM&CPU).

 Testing is simple because environment-dependent code is
moved into this framework.

24

INSO – Advanced Software Engineering

Aspect Oriented Programming (AOP)

 The key unit of modularity is the aspect in AOP (class in

OOP)

 Cross-cutting concerns are the functions that span

multiple points of an application.

 Cross-cutting concerns are conceptually separate from

the application's business logic.

 AOP helps you decouple cross-cutting concerns from

the objects that they affect Examples (logging,

declarative transactions, security, and caching)

 Aspects are „woven in“ at compile time or runtime

25

INSO – Advanced Software Engineering

Spring Framework Architecture

26

INSO – Advanced Software Engineering

Example for an event based architecture

 Loose coupling

 Activator: "after Transaction
Commit"

 Foundation for asynchronal
processing

 Connected systems

 Messaging within the
system

 Messaging to other
systems

 Implementation with Spring
Integration

 Enables persistent Queuing
(asynchronal processing)

 Existing Producer-
Consumer pattern

27

mach2info

ifc* Connected

Systems

jms-Topic

(ops-ro-xml)

INSO – Advanced Software Engineering

Eventing usage example

28

1

2

3

1. Touch down registered by ground radar and

transmitted to AODB (system message)

2. If flight has no belt assigned, “Landing & No Belt”

notification is created (based in internal event)

3. User can drag notification from panel onto correct

belt for assignment and confirmation of message

4. AODB syncs data to the FIDS (external event)

AODB

INSO – Advanced Software Engineering

Eventing vs. Batch

 On the legacy system:

 Time-triggered batch-processing every 5 minutes

 Advantages

 Fail-Safe through retry

 Quicker transaction (user wait)

 Disadvantages

 Hard to trace

 Time-delay (transaction X starts action Y after 5min.)

 Testability

 Parallel operations of eventing (new system) vs. batching

(legacy system)

29

INSO – Advanced Software Engineering

External configuration and functionality in AODB

 Reminder

 Benutzerbenachrichtigung auf Basis von System-Events
(potentiell zeitverzögert und wiederholt)

 Zur Laufzeit änderbares Verhalten via Spring Expression
Language (EL)

 Bsp: #{flight.isCanceled && blockOffTime.isAfterNow}

 Application Properties

 Mehrstufige Auflösung:
1. System Property
2. Spring Context
3. Datenbank
4. Laufzeit

 Konfiguration & Verwaltung über JMX (cache invalidation,
…)

30

INSO – Advanced Software Engineering

Example: AODB user notifications (“Reminders”)

 filter
 wenn positiv evaluiert wird der Reminder zugestellt

 z.B. !#flight.isCancelled()

 activating events
 Events, die die Evaluierung des Filters triggern

 z.B. LANDING_SET, DIVERSION_DELETE

 payload
 Key-Value-Pairs für die Darstellung des Reminders im GUI bzw. an

Schnittstellen

 z.B. registration  #flight.rotation?.aircraft?.registration

 deferral
 Verspätete Auslösung des Reminders. Kann auch wieder deaktiviert

werden

 deactivating events
 Events, die die Zustellung des Reminders verhindern

 recurrence
 Zeitinterval für wiederholte Zustellung des Reminders

31

INSO – Advanced Software Engineering

Example: landingMissingBelt

 filter: !#flight.isCargo() and #flight.belt == null

 activating event: LANDING_SET

 payload

 aircraftType #flight.actualAircraftType?.codeIata

 flight #flight.flightNumber

 Scheduled #flight.scheduledDateTime?.toString()

 schengen #flight.schengenStatus

 registration #flight.rotation?.aircraft?.registration

 pax #flight.paxBooked

 position #flight.position

 departureAirport #flight.departureAirportCode

 load #flight.totalLoad

 handling #flight.handlingAgent?.toString()

32

INSO – Advanced Software Engineering

Example: missingDeparture

 filter: #flight.actualDateTimeOfBlockOff != null and
#flight.actualDateTimeOfTakeOff == null

 activating events: BLOCKOFF_SET, BLOCKOFF_CHANGE,
TAKE_OFF_DELETE

 payload
 flight #flight.flightNumber

 bo_time #flight.actualDateTimeOfBlockOff.toString()

 deferral:
#flight.actualDateTimeOfBlockOff.plusMinutes(#flight.deicing
.isActive() ? 90 : (#isInTimeRange
(#flight.scheduledDateTime, 3, 31, 11, 1) ? 20 : 40))

 deactivating events: TAKE_OFF_SET,
BLOCKOFF_DELETE, BLOCKOFF_CHANGE

 recurrence: 300

33

INSO – Advanced Software Engineering

References

 http://www.cs.colorado.edu/~kena/classes/5448/f12/pre

sentation-materials/aydin.pdf

 http://martinfowler.com/articles/injection.html

 http://www.apress.com/9781590596432

 http://c2.com/cgi/wiki?EventDrivenProgramming

34

http://www.cs.colorado.edu/~kena/classes/5448/f12/presentation-materials/aydin.pdf
http://martinfowler.com/articles/injection.html
http://www.apress.com/9781590596432
http://c2.com/cgi/wiki?EventDrivenProgramming

