
Advanced Software Engineering

30.11.2017

From prototype to product

(make it work 24/7)

DI Stefan Strobl



INSO – Advanced Software Engineering

Introduction – Operating your Software

 Classic waterfall from an operations perspective

 Plan, specify, design, build, test, deploy

 No/little incentive to think about operations before testing, 

and even there, only limited

 In an agile environment

 Potentially shippable code every day

 How do we find out? 

 Ship to a near production environment as often as possible

2



INSO – Advanced Software Engineering

A short story on how not to

 Dev team has been developing and shipping test builds to test env for 

months

 Environments are self managed by dev/test team

 All functional tests are passing

 Even some load tests are performed

 In short: everything looks well and everybody is feeling positive about the 

upcoming release

 Some savy developers have even written a deployment handbook detailing 

all (?) the steps necessary to set up a new environment

 Two weeks before production, first release candidate is handed over to 

operations for deployment on pre-production

 but... 

3



INSO – Advanced Software Engineering

... from here it is going downhill, and fast!

 In the ensuing ping pong game between development and operations the 

following issues have to be addressed

 missing database configuration, application does not startup

 -> configuration management

 first time running in clustered environment, every second request fails with 

"session not found"

 -> clustering

 database much bigger than test datasets, performance is seriously affected on 

certain queries

 -> performance

 after running for two days with only minor usage from the user tests, the 

servers run out of memory

 -> well... also performance, or load testing, or monitoring (last of which 

does not actually solve the problem)

 In the end: a functional software left a bad first impression disgruntling both 

operators and users

4



INSO – Advanced Software Engineering

Short Recap

 Continuous Integration, Continuous Delivery (previous 

lecture)

 Create an automated pipeline to build, test, assemble and 

run your code

 For today's lecture considered as precondition (although all 

of the given points are equally relevant in non-agile/CI 

environments)

 By having your build pipeline in place, your deploy pipeline 

gets a lot faster

5



INSO – Advanced Software Engineering

DevOps - Buzzword or Future?

 Difficult to draw clear line between development and operations

 Still in many cases two different departments/silos

 DevOps is more about breaking down walls then classic "who does 

what"

 It is not about who does it, 

but when and how it is done

 It is about considering

operations from the beginning

 It is about knowing how 

"the other side" works

 It is about facilitating 

communication!

6



INSO – Advanced Software Engineering

Configuration Management (CM)

 Definition:

Configuration Management ... is a management process for 
establishing and maintaining consistency of a product's 
performance, its functional and physical attributes, with its 
requirements, design and operational information, throughout its 
life. (ANSI/EIA-649-B)

 Which configuration to manage?

 Build configuration

 Product configuration

 Application server/database configuration

 OS configuration

 System configuration

7



INSO – Advanced Software Engineering

CM – Build Configuration

 The state of your source code is configuration

 The information how you build your project is configuration

 The (internal and external) dependencies of your build are 

configuration

 The (implementation) state of your requirements is 

configuration

 The state of your defects (at build time) is configuration

 The documentation of executed tests (test plans) is 

configuration

8



INSO – Advanced Software Engineering

CM – Application Level

 Often done in database and / or alongside source code

 Application should recognize and warn about or even fail on 

"wrong" configuration

 Keep configuration in as few places as possible

 Make it easy to view/change configuration

 Make clear distinction between user data and configuration 

in database - ideally, store in different "namespaces"

 Make clear distinction between environment specific and 

product specific configuration

9



INSO – Advanced Software Engineering

CM – System Level

 Where to draw the line between application and system
 e.g. Java options/memory configuration, especially settings like 

user.timezone, user.language or -Xmx/-Xms

 Remember previous lecture, what happens if the locale is set to a 
different language (e.g. Turkish)

 Tools like Puppet or Chef help a lot

 Avoid manual "tinkering" for correctly setting up an environment

 Enforce a consolidated view of the characteristics of your system

 “Infrastructure as Code” paradigm helps you treat configuration like 
code

 Server virtualization and "ready to go template images" make 
replicating environments a lot easier

 Have room for extra environments

 Have room for experiments

10



INSO – Advanced Software Engineering

Clustering vs. Load Balancing

 Different clustering modes, different implications

 Application level clustering: full/delta session replication

 Database level clustering (Oracle RAC)

 Load balancing 

 Sticky session

 Round robin (also DNS round robin)

 Active/passive

 Hardware vs. software

 Tradeoff between load distribution and fault tolerance

 Always perform fail-over tests on your setup (under load!)

11



INSO – Advanced Software Engineering

Clustering & Caching

 A clustered setup has strong implications on your caching 
strategies

 In-Process Caching

 One cache per-process (higher overall memory usage)

 Possibilities for inconsistencies between individual caches

 Be extra careful with cache size in on-heap scenarios

 Distributed Caching

 Slower due to additional overhead in form of network latency 
and object serialization 

 More complex to operate

 Scales much better 

 No risk of taking down the main application with OutOfMem

12



INSO – Advanced Software Engineering

Clustering & Session Serialization

 Activated session replication (full or delta) means each 
change to your session is replicated to all other nodes!

 Everything in your session has to be serializable

 Implement java.lang.Serializable

 Correctly handle transient fields

 Might generate a lot of network traffic

 Be careful with UI frameworks that do/support server-side 
state saving (JSF, Vaadin, …)

 Keep session size as small as possible

 Keep session as stable as possible

 Know what is in your session

13



INSO – Advanced Software Engineering

Focus: Master Node Election

 Used/needed for

 Ensuring something is executed only once (e.g. scheduled job)

 Ensuring messages are handled in correct order

 Have one node to mediate or delegate

 Automatic master node election is difficult to get right 

(unless you have a single resource to sync on)

 ... and has some ugly constraints (split brain for example)

 Manual master node election

 Might result in down time

 Possibility of human error

14



INSO – Advanced Software Engineering

Performance (testing)

 Test vs. Development Team

 Frequently internal (white box) know how/specific 
configuration required

 QS-departments often do not have the necessary skills

 Best done in collaboration

 Testing is only the "last" step to verify

 Considering performance implications during design & 
development

 Do your homework – know your numbers

 Target potential bottlenecks first

 Limited thread/connection pools

 Frequently used pages (e.g. welcome page/dash board)

15



INSO – Advanced Software Engineering

Performance - from a database perspective

 Use a clone (anonymized) of the production database

 Think about the resulting database queries (especially when 

using ORM tools)

 Be careful when operating on lists / result sets

 What will you do with them?

 Lazy loading of child entities

 n+1 queries problem

 Think about indices that fit your query patterns

 Use explain plans

 Make sure statistics are up to date

 Optimize based on data/facts and not on assumptions

16



INSO – Advanced Software Engineering

Performance - from a system integration perspective

 Be aware of all calls that are "leaving" your system

 Are there SLAs?

 Make sure you can make clear statements about actual performance

 Minimize the amount of round trips required

 Make sure you know about timeouts and how the system reacts

 Timeouts tend to bubble up. Increasing the timeout on a lower level might 
result in timeouts on a different (higher) level

 Example: web service timeout vs. transaction timeout vs. session timeout 
vs. browser request timeout

 Some timeouts are not easy to influence (e.g. browser timeout)

 Consider automatic retries if you can correctly detect specific errors

 However be aware of worst case scenario

 e.g. timeout of 5 minutes * 3 retries means your user request might run and 
block resources for 15 minutes

17



INSO – Advanced Software Engineering

Performance - profiling

 Tracing

 Usually done through byte code instrumentation

 Delivers invocation counts

 Can significantly influence runtime performance

 Not suitable for production environments

 Sampling

▪ Periodically queries stacks of running threads to estimate 

the slowest parts of the code.

▪ No invocation counts

▪ Negligible performance impact

18



INSO – Advanced Software Engineering

Performance – Profiling Tools

 JVisualVM 

(included in JVM)

 YourKit (commercial)

19



INSO – Advanced Software Engineering

Performance - measuring

 “Manual” measuring

 Good to see call durations at specific points

 Good for runtime behavior (hardly affects performance) 

 Good for adaptive measuring/reporting

 Bad if really done "manually" -> too much boiler plate code

 Bad for measuring "everything" (e.g. finding the needle in 
the hay stack)

 Pitfall

 Always use System.currentNanos() for measurement

 System.currentTimeMillis() resolution based on timer 
interrupt (e.g. 10 ms)

20



INSO – Advanced Software Engineering

Performance - measuring with AOP/Interceptor

 @Measured Annotation, Performance Interceptor

 StopWatch API (commons-lang, Perf4J, Spring)
protected Object invokeUnderTrace(MethodInvocation invocation, 

Log logger) throws Throwable {

String name = createInvocationTraceName(invocation);

StopWatch stopWatch = new StopWatch(name);

stopWatch.start(name);

try {

return invocation.proceed();

} finally {

stopWatch.stop();

logger.trace(stopWatch.shortSummary());

}

}

21



INSO – Advanced Software Engineering

Monitoring

 Frequently seen as a pure operations task

 Difficult to detect and (even more) pinpoint application level 
problems

 Basic monitoring is “easy”

 System states (e.g. database server down)

 System resources (e.g. available cpu, memory)

 Java behavior (e.g. GC intervals, heap state, ... )

 Infrastructure state (e.g. queue sizes, thread pool size)

 All of the above only indicate "disaster" cases - and not if 
anything goes wrong/weary in my application

 No way for operations to define application level points for 
monitoring

22



INSO – Advanced Software Engineering

Application level monitoring

 Goal - bring domain specific 

knowledge into operations

 First step: vertical "health 

check“ / Heartbeat

 Is the UI reachable?

 Does the UI reach the 

backend?

 Does the backend reach and 

write to the database?

 Can the backend reach other 

required systems?

 Later: application specific 

monitoring e.g.
 ThreadPoolTaskExecutorJmx

 ReminderInboxJmx

 PersistenceCacheJmx

 MovementTelexProcessingJmx

 Highly specific to the 

monitored application

 A lot of application specific 

monitoring tasks can also be 

handled by database queries

 E.g. amount of open tasks

23



INSO – Advanced Software Engineering

Application level by log analysis 

24



INSO – Advanced Software Engineering

Application Monitoring – Example with JMX

@ManagedResource(

objectName = "at.vie.m2i.bean:name=reminderInboxJmx", 

description = "Monitor the state of reminder inboxes")

public class ReminderInboxJmx {

@Inject

private MessageDao messageDao;

@ManagedOperation(description = "retrieve the number of unread 

reminders for the given inbox")

@ManagedOperationParameter(name = "inboxName", description = 

"The unique inbox name to identify the inbox")

public Long getUnreadReminderCountForInbox(String inboxName) {

return messageDao.getUnreadMessageCount(inboxName);

}

25



INSO – Advanced Software Engineering

Summary

 Configuration Management – Think about what your 

application (and operations) needs to correctly setup your 

software including its environment

 Clustering & Load Balancing – Think about what has to be 

done to make your software run reliable and fast

 Performance – Always think about the performance 

implications of your day to day design decisions

 Monitoring – Know how your application is doing

Deployment is just a part of dev/ops cooperation, not the whole 

thing

- John Allspaw

26



INSO – Advanced Software Engineering

Resources

 Bob Aiello and Leslie Sachs. Configuration Management Best Practices. Pearson 
Education, 2011. 

 ISO. Quality management systems – Guidelines for configuration management (ISO 
10007:2003). Tech. rep. ISO, 2003. URL: 
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=36644.

 Larry Klosterboer. Implementing ITIL Configuration Management. IBM Press, 2008.

 Puppet: http://puppetlabs.com/

 Chef: https://www.chef.io/chef/

 http://dev2ops.org/2010/02/what-is-devops/

 http://www.rajiv.com/blog/2009/03/17/technology-department/

 http://www.yourkit.com/

 https://visualvm.java.net/

 http://www.kitchensoap.com/2009/12/12/devops-cooperation-doesnt-just-happen-with-
deployment/

 https://blogs.oracle.com/dholmes/entry/inside_the_hotspot_vm_clocks

27

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=36644
http://puppetlabs.com/
https://www.chef.io/chef/
http://dev2ops.org/2010/02/what-is-devops/
http://www.rajiv.com/blog/2009/03/17/technology-department/
http://www.yourkit.com/
https://visualvm.java.net/
http://www.kitchensoap.com/2009/12/12/devops-cooperation-doesnt-just-happen-with-deployment/
https://blogs.oracle.com/dholmes/entry/inside_the_hotspot_vm_clocks

