
Advanced Software Engineering
FOSS 1/2
The cool and the cruel of MicroServices

Mark Struberg

INSO - Industrial Software

Institut für Rechnergestützte Automation | Fakultät für Informatik | Technische Universität Wien

INSO
www.inso.tuwien.ac.at

Kontakt: teaching@inso.tuwien.ac.at

About me

● Mark Struberg
● 25 years in the industry
● Apache Software Foundation member
● struberg [at] apache.org
● RISE GmbH employee
● TU-Wien / INSO researcher
● Committer / PMC for Apache OpenWebBeans,

MyFaces, TomEE, Maven, OpenJPA, BVal, Isis,
DeltaSpike, JBoss Arquillian, ...

● Java JCP Expert Group member
● MicroProfile Spec Author
● Twitter: @struberg

Agenda

● General Considerations
● What is a MicroService?
● What is JavaEE?
● Showcase a few Apache projects

General Considerations

The destructive mini-me

● There are people who always see the bright side
● And people who always see the downsides!

The Weapon of Choice

● "If you have a hammer,
every problem seems to be a nail"

● "Es gibt für jede Schraube
den passenden Hammer!"

● "Use the right tool for the right job"
● Every design decision has pros and cons!

– There is no solution which perfcectly fits all your problems
– Example: centralised vs de-centralised systems,

App evolution in waves: HOST -> server/client PCs ->
HTML webapps -> AJAX -> native phone apps ->
microservices ->?

● Know your weapons!
● Know your problems!

MicroServices

If MicroServices are the answer

● ... what was the question or problem causing it?
● Monoliths

– extremely recursive inner dependencies
– No clear separation of concerns
– No clear inner design ("take whatever you need")
– Not easy to scale
– Hard to roll outs

What is a 'MicroService'?

● https://smartbear.com/learn/api-design/what-are-microservices/

Essentially, microservice architecture is a
method of developing software applications

as a suite of independently deployable,
small, modular services

in which each service runs a unique process
and communicates through a well-defined,

 lightweight mechanism
to serve a business goal.

How big is a MicroService

● MicroServices are 'small, independent systems'
– but how big is 'small'?
– What is the size of a typical MicroService

● How big is a JavaEE server in contrast?
– Apache TomEE: 35MB
– Apache Meecrowave: 9MB

Independent Services

● Are MicroServices really independent of each
other?

● How about versioning?
● How to detect if a feature is unused?
● Independent Data

– A MicroService is self contained - including it's data
● Independent Programming Language and

Frameworks
– At least when using REST
– Not that easy with messaging

Data Consistency and Transactions

● XA requires fast connections
– does not really work over MicroServices

● Eventual consistency
● Compensations
● Persistent Messaging

Netflix does all that?

● NO, of course not!

Fallacies of Distributed Computing

● As postulated by Peter L. Deutsch (Sun
Microsystems):
– The network is reliable.
– Latency is zero.
– Bandwidth is infinite.
– The network is secure.
– Topology doesn't change.
– There is one administrator.
– Transport cost is zero.
– The network is homogeneous.

Testing the ball of mud

● Testing Distributed Applications is no easy task
● 3 strategies

– Massive Integration Testing
– Mocking the hell out of your project
– Capture & Replay

The takeaway?

Useful MicroService tricks

● Monoliths have the same problems when talking
with other systems!
– No XA, need to store steps separately or use a state

machine (process engine, status in the DB,
Compensations, etc)

– Circuit Breakers
– Bulkheads

● Separate high-volume/low consistency areas
from important areas

● Split your whole problem in distinct parts with
their own Database (Conway's Law)
– Those parts don't need to be 'micro' though!

Application Layering

● Also works with Monoliths
● TODO Die Zwiebel!

JavaEE vs SOA vs MicroService vs ...

● Is this really a 'vs'?
● Or is is more like fitting parts?

JavaEE

Apache Java EE Parts

● Full Profile
● WebProfile

Servlets: Apache Tomcat

● 55% market share overall
● Alternatives: Undertow, Eclipse Jetty
● Non-HTTP:

– Socket Servers: Apache MINA, JBoss Netty
– Messaging

CDI: Apache OpenWebBeans

● A fast and small CDI container
● Modular built
● Base for many servers
● Meecrowave as sub project

JSF: Apache MyFaces

● Server Side Rendering
– Alternative: Java Script based rendering on the client.

Angular, React, Vue.js
● Well suited for form driven apps

– sophisticated data lifecycle
● JSF Apps run since 10++ years

– and are still maintainable...

JSON-P & JSON-B

● Apache Johnzon
●

Apache Geronimo

● Attention: NOT the Geronimo Server!
– that one is retired and EOL...

● Many useful EE components
– geronimo-specs
– xBean
– geronimo-config
– transaction manager
– javamail

Apache TomEE

● Web Profile Server
● Full Profile Server
● Small and Fast
● Based on Apache Tomcat

– lightweight like Tomcat
– full featured like commercial servers

How to contribute

● Pick a project
● Become familiar with the topic
● Start reading the mailing list

– you can also read the archives via markmail, nabble, etc
– http://lists.apache.org

● Check out the Source Code
● Use the project!
● Start reporting bugs...
● ... and ship patches.

The 'Apache Way'

● Goals
– Reduce barriers to project participation
– Improve quality
– Achieve consensus and resolve conflicts
– Balance needs of corporate interest with needs of

individual contributors

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30

