
Agile	So)ware	Development	
in	Corporate	Environments	
Dr.	Alexander	Scha;en	
alexander@scha;en.info	
h;p://www.scha;en.info	

Overview	

•  20	years	(70	years?)	agile	pracHces	
•  MoHvaHon	
•  The	Agile	Manifesto	
•  eXtreme	Programming,	SCRUM,	(So)ware)	
Kanban	

•  Corporate	challenges	
•  Requirements	and	transparency	
•  Balancing	Measurement	and	Self-
OrganisaHon	

20	YEARS	AGILE	PRACTICES	

 ©2013 Deloitte Consulting GmbH 1

DO

CHECK

PLAN

Mission / Vision / Corporate
strategy/objectives (quantified if

possible)

ACT

KPIs are used to cascade/quantify
corporate objectives to all hierarchy
levels

Measures are developed
and implemented to
achieve corporate
objectives and individual
targets

Continuous comparison of actual performance
versus objectives/targets based on KPIs in order to
identify over-/underperformance

Depending on the degree of target
achievement measures are defined
and executed (e.g. corrective
actions, capability building,
bonuses)

Tracking
and Reporting

KPIs

Performance
Coaching

Plan	/	Do	/	Study	/	Act	(1940)	

MoHvaHon	

•  OrganisaHonal	challenges	
•  Technical	challenges	
•  The	illusion	of	predictability	and	forecast	
reliability	

•  …	and	also:	we	are	just	doing	what	every	
other	industry	does:	approach	the	
product	step	by	step	before	(mass)	
produc>on	

The	First	20	Years…	

OOPSLA
	95	

(Konfer
enz)	

Erste	SCRUM	Teams	(90er)	

XP	

SCRUM	
FDD	

DSDM	

Crystal	

Agile	Manifesto	2001	

SoIware	Kanban	(~2007)	

Agile	Manifesto	

1.  Individuals	and	InteracHon	
over	Processes	and	Tools 	 		

2.  Working	So)ware	
over	Comprehensive	Documenta>on	

3.  Customer	CollaboraHon	
over	Contract	Nego>a>on	

4.  Responding	to	Change	
over	Following	a	Plan	

Agile	PracHces	Today	

•  Prozess-oriented	
–  SCRUM	
–  So)ware	Kanban	

•  Methodical	building	blocks	
–  eXtreme	Programming	

•  Geeks	only?	
–  Meanwhile	~15	years	of	experience	of	agile	methods	in	

corporate	environments	
–  Usage	in	small	and	large	internaHonal	companies,	but	

also	in	Austria	(e.g.	banks,	insurance	companies,	…)	
–  Usage	in	small	projects	(individual	teams,	3–10	devs)	
–  Usage	in	large	projects	(mulHple	teams,	hundreds	of	

devs)	

EXTREME	PROGRAMMING	

XP-PrakHken	

•  CommunicaQon	/	CollaboraQon	/	Architecture	
–  Planning		Game	(WS)	
–  Metaphor	(WS)	
–  Simple	Design	(WS)	

•  Process	
–  Small	Releases 		
–  Pair	Programming	
–  CollecHve	Code	Ownership	(WS)	
–  40-hrs	Week	
–  On-Site	Customer	(WS)	

•  Technical		
–  Coding	Standards	
–  TesHng	
–  ConHnuous	IntegraHon	
–  Refactoring	

SCRUM	

SCRUM Prozess

Sprint
(2-4 weeks)

Develop

Test

Wrap

Review

Adjust

New Functionality:
demonstrated at

end of each sprint

Sprint Backlog

1. Accomplished?
2. Obstacles?
3. Next

Team selects

Daily: 15min Meeting

C
us

to
m

er
 P

rio
rit

is
at

io
n

Product Backlog

SCRUM	Prozess	

•  Work	in	IteraQons	
•  Team	size	<	10	Personen	
•  Customer	is	Hghtly	integrated	in	the	process	
•  RealisHc	esQmaQons	hand	in	hand	with	

controlling	
–  User	Stories	
–  Backlogs	
–  “Planning	Poker”	

•  Team-esQmaQons	and	Performance	(checked	at	
each	iteraHon)	

•  Undisturbed	and	focussed	work	for	teams	during	
iteraHons	

SOFTWARE	KANBAN	
New	Kid	on	the	Block	

Kanban	Card	

“Stop	StarHng,	Start	Finishing…”	

ProducHon	

Workflow	VisualisaHon	
Backlog Selected In Development Test Deploy

A1 A12

A3

A4 A15

B1

B2

B3

A6

A7

A8

2 2 3 2

A9

B14

A12
A2

A5 B6
B5

B4
A2

B13

So)ware	Kanban	

•  Focus	on	“flow”,	avoiding	bo;lenecks	
•  VisualisaHon	of	current	process	flow	
and	acHviHes	

•  Real-Hme	metrics	(KPIs),	e.g.	
– Average	Lead	Time		
– CumulaHve	Flow	Diagrams:	Cycle	Time	

AGILE	PRACTICES	IN	CORPORATE	
ENVIRONMENTS	

Agile	PracHces?	Startups	Only?	

•  Salesforce	
•  Google	
•  Yahoo	
•  Intel	
•  Siemens	
•  McKinsey	
•  Philips	
•  JP	Morgan	
•  Bank	Austria,	BAWAG	PSK,	Raiffeisen	
•  Fabaso),	FrequenHs,	TricenHs,	Anecon,	Accenture,	

Kapsch,	VIG	
•  Usw.	

Challenges	in		
Corporate	Environments	

Some	challenges	to	expect	1/2	

•  MulHple	Teams	
•  Many	developers	
•  Large	projects	versus	perfecHve	maintenance	
•  PriorisaHon	(very	different	goals	among	stakeholders:	business	teams,	

management,	IT)	
•  Projects	partly	internal	and	partly	external	(fixed	price,	…)	
•  ScepHcal	customers/business	experts	(from	failures	in	the	past,	“most	IT	

procjects	fail…”;	fear	of	new	processes,	efficiency	measures,	etc.)	
•  Management	levels	&	involvement	
•  BudgeHng	and	planning	cycles	
•  Long	and	complicated	projects,	e.g.	replacement	of	legacy	systems	
•  Lack	of	know	how	(from	domain	side	and	technical	side	alike),	partly	due	

to	long	runHme	of	legacy	systems		
•  ReporHng	and	controlling	(different	expectaHons:	financial,	progress,	

quality,	…)	
•  Diffusion	of	responsibility	in	large	organisaHons	

Some	challenges	to	expect	2/2	

•  What	is	the	core	of	agile	so)ware	
development?	
–  Flexible	self-organisaHon	of	teams	around	
product	owner	

–  Lean	and	efficient	work	in	small	teams	and	
short	iteraHon	cycles	

•  What	is	the	core	demand	of	programs	and	
managers	of	large	interconnected	systems?	
–  The	opposite	

Side	Remark	

•  Knowing	something	does	not	work	
seldom	discourages	people	from	s>ll	
doing	it,	e.g.	
– Bonus	schemes	
– Teamwork	
– Long-term	planning	and	budge>ng	

Team 1 Team 2 Team 3 Team 4 Team 5

Team 6 Team 7

Team 8

Scrum	of	Scrums	

“Factory”	Approach	

One	Backlog	

Business	

Dev	Team	1	

Dev	Team	2	

Dev	Team	3	

Dev	Team	...	

SAFE	Framework	

Dean	Leffingwell:	Scaled	Agile	Framework	
h;p://scaledagileframework.com	

Porrolio	Approach	

Zeit

1 Monat 2 Monate

Team mit monatlicher Iteration

Team mit monatlicher Iteration

Team mit 2-wöchentlicher Iteration

Sprint
Start/Ende

Monatliche Sprints 2-wöchentliche Sprints 2-wöchentliche Sprints

Roles	in	Agile	Processes	

SCRUM-Entwicklungsteam 1

SCRUM-Entwicklungsteam 2

SCRUM-Entwicklungsteam ...

Portfolio-
Management

Scrum Master

Softwareentwicklung

Geschäftsführung,
Controlling,

CIO, ...

Product OwnerKunde

Demand-
Management

CIO / CEO

Product
Management

Development Test and QA

Projekt 1

Projekt 2
…

FuncHonal	Silos	(tradiHonal)	

Product
Management

Development Test and QA

Team 1

Team 2

Team 3

Team 4

Agile	Teams	

Feature A Feature B

Presentation Layer

Business Logic

Backend Systems

Component Teams

OrganisaHon	Following	Components	
(tradiHonal)	

Feature A Feature B

Presentation Layer

Business Logic

Backend Systems

Feature A Team Feature B Team

Agile	Team	OrganisaHon	
Following	Features	/	Processes	/	Services	

Remark	

•  Defini>on	of	a	service	is	much	more	
complicated	than	oTen	assumed	

•  One	service	/	feature	oTen	invokes	many	
(complicated	and	complex)	components	

•  Very	difficult	to	cut	agile	teams,	
par>cularly	with	legacy	systems	involved	

Customer	Responsibility	

•  Product	Owner	
•  Roles	and	process	responsibiliHes	have	to	
be	clarified	

•  Lack	of	clear	roles	and	responsibiliHes	is	
o)en	the	main	factor	for	failure	in	agile	
projects!	

Further	Roles	

•  SCRUM-Master	
•  System	Team	
•  Product	Manager	
•  OperaHons	

•  Remark:	there	is	usually	a	“natural	conflict”	between	soTware	
development	teams	and	opera>ons	team;	as	well	as	discussions	on	
the	actual	role	of	opera>ons	(see	DevOps	trend)	

Contracts	and	AccounHng	

•  Fixed	price	project	
•  CooperaHon	model	
(“Time	and	Material”)	

REQUIREMENTS,	QS,	TRANSPARENCY	

Requirement	Engineering	

User	Stories	

As	WHO	I	want	WHAT	so	that	WHY	
	
Acceptance	Criteria	
	
Small,	“one	card”	

INVEST	

•  Independent	
•  NegoHable	
•  Valuable	
•  EsHmable	
•  Small	
•  Testable	

EsHmaHon	

SAFE	Framework	

•  Vision	and	Roadmap	
•  Release	Management	
•  Deployment	
•  Resource	Management	
•  Cross-team	tasks	

Full	Enterprise	Requirement	Model	
(SAFE	Framework)	

Investment
Theme Epic Feature Story Task

Feature
Acceptance

Test

Story
Acceptance

Test

Backlog Item
Non-

functional
Requirement

System
Qualities

Test

realised byrealised byrealised by implemented by

Is one of Is one of

Is one of

done when passes done when passes

Constrained by

Compliant when passes

Use Case optionally
elaborated by()

Business
Epic

Architecture
Epic

Is one of Is one of

Roles	and	“Stories”	

Investment
Theme

Epic

Feature

Story

Task

(Product / Portfolio-)
Manager

Product Owner

SCRUM Team

Teststufen	und	-arten	
§  Entwickler-/	Unit-/	API	Test	
-  Prüfung	des	Testobjekts	(Source	Code,	programmbezogene	Objekte	und	

Methoden,	etc.)	auf	Erfüllung	der	Vorgaben	der	geforderten	FunkHonalität	
-  Anwendung	von	White-Box-Testverfahren	
-  FrühzeiHge	Anwendung	von	Progressionen	sowie	Regressionen	
	
§  SystemintegraQonstest	
-  Überprüfung	des	Zusammenspiels	der	Einzelkomponenten		
-  Aufdeckung	von	Abweichungen	und	Fehlerzuständen	zwischen	integrierten	

Systemteilen	
-  VerifikaHon	der	progressiven	sowie	regressiven	fachlich	orienHerten	

Prozessabläufe	
	
§  User	Acceptance	Test	
-  Überprüfung	der	IT	Lieferungen	auf	ÜbereinsHmmung	der	vereinbarten	

Vorgaben	
-  Einnahme	der	Rolle	Tester	durch	den	Fachbereich	
-  Einsatz	von	Black-Box-Testverfahren,	welche	progressiv	als	auch	regressiv	

ausgeprägt	sind	
-  ZustandsverifikaHon	zur	Abnahmeentscheidung	

§  ProdukQonsabsicherung	/	Betriebliche	Maßnahmen	
-  Absicherung	des	ProdukHven	Betriebes	durch	lesende	bzw.	schreibende	

Smoketests	
-  Überprüfung	der	Zustandsänderung	welche	durch	eine	Release	bzw.	

Lieferung	verursacht	wurde	

51	

	
UAT	

System-
integraQons-
test	(SIT)	

Entwickler-/Unit-/
API	Test	

Transparency	

Controlling:	Burn	Down	Charts	

•  One	opHon	to	visualise	progress	
•  Y-axis:	items/features	(e.g.	“Story	Points”,	
person	days)	

•  X-axis:	Hme	
•  Update	a)er	each	sprint	
•  Improves	team	self-assessment	
•  RealisHc	esHmaHon	of	project	duraHon	and	
assessment	of	changes	in	project	scope	

•  Velocity	(KPI):	work	per	iteraHon:	measured,	
not	esHmated	(!)	

Time

Ite
m

s,
 e

tc
.

Start of Sprint

End of Sprint

Example:	Burndown	Charts	

Time

Ite
m

s,
 e

tc
.

Start of Sprint

End of Sprint

Time

Ite
m

s,
 e

tc
.

Start of Sprint

End of Sprint

"Too fast"

Too slow

Time

Ite
m

s,
 e

tc
.

Start of Sprint

End of Sprint

Too fast, but clever

Example	Burn-Down	Chart	

Example:	Sprintrate	Teams	

Example:	Release	CFD	(UATdependent)	

Progress	/	Costs	/	Budget	

•  ReporHng	of	progress	o)en	quite	difficult	
•  Progress	according	to	defined	scope	is	

(comparaHvely)	easy	but	
•  Is	development	in	budget?	

–  Time	recording	
–  Different	cost	per	day	per	employee	
–  Internal	/	external	team	members	
–  Other	costs	(development	server,	licenses,	etc.)	
–  OrganisaHon	of	IT:	cost	centre,	commercial	enHty,	etc.	

•  Actuals	versus	planning	(do	I	know	who	is	going	to	do	
what	taks?	Quite	the	opposite	of	agile)	

•  Soon,	administraHon	tasks	for	(dev	teams)	becomes	
all	but	lean	and	self-organised	

Conclusion	
Agile	Metrics	(KPIs)	

•  Different	opHons	to	visualise	progress	
–  Burn-Down	Charts	
–  Prozess-flow	visualisaHon	
–  CumulaHve	Flow	Diagrams	

•  Various	KPIs		
–  Velocity	(aggregated):	items	per	itera>on	
–  Velocity	per	work	type	
–  Cycle	Time/Lead	Time:	Average	comple>on	>me	of	one	item	
–  IdenHficaHon	of	bo;lenecks	(queue	length)	
–  Defect	Rates	

•  Usefulness	of	metrics/KPIs	depending	on	
–  Project	environment	
–  Concrete	process	implementaHon	
–  Maturity	of	teams	/	process	implementaHon	

•  Aggregate	Metrics	
–  Progress	metrics	over	team	boundaries	
–  Progress	metrics	including	actuals	vs.	budget?	

•  Cross	team	metrics	/	KPIs,	e.g.	story	points?	
–  Can	be	used	but	has	risks	

ADDITIONAL	THOUGHTS	

Challenges	and	Risks	

•  IntroducHon	/	change	management:	CEO	/	board	support	
essenQal	

•  Process	not	implemented	properly	/	consequently	
•  Role	of	product	owner	/	customer	
•  Team	structure	not	clear	enough	
•  Team	roles	sHll	focused	on	“silos”	
•  Lack	of	trust	
•  Lack	of	transparency	or	different	understanding	of	transparency	
•  KPIs	and	reporHng	that	is	not	benefiHng	teams	and	management	

alike:	introduc>on	of	KPIs	oTen	backfires	as	it	steers	people	to	fulfil	
the	KPI	not	the	actual	inten>on	behind	it	

•  Cost/backlash	of	transparency:	transparency	is	the	evil	brother	of	
self-organisaHon	and	trust	

•  Complexity	of	architecture	and	systems	

How	does	management	
(and	most	of	us)	see	IT?	

Photo	by	David	Iliff.	License:	CC-BY-SA	3.0	

Confidence	Building	

•  Change	management	as	part	of	the	process	
•  Get	external	experts	when	needed	and	get	forcefully	

rid	of	legacy	(this	is	the	hardest	part)	
•  Frequent	releases	and	demos	
•  Customer	relaHonship	
•  Backlog	transparency	
•  TesHng	and	QA	
•  Agile	metrics	/	KPIs	(that	helps	teams	and	

management	alike	–	very	difficult	to	establish)	
•  But	from	the	other	side:	confidence	and	trust	can	be	

seen	as	the	opposite	of	transparency	
•  Audits	

Messen	

»Die	messbare	Seite	der	Welt	ist	nicht	die	Welt,	es	
ist	die	messbare	Seite	der	Welt.«	

Vs.	»Messen	was	messbar	ist,	messbar	machen	
was	nicht	messbar	ist«	—	Effizienzsteigerung			

MarHn	Seel		

(Galileo,	...	oder	Archimedes?)	

CreaHvity?	

»you	don’t	get	creaHvity	for	free.	You	need	people	to	be	able	
to	sit	back,	put	their	feet	up,	and	think.«	
	
»An	organisaHon	that	can	accelerate	but	not	change	direcHon	
is	like	a	car	that	can	speed	up	but	not	steer.	In	the	short	run,	it	
makes	lots	of	progress	in	whatever	direcHon	it	happened	to	
be	going.	In	the	long	run,	it’s	just	another	road	wreck.«	

Tom	De	Marco	

Conclusion:	Cornerstones	

•  Agile	or	plan-driven?	
•  Agile	is	the	opposite	of	sloppy!	
•  Transparency	over	following	a	(long	term,	
improbable)	plan	

•  Agile	–	not	only	for	small	teams	
•  Requirements	and	customers	
•  Roles	and	processes	
•  Balance	Measurment	and	Self-OrganisaHon	

Agile	So)wareentwicklung	
im	Konzernumfeld	
Dr.	Alexander	Scha;en	
alexander@scha;en.info	
h;p://www.scha;en.info	

