
Advanced Software Engineering

19.10.2017:

Release Your Stuff 3 Times a Day

DI Stefan Strobl

INSO – Advanced Software Engineering

Agenda

 Dependency & Repository Management

 Build Management and Automation

 Release Management

 Continuous Integration & Deployment

INSO – Advanced Software Engineering

A real world example (2013)

 Large government agency

 40+ developers

 Source code managed in repository suitable for documents

 Versioning & labelling per file

 No notion of a change-set

 Dependencies are stored in the SCM tool without version information

 Releases are built from IDE on developer workstation

 Releases are not versioned

 Releases are stored on a share in the local network

 Releases are manually deployed to test and production stages by operators

3

INSO – Advanced Software Engineering

Terminology

 Continuous Integration

 Constantly merge development work with

Master/Trunk/Mainline

 Build & test automatically

 Continuous Delivery

 Continuously deliver your code to a staging environment for

your customer (!) to test

 Continuous Deployment

 Automatic deployment of code from SCM to production (!)

 Requires both continuous integration and delivery to be in

place

4

INSO – Advanced Software Engineering

Handling Dependencies…

 Default/naive approach: keeping in SCM (or other file storage)

 Problems:

 Difficult to (manually) find new libraries and updated versions

 Loose trace to source (e.g. download page)

 No standardized naming (convention)

 Loose version information (unless included in filename or

package/Manifest)

 No information about transitive dependencies

 SCM not built for versioning binaries (no diff, bad handling of

binary files, high resource usage)

 DSCM (e.g. Git) especially bad (by design) at working with large

binaries

5

INSO – Advanced Software Engineering

Dependency Management

 Declare which libraries you are using

 Declare which version of a library you are using

 Declare where these libraries are coming from

 Declare in which context you are using the library (test vs. production)

 Have these libraries declare, which libraries they are using

 Automatically retrieve all required libraries from a/your repository

 Each dependency has a unique name and version

 In a Maven environment, the following triple is used (commonly known as

GAV)

 Group-ID (e.g.: at.vie.mach2)

 Artifact-ID (e.g.: info-webapp)

 Version (e.g.: 3.1.0)

6

INSO – Advanced Software Engineering

VIE Example: Versioning

 Standard (Maven) semantic versioning (X.Y.Z-Qualifier)

 X: Major Version: Release

 Y: Minor Version: (unplanned) feature releases

 Z: Incremental Version: Bugfix-/Hotfix-Releases

 Qualifier: one of
▪ -SNAPSHOT: nightly/local build
▪ Mxx: Milestone Version
▪ RCx: Release Candidate

▪ Final versions: no qualifier

 Examples:
 2.0.4 current version, fourth hotfix release

 2.1.0-RC3 release candidate for upcoming feature release

 3.0.0-M17 current milestone, in test

 3.0.0-M18-SNAPSHOT current development version

7

INSO – Advanced Software Engineering

Dependency Management - Tools

 Maven

 Multiple tools in one

 Steep learning curve, a lot of "magic"

 Apache Ivy

 Pure dependency management

 Builds on same principles and resources

 Gradle, Buildr & Co

 Different build tools

 (basically) same dependency management

 OSGi

 Apache Felix OSGi Bundle Repository (OBR)

8

INSO – Advanced Software Engineering

What about Java 9 / Project Jigsaw

 What is Project Jigsaw?

 Solution for runtime encapsulation

 Fundamental Change in the Java ecosystem

 Java 9 itself just released (current version 9.0.1)

 Slow adoption

 Too early for a final verdict

9

INSO – Advanced Software Engineering

Repository Management

 Manage all used third party dependencies & repositories

 Even the ones that are not readily available in public repositories (e.g.

Oracle JDBC driver)

 Manage all artifacts created by the project

(binaries but also source, documentation, configuration)

 Central location for all artifacts ensures accessibility (and easy backup)

 No need to always build complete project

 Archive for past releases

 Proxy & cache remote repositories

 Results in faster build times

 Easy traceability

 Fault tolerance (e.g. if internet connection and/or remote repositories

are unreliable)

10

INSO – Advanced Software Engineering

Repository Management - Tools

 Sonatype Nexus

 OSS version sufficient for most users

 Pro version & support available

(e.g. HA, Staging)

 Apache Archiva

 Completely free & OS, but fewer features

 Still full fledged repository

 jFrog Artifactory

 The “newcomer”

 Pro version with lots of features

(e.g. RPM and P2 repositories)

 Detailed comparison: http://bit.ly/2e4aJqI

11

INSO – Advanced Software Engineering

Outside the Java Ecosystem

 Dependency and Repository Management is usually specific to

one environment

 Most ecosystems have “native” mechanisms, e.g:

 Perl: CPAN (Comprehensive Perl Archive Network)

 Tex: CTAN (Comprehensive Tex Archive Network)

 Python: PyPI (Python Package Index)

 PHP: PEAR (PHP Extension and Application Repository)

 Node.js : Node Package Manager (NPM)

 Ruby and Rails: RubyGems (RPM format)

 While Java per se does not have such an archive, Maven and

Maven Central might be considered equivalent

12

INSO – Advanced Software Engineering

Build Management and Automation

 Compile source code to binary format

 Package binaries

 Execute automated test cases

 Execute static code analysis and reporting

 Generate documentation

 Run your application locally

 Deploy your application

 Release & publish your artifacts

13

INSO – Advanced Software Engineering

Build Management – Tools

 GNU Make (http://www.gnu.org/software/make/)

 GNU Make is a tool which controls the generation of

executables and other non-source files of a program from

the program's source files.

 Make gets its knowledge of how to build your program

from a file called the makefile, which lists each of the non-

source files and how to compute it from other files. When

you write a program, you should write a makefile for it, so

that it is possible to use Make to build and install the program.

 Apache Maven

 Apache Ant/NAnt, Gradle, Buildr, MSBuild, Rake, …

14

INSO – Advanced Software Engineering

The maven build lifecycle

 validate - validate the project is correct and all necessary information is available

 compile - compile the source code of the project

 test - test the compiled source code using a suitable unit testing framework. These

tests should not require the code be packaged or deployed

 package - take the compiled code and package it in its distributable format, such as

a JAR.

 integration-test - process and deploy the package if necessary into an

environment where integration tests can be run

 verify - run any checks to verify the package is valid and meets quality criteria

 install - install the package into the local repository, for use as a dependency in

other projects locally

 deploy - done in an integration or release environment, copies the final package to

the remote repository for sharing with other developers and projects.

15

INSO – Advanced Software Engineering

VIE Example: Maven Build

 Maven Multi-Module (Reactor Build)

 Level 1 Parent-POM: Reactor Configuration

 Level 2 Parent-POM: Dependency-, Plugin-Management

 Level 3 Project POMs: Individual Modules

 Auto-versioning – all modules are released together

 Repository: Nexus

 Build Time: ~5 minutes, including ~3000 Unit Tests

 Milestone Releases: 1-2/week, minimum 1/sprint

16

INSO – Advanced Software Engineering

VIE Example: Modules

17

INSO – Advanced Software Engineering

Focus: releasing your project

Goal: create stable, reproducible artefacts

 maven-release-plugin codifies best practices

 Step 1: mvn release:prepare

 verify no un-commited changes & no SNAPSHOT dependencies

 remove -SNAPSHOT qualifier from project version & update SCM URLs to
point to tag destination

 perform build & execute tests

 commit to SCM and create tag

 increase version number, append –SNAPSHOT, update SCM section

 commit to SCM

 Step 2: mvn release:perform

 checkout previously created tag

 build and deploy artifact

 deploy additional resources (site-deploy)

 tip: always include javadoc and sources in the release

18

INSO – Advanced Software Engineering

Focus: Change Logs

 Communicate to the stakeholders of your project (QA,

project management, dependent projects/systems, end

users) what has changed since the last release

 Distinguish between technical and non-technical recipients

 Technical: simple issue tracking report

 Non-technical: focus on features and functional bugs,

frequently written in “prose”

 Tool support is crucial (Issue Tracking)

 Minimize overhead

 Align versioning between issue tracking and code base

 Developer discipline is crucial (setting fix/target version)

19

INSO – Advanced Software Engineering

some more preconditions for releasing 3 times a day

 SCM (SVN, Git, Mercurial, …)

 no (bigish) project can (and should) do without

 Testing (code quality!)

 a lot about CI stands (or falls) with sufficient test automation

 especially hard to build into larger existing projects

 flaky/bad tests do more harm than good

 Use code coverage tools

 Static Code Analysis (more code quality!)

 Sonar, FindBugs, PMD, Checkstyle

 make the build fail on violations!

 Configuration Management

 a project is much more than source code

 problems of keeping configuration in the DB

 (some) more insight in an upcoming lecture

20

INSO – Advanced Software Engineering

Continuous Integration – Principles (by M.Fowler)

1. Maintain a code repository

2. Automate the build

3. Make the build self-testing

4. Everyone commits to the baseline every day

5. Every commit (to baseline) should be built

6. Keep the build fast

7. Test in a clone of the production environment

8. Make it easy to get the latest deliverables

9. Everyone can see the results of the latest build

10. Automate deployment

21

INSO – Advanced Software Engineering

Continuous Integration

 Execute a full build of the project (ideally) after every commit

 Example: Google does it, at very large scale (see references)

 Always know & communicate the state of your repository

 Publish your build artifacts (binaries, documentation,

configuration, reports)

 Deploy and run your application

 Probably the hardest step

 Binaries and configuration have to fit together (perfectly)

 Usually not done continuously (as in every few minutes) - preferably

nightly or on an “as needed” basis

22

INSO – Advanced Software Engineering

Continuous Integration - Tools

 Hudson/Jenkins

 Apache Continuum

 CruiseControl

 Atlassian Bamboo

 many, many more...

23

INSO – Advanced Software Engineering

Continuous Integration - Dashboard

24

INSO – Advanced Software Engineering

VIE Example: Continuous Integration Builds

 Tool: Atlassian Bamboo

 Integrates nicely with Atlassian Tool Suite (JIRA, Confluence, FishEye, ...)

 Build plans:

 Continuous (~every 5-10 min)

 Nightly (@02:00)

- Deploys the current SNAPSHOT binaries to the repository

- Triggers Site, Tomcat Builds

 Site (Sonar, JavaDoc)

 Tomcat (Deploy on Dev-Server)

 Release (manually triggered)

 Maintenance Branch Continuous (~15 min)

 Separate builds for tools and external APIs/contracts

25

INSO – Advanced Software Engineering

A fresher picture – Pipelines & as code

 Examples:

 GitLab CI

 Jenkins Pipelines plugin

 Logically structures a CI-Build into a series of Steps/Nodes

 Information about CI-Configuration is stored alongside code

 .gitlab-ci.yml or Jenkinsfile

 Easy / Automatic build of ALL branches from initial commit

26

INSO – Advanced Software Engineering

GitLab CI in Action

27

INSO – Advanced Software Engineering

How to put it all together – “Enterprise” Edition

 Private, usually on premise, setup

 Consumes quite a bit of resources

 Hardware (Servers, Storage, Network, Rack, …)

 Human (Administration, Configuration, Know How, …)

 High cost of entry

 Full control & flexibility

 Tightly integrated with existing resources – e.g. LDAP/Active Directory

 Choose the tools you need/want

 Use your infrastructure (e.g. platform, versions)

 Integration of tools can be painful at times

 Scalability can become an issue on large projects

 Support only for individual, commercial tools

28

INSO – Advanced Software Engineering

VIE Example: CI Environment

29

SVN Bamboo

Slave 1

Slave 2

Nexus Pro

Sonar

Dev

Tomcat

Developer Developer

poll

Tester

commit1

2

publish

3

notify

4

INSO – Advanced Software Engineering

How to put it all together – “Cloud” Edition

 Everything is hosted by external service provider(s)

 No need for expensive hardware & maintenance

 Low barrier of entry

 Easy setup

 Fully web based configuration

 Good integration of selected tools

 Service provider is responsible for and supports a complete tool chain

 Good scalability

 Scaling up means a few clicks (and a few coins)

 Possibility for automatic scale up (& down)

 Source code etc has to leave your servers/network/premises

 … and often your country

 Legal implications or barriers

30

INSO – Advanced Software Engineering

Tools for getting started in the “Cloud”

 Source Code Management

 GitHub (including issue tracking and further collaboration)

 BitBucket

 Continuous Integration

 Travis CI (integrated with GitHub)

 CloudBees, Bamboo OnDemand (both commercial)

 Repository Management

 BinTray

 CloudBees – together with CI

 Development Server/PaaS

 AWS Beanstalk, Heroku, Google App Engine, ...

 Many others – depending on your platform/needs

31

INSO – Advanced Software Engineering

Summary

 Invest in your dev-infrastructure, it will pay off

 Tools can only do so much, discipline is required

 The principles of CI are a cornerstone for agile development

 Properly releasing your software (even for QA-builds)

ensures traceability

32

INSO – Advanced Software Engineering

Links & Resources

 http://www.martinfowler.com/articles/continuousIntegration.html

 Beck, Kent (1999). Extreme Programming Explained.

 Cunningham, Ward: http://c2.com/cgi/wiki?IntegrationHell

 http://www.methodsandtools.com/archive/archive.php?id=42

 http://www.ibm.com/developerworks/java/library/j-ap11297/

 http://semver.org/

 http://www.eclipsecon.org/2013/sites/eclipsecon.org.2013/files/Continuous%20Integr

ation%20at%20Google%20Scale.pdf

 http://devopsnet.com/2011/08/04/continuous-delivery/

 http://devopsnet.com/2012/10/25/why-do-we-do-continuous-integration/

 http://blog.assembla.com/assemblablog/tabid/12618/bid/92411/Continuous-Delivery-

vs-Continuous-Deployment-vs-Continuous-Integration-Wait-huh.aspx

 http://www.adaptavist.com/w/atlassian-ondemand-pros-and-cons-cloud/

33

