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About me

● Mark Struberg
● 25 years in the industry
● Apache Software Foundation member
● struberg [at] apache.org
● RISE GmbH employee
● TU-Wien / INSO researcher
● Committer / PMC for Apache OpenWebBeans,

MyFaces, TomEE, Maven, OpenJPA, BVal, Isis,
DeltaSpike, JBoss Arquillian, ... 

● Java JCP Expert Group member
● MicroProfile Spec Author
● Twitter: @struberg



Agenda

● General Considerations
● What is a MicroService?
● What is JavaEE?
● Showcase a few Apache projects



General Considerations



The destructive mini-me

● There are people who always see the bright side
● And people who always see the downsides!



The Weapon of Choice

● "If you have a hammer, 
every problem seems to be a nail"

● "Es gibt für jede Schraube 
den passenden Hammer!"

● "Use the right tool for the right job"
● Every design decision has pros and cons!

– There is no solution which perfcectly fits all your problems
– Example: centralised vs de-centralised systems, 

App evolution in waves: HOST -> server/client PCs ->
HTML webapps -> AJAX -> native phone apps ->
microservices ->?

● Know your weapons!
● Know your problems!



MicroServices



If MicroServices are the answer

● ... what was the question or problem causing it?
● Monoliths 

– extremely recursive inner dependencies
– No clear separation of concerns
– No clear inner design ("take whatever you need")
– Not easy to scale
– Hard to roll outs



What is a 'MicroService'?

● https://smartbear.com/learn/api-design/what-are-microservices/

Essentially, microservice architecture is a 
method of developing software applications 

as a suite of independently deployable, 
small, modular services 

in which each service runs a unique process 
and communicates through a well-defined,

 lightweight mechanism 
to serve a business goal.



How big is a MicroService

● MicroServices are 'small, independent systems'
– but how big is 'small'?
– What is the size of a typical MicroService

● How big is a JavaEE server in contrast?
– Apache TomEE: 35MB
– Apache Meecrowave: 9MB



Independent Services

● Are MicroServices really independent of each
other?

● How about versioning?
● How to detect if a feature is unused?
● Independent Data 

– A MicroService is self contained - including it's data
● Independent Programming Language and

Frameworks
– At least when using REST
– Not that easy with messaging



Data Consistency and Transactions

● XA requires fast connections
– does not really work over MicroServices

● Eventual consistency
● Compensations
● Persistent Messaging



Netflix does all that?

● NO, of course not!



Fallacies of Distributed Computing

● As postulated by Peter L. Deutsch (Sun
Microsystems):
– The network is reliable.
– Latency is zero.
– Bandwidth is infinite.
– The network is secure.
– Topology doesn't change.
– There is one administrator.
– Transport cost is zero.
– The network is homogeneous.



Testing the ball of mud

● Testing Distributed Applications is no easy task
● 3 strategies

– Massive Integration Testing
– Mocking the hell out of your project
– Capture & Replay



The takeaway?



Useful MicroService tricks

● Monoliths have the same problems when talking
with other systems!
– No XA, need to store steps separately or use a state

machine (process engine, status in the DB,
Compensations, etc)

– Circuit Breakers
– Bulkheads

● Separate high-volume/low consistency areas
from important areas

● Split your whole problem in distinct parts with
their own Database (Conway's Law)
– Those parts don't need to be 'micro' though!



Application Layering

● Also works with Monoliths
● TODO Die Zwiebel!



JavaEE vs SOA vs MicroService vs ...

● Is this really a 'vs'?
● Or is is more like fitting parts? 



JavaEE



Apache Java EE Parts

● Full Profile
● WebProfile



Servlets: Apache Tomcat

● 55% market share overall
● Alternatives: Undertow, Eclipse Jetty
● Non-HTTP:

– Socket Servers: Apache MINA, JBoss Netty
– Messaging



CDI: Apache OpenWebBeans

● A fast and small CDI container
● Modular built
● Base for many servers
● Meecrowave as sub project



JSF: Apache MyFaces

● Server Side Rendering
– Alternative: Java Script based rendering on the client.

Angular, React, Vue.js
● Well suited for form driven apps

– sophisticated data lifecycle
● JSF Apps run since 10++ years

– and are still maintainable...



JSON-P & JSON-B

● Apache Johnzon
●



Apache Geronimo

● Attention: NOT the Geronimo Server!
– that one is retired and EOL...

● Many useful EE components
– geronimo-specs
– xBean
– geronimo-config
– transaction manager
– javamail



Apache TomEE

● Web Profile Server
● Full Profile Server
● Small and Fast
● Based on Apache Tomcat

– lightweight like Tomcat
– full featured like commercial servers



How to contribute

● Pick a project
● Become familiar with the topic
● Start reading the mailing list

– you can also read the archives via markmail, nabble, etc
– http://lists.apache.org

● Check out the Source Code
● Use the project!
● Start reporting bugs... 
● ... and ship patches.



The 'Apache Way'

● Goals
– Reduce barriers to project participation
– Improve quality
– Achieve consensus and resolve conflicts
– Balance needs of corporate interest with needs of

individual contributors



Questions?
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