
Advanced Software Engineering

19.10.2017:

Release Your Stuff 3 Times a Day

DI Stefan Strobl

INSO – Advanced Software Engineering

Agenda

 Dependency & Repository Management

 Build Management and Automation

 Release Management

 Continuous Integration & Deployment

INSO – Advanced Software Engineering

A real world example (2013)

 Large government agency

 40+ developers

 Source code managed in repository suitable for documents

 Versioning & labelling per file

 No notion of a change-set

 Dependencies are stored in the SCM tool without version information

 Releases are built from IDE on developer workstation

 Releases are not versioned

 Releases are stored on a share in the local network

 Releases are manually deployed to test and production stages by operators

3

INSO – Advanced Software Engineering

Terminology

 Continuous Integration

 Constantly merge development work with

Master/Trunk/Mainline

 Build & test automatically

 Continuous Delivery

 Continuously deliver your code to a staging environment for

your customer (!) to test

 Continuous Deployment

 Automatic deployment of code from SCM to production (!)

 Requires both continuous integration and delivery to be in

place

4

INSO – Advanced Software Engineering

Handling Dependencies…

 Default/naive approach: keeping in SCM (or other file storage)

 Problems:

 Difficult to (manually) find new libraries and updated versions

 Loose trace to source (e.g. download page)

 No standardized naming (convention)

 Loose version information (unless included in filename or

package/Manifest)

 No information about transitive dependencies

 SCM not built for versioning binaries (no diff, bad handling of

binary files, high resource usage)

 DSCM (e.g. Git) especially bad (by design) at working with large

binaries

5

INSO – Advanced Software Engineering

Dependency Management

 Declare which libraries you are using

 Declare which version of a library you are using

 Declare where these libraries are coming from

 Declare in which context you are using the library (test vs. production)

 Have these libraries declare, which libraries they are using

 Automatically retrieve all required libraries from a/your repository

 Each dependency has a unique name and version

 In a Maven environment, the following triple is used (commonly known as

GAV)

 Group-ID (e.g.: at.vie.mach2)

 Artifact-ID (e.g.: info-webapp)

 Version (e.g.: 3.1.0)

6

INSO – Advanced Software Engineering

VIE Example: Versioning

 Standard (Maven) semantic versioning (X.Y.Z-Qualifier)

 X: Major Version: Release

 Y: Minor Version: (unplanned) feature releases

 Z: Incremental Version: Bugfix-/Hotfix-Releases

 Qualifier: one of
▪ -SNAPSHOT: nightly/local build
▪ Mxx: Milestone Version
▪ RCx: Release Candidate

▪ Final versions: no qualifier

 Examples:
 2.0.4 current version, fourth hotfix release

 2.1.0-RC3 release candidate for upcoming feature release

 3.0.0-M17 current milestone, in test

 3.0.0-M18-SNAPSHOT current development version

7

INSO – Advanced Software Engineering

Dependency Management - Tools

 Maven

 Multiple tools in one

 Steep learning curve, a lot of "magic"

 Apache Ivy

 Pure dependency management

 Builds on same principles and resources

 Gradle, Buildr & Co

 Different build tools

 (basically) same dependency management

 OSGi

 Apache Felix OSGi Bundle Repository (OBR)

8

INSO – Advanced Software Engineering

What about Java 9 / Project Jigsaw

 What is Project Jigsaw?

 Solution for runtime encapsulation

 Fundamental Change in the Java ecosystem

 Java 9 itself just released (current version 9.0.1)

 Slow adoption

 Too early for a final verdict

9

INSO – Advanced Software Engineering

Repository Management

 Manage all used third party dependencies & repositories

 Even the ones that are not readily available in public repositories (e.g.

Oracle JDBC driver)

 Manage all artifacts created by the project

(binaries but also source, documentation, configuration)

 Central location for all artifacts ensures accessibility (and easy backup)

 No need to always build complete project

 Archive for past releases

 Proxy & cache remote repositories

 Results in faster build times

 Easy traceability

 Fault tolerance (e.g. if internet connection and/or remote repositories

are unreliable)

10

INSO – Advanced Software Engineering

Repository Management - Tools

 Sonatype Nexus

 OSS version sufficient for most users

 Pro version & support available

(e.g. HA, Staging)

 Apache Archiva

 Completely free & OS, but fewer features

 Still full fledged repository

 jFrog Artifactory

 The “newcomer”

 Pro version with lots of features

(e.g. RPM and P2 repositories)

 Detailed comparison: http://bit.ly/2e4aJqI

11

INSO – Advanced Software Engineering

Outside the Java Ecosystem

 Dependency and Repository Management is usually specific to

one environment

 Most ecosystems have “native” mechanisms, e.g:

 Perl: CPAN (Comprehensive Perl Archive Network)

 Tex: CTAN (Comprehensive Tex Archive Network)

 Python: PyPI (Python Package Index)

 PHP: PEAR (PHP Extension and Application Repository)

 Node.js : Node Package Manager (NPM)

 Ruby and Rails: RubyGems (RPM format)

 While Java per se does not have such an archive, Maven and

Maven Central might be considered equivalent

12

INSO – Advanced Software Engineering

Build Management and Automation

 Compile source code to binary format

 Package binaries

 Execute automated test cases

 Execute static code analysis and reporting

 Generate documentation

 Run your application locally

 Deploy your application

 Release & publish your artifacts

13

INSO – Advanced Software Engineering

Build Management – Tools

 GNU Make (http://www.gnu.org/software/make/)

 GNU Make is a tool which controls the generation of

executables and other non-source files of a program from

the program's source files.

 Make gets its knowledge of how to build your program

from a file called the makefile, which lists each of the non-

source files and how to compute it from other files. When

you write a program, you should write a makefile for it, so

that it is possible to use Make to build and install the program.

 Apache Maven

 Apache Ant/NAnt, Gradle, Buildr, MSBuild, Rake, …

14

INSO – Advanced Software Engineering

The maven build lifecycle

 validate - validate the project is correct and all necessary information is available

 compile - compile the source code of the project

 test - test the compiled source code using a suitable unit testing framework. These

tests should not require the code be packaged or deployed

 package - take the compiled code and package it in its distributable format, such as

a JAR.

 integration-test - process and deploy the package if necessary into an

environment where integration tests can be run

 verify - run any checks to verify the package is valid and meets quality criteria

 install - install the package into the local repository, for use as a dependency in

other projects locally

 deploy - done in an integration or release environment, copies the final package to

the remote repository for sharing with other developers and projects.

15

INSO – Advanced Software Engineering

VIE Example: Maven Build

 Maven Multi-Module (Reactor Build)

 Level 1 Parent-POM: Reactor Configuration

 Level 2 Parent-POM: Dependency-, Plugin-Management

 Level 3 Project POMs: Individual Modules

 Auto-versioning – all modules are released together

 Repository: Nexus

 Build Time: ~5 minutes, including ~3000 Unit Tests

 Milestone Releases: 1-2/week, minimum 1/sprint

16

INSO – Advanced Software Engineering

VIE Example: Modules

17

INSO – Advanced Software Engineering

Focus: releasing your project

Goal: create stable, reproducible artefacts

 maven-release-plugin codifies best practices

 Step 1: mvn release:prepare

 verify no un-commited changes & no SNAPSHOT dependencies

 remove -SNAPSHOT qualifier from project version & update SCM URLs to
point to tag destination

 perform build & execute tests

 commit to SCM and create tag

 increase version number, append –SNAPSHOT, update SCM section

 commit to SCM

 Step 2: mvn release:perform

 checkout previously created tag

 build and deploy artifact

 deploy additional resources (site-deploy)

 tip: always include javadoc and sources in the release

18

INSO – Advanced Software Engineering

Focus: Change Logs

 Communicate to the stakeholders of your project (QA,

project management, dependent projects/systems, end

users) what has changed since the last release

 Distinguish between technical and non-technical recipients

 Technical: simple issue tracking report

 Non-technical: focus on features and functional bugs,

frequently written in “prose”

 Tool support is crucial (Issue Tracking)

 Minimize overhead

 Align versioning between issue tracking and code base

 Developer discipline is crucial (setting fix/target version)

19

INSO – Advanced Software Engineering

some more preconditions for releasing 3 times a day

 SCM (SVN, Git, Mercurial, …)

 no (bigish) project can (and should) do without

 Testing (code quality!)

 a lot about CI stands (or falls) with sufficient test automation

 especially hard to build into larger existing projects

 flaky/bad tests do more harm than good

 Use code coverage tools

 Static Code Analysis (more code quality!)

 Sonar, FindBugs, PMD, Checkstyle

 make the build fail on violations!

 Configuration Management

 a project is much more than source code

 problems of keeping configuration in the DB

 (some) more insight in an upcoming lecture

20

INSO – Advanced Software Engineering

Continuous Integration – Principles (by M.Fowler)

1. Maintain a code repository

2. Automate the build

3. Make the build self-testing

4. Everyone commits to the baseline every day

5. Every commit (to baseline) should be built

6. Keep the build fast

7. Test in a clone of the production environment

8. Make it easy to get the latest deliverables

9. Everyone can see the results of the latest build

10. Automate deployment

21

INSO – Advanced Software Engineering

Continuous Integration

 Execute a full build of the project (ideally) after every commit

 Example: Google does it, at very large scale (see references)

 Always know & communicate the state of your repository

 Publish your build artifacts (binaries, documentation,

configuration, reports)

 Deploy and run your application

 Probably the hardest step

 Binaries and configuration have to fit together (perfectly)

 Usually not done continuously (as in every few minutes) - preferably

nightly or on an “as needed” basis

22

INSO – Advanced Software Engineering

Continuous Integration - Tools

 Hudson/Jenkins

 Apache Continuum

 CruiseControl

 Atlassian Bamboo

 many, many more...

23

INSO – Advanced Software Engineering

Continuous Integration - Dashboard

24

INSO – Advanced Software Engineering

VIE Example: Continuous Integration Builds

 Tool: Atlassian Bamboo

 Integrates nicely with Atlassian Tool Suite (JIRA, Confluence, FishEye, ...)

 Build plans:

 Continuous (~every 5-10 min)

 Nightly (@02:00)

- Deploys the current SNAPSHOT binaries to the repository

- Triggers Site, Tomcat Builds

 Site (Sonar, JavaDoc)

 Tomcat (Deploy on Dev-Server)

 Release (manually triggered)

 Maintenance Branch Continuous (~15 min)

 Separate builds for tools and external APIs/contracts

25

INSO – Advanced Software Engineering

A fresher picture – Pipelines & as code

 Examples:

 GitLab CI

 Jenkins Pipelines plugin

 Logically structures a CI-Build into a series of Steps/Nodes

 Information about CI-Configuration is stored alongside code

 .gitlab-ci.yml or Jenkinsfile

 Easy / Automatic build of ALL branches from initial commit

26

INSO – Advanced Software Engineering

GitLab CI in Action

27

INSO – Advanced Software Engineering

How to put it all together – “Enterprise” Edition

 Private, usually on premise, setup

 Consumes quite a bit of resources

 Hardware (Servers, Storage, Network, Rack, …)

 Human (Administration, Configuration, Know How, …)

 High cost of entry

 Full control & flexibility

 Tightly integrated with existing resources – e.g. LDAP/Active Directory

 Choose the tools you need/want

 Use your infrastructure (e.g. platform, versions)

 Integration of tools can be painful at times

 Scalability can become an issue on large projects

 Support only for individual, commercial tools

28

INSO – Advanced Software Engineering

VIE Example: CI Environment

29

SVN Bamboo

Slave 1

Slave 2

Nexus Pro

Sonar

Dev

Tomcat

Developer Developer

poll

Tester

commit1

2

publish

3

notify

4

INSO – Advanced Software Engineering

How to put it all together – “Cloud” Edition

 Everything is hosted by external service provider(s)

 No need for expensive hardware & maintenance

 Low barrier of entry

 Easy setup

 Fully web based configuration

 Good integration of selected tools

 Service provider is responsible for and supports a complete tool chain

 Good scalability

 Scaling up means a few clicks (and a few coins)

 Possibility for automatic scale up (& down)

 Source code etc has to leave your servers/network/premises

 … and often your country

 Legal implications or barriers

30

INSO – Advanced Software Engineering

Tools for getting started in the “Cloud”

 Source Code Management

 GitHub (including issue tracking and further collaboration)

 BitBucket

 Continuous Integration

 Travis CI (integrated with GitHub)

 CloudBees, Bamboo OnDemand (both commercial)

 Repository Management

 BinTray

 CloudBees – together with CI

 Development Server/PaaS

 AWS Beanstalk, Heroku, Google App Engine, ...

 Many others – depending on your platform/needs

31

INSO – Advanced Software Engineering

Summary

 Invest in your dev-infrastructure, it will pay off

 Tools can only do so much, discipline is required

 The principles of CI are a cornerstone for agile development

 Properly releasing your software (even for QA-builds)

ensures traceability

32

INSO – Advanced Software Engineering

Links & Resources

 http://www.martinfowler.com/articles/continuousIntegration.html

 Beck, Kent (1999). Extreme Programming Explained.

 Cunningham, Ward: http://c2.com/cgi/wiki?IntegrationHell

 http://www.methodsandtools.com/archive/archive.php?id=42

 http://www.ibm.com/developerworks/java/library/j-ap11297/

 http://semver.org/

 http://www.eclipsecon.org/2013/sites/eclipsecon.org.2013/files/Continuous%20Integr

ation%20at%20Google%20Scale.pdf

 http://devopsnet.com/2011/08/04/continuous-delivery/

 http://devopsnet.com/2012/10/25/why-do-we-do-continuous-integration/

 http://blog.assembla.com/assemblablog/tabid/12618/bid/92411/Continuous-Delivery-

vs-Continuous-Deployment-vs-Continuous-Integration-Wait-huh.aspx

 http://www.adaptavist.com/w/atlassian-ondemand-pros-and-cons-cloud/

33

