Advanced Software Engineering

19.10.2017:
Release Your Stuff 3 Times a Day

DI Stefan Strobl

m Dependency & Repository Management
m Build Managementand Automation
m Release Management

m Continuous Integration & Deployment

. n m INSO — Advanced Software Engineering

A real world example (2013)

m lLarge government agency
m 40+ developers

m Source code managed in repository suitable for documents
= Versioning & labelling per file

= No notion of a change-set
m Dependencies are stored in the SCM tool without version information
m Releases are built from IDE on developer workstation
m Releases are not versioned
m Releases are stored on a share in the local network

m Releases are manually deployed to test and production stages by operators

. n m INSO — Advanced Software Engineering 3

Terminology

m Continuous Integration

= Constantly merge development work with
Master/Trunk/Mainline

= Build & test automatically

m Continuous Delivery
= Continuously deliver your code to a staging environment for
your customer (!) to test
m Continuous Deployment
= Automatic deployment of code from SCM to production (!)

= Requires both continuous integration and delivery to be in
place

. n m INSO — Advanced Software Engineering 4

Handling Dependencies...

m Default/naive approach: keeping in SCM (or other file storage)

m Problems:

Difficult to (manually) find new libraries and updated versions
Loose trace to source (e.g. download page)
No standardized naming (convention)

Loose version information (unless included in filename or
package/Manifest)

No information about transitive dependencies

SCM not built for versioning binaries (no diff, bad handling of
binary files, high resource usage)

DSCM (e.g. Git) especially bad (by design) at working with large
binaries

. n m INSO — Advanced Software Engineering 5

Dependency Management

m Declare which libraries you are using

m Declare which version of a library you are using

m Declare where these libraries are coming from

m Declare in which context you are using the library (test vs. production)
m Have these libraries declare, which libraries they are using

m Automatically retrieve all required libraries from a/your repository

m Each dependency has a unique name and version

m |n a Maven environment, the following triple is used (commonly known as

GAYV)
= Group-ID (e.g.: at.vie.mach?2)
» Artifact-ID (e.g.: info-webapp)
» Version (e.g.: 3.1.0)

. n m INSO — Advanced Software Engineering 6

VIE Example: Versioning

m Standard (Maven) semantic versioning (X.Y.Z-Qualifier)
» X: Major Version: Release
= Y: Minor Version: (unplanned) feature releases

» Z: Incremental Version: Bugfix-/Hotfix-Releases

s« Qualifier: one of
= —SNAPSHOT: nightly/local build
» Mxx: Milestone Version
» RCx: Release Candidate

= Final versions: no qualifier

m Examples:

= 2.0.4 current version, fourth hotfix release

» 2.1.0-RC3 release candidate for upcoming feature release
» 3.0.0-M17 current milestone, in test

» 3.0.0-M18-SNAPSHOT current development version

. n m INSO — Advanced Software Engineering 7

Dependency Management - Tools

m Maven

= Multiple tools in one =
H n N 1] maven
= Steep learning curve, a lot of "magic

m Apache lvy *
= Pure dependency management [w
= Builds on same principles and resources -

= Gradle, Buildr & Co (¢ gradle

= Different build tools bu“dT
= (basically) same dependency management
& felix

m OSGi
. n m INSO — Advanced Software Engineering 8

= Apache Felix OSGi Bundle Repository (OBR)

What about Java 9 / Project Jigsaw

m What is Project Jigsaw!?

m Solution for runtime encapsulation

m Fundamental Change in the Java ecosystem

m Java 9 itself just released (current version 9.0.1)
m Slow adoption

m Too early for a final verdict

. n m INSO — Advanced Software Engineering 9

Repository Management

m Manage all used third party dependencies & repositories

» Even the ones that are not readily available in public repositories (e.g.
Oracle JDBC driver)

m Manage all artifacts created by the project
(binaries but also source, documentation, configuration)
» Central location for all artifacts ensures accessibility (and easy backup)
= No need to always build complete project

» Archive for past releases

m Proxy & cache remote repositories
= Results in faster build times

» Easy traceability

» Fault tolerance (e.g. if internet connection and/or remote repositories
are unreliable)

. n m INSO — Advanced Software Engineering 10

Repository Management - Tools

m Sonatype Nexus

= OSS version sufficient for most users —
» Pro version & support available == N EXUS
(e.g. HA, Staging)
m Apache Archiva AVL

TAY ™

» Completely free & OS, but fewer features arCh’va

» Still full fledged repository

m jFrog Artifactory
= [he “newcomer” artifaCtorq

a Pro version with lots of features
(e.g. RPM and P2 repositories)

m Detailed comparison: http://bit.ly/2e4ajq|

. n m INSO — Advanced Software Engineering 11

Outside the Java Ecosystem

m Dependency and Repository Management is usually specific to
one environment

m Most ecosystems have “native’” mechanisms, e.g:

» Perl: CPAN (Comprehensive Perl Archive Network)
Tex: CTAN (Comprehensive Tex Archive Network)
Python: PyPl (Python Package Index)

PHP: PEAR (PHP Extension and Application Repository)
Node.js : Node Package Manager (NPM)
Ruby and Rails: RubyGems (RPM format)

m While Java per se does not have such an archive, Maven and
Maven Central might be considered equivalent

. n m INSO — Advanced Software Engineering 12

Build Management and Automation

Compile source code to binary format

m Package binaries

m Execute automated test cases

m Execute static code analysis and reporting
m Generate documentation

m Run your application locally

m Deploy your application

m Release & publish your artifacts

. n m INSO — Advanced Software Engineering 13

Build Management — Tools

m GNU Make (http://www.gnu.org/software/make/)

= GNU Make is a tool which controls the generation of
executables and other non-source files of a program from
the program's source files.

= Make gets its knowledge of how to build your program
from a file called the makefile, which lists each of the non-
source files and how to compute it from other files. When
you write a program, you should write a makefile for it, so
that it is possible to use Make to build and install the program.

m Apache Maven
m Apache Ant/NAnt, Gradle, Buildr, MSBuild, Rake, ...

. n m INSO — Advanced Software Engineering 14

The maven build lifecycle

m validate - validate the project is correct and all necessary information is available
m compile - compile the source code of the project

m test - test the compiled source code using a suitable unit testing framework. These
tests should not require the code be packaged or deployed

m package - take the compiled code and package it in its distributable format, such as
a JAR.

m integration-test - process and deploy the package if necessary into an
environment where integration tests can be run

m verify - run any checks to verify the package is valid and meets quality criteria

m install - install the package into the local repository, for use as a dependency in
other projects locally

m deploy - done in an integration or release environment, copies the final package to
the remote repository for sharing with other developers and projects.

. n m INSO — Advanced Software Engineering 15

VIE Example: Maven Build

m Maven Multi-Module (Reactor Build)
= Level | Parent-POM: Reactor Configuration

= Level 2 Parent-POM: Dependency-, Plugin-Management
= Level 3 Project POMs: Individual Modules

m Auto-versioning — all modules are released together
m Repository: Nexus
m Build Time: ~5 minutes, including ~3000 Unit Tests

m Milestone Releases: |-2/week, minimum |/sprint

. n m INSO — Advanced Software Engineering 16

VIE Example: Modules

FlanRestSerdcelmpl

.

FlanRestSemnice

PlanRestSenviceClient

Modulstruktur
1
info-server apticnal future
. improvement:
aUl <\WAR:= additional
static content deployakles
PR ceeeert ™ e .
Wws s coticfies M rest_api o rest-client

optional future

. satisfies L improverment:
- L Ciueue Waorker
IiTelexParser
core oo eatisfies - O api ' +TelexHandler
{currently part of
: . . Care)
F'IanServ'El:eImpI Flansgrice)
v v
dao ceeeeeee DI MESSages '-,'
v
model ‘ "
| / . .. _ |
‘.__..; i .».
flightbase types

currenty part of ops2
[ops-types)

TOOLS

BASE

17

Focus: releasing your project

Goal: create stable, reproducible artefacts
m maven-release-plugin codifies best practices

m Step |: mvn release:prepare
= verify no un-commited changes & no SNAPSHOT dependencies

= remove -SNAPSHOT qualifier from project version & update SCM URLs to
point to tag destination

= perform build & execute tests

= commit to SCM and create tag

= increase version number, append -SNAPSHOT, update SCM section
= commit to SCM

m Step 2: mvn release:perform
= checkout previously created tag
= build and deploy artifact
= deploy additional resources (site-deploy)

m tip: always include javadoc and sources in the release

. n m INSO — Advanced Software Engineering 18

Focus: Change Logs

Communicate to the stakeholders of your project (QA,
project management, dependent projects/systems, end
users) what has changed since the last release

m Distinguish between technical and non-technical recipients
= [echnical: simple issue tracking report

= Non-technical: focus on features and functional bugs,
frequently written in “prose”

m Tool supportis crucial (Issue Tracking)
= Minimize overhead
= Align versioning between issue tracking and code base

= Developer discipline is crucial (setting fix/target version)

. n m INSO — Advanced Software Engineering 19

some more preconditions for releasing 3 times a day

m SCM (SVN, Git, Mercurial, ...)
= no (bigish) project can (and should) do without

m Testing (code quality!)
= a lot about ClI stands (or falls) with sufficient test automation
= especially hard to build into larger existing projects
» flaky/bad tests do more harm than good

= Use code coverage tools

m Static Code Analysis (more code quality!)
= Sonar, FindBugs, PMD, Checkstyle

= make the build fail on violations!

m Configuration Management
= a project is much more than source code
= problems of keeping configuration in the DB

= (some) more insight in an upcoming lecture

. n m INSO — Advanced Software Engineering 20

Continuous Integration — Principles (by M.Fowler)

|. Maintain a code repository

2. Automate the build

3. Make the build self-testing

4. Everyone commits to the baseline every day

5. Every commit (to baseline) should be built
Keep the build fast

Test in a clone of the production environment

Make it easy to get the latest deliverables

o 0 N o

Everyone can see the results of the latest build

10. Automate deployment

. n m INSO — Advanced Software Engineering 21

Continuous Integration

m Execute a full build of the project (ideally) after every commit

» Example: Google does it, at very large scale (see references)
m Always know & communicate the state of your repository

m Publish your build artifacts (binaries, documentation,
configuration, reports)

m Deploy and run your application
» Probably the hardest step
» Binaries and configuration have to fit together (perfectly)

» Usually not done continuously (as in every few minutes) - preferably
nightly or on an “as needed” basis

. n m INSO — Advanced Software Engineering 22

Continuous Integration - Tools

m Hudson/Jenkins

m Apache Continuum

m CruiseControl

m Atlassian Bamboo

E many, many more...

. n m INSO — Advanced Software Engineering 23

Continuous Integration - Dashboard

% search

Jenkins Suisse Stop-tabac dev ENABLE AUTO REFRESH

4 Backto Dashboard

Project] |

CI build

. Status

“;’ Changes
=

Disable Project

h Workspace
Test Result Trend

@ Build Now 140
: Coverage Report
® Delete Project 120
.) Q00 Lo
& Configure
Workspace T
B Set Next Build Number 3
Y B0
.14 Duplicate Code
W* Duslicate Cade Recent Changes 40
Coverage Report 20
o
|| SLOCCount Latest Test Result (no failures) g E § E
% * %
Git Polling Log - .
Ij] R Polling Lof (just show failures) enlarge
3 Build History (trenay Permalinks - Code Coverage
— Classes 45% Conditionals 74%: Files 45% Lines 28% Packages B88%
@ #977 Auq 27,2017 4:37:27 PM « Last build (#977), 3 min 17 sec ago UM e
) e Last stable build {#577), 3 min 17 sec ago o T
@ #438 Jun 28, 2012 8:47:42 A [&] * Last successful b #977), 3 min 17 sec ago 30
£476 Jun 26, 2012 1:39:39 PM < R w—
. -] Py —— ... |—Classes
@ #345 Jun 19, 2012 9:02:20 AM [&] w 50 — Conditionals
@ #263 Jun6.20129:14:42PM [&] a0 —— Files
g 30 Lines
#210 May 31, 2012 §:42:25 AM
o [&] 20 — Packages
@ #171 May 23, 2012 9:58:18 P [5] 10 LN e e
. o
@ #50 May 15, 2012 11:49:41 AM [E] w [E] ~
E =
B RSS for all a RSS for failures * A ¥ *
SLOCCount Trend

E Help us localize this page Page generated: Aug 27, 2012 4:40:45 PM Jenkins ver. 1.470

. n INSO — Advanced Software Engineering o4
WIEN

VIE Example: Continuous Integration Builds

m Tool: Atlassian Bamboo
» Integrates nicely with Atlassian Tool Suite (JIRA, Confluence, FishEye, ...)

m Build plans:
» Continuous (~every 5-10 min)
Nightly (@02:00)
- Deploys the current SNAPSHOT binaries to the repository
- Triggers Site, Tomcat Builds

Site (Sonar, JavaDoc)

Tomcat (Deploy on Dev-Server)

Release (manually triggered)

Maintenance Branch Continuous (~15 min)

Separate builds for tools and external APIs/contracts

. n m INSO — Advanced Software Engineering 25

A fresher picture — Pipelines & as code

m Examples:
« GitLab CI

= Jenkins Pipelines plugin
m Logically structures a Cl-Build into a series of Steps/Nodes

m Information about Cl-Configuration is stored alongside code

= .gitlab-ci.yml or Jenkinsfile

m Easy / Automatic build of ALL branches from initial commit

. n m INSO — Advanced Software Engineering 26

GitLab Cl in Action

Commit @218241a [} authored about 14 hours ago by r] Browse files Options ~
Merge branch 'feature-{ ¥' into ‘develop’
Refs |

See merge request !116

=0~ parents f2e58699 28da7f19 V¥ develop

@ Pipeline #16108 passed with stage () in 19 minutes 44 saconds

Changes & Pipelines 1

Status Pipeline Commit Stages
#16103 by (1 ¥ develop -o- 92182415 @ & 00:19:44 s -
(———————————————— | £ about 13 hours ago

INSO — Advanced Software Engineering 27

How to put it all together — “Enterprise” Edition

m Private, usually on premise, setup

m Consumes quite a bit of resources
= Hardware (Servers, Storage, Network, Rack, ...)

= Human (Administration, Configuration, Know How, ...)
m High cost of entry

m Full control & flexibility
= Tightly integrated with existing resources — e.g. LDAP/Active Directory
= Choose the tools you need/want

= Use your infrastructure (e.g. platform, versions)
m Integration of tools can be painful at times
m Scalability can become an issue on large projects

m Support only for individual, commercial tools

. n m INSO — Advanced Software Engineering

28

VIE Example: Cl Environment
@ W
pol oublish

E N

@conmit ﬁi‘y\
]

Developer Developer Tester

. n m INSO — Advanced Software Engineering 29

How to put it all together — “Cloud” Edition

m Everything is hosted by external service provider(s)
= No need for expensive hardware & maintenance

= Low barrier of entry

m Easy setup

= Fully web based configuration

m Good integration of selected tools

= Service provider is responsible for and supports a complete tool chain

m Good scalability
= Scaling up means a few clicks (and a few coins)

= Possibility for automatic scale up (& down)

m Source code etc has to leave your servers/network/premises
= ... and often your country

= Legal implications or barriers

. n m INSO — Advanced Software Engineering 30

Tools for getting started in the “Cloud”

m Source Code Management o

» GitHub (including issue tracking and further collaboration)

= BitBucket 6

m Continuous Integration
» Travis Cl (integrated with GitHub) 8@

‘I|B
& Atlassian

o (2
CloudBees

NNNNNNN

» CloudBees, Bamboo OnDemand (both commercial)

m Repository Management Selts ¥ OnDemand
= BinTray .Bffntray

» CloudBees — together with Cl

% amazon heroku

m Development Server/PaaS webservices™

» AWS Beanstalk, Heroku, Google App Engine, ...
= Many others — depending on your platform/needs é 0]

Google

App Engin
. n m INSO — Advanced Software Engineering 31

m Invest in your dev-infrastructure, it will pay off

m Tools can only do so much, discipline is required
m The principles of Cl are a cornerstone for agile development

m Properly releasing your software (even for QA-builds)
ensures traceability

. n m INSO — Advanced Software Engineering 32

Links & Resources

http://www.martinfowler.com/articles/continuousintegration.html

Beck, Kent (1999). Extreme Programming Explained.

Cunningham, Ward: http://c2.com/cgi/wiki?IntegrationHell

http://www.methodsandtools.com/archive/archive.php?id=42

http://www.ibm.com/developerworks/java/library/j-ap | 1297/

http://semver.org/

http://www.eclipsecon.org/20 | 3/sites/eclipsecon.org.201 3/files/Continuous%20Integr

ation%20at%20Google%20Scale.pdf

http://devopsnet.com/201 1/08/04/continuous-delivery/

http://devopsnet.com/2012/10/25/why-do-we-do-continuous-integration/

http://blog.assembla.com/assemblablog/tabid/12618/bid/9241 |/Continuous-Delivery-
vs-Continuous-Deployment-vs-Continuous-Integration-Wait-huh.aspx

http://www.adaptavist.com/w/atlassian-ondemand-pros-and-cons-cloud/

. n m INSO — Advanced Software Engineering 33

