
Advanced Software Engineering

23.11.2017

Five challenges you solve for every project

DI Stefan Strobl

stefan.strobl [at] inso.tuwien.ac.at

INSO – Advanced Software Engineering

Introduction

 Frameworks offer a lot of guidance to solve common

problems (patterns)

 Crucial areas need qualified decisions to tailor the

framework to your needs

 Good frameworks provide you with a series of alternatives,

bad ones try to force “the right” solution on you

 Choosing suitable framework(s) and tailoring it to the

scenario at hand is an integral part of any IT project

INSO – Advanced Software Engineering

public void doSomething(Equipment instance, String user, String role) {

if (role.equalsIgnoreCase(UserRoles.ADMINISTRATOR) || role.equalsIgnoreCase(UserRoles.SUPERUSER)) {

log.debug(„do Something Equipment");

Session session = null;

try {

String setVar = "{call SET_CTXVAR('username','" + user + "')}";

session = HibernateSessionFactory.getSessionFactory().openSession();

session.beginTransaction();

session.createSQLQuery(setVar).executeUpdate();

session.delete(instance);

session.getTransaction().commit();

log.debug("Equipment do Something successful");

} catch (RuntimeException re) {

log.error("Equipment do Something failed", re);

throw re;

} finally {

session.close();

}

} else {

log.warn("User: " + user

+ ", role: " + role

+ ", Tried to do Something with a record when the role does not allow this function");

}

}

public void deleteEquipment(Equipment instance, String user, String role) {

if (role.equalsIgnoreCase(UserRoles.ADMINISTRATOR) || role.equalsIgnoreCase(UserRoles.SUPERUSER)) {

log.debug("deleting Equipment");

Session session = null;

try {

String setVar = "{call SET_CTXVAR('username','" + user + "')}";

session = HibernateSessionFactory.getSessionFactory().openSession();

session.beginTransaction();

session.createSQLQuery(setVar).executeUpdate();

session.delete(instance);

session.getTransaction().commit();

log.debug("Equipment delete successful");

} catch (RuntimeException re) {

log.error("Equipment delete failed", re);

throw re;

} finally {

session.close();

}

} else {

log.warn("User: " + user

+ ", role: " + role

+ ", Tried to delete a record when the role does not allow this function");

}

}

How not to…

3

INSO – Advanced Software Engineering

Agenda

 While using (modern) application frameworks, cross cutting

concerns usually need tailoring

 Handling these concerns separately from your business logic

is a major factor for retaining clean, readable code

 The following five areas will be addressed today

 Transaction Management

 Logging & Auditing

 Security

 Error Handling

 Internationalization & Localization

 Some common pitfalls will be highlighted along the way

4

INSO – Advanced Software Engineering

Let us start with a regular business service

class MyServiceImpl implements MyService {

public ResultDTO executeBusinessMethod(InputDTO input)

throws MyBusinessException {

validateInput(input);

Result result = performCalculation(input);

if(result.failed()) {

throw new MyBusinessException(„error.key“);

}

updateDatabase(result);

return transform(result);

}

// private methods

}

5

INSO – Advanced Software Engineering

Transaction Management - Models

 Models describe the expected transactional behaviour

 Essentially: who is responsible for a transaction?

 Local Transaction Model

- Underlying database (auto commit)

- Connection based

 Programmatic Transaction Model

- The developer (no auto commit)

- Transaction manager / User Transaction

 Declarative Transaction Model aka Container Managed

Transactions (CMT)

- The developer specifies the behaviour

- The container handles the transaction

6

INSO – Advanced Software Engineering

Transaction Management - Strategies

 The following strategies can be used or customized to

handle transactions

 Essentially: what is considered a unit of work?

 Client Orchestration: for fine grained APIs

- Web framework

- Portal application

- Workflow or BPM component

 API Layer: for coarse grained methods

- Web services

- Message handlers

 High Concurrency / High Speed Processing: optimizations

- Shortest possible transaction scope

7

INSO – Advanced Software Engineering

A word on distributed transactions

 Distributed or global transactions allow atomic behavior over more than

one resource (database, message queue, …)

 Specified in the XA (eXtended Architecture) standard by “The Open

Group”

 XA uses the 2-phase-commit (2PC) protocol to ensure atomic commits

 Java Transaction API (JTA, JSR-907) is based on the XA standard

 Should only be used when absolutely necessary

 Distributed transactions can NOT cover all cases of (physical) failure

 Many problems can be solved by fine grained, manual control of commit

sequence

 Use established Enterprise Integration Patterns (EIP) – e.g. for message queuing:

Idempotent Consumer

8

INSO – Advanced Software Engineering

Declarative Transactions – Spring example

 Spring @Transactional

annotation

 Transactional Interceptor

 Begin/commit transaction

 Join existing transaction

 Rollback in case of

(unchecked) exception

 Correct configuration of

transactions is crucial

9

<<Transaction Interceptor>>

tx = getOrCreateTx().begin()

tx.commit()

// handle possible errors

<<Bean>>

@Transactional

void doSomething()

// execute code

INSO – Advanced Software Engineering

Pitfall – declarative transactions & interceptors

public class Bean {

void a() {

b();

}

@Transactional

void b() {

doSomething();

}

}

 Calling b() works as

expected

 Calling a() does not

work

 WHY?

  Solution:

Self reference to

obtain proxy

10

public class Bean {

@Inject Bean bean;

void a() {

bean.b();

}

@Transactional

void b() {

doSomething();

}

}

INSO – Advanced Software Engineering

Transaction Management - Summary

 Problem:

How to choose the right transaction management strategy for

your project?

 Steps:

 If running inside a suitable container, declarative transactions are usually

the safest bet

 Make sure you understand the implications a managed persistence

context entails

 Completely managing transactions manually results in a lot of boiler-

plate code and is error prone

 CMT makes automating tests hard(er) – an embedded container is

necessary to provide a suitable environment

 XA Transactions only when absolutely necessary

11

INSO – Advanced Software Engineering

Apply to our business service

class MyServiceImpl implements MyService {

@Transactional

public ResultDTO executeBusinessMethod(InputDTO input)

throws MyBusinessException {

validateInput(input);

Result result = performCalculation(input);

if(result.failed()) {

throw new MyBusinessException(„error.key“);

}

updateDatabase(result);

return transform(result);

}

// private methods

}

12

INSO – Advanced Software Engineering

Logging & Auditing - Definition(s)

 Logging:

 Technical, text based output

primarily used for detecting

and debugging problems

 Level of detail can usually be

configured at runtime

 Output is not (easily)

understandable for regular

users of the system

 Output is not suitable for

automated processing

 Short term retention (months)

 Auditing

 Domain specific, fine grained

and structured output for

tracing user activity

 Requirements are specified by

legal and/or company specific

policies

 Used by (limited) end user

group (e.g. internal revision)

 Frequently coupled with long

term retention requirements

(10+ years for regular

businesses, 30+ for medical

and similar)

13

INSO – Advanced Software Engineering

Logging Technical

 Plenty of frameworks and meta-frameworks available

 Examples: Log4j, Logback, JUL - or meta: slf4j

 Some performance implications to consider

 Avoid expensive operations to generate log statements (e.g. only print

id instead of loading a data set from the database)

 Avoid unnecessary string concatenations

 Too much log output negatively affects performance

 Absolutely avoid writing directly to stdout or stderr

 Logging also has to be configured correctly in the frameworks

and libraries you use (can be quite tricky)

 Scenario: Framework A uses log4j, Framework B uses JUL

INSO – Advanced Software Engineering

Reading log files

 Clustering/load balancing/distribution can make it infinitely

harder to trace an error

 Provide contextual information (userId, sessionId, transaction-

or requestId, threadId) for correlation

 Make use of tooling for easy reading of large amounts of

generated log files

 Syslogd

 Logstash

 Splunk

(commercial)

15

INSO – Advanced Software Engineering

Good Log output

 Frameworks cannot ensure "good" log output, only enable it

 Limit the amount of log levels used (usually DEBUG, INFO, WARN
and ERROR are sufficient)

 Establish and enforce clear rules when to use which log category

 Make sure you know how to adjust the log level at runtime

 The possibility to activate extensive/verbose debug output can save
your day in critical situations

 Automatically adjusting the log level according to the current
situations can help to make problems visible earlier

 Contextual information helps you to trace the flow of execution

 Always provide a reference (“user created” vs. “user (id=1234)
created”)

 Make sure to tailor the log output after gathering experience in
practice

16

INSO – Advanced Software Engineering

Auditing - Technical

 No or little framework support available

 Requirements are usually too diverse/specific for "generic"

solutions

 Auditing is a "domain specific" feature - requiring regular

specification, quality assurance, etc

 Frequently depends on already existing (in house) product

 If using interface to external product make sure to have proper

SLAs in place

 Often quite expensive to generate and deliver auditing

information

 Try to work asynchronously as often as possible to reduce

effect on execution time

17

INSO – Advanced Software Engineering

Logging & Auditing - Summary

 Problem:

How to correctly configure logging (and auditing)?

 Steps:

 Select a good logging framework with a clear and concise API

and good performance

 Configure the logging framework to give you just enough

information

 Define clear and simple rules for all developers to follow

 Review the quality of your log output on a regular basis

 Ensure the logs are easily and quickly accessible

 Auditing, if necessary, is a regular functional requirement

 Make sure auditing does not affect your performance

18

INSO – Advanced Software Engineering

Apply to our business service

class MyServiceImpl implements MyService {

@Transactional

@TraceMethodCall(level=INFO)

@AuditResult

public ResultDTO executeBusinessMethod(InputDTO input)

throws MyBusinessException {

validateInput(input);

Result result = performCalculation(input);

if(result.failed()) {

throw new MyBusinessException(„error.key“);

}

updateDatabase(result);

return transform(result);

}

// private methods

}

19

INSO – Advanced Software Engineering

Security

 Two main “tasks”

 Authentication

 Authorization

 For each many solutions depending on your requirements

 Identity Management

 How to handle user related data?

 Database, Custom application

 LDAP/Active Directory

 Managing users and granted authorizations can become very

complex with a growing number of users and actions

20

INSO – Advanced Software Engineering

Identity Management

21

INSO – Advanced Software Engineering

Authentication

 Username/Password

 Easiest, both to implement and use

 Still most wide-spread, though increasingly insecure

 Certificate based (client authentication)

 Complex to roll out & manage

 Used in high security environments

 Token based / Single Sign On (SSO)

 e.g. SAML, OpenID, Kerberos or proprietary (LTPA)

 Upcoming: smart card, biometric

 “Bürgerkarte”, Fingerprint-Sensor

 Usually needs client side support (driver, ...)

22

INSO – Advanced Software Engineering

Authorization

 Role based access control (RBAC)

 Frequently used for resource based systems (e.g.

Windows/*nix file systems)

 Permission based

 Simple action based

 Complex expressions

 Access control lists (ACL)

 Delivers fine grained control on an (object) instance level

 Rule based

 Suitable for complicated and frequently changing business

requirements

23

INSO – Advanced Software Engineering

Authorizations - what to choose

 Permission or role based: simple security requirements

 Usually easy to govern

 Well supported by standard technologies

 Performance implications are minimal

 ACLs or rules: complex, data set centric requirements

 e.g. patient data, individual accounts with user managed grants

 complex system for (automatically) granting access

 can have significant performance implications

24

INSO – Advanced Software Engineering

Declarative Security

 Provided by containers out of the box

 Forces usage of provided authentication mechanisms and

APIs (JAAS for Java)

 @RolesAllowed specified by JSR-250

 Spring and Deltaspike extend the mechanisms to provide

more flexibility (e.g. Expression based security checks)

 Decide on a scope for your security, e.g.

 API level

 Client/User Interface level

25

INSO – Advanced Software Engineering

Summary - Security

 Problem

How to choose an appropriate access control mechanism?

 Steps:

 Identify available resources, especially data

 Reuse existing infrastructure or frameworks over building your own

 Decouple authentication, authorization and identity management

 Keep your business code clean of provider specific dependencies

 Make sure to adhere to organizational requirements

 Consider performance implications when using more complex

authorization methods

26

INSO – Advanced Software Engineering

Apply to our business service

class MyServiceImpl implements MyService {

@Transactional

@TraceMethodCall(level=INFO)

@AuditResult

@RolesAllowed(SUPER_POWER_USER)

public ResultDTO executeBusinessMethod(InputDTO input)

throws MyBusinessException {

validateInput(input);

Result result = performCalculation(input);

if(result.failed()) {

throw new MyBusinessException(„error.key“);

}

updateDatabase(result);

return transform(result);

}

// private methods

}

27

INSO – Advanced Software Engineering

Error Management

 User error vs. program error

 Program flow vs. exception

 Connected with logging and UI

 How and what to communicate to the end user

 Also connected with (client side) validation

 Three types of Exceptions

 Checked Exceptions

 Unchecked Exceptions

 Errors

28

INSO – Advanced Software Engineering

Handling Lower Level Exceptions

 Ask yourself the following questions:

 Does this method have enough information to properly handle

this exception? If yes, handle it.

Otherwise...

 Does the caller have enough information to properly handle

this exception? If yes, re-throw.

Otherwise...

 Does the caller need to specifically handle failures in the

operations from this component? If yes, re-throw as nested

within a component exception subclass. Otherwise...

 Re-throw as unchecked.

Source: http://stackoverflow.com/questions/5865547/java-error-handling

29

http://stackoverflow.com/questions/5865547/java-error-handling

INSO – Advanced Software Engineering

Exception Translation Pattern

 Do not expose “lower level” exceptions to upper layers of

code to avoid “API bleeding”

 If exception cannot be handled at the current stage, wrap it in a

module specific exception

 Easily done as (custom) Interceptor/Aspect + Annotation

try {

doSomething();

} catch (LowerLevelException e) {

throw new MyBusinessException(“message”, e);

}

30

INSO – Advanced Software Engineering

Exception Handling – Anti-Patterns

 Log and Throw

 Do either one or the other!

 Catching or Throwing “Exception”

 It’s like a fishers net – you do not know what you will catch

 Destructive Wrapping

 Always pass the causing exception

 Catch and Ignore

 This one will come back to bite YOU

 Throw from within finally

 Will swallow any other exception

31

INSO – Advanced Software Engineering

Pitfall: Checked Exceptions and Transactions

 One of the most common data integrity problems

 EJB and Spring do not rollback on checked exceptions

@Transactional

public void blockIn(Flight flight, Time time)

throws MyCheckedException {

try {

updateFlight(flight, time);

// throws MyCheckedException

updatePosition(flight);

} catch (MyException e) {

//do some error handling

throw e;

}

}

32

(rollbackFor=MyCheckedException.class)

ctxt.setRollbackOnly(true);

Spring

EJB

INSO – Advanced Software Engineering

Summary – Error Management

 Problem

How to consistently manage user and program errors in your

system?

 Steps:

 Do not use exceptions to direct regular program flow

 A good exception (handling) strategy will make your code usable and

maintainable

 Consistency is key for maintainability and readability

 Do not overpower your end user with incomprehensible information

 At the same time make it easy for the user to report a problem

 Watch for common pitfalls

33

INSO – Advanced Software Engineering

Apply to our business service

class MyServiceImpl implements MyService {

@Transactional

@TraceMethodCall(level=INFO)

@AuditResult

@RolesAllowed(SUPER_POWER_USER)

@ExceptionBarrier

public ResultDTO executeBusinessMethod(InputDTO input)

throws MyBusinessException {

validateInput(input);

Result result = performCalculation(input);

if(result.failed()) {

throw new MyBusinessException(„error.key“);

}

updateDatabase(result);

return transform(result);

}

// private methods

}

34

INSO – Advanced Software Engineering

Localization & Internationalization

 Internationalization (I18n)

The preparation of a (software) product for use in the global

market, usually done only once.

 Localization (L10n)

Performing specific adaptations necessary to launch a product

in a specific locale.

35

INSO – Advanced Software Engineering

Typical Focus Points

 Language & Text

 Character encoding (UTF-8 is should be de facto standard)

 Orientation: Left to right vs. right to left vs. vertical

 Images, Sorting

 Pluralisation

 Culture

 Names and titles

 Weights and measurements, paper sizes

 Telephone, Addresses, Postal codes

 Conventions

 Currency format

 Date, Time, Time zones and Calendars

 Number format

36

INSO – Advanced Software Engineering

Java Technologies

▪ Java built in (Resource Bundles)

▪ Foundation for most other frameworks

▪ ResourceBundle consisting of several property files (one per supported language

+ one for fallback)

▪ String.format() or MessageFormat.format() to properly handle parameterized

messages

▪ Cal10n

▪ Builds on built in Java mechanisms

▪ Provides (some) type safety by using Enumerations as key

▪ Configuration via annotations

▪ Built in support for formatting messages

▪ JavaEE/CDI/Deltaspike

▪ Builds on built in Java mechanisms

▪ Provides (some) type safety by using interfaces (as keys)

▪ Support for injection of message bundles

37

INSO – Advanced Software Engineering

Java Resource Bundles – Key Issues

▪ Property files (by Java specification) are ISO-8859-1 (Latin-1) encoded

▪ Hell, if more than one platform is involved (e.g Win, Linux, Mac OS)

▪ Only way to use characters not available in Latin-1 is to use Unicode escaped

characters (ü -> \u00FC)

▪ Type Safety

▪ Properties are referenced as strings

▪ Missing properties can only be discovered at runtime

▪ Unused properties usually remain

▪ Adding new and editing properties is a manual process

▪ Define property in multiple property files (maybe dozens of languages)

▪ Reference the property by the key

▪ Finding non-translated Strings inside the code is even harder

▪ No-compiler checks etc

38

INSO – Advanced Software Engineering

Java I18N – Hidden Issues 1

Pluralization

▪ “0 Personen” vs. “1 Person” vs. “5 Personen”

pCount={0}{0,choice,0#Personen|1#Person|1<Personen}

▪ Supported for “easy” languages (e.g. English, German) in Java

MessageFormat

▪ Third party library needed for complex languages (e.g. Polish, Russian) –

ICU4J

▪ Example: Different derivations of a word for single, a few and many (e.g.

1 auto; 2, 23, 54 auta; 5, 17 aut)

car={0} {0, plural, one{auto}few{auta}many{aut}other{aut}}

39

INSO – Advanced Software Engineering

Java I18N – Hidden Issues 2

Collation

▪ Some languages do not have the expected 1:1 mapping of lower-case to

upper-case letters

▪ E.g. Turkish has two lower case “i” and “ı” as well as two different

uppercase: “İ” and “I”

▪ This results in

“portrait”.toUpperCase().equals(“PORTRAIT”) == false

Attention: This also happens on non localized Strings if the locale of the

JVM is switched (e.g. because a Java program runs on a Windows instance

with Turkish localization)

40

INSO – Advanced Software Engineering

Summary Internationalization & Localization

 Problem

How to prepare you product for a global audience?

 Steps

 Consider Internationalization right from the beginning, especially

- Character encoding

- Locale & Timezone settings

 Know your target market to avoid unnecessary overhead

 I18n is not only translatable text

 Even if initially only one language is the target, investing in

Internationalization can pre-empt changing requirements

 Make use of tools & frameworks

 Make sure you are in control of locale and timezone settings

41

INSO – Advanced Software Engineering

Apply to our business service

class MyServiceImpl implements MyService {

@Transactional

@TraceMethodCall(level=INFO)

@AuditResult

@RolesAllowed(SUPER_POWER_USER)

@TransactionBarrier

@InterpolateMessages

public ResultDTO executeBusinessMethod(InputDTO input)

throws MyBusinessException {

validateInput(input);

Result result = performCalculation(input);

if(result.failed()) {

throw new MyBusinessException(„error.key“);

}

updateDatabase(result);

return transform(result);

}

// private methods

}

42

INSO – Advanced Software Engineering

Our final business service

class MyServiceImpl implements MyService {

@Transactional

@TraceMethodCall(level=INFO)

@AuditResult

@RolesAllowed(SUPER_POWER_USER)

@TransactionBarrier

@InterpolateMessages

public ResultDTO executeBusinessMethod(InputDTO input)

throws MyBusinessException {

validateInput(input);

Result result = performCalculation(input);

if(result.failed()) {

throw new MyBusinessException(„error.key“);

}

updateDatabase(result);

return transform(result);

}

// private methods

}

43

Business Logic

Cross Cutting

Concerns

INSO – Advanced Software Engineering

Back to our „How not to…“

44

public void deleteEquipment(Equipment instance, String user, String role) {

if (role.equalsIgnoreCase(UserRoles.ADMINISTRATOR) || role.equalsIgnoreCase(UserRoles.SUPERUSER)) {

log.debug("deleting Equipment");

Session session = null;

try {

String setVar = "{call SET_CTXVAR('username','" + user + "')}";

session = HibernateSessionFactory.getSessionFactory().openSession();

session.beginTransaction();

session.createSQLQuery(setVar).executeUpdate();

session.delete(instance);

session.getTransaction().commit();

log.debug("Equipment delete successful");

} catch (RuntimeException re) {

log.error("Equipment delete failed", re);

throw re;

} finally {

session.close();

}

} else {

log.warn("User: " + user

+ ", role: " + role

+ ", Tried to delete a record when the role does not allow this function");

}

}

INSO – Advanced Software Engineering

Declarative Security

45

@RolesAllowed({UserRoles.ADMINISTRATOR, UserRoles.SUPERUSER})

public void deleteEquipment(Equipment instance, String user, String role) {

log.debug("deleting Equipment");

Session session = null;

try {

String setVar = "{call SET_CTXVAR('username','" + user + "')}";

session = HibernateSessionFactory.getSessionFactory().openSession();

session.beginTransaction();

session.createSQLQuery(setVar).executeUpdate();

session.delete(instance);

session.getTransaction().commit();

log.debug("Equipment delete successful");

} catch (RuntimeException re) {

log.error("Equipment delete failed", re);

throw re;

} finally {

session.close();

}

}

INSO – Advanced Software Engineering

Transaction Handling

46

@Transactional

@RolesAllowed({UserRoles.ADMINISTRATOR, UserRoles.SUPERUSER})

public void deleteEquipment(Equipment instance, String user, String role) {

log.debug("deleting Equipment");

try {

String setVar = "{call SET_CTXVAR('username','" + user + "')}";

session.createSQLQuery(setVar).executeUpdate();

session.delete(instance);

log.debug("Equipment delete successful");

} catch (RuntimeException re) {

log.error("Equipment delete failed", re);

throw re;

}

}

INSO – Advanced Software Engineering

Logging / Tracing

47

@TraceMethodCall(level=DEBUG)

@Transactional

@RolesAllowed({UserRoles.ADMINISTRATOR, UserRoles.SUPERUSER})

public void deleteEquipment(Equipment instance, String user, String role) {

try {

String setVar = "{call SET_CTXVAR('username','" + user + "')}";

session.createSQLQuery(setVar).executeUpdate();

session.delete(instance);

} catch (RuntimeException re) {

log.error("Equipment delete failed", re);

throw re;

}

}

INSO – Advanced Software Engineering

Error Handling

48

@ExceptionBarrier

@TraceMethodCall(level=DEBUG)

@Transactional

@RolesAllowed({UserRoles.ADMINISTRATOR, UserRoles.SUPERUSER})

public void deleteEquipment(Equipment instance, String user, String role) {

String setVar = "{call SET_CTXVAR('username','" + user + "')}";

session.createSQLQuery(setVar).executeUpdate();

session.delete(instance);

}

INSO – Advanced Software Engineering

Resources

 Gregor Hohpe and Bobby Woolf. 2003. Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

 Joshua Bloch. 2008. Effective Java (2nd Edition) (The Java Series) (2 ed.). Prentice Hall PTR, Upper

Saddle River, NJ, USA.

 http://activemq.apache.org/should-i-use-xa.html

 https://today.java.net/article/2006/04/04/exception-handling-antipatterns

 http://lostechies.com/derickbailey/2011/05/24/dont-do-role-based-authorization-checks-do-

activity-based-checks/

 http://site.icu-project.org/

 http://stuartgunter.wordpress.com/2011/08/14/even-better-java-i18n-pluralisation-using-icu4j/

 http://weblog.tetradian.com/2012/11/03/on-metaframeworks-in-ea/

 http://www.chrisonea.com/2012/10/24/frankenframeworks/

 http://blog.opengroup.org/2011/03/10/enterprise-architecture%E2%80%99s-quest-for-its-

identity/

 http://pp.info.uni-karlsruhe.de/uploads/publikationen/constantinides04eiwas.pdf

49

http://activemq.apache.org/should-i-use-xa.html
https://today.java.net/article/2006/04/04/exception-handling-antipatterns
http://lostechies.com/derickbailey/2011/05/24/dont-do-role-based-authorization-checks-do-activity-based-checks/
http://site.icu-project.org/
http://stuartgunter.wordpress.com/2011/08/14/even-better-java-i18n-pluralisation-using-icu4j/
http://weblog.tetradian.com/2012/11/03/on-metaframeworks-in-ea/
http://www.chrisonea.com/2012/10/24/frankenframeworks/
http://blog.opengroup.org/2011/03/10/enterprise-architecture%E2%80%99s-quest-for-its-identity/
http://pp.info.uni-karlsruhe.de/uploads/publikationen/constantinides04eiwas.pdf

