
Group A

Please fill in your name and registration number (Matrikelnr.) immediately.

Exam 3 ON SOLUTION KEY 09.10.2019

Advanced Database Systems (184.780) GROUP A

Matrikelnr. Last Name First Name

Duration: 75 minutes. Provide the solutions on the designated pages. Good Luck!

Question 1: (4)

For each of the statements below, decide if it is true or false and tick the corresponding circle. You get +1 credit
for each correct answer, −1 credit for each wrong answer and 0 credit if you leave the answer open. In total, you
always get ≥ 0 credits on the entire exam question 1.

1. In a distributed DBMS, “execution transparency” means that the distributed DBMS executes the queries
issued by the users on a first-come-first-served basis (by this we mean that there are no priorities among
users; the queries of all users have the same chance to be executed next.) true © false ©×

2. Suppose that, in a distributed DBMS using the 2PC-protocol, some subordinate receives a commit
message (for some transaction T) from the coordinator, writes the commit log record to disk and then
crashes. In this case, it is guaranteed that during recovery of this node, the transaction T will be
completed. true © false ©×

3. Suppose that a cluster applies scalar clocks and consider two events of the same process p: event eq is
receiving some message Mq from another process q and event er is sending some message Mr to another
process r with q 6= r. Now suppose that C(eq) < C(er) holds, where C(·) denotes the global clock of
events. Then it is guaranteed that Mq was sent before Mr and that Mq is received before Mr.

true ©× false ©

4. In a column store, it may happen (depending on the concrete data) that bit vector encoding requires more
space than dictionary encoding and the other way around. true ©× false ©

A–1

Question 2: (4)
The university wants to support students by establishing a mentoring system, i.e.: each student is assigned a
professor as her/his mentor. Assume that students are identified by their Matrikelnummer (matrnr) and
professors are identified by their personnel id (pid). The information on students and professors has been stored
in a document store in the following way:

db.students.insert([
{ id: ”S1”,
matrnr: ”123456”,
fname: ”Alice”,
lname: ”Williams”,
studies: ”937”,
mentor: ”1234” },

{ id: ”S2”,
matrnr: ”135678”,
fname: ”Bob”,
lname: ”Higgins”,
studies: ”645”,
mentor: ”5678” },

% db.students.insert continued
{ id: ”S3”,
matrnr: ”144567”,
fname: ”Carol”,
lname: ”Hawkins”,
mentor: ”5678” },

{ id: ”S4”,
matrnr: ”153456”,
fname: ”Dave”,
lname: ”Stevens”,
mentor: ”1234” }
]);

db.professors.insert([
{ id: ”P1”,
pid: ”1234”,
fname: ”Franz”,
lname: ”Maier” },

{ id: ”P2”,
pid: ”5678”,
fname: ”Helga”,
lname: ”Huber” },

{ id: ”P3”,
pid: ”3579”,
lname: ”Mueller”,
area: ”logic”,
institute: 192 }
]);

(a) Suppose that the most time-critical kind of queries asks for information on the professors including the list
of students that each professor mentors. How would you create the professors collection in this case?

[1 credit]

db.professors.insert([

{ id: "P1",

pid: "1234",

fname: "Franz",

lname: "Maier",

students: ["123456", "153456"] },

{ id: "P2",

pid: "5678",

fname: "Helga",

lname: "Huber",

students: ["135678", "144567"] },

{ id: "P3",

pid: "3579",

lname: "Mueller",

area: "logic",

institute: 192 }
]);

A–2

(b) Give a representation of the entire document store as a relational database: provide both the schema and
the actual tables. Make sure that the schema is in 3NF to avoid redundancies. Show the schema in the
form Table (attr1, attr2, attr3, . . .), where ”Table” refers to a relation schema with attributes ”attr1”,
”attr2”, ”attr3”, . . . , such that ”attr1” is the primary key. [3 credits]

Schema:

Students (matrnr, fname, lname, studies, mentor) and

Professors (pid, fname, lname, area, institute).

The tables have the following content:

Students

matrnr fname lname studies mentor

"123456" "Alice" "Williams" "937" "1234"

"135678" "Bob" "Higgins" "645" "5678"

"144567" "Carol" "Hawkins" NULL "5678"

"153456" "Dave" "Stevens" NULL "1234"

Professors

pid fname lname area institute

"1234" "Franz" "Maier" NULL NULL

"5678" "Helga" "Huber" NULL NULL

"3579" NULL "Mueller" "logic" 192

A–3

Question 3: (4)
In this question you are asked to compute the communication cost (number of bytes transferred) for the given
query and three given join strategies. Project as early as possible in all cases to achieve the minimal
communication cost. Room.bid is a foreign key to Building, i.e., the join has a selectivity of 1

30 .

πcapacity,addr(Building 1id=bid πbid,capacity,name(Room)) (1)

Assume a distributed database with 3 sites and the relations Flight and Aircraft. See the following tables for
details of the scenario. You can assume that the relations are non-fragmented and all records (and attributes)
are fixed-size.

Relation Site # Records Record Size (byte)

Room 1 4 500 100

Building 2 30 190

Relation Attribute Size

Room bid 15

Room capacity 5

Room name 20

Room info 60

Building id 15

Building name 80

Building addr 95

(a) Compute the communication cost if the join is computed at site 3. [1 credits]

We use MB/kB as shorthand for 106 and 103 bytes respectively.

SizeRoom = 4500 · 20byte = 90kB

SizeBuilding = 30 · 110byte = 3, 3kB

Total = SizeRoom + SizeBuilding = 93, 3kB

(b) Compute the communication cost if the join is computed at site 2 and the result then transferred to site 3.

[1 credits]

SizeJoin = 4500 · 100byte = 450kB

Total = SizeJoin + SizeRoom = 540kB

A–4

(c) Compute the communication cost if the join is computed by first computing RoomnBuilding at site 1,
then using the result to compute the join at site 2 and finally transferring the result to site 3. For the
selectivity of the semijoin, recall that Room.bid is a foreign key to Building. (Don’t forget
about projecting away unnecessary fields.)

[2 credits]

SizeBuilding.id = 30 · 15byte = 450byte

SizeSemijoin = 4500 · 20byte = 90kB

Total = SizeBuilding.id + SizeSemijoin + SizeJoin = 540, 45kB

Note that because Room.bid is a foreign key to Building, the semijoin will not
remove any rows.

A–5

Question 4: (4)
You are leading a large-scale data analytics project for a grocery shop. You have one table, containing a integer
product id and a 16 character string containing a card number with which the product was paid. Whenever a
customer pays with card, one row for every product they bought will be appended to the table. Your most
important query is to compute the number of products bought in total with each card number.

Discuss how compression in column stores could be used to improve performance on this query. What types of
compression make sense in this scenario and how do they affect the evaluation of the aggregation required by
this query.

Dictionary encoding and run-length encoding on the card number column both are

likely to provide significant benefit.

• For run-length encoding, observe that it is safe to assume that customers buy

multiple products at once. Therefore the same card number would be repeated

multiple times (once for every bought product). We can then aggregate without

decompressing by just summing up the occurance counts for each card number.

• For dictionary encoding note that a 16 character string will require a lot of

memory. With dictionary encoding the column would instead contain integers.

Even by conservative estimates (8 byte keys to the dictionary) this would

halve the size of the column and thus heavily speed up IO (note that we never

need to read the product id column for this query).

In fact, it would even be possible to combine the two approaches.

A–6

Question 5: (4)

(a) Evaluate the following Cypher query on the Database given on the last sheet of the exam:

MATCH (start {name:"Virgil"})-[:Fan]-(i1)-[:Fan]->(i2)-[:Fan]-(start)

RETURN start.name, i1.name, i2.name

Note: Don’t forget about the directed edge in the query.

start.name i1.name i2.name

Virgil Horace Ovid

Virgil Cattalus Ovid

(b) Evaluate the following Cypher query on the Database given on the last sheet of the exam:

MATCH p = shortestPath((a {name: "Metamorphoses"})-[*]-(b {name: "Aeneid"}))

RETURN p

Metamorphoses -> Apuleius -> Ovid -> Virgil -> Aenid

A–7

(c) Assume the data model described on the last sheet of the exam.

Write a Cypher query that returns all the works written by fans of the poet named Ovid that have at least
100 verses.

MATCH (:Poet {name: ’Ovid’})<-[:Fan]-()-[:by]-(w:Work)
WHERE w.verses >= 100 RETURN w

(d) Assume the data model described on the last sheet of the exam.

Write a Cypher query that outputs the 3 poets with the highest number of fans. The output should be in
descending order in the number of fans.

MATCH (n:Poet)<-[:Fan]-(a)

RETURN n, COUNT(a) AS fans

ORDER BY fans DESC

LIMIT 3
Note that counting the edges would also be fine for this question as it is
reasonable to assume at most one fan edge between two poets.

Overall: 20 points

A–8

Sheet for Question 5. You can tear off this sheet if you like.

Graph DB Data Model

The data model is visualized on the right. The graph contains nodes for poets and their
works. They are identified with the labels Poets and Work, respectively. They all have at
least the field name. All Work nodes also have a field verses, containing the number of verses
in the work as an integer.
Poets can be fans of other poets, works are written by a poet. These relationships are modeled
by edge labels Fan and by, respectively.

Graph Database

The nodes in the image contain the content of their name field.
See the schema visualizaton above for which color nodes have which label.

Figure 1: Database for Question 5

A–9

