
Int. Secure Systems Lab
Technical University Vienna

1Advanced Internet Security

Adrian Dabrowski

Aljosha Judmayer

Christian Kudera

Georg Merzdovnik

Advanced Internet Security

Malware

Int. Secure Systems Lab
Technical University Vienna

2Advanced Internet Security

News from the Field

• Facebook hack: People's accounts
appear for sale on dark web
– Hacked Facebook accounts are being

sold on the dark web, just days after
the social network revealed 50 million
of its users had been compromised

– The hacked accounts are selling for
between $3 and $12

– If sold individually at these prices, the
value of the stolen data on the black
market would be somewhere between
$150m and $600m

Source: https://www.independent.co.uk/life-style/gadgets-and-tech/news/facebook-hack-data-dark-web-login-details-cost-dream-market-a8564671.html

Int. Secure Systems Lab
Technical University Vienna

3Advanced Internet Security

News from the Field

• Torii botnet - Not another Mirai variant
– Avast observed a new malware strain, which they call Torii
– It differs from Mirai and other botnets, particularly in the

advanced techniques it uses
• It tries to be more stealthy and persistent once the device is

compromised
• At the moment it stays silence and it does not (yet) do the usual

stuff a botnet does

– Torii can infect a wide range of devices and it provides
support for a wide range of target architectures, including
MIPS, ARM, x86, x64, PowerPC, SuperH, and others

– Further details at the Avast Blog

https://blog.avast.com/new-torii-botnet-threat-research

Int. Secure Systems Lab
Technical University Vienna

4Advanced Internet Security

Introduction

• Malware
– Stands for “Malicious Software”
– Software specifically designed to harm the user’s computer

or data
– Term often incorrectly used equivalent with term virus (due

to media coverage)
• However, many different types exist!

Int. Secure Systems Lab
Technical University Vienna

5Advanced Internet Security

Malware Taxonomy

Int. Secure Systems Lab
Technical University Vienna

6Advanced Internet Security

Malware Types

• Virus
– Self-replicating
– Requires host file

• Worm
– Self-replicating
– Stand-alone software

• Trojan (Horse)
• Rootkit / Bootkit
• Keylogger
• Spyware / Adware / Crimeware / Ransomware

Int. Secure Systems Lab
Technical University Vienna

7Advanced Internet Security

Malware Types

Int. Secure Systems Lab
Technical University Vienna

8Advanced Internet Security

Propagation Channels

• Drive-by download
– Unintended download of computer software from the Internet

• Unsolicited E-Mail
– Unwanted attachments or embedded links in electronic mail

• Physical media
– Integrated or removable media such as USB drives

• Self propagation
– Ability of malware to move itself from computer to computer

or network to network, thus spreading on its own

Int. Secure Systems Lab
Technical University Vienna

9Advanced Internet Security

Reasons for Malware Propagation

• Mixing of data and code
– Violates important design property of secure systems
– Unfortunately very frequent (good example: JIT)

• Homogeneous computing base
– Windows is just a very tempting target with huge market share

• Unprecedented connectivity
– Easy to attack from safety of home

• Clueless user base
– Many targets available, social engineering successful

• Malicious code has become profitable
– Compromised computers can be sold (e.g. spam, DoS attack, steal

sensitive information, crypto mining, ...)

Int. Secure Systems Lab
Technical University Vienna

10Advanced Internet Security

Virus

Int. Secure Systems Lab
Technical University Vienna

11Advanced Internet Security

Main Virus Parts

• Infection mechanism / Infection vector
– How the virus spreads or propagates
– A virus typically has a search routine, which locates new

files or new disks for infection

• Trigger / Logic bomb
– Determines when the payload of the virus should be

executed (particular date, particular time, particular
presence of another program, ...)

• Payload
– The payload is the part that perform the malicious behavior

Int. Secure Systems Lab
Technical University Vienna

12Advanced Internet Security

Virus Phases / Virus Life Cycle

• Dormant phase
– The virus is idle during this stage and does not take any

action

• Propagation phase
– The virus starts multiplying and replicating itself

– The copy may not be identical to the propagating version to
evade detection

• Triggering phase
– The Virus is activated to perform the function for which it

was intended

• Execution phase
– The payload is executed

Int. Secure Systems Lab
Technical University Vienna

13Advanced Internet Security

Virus Infection Strategies

• Boot viruses
– Master boot record (MBR) of hard disk (first sector on disk)

– Boot sector of partitions

• File infectors
– Simple overwrite virus (damages original program)

– Parasitic virus
• Append virus code and modify program entry point

• Changes program size

– Cavity virus
• Inject code into unused regions of program code and modify program

entry point

• Program size stays the same

Int. Secure Systems Lab
Technical University Vienna

14Advanced Internet Security

File Infector Techniques

• Anti virus developers quickly discovered to search around entry
point

• Entry Point Obfuscation
– Virus hijacks control later (after program is launched)

– Overwrite import table addresses

– Overwrite function call instructions

• Code Integration
– Merge virus code with program

– Requires disassembly of target

• Difficult task on x86 machines

Int. Secure Systems Lab
Technical University Vienna

15Advanced Internet Security

Worms

Int. Secure Systems Lab
Technical University Vienna

16Advanced Internet Security

Computer Worms

A self-replicating program able to propagate itself across networks,
typically having a detrimental effect.

(Oxford English Dictionary)

• Worms either
– Exploit vulnerabilities that affect large number of hosts

– Send copies of worm body via email

• Difference to classic virus is autonomous spread over network

• Speed of spreading is constantly increasing

• Make use of techniques known by virus writers for a long time

Int. Secure Systems Lab
Technical University Vienna

17Advanced Internet Security

Computer Worm Components

• Target locator
– How to choose new victims

• Infection propagator
– How to obtain control of victim

– How to transfer worm body to target system

• Life cycle manager
– Controls the life time of a worm

• E.g. suicide on particular date

• Payload
– The payload is the part that perform the malicious behavior

– Today, often a botnet client

Int. Secure Systems Lab
Technical University Vienna

18Advanced Internet Security

Target Locator

• Email harvesting
– Consult address books

– Files might contain email addresses
• Inbox of email client

• Internet Explorer cache and personal directories

– Even Google searches are possible

• Network share enumeration
– Windows discovers local computers, which can be attacked

– Some worms attack everything, including network printers

• Prints random garbage

Int. Secure Systems Lab
Technical University Vienna

19Advanced Internet Security

Target Locator

• Scanning
– Randomly generate IP addresses and send probes
– Interestingly, many random number generators are buggy

• Static seed
• Not complete coverage of address space

• Service discovery and OS fingerprinting performed as
well

Int. Secure Systems Lab
Technical University Vienna

20Advanced Internet Security

Exploit-Based Worms

• Require no human interaction
– Typically exploit well-known network services
– Can spread much faster

• Propagation speed limited either
– By network latency

Worm thread has to establish TCP connection
– By bandwidth

Worm can send (UDP) packets as fast as possible

• Spread can be modeled using classic disease model
– Worm starts slow (only few machines infected)
– Enters phase of exponential growth
– Final phase where only few uncompromised machines left

Int. Secure Systems Lab
Technical University Vienna

21Advanced Internet Security

Exploit-Based Worms

Int. Secure Systems Lab
Technical University Vienna

22Advanced Internet Security

Other classes of Malware

Int. Secure Systems Lab
Technical University Vienna

23Advanced Internet Security

Other classes of Malware

• Ransomware
– Infects host computer

• May encrypts user files (User can’t use encrypted file)
• May encrypts boot sector (User can’t start computer)

– Demands user to pay for decryption
– Vast support network with help-desk!

– Remarkable incidents
• Chernobyl's radiation monitoring system hit by Ransomware

Petya (Monitoring was then performed manually)
• The city of Atlanta spent $2.6M to recover from a $52,000

ransomware Scare (Payment portal was offline)

Int. Secure Systems Lab
Technical University Vienna

24Advanced Internet Security

Other classes of Malware

• Hardware implants / Firmware injections

– BIOS/UEFI, HDD Controller, PCI BootROMs, NICs etc...

– Very early and low level access

– Hard to detect and to remove (very resilient, requires
reflashing of chip, may be self sustaining using sw-flash
tools)

Int. Secure Systems Lab
Technical University Vienna

25Advanced Internet Security

Other classes of Malware

• Backdoors in Integrated Circuits
– “Our Trojan is capable of reducing the

security of the produced random
number from 128 bits to n bits, where n
can be chosen. Despite these changes,
the modified Trojan RNG passes not
only the Built-In-Self-Test (BIST) but
also generates random numbers that
pass the NIST test suite for random
numbers.”
“Stealthy Dopant-Level Hardware Trojans” - Becker, CHES 2013”

Integrated Circuit Example

Int. Secure Systems Lab
Technical University Vienna

26Advanced Internet Security

Camouflage Malware:
Bypassing Antivirus Software

Int. Secure Systems Lab
Technical University Vienna

27Advanced Internet Security

AV-Software Detection Mechanisms

• Signature-based detection
– Database of byte-level or instruction-level signatures that

match malware
– Wildcards and regular expressions can be used

• Heuristics-based detection
– Aims at generically detecting new malware by statically

examining files for suspicious characteristics
• Code execution starts in last section
• Incorrect header size in PE header
• Suspicious code section name
• Patched import address table

Int. Secure Systems Lab
Technical University Vienna

28Advanced Internet Security

AV-Software Detection Mechanisms

• Behavioral detection
– Observes how the program executes
– Looking for suspicious behaviors, such as unpacking of

malcode, modifying the hosts file or observing keystrokes

• Cloud-based detection
– Identifies malware by collecting data from protected

computers while analyzing it on the provider’s infrastructure

– The vendor’s cloud engine can derive patterns and behavior
by correlating data from multiple systems

– A cloud-based engine allows users of the antivirus tool to
benefit from the experiences of other members

Int. Secure Systems Lab
Technical University Vienna

29Advanced Internet Security

Camouflage Evolution Overview

• Encryption (Packed code)

• Semi-Polymorphism (Oligomorphism)

• Polymorphism

• Metamorphism

Int. Secure Systems Lab
Technical University Vienna

30Advanced Internet Security

Encryption (Packed code)

• Encrypted malware has two basic sections
– Decryption loop

• Short piece of code, which is responsible to encrypt and
decrypt the code of main body

– Main body
• The main body is the actual code of the malware, encrypted,

and is not meaningful before it is being decrypted

Int. Secure Systems Lab
Technical University Vienna

31Advanced Internet Security

Encryption (Packed code)

• Packed code (dynamic unpacking)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

heap

stack

.code

.bss 7a3e8018efa8aca8288
27281a82ef9a01ab181
1020a9a3bc9e99ff121 .code

08048300 <decrypt>:
 8048300: ...

080483f4 <main>:
 80483f4: h=malloc(...)
 80483f5: for (i=...)
 80483f6: x = packed_code[i];
 80483f7: h[i] = decrypt(x);
 80483f7: jmp *h

Int. Secure Systems Lab
Technical University Vienna

32Advanced Internet Security

Encryption (Packed code)

• Packed code (dynamic unpacking)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

heap

stack

.code

.bss 7a3e8018efa8aca8288
27281a82ef9a01ab181
1020a9a3bc9e99ff121 .code

08048300 <decrypt>:
 8048300: ...

080483f4 <main>:
 80483f4: h=malloc(...)
 80483f5: for (i=...)
 80483f6: x = packed_code[i];
 80483f7: h[i] = decrypt(x);
 80483f7: jmp *h

Int. Secure Systems Lab
Technical University Vienna

33Advanced Internet Security

Encryption (Packed code)

• Packed code (dynamic unpacking)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

heap

stack

.code

.bss 7a3e8018efa8aca8288
27281a82ef9a01ab181
1020a9a3bc9e99ff121 .code

08048300 <decrypt>:
 8048300: ...

080483f4 <main>:
 80483f4: h=malloc(...)
 80483f5: for (i=...)
 80483f6: x = packed_code[i];
 80483f7: h[i] = decrypt(x);
 80483f7: jmp *h

push %ebp
sub $0x14, %esp
xor %eax, %eax
...

Int. Secure Systems Lab
Technical University Vienna

34Advanced Internet Security

Encryption (Packed code)

• Packed code (dynamic unpacking)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

heap

stack

.code

.bss 7a3e8018efa8aca8288
27281a82ef9a01ab181
1020a9a3bc9e99ff121 .code

08048300 <decrypt>:
 8048300: ...

080483f4 <main>:
 80483f4: h=malloc(...)
 80483f5: for (i=...)
 80483f6: x = packed_code[i];
 80483f7: h[i] = decrypt(x);
 80483f7: jmp *h

push %ebp
sub $0x14, %esp
xor %eax, %eax
...

Int. Secure Systems Lab
Technical University Vienna

35Advanced Internet Security

(Semi-) Polymorphism

• Semi-Polymorphism (Oligomorphism)
– Contains a collection of different decryptors, which are

randomly chosen for a new victim
– Therefore, the decryptor code is not identical in various

instances

• Polymorphism
– Polymorphic malware are similar to encrypted and

oligomorphic malware in usage of code encryption

– The difference is that polymorphics able to create an unlimited
number of new different decryptors (Mutation Engine)

• Utilizes code obfuscation techniques to build a new decryptor

Int. Secure Systems Lab
Technical University Vienna

36Advanced Internet Security

Metamorphism

• Metamorphic technique
– Create different “versions” of malware that look different but

have the same semantics (i.e., do the same)
– A metamorphic engine is used to build the different versions

• Components: Disassembler, Code analyzer, Code transformer,
Assembler

• Utilizes code obfuscation techniques

– Metamorphic malware does not need encrypted parts

Int. Secure Systems Lab
Technical University Vienna

37Advanced Internet Security

Malware Code Obfuscation
Techniques

Int. Secure Systems Lab
Technical University Vienna

38Advanced Internet Security

Obfuscation Techniques Overview

• Dead Code Insertion

• Instruction Reordering

• Instruction Substitution

Int. Secure Systems Lab
Technical University Vienna

39Advanced Internet Security

5B 00 00 00 00 8D 4B 42 51 50 50 0F 01 4C 24 FE 5B
83 C3 1C FA 8B 2B

Dead Code Insertion

5B 00 00 00 00 pop ebx
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax
50 push eax
0F 01 4C 24 FE sidt [esp - 02h]
5B pop ebx
83 C3 1C add ebx, 1Ch
FA cli
8B 2B mov ebp, [ebx]

Int. Secure Systems Lab
Technical University Vienna

40Advanced Internet Security

Dead Code Insertion

5B 00 00 00 00 pop ebx
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax
90 nop
50 push eax
40 inc eax
0F 01 4C 24 FE sidt [esp – 02h]
48 dec eax
5B pop ebx
83 C3 1C add ebx, 1Ch
FA cli
8B 2B mov ebp, [ebx]

5B 00 00 00 00 8D 4B 42 51 50 90 50 40 0F 01 4C 24 FE
48 5B 83 C3 1C FA 8B 2B

Int. Secure Systems Lab
Technical University Vienna

41Advanced Internet Security

Dead Code Insertion

5B 00 00 00 00 pop ebx
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax
90 nop
50 push eax
40 inc eax
0F 01 4C 24 FE sidt [esp – 02h]
48 dec eax
5B pop ebx
83 C3 1C add ebx, 1Ch
FA cli
8B 2B mov ebp, [ebx]

5B 00 00 00 00 8D 4B 42 51 50 90 50 40 0F 01 4C 24 FE
48 5B 83 C3 1C FA 8B 2B

5B 00 00 00 00 pop ebx
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax
90 nop
50 push eax
40 inc eax
0F 01 4C 24 FE sidt [esp – 02h]
48 dec eax
5B pop ebx
83 C3 1C add ebx, 1Ch
FA cli
8B 2B mov ebp, [ebx]

5B 00 00 00 00 8D 4B 42 51 50 90 50 40 0F 01 4C 24 FE
48 5B 83 C3 1C FA 8B 2B

Int. Secure Systems Lab
Technical University Vienna

42Advanced Internet Security

5B 00 00 00 00 EB 09 50 0F 01 4C 24 FE 5B EB 07 8D
4B 42 51 50 EB F0 83 C3 1C FA 8B 2B

Instruction Reordering

5B 00 00 00 00 pop ebx
EB 09 jmp <S1>
 S2:
50 push eax
0F 01 4C 24 FE sidt [esp - 02h]
5B pop ebx
EB 07 jmp <S3>
 S1:
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax
EB F0 jmp <S2>
 S3:
83 C3 1C add ebx, 1Ch
FA cli
8B 2B mov ebp, [ebx]

Int. Secure Systems Lab
Technical University Vienna

43Advanced Internet Security

5B 00 00 00 00 EB 09 50 0F 01 4C 24 FE 5B EB 07 8D
4B 42 51 50 EB F0 83 C3 1C FA 8B 2B

Instruction Reordering

5B 00 00 00 00 pop ebx
EB 09 jmp <S1>
 S2:
50 push eax
0F 01 4C 24 FE sidt [esp - 02h]
5B pop ebx
EB 07 jmp <S3>
 S1:
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax
EB F0 jmp <S2>
 S3:
83 C3 1C add ebx, 1Ch
FA cli
8B 2B mov ebp, [ebx]

1

1

Int. Secure Systems Lab
Technical University Vienna

44Advanced Internet Security

5B 00 00 00 00 EB 09 50 0F 01 4C 24 FE 5B EB 07 8D
4B 42 51 50 EB F0 83 C3 1C FA 8B 2B

Instruction Reordering

5B 00 00 00 00 pop ebx
EB 09 jmp <S1>
 S2:
50 push eax
0F 01 4C 24 FE sidt [esp - 02h]
5B pop ebx
EB 07 jmp <S3>
 S1:
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax
EB F0 jmp <S2>
 S3:
83 C3 1C add ebx, 1Ch
FA cli
8B 2B mov ebp, [ebx]

2

2

Int. Secure Systems Lab
Technical University Vienna

45Advanced Internet Security

5B 00 00 00 00 EB 09 50 0F 01 4C 24 FE 5B EB 07 8D
4B 42 51 50 EB F0 83 C3 1C FA 8B 2B

Instruction Reordering

5B 00 00 00 00 pop ebx
EB 09 jmp <S1>
 S2:
50 push eax
0F 01 4C 24 FE sidt [esp - 02h]
5B pop ebx
EB 07 jmp <S3>
 S1:
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax
EB F0 jmp <S2>
 S3:
83 C3 1C add ebx, 1Ch
FA cli
8B 2B mov ebp, [ebx]

3

3

Int. Secure Systems Lab
Technical University Vienna

46Advanced Internet Security

5B 00 00 00 00 EB 09 50 0F 01 4C 24 FE 5B EB 07 8D
4B 42 51 50 EB F0 83 C3 1C FA 8B 2B

Instruction Reordering

5B 00 00 00 00 pop ebx
EB 09 jmp <S1>
 S2:
50 push eax
0F 01 4C 24 FE sidt [esp - 02h]
5B pop ebx
EB 07 jmp <S3>
 S1:
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax
EB F0 jmp <S2>
 S3:
83 C3 1C add ebx, 1Ch
FA cli
8B 2B mov ebp, [ebx]

4

4

Int. Secure Systems Lab
Technical University Vienna

47Advanced Internet Security

5B 00 00 00 00 EB 09 50 0F 01 4C 24 FE 5B EB 07 8D
4B 42 51 50 EB F0 83 C3 1C FA 8B 2B

Instruction Reordering

5B 00 00 00 00 pop ebx
EB 09 jmp <S1>
 S2:
50 push eax
0F 01 4C 24 FE sidt [esp - 02h]
5B pop ebx
EB 07 jmp <S3>
 S1:
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax
EB F0 jmp <S2>
 S3:
83 C3 1C add ebx, 1Ch
FA cli
8B 2B mov ebp, [ebx]

2

2

3

3

Int. Secure Systems Lab
Technical University Vienna

48Advanced Internet Security

5B 00 00 00 00 8D 4B 42 51 50 50 0F 01 4C 24 FE 5B
83 C3 1C FA 8B 2B

Instruction Substitution

5B 00 00 00 00 pop ebx
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax
50 push eax
0F 01 4C 24 FE sidt [esp - 02h]
5B pop ebx
83 C3 1C add ebx, 1Ch
FA cli
8B 2B mov ebp, [ebx]

Int. Secure Systems Lab
Technical University Vienna

49Advanced Internet Security

5B 00 00 00 00 8D 4B 42 51 50 50 0F 01 4C 24 FE 5B
83 C3 1C FA 8B 2B

Instruction Substitution

5B 00 00 00 00 pop ebx
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax
50 push eax
0F 01 4C 24 FE sidt [esp - 02h]
5B pop ebx
83 C3 1C add ebx, 1Ch
FA cli
8B 2B mov ebp, [ebx]

5B 00 00 00 00 8D 4B 42 51 50 89 04 24 83 C4 04 0F
01 4C 24 FE 5B 83 C3 1C FA 8B 2B

5B 00 00 00 00 pop ebx
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax

89 04 24 mov eax, [esp]
83 C4 04 add 04h, esp
0F 01 4C 24 FE sidt [esp - 02h]
5B pop ebx
83 C3 1C add ebx, 1Ch
FA cli
8B 2B mov ebp, [ebx]

Int. Secure Systems Lab
Technical University Vienna

50Advanced Internet Security

5B 00 00 00 00 8D 4B 42 51 50 50 0F 01 4C 24 FE 5B
83 C3 1C FA 8B 2B

Instruction Substitution

5B 00 00 00 00 pop ebx
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax
50 push eax
0F 01 4C 24 FE sidt [esp - 02h]
5B pop ebx
83 C3 1C add ebx, 1Ch
FA cli
8B 2B mov ebp, [ebx]

5B 00 00 00 00 8D 4B 42 51 50 89 04 24 83 C4 04 0F
01 4C 24 FE 5B 83 C3 1C FA 8B 2B

5B 00 00 00 00 pop ebx
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax

89 04 24 mov eax, [esp]
83 C4 04 add 04h, esp
0F 01 4C 24 FE sidt [esp - 02h]
5B pop ebx
83 C3 1C add ebx, 1Ch
FA cli
8B 2B mov ebp, [ebx]

5B 00 00 00 00 8D 4B 42 51 50 89 04 24 83 C4 04 0F
01 4C 24 FE 83 04 24 0C 5B FA 8B 2B

5B 00 00 00 00 pop ebx
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax

89 04 24 mov eax, [esp]
83 C4 04 add 04h, esp
0F 01 4C 24 FE sidt [esp - 02h]
83 04 24 0C add 1Ch, [esp]
5B pop ebx
FA cli
8B 2B mov ebp, [ebx]

Int. Secure Systems Lab
Technical University Vienna

51Advanced Internet Security

Detecting Execution
Environments

Int. Secure Systems Lab
Technical University Vienna

52Advanced Internet Security

Detecting Virtualization

• If a program is not run natively (uninstrumented) on a machine,
chances are high that it

– Is being analyzed (In a security lab)

– Scanned (Inside a sandbox of an Antivirus product)

– Debugged (By a security specialist)

• Modern malware detect execution environment to complicate
analysis

• Detection generally easy, but depends on environment:
– Virtual machine: very easy

– Hardware supported virtual machine: adjusted techniques, still easy

– Emulator: theoretically undetectable, practically also easy to detect

Int. Secure Systems Lab
Technical University Vienna

53Advanced Internet Security

Detecting Virtualization Overview

• Logical Discrepancies

• Resource Discrepancies

• Timing Discrepancies

Int. Secure Systems Lab
Technical University Vienna

54Advanced Internet Security

Logical Discrepancies

• CPU discrepancies
– Difference in (x86) interface
– Interface bugs

• QEMU: Setting incorrect status bits in exception/corner cases

• QEMU: Accepting malformed instructions (e.g., overly long instruction
sequences)

– Incomplete implementation of rarely used interface parts
• QEMU: Alignment check enforcement missing

• QEMU / VMware: Caching essential part of system performance;
requests to disabling this ignored

Int. Secure Systems Lab
Technical University Vienna

55Advanced Internet Security

Logical Discrepancies

• VMware: Detect VMM interface
– Guest code can interact with VMM

– Supported functionality: Query VMM version, access host clipboard, etc.

– Implemented through privileged instruction that is caught by VMM

– Crashes on physical host (when called from user-land) → code must catch
segmentation violation

movl $0x564D5868, %eax /* magic value */
movl $0x00000000, %ebx /* initialize output variable */
movl $0x0000000a, %ecx /* function: get VMWare version */
movl $0x00005658, %edx /* magic value */

in %dx, %eax /* read from VMware port */

movl %ebx, [result] /* get result */

movl $0x564D5868, %eax /* magic value */
movl $0x00000000, %ebx /* initialize output variable */
movl $0x0000000a, %ecx /* function: get VMWare version */
movl $0x00005658, %edx /* magic value */

in %dx, %eax /* read from VMware port */

movl %ebx, [result] /* get result */

Int. Secure Systems Lab
Technical University Vienna

56Advanced Internet Security

Logical Discrepancies

• VirtualPC: Detect VMM interface
– Guest code can interact with VMM

– Supported functionality: Query VMM version, access host clipboard, etc.

– Implemented through illegal instruction (VMM called automatically)

– Crashes on physical host (when called from user-land) → code must catch
exception

movl $0, %ebx /* initialize output variable */
movl $0, %eax /* VPC function number */

.byte 0x0f /* call VPC (magic invalid instruction) */

.byte 0x3f

.byte 0x07

.byte 0x0b

movl %ebx, [result] /* get result from VPC (or crash) */

movl $0, %ebx /* initialize output variable */
movl $0, %eax /* VPC function number */

.byte 0x0f /* call VPC (magic invalid instruction) */

.byte 0x3f

.byte 0x07

.byte 0x0b

movl %ebx, [result] /* get result from VPC (or crash) */

Int. Secure Systems Lab
Technical University Vienna

57Advanced Internet Security

Logical Discrepancies

• Off-Chip
– Most VMMs implement very few & basic hardware

components
– Motherboard, CPU, video card, NIC
– Remain unchanged for simplicity / compatibility
– Leads to absurd (unrealistic) hardware configurations

– Can also be detected by checking for well-known driver
names, serial numbers, etc.

“Two AMD Opteron CPUs and 8 GB of RAM in
an Intel motherboard from the Clinton administration”

Int. Secure Systems Lab
Technical University Vienna

58Advanced Internet Security

Resource Discrepancies

• VMMs (host) share physical resources with guests
– CPU cycles, physical memory, cache footprint, persistent storage, ...

• Detect VMM by measuring cache effectiveness
– Example: TLB (translation lookaside buffer) for caching mapping between

virtual pages and frames in RAM

– Step 1: calculate base value
• Access large amounts of memory areas in loop

• Measure amount of TLB misses

– Step 2: check for VMM
• Restart loop, interleave memory access with instructions that trigger the VMM

• VMM code will generate additional TLB misses

– Difference of TLB misses indicates presence of VMM

Int. Secure Systems Lab
Technical University Vienna

59Advanced Internet Security

Timing Discrepancies

• Absolute timing
– Privileged instructions need intervention by the VMM

– Additional latency added on virtualized guest code

– Slowdown can be measured (with access to an external clock)

• Latency variance
– Access to physical hardware (register) often requires fixed amount of time

– Subsequent reads of virtual hardware (registers) might be cached

– Virtual hardware access has higher run-to-run variance in latency

• Additional latency
– VMM must protect memory resources from direct access through guest code (e.g.,

RAM used by VMM)

– Direct access cause hidden page faults that must be handled by VMM

– Orders of magnitude slower than on non-virtualized host

Int. Secure Systems Lab
Technical University Vienna

60Advanced Internet Security

Analysis Tools

Int. Secure Systems Lab
Technical University Vienna

61Advanced Internet Security

Specific Malware Analysis Tools

• Cookoo (Malwr.com)
– Open Source Toolkit
– http://www.cuckoosandbox.org/

• REMnux (Lenny Zeltser)
– A Linux Toolkit for Reverse-Engineering and Analyzing

Malware
– https://remnux.org/

Int. Secure Systems Lab
Technical University Vienna

62Advanced Internet Security

Thank you for your attention

	Internet Security 2
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Reasons for Malware Prevalence
	Slide 10
	Slide 11
	Slide 12
	Infection Strategies
	Slide 14
	Slide 15
	Computer Worms
	Worm Components
	Target Locator
	Slide 19
	Exploit-Based Worms
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Advanced Virus Defense
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

