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News from the Field
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Overview

● Side Channels - an Introduction 
● Cache 

○ Flush+Reload Attack 
○ & More Cache Attacks 

● µArchitectural Attacks 
○ The ISA is a lie 
○ Meltdown 
○ Spectre 

● Rowhammer 
○ Exploitation Steps and Variants 
○ Attack Targets 
○ Defenses
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No one knows, when the invasion is  
going to start

Your career plans changed and you are now a pizza 
delivery guy in the DC area...

Sources: http://www.careersatpizzahut.co.uk/drivers/ 
http://time.com/5412993/pentagon-mail-quarantined-after-traces-of-deadly-poison-found-on-envelopes/
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No one knows when the invasion...

Status: USA has 
been threatened.  
Rumors of an 
impending invasion 
spread throughout 
Washington DC.
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No one knows when the invasion...

.. .but you have to 
continue doing your job
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No one knows when the invasion...
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No one knows when the invasion...
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No one knows when the invasion...
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Side Channels

● unintended    (intentional →  “covert channel“) 

● leaks information about the secret internal state 

● typ. a weakness of the implementation not the 

algorithm 

● Examples: 
○ timing, heat, electro-magnetic radiation, power usage, 

acoustic, induced faults, optical, cache
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Timing Side Channel Example

Runtime is dependent on input!
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Timing Side Channel
passwd[] stored_passwd[] for-exec → time 
a   test 1x 
b   test 1x 
a   test 1x 
d   test 1x 
e   test 1x 
f   test 1x 
g   test 1x 
….   …. …. 
s   test 1x 
t   test 2x 
ta   test 2x 
tb   test 2x 
tc   test 2x 
td   test 2x 
te   test 3x 
…..

Note: Fast CPUs do not provide protection. 
Faster CPUs have higher resolution timers 

Over the network: 
Repeat multiple (1000x) times, to cancel  
out latency and jitter.
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The Cache
and RAM
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 No Cache

a=a+2; CPU

load addr(a)

slow
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No Cache

a=a+2; CPU

load addr(a)

a+2

slow
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No Cache

a=a+2; CPU

load addr(a)

store addr(a)

a+2

slow



!18

Cache

● a fast memory 
● temporarily storing values from (slower) RAM 
● more expensive than RAM 

● Cache miss: a requested value is not stored and 
needs to be fetched from RAM 

● Cache hit: the requested value is stored
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Cache miss

a=a+2; CPU

slow

load addr(a)
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Cache miss

a=a+2; CPU

slow

a

load addr(a)
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Cache miss

a=a+2; CPUa+2

slow

a

load addr(a)
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Cache miss

a=a+2; CPUa+2

slow

a

load addr(a)
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Cache miss

a=a+2; CPUa+2

slow

a

load addr(a)

store 
(deferred*) 

*) with write-back cache
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Cache hit

a=a+2; CPUa+2

slow

a
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Timing (Intel, typ)

CPU

Register 
~ 1 cycle

Cache hit: 
10^1 cycle range

RAM: 
10^2 cycles range
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Virtual Memory Layout Basics

● HW uses physical memory addresses, SW works with virtual ones 
● Each process works with a virtually contiguous chunk of memory, but 

may be spread across different parts of physical memory 
Vi

rt
ua

l A
dd
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ss
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ce
Physical A

ddress Space

Source: https://en.wikipedia.org/wiki/Page_table
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Virtual Memory Basics

● Virtual memory manages a “private” 
address space for each process 

● Mapping is managed by the OS via 
Page Tables (PT) and used by the 
CPU’s MMU to lookup virtual 
addresses to physical addresses.  

● PT includes flags about permissions & 
status 

● PT are nested, lookups are cached in 
the Translation Lookaside Buffer (TLB) 

● Switching PT is expensive!  e.g., all 
caches incl TLB invalidated

virt. addr phys. addr

Source: https://en.wikipedia.org/wiki/Page_table
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Real-World Cache

● Multiple levels of cache 
● some are shared between cores 
● CPU & Memory Management Unit (MMU) 

transparently handles cache 
○ but offers some cache-related opcodes: e.g., clflush  

● Example:  
Core i5-3470

Source: Yuval Yarom and  Katrina Falkner. FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack
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Flush+Reload - Attack (2013)

● Observations:  
○ Cache is a shared resource between all processes 
○ On Intel, L3 cache is shared among all CPU cores 
○ Memory is cached-in when needed 
○ Memory is shared between processes/virtual 

machines 
■ shared libraries 
■ memory deduplication 

○ clflush opcode removes an address from all caches 
● An attacker can measure load times and 

determine if a particular memory has been 
recently used.

Source: Yuval Yarom and  Katrina Falkner. FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. 2013
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Flush+Reload - Attack (2013)

● AES encryption and decryption depends on 
raising to the power of the (private-)key 
exponent. 

● Exponentiation is often  
implemented as  
“Square-and-Multiply” 

● Multiplication is dependent on 
key bits 

● We can measure if the  
multiplication has been loaded 
into the cache

Source: Yuval Yarom and  Katrina Falkner. FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. 2013
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Flush+Reload - Attack (2013)

Source: Yuval Yarom and  Katrina Falkner. FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. 2013

No access by victim

Access by victim

Victim access overlap

Partial overlap

Multiple victim accesses

“clean” states

load times differ

Monitor if the victim has 
accessed a particular 
memory address
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Flush+Reload - Attack (2013)

Source: Yuval Yarom and  Katrina Falkner. FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. 2013

No access by victim

Access by victim

Victim access overlap

Partial overlap

Multiple victim accesses
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Monitoring Square, Multiply and Mod

reveals actions in every single loop traversal

Source: Yuval Yarom and  Katrina Falkner. FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. 2013
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Flush+Reload - Attack (2013)

● reconstruction of AES key bits. POC with GnuPG 
1.4.13 

● low bit errors (after some opt.) 
 
 
 
 
 
 

● Mitigate by always multiplying

Source: Yuval Yarom and  Katrina Falkner. FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. 2013
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L3 cache in depth

● It takes a lot of infrastructure to keep track of the 
position of each byte of memory in the cache 

● A mapping function based on the phys. address 
determines where a “cache line” (typ. 64 bytes) is 
stored in cache. 

● N-Way Set associative cache  
○ Any cache line belongs to a so called cache set. 

Which is determined by the address.  
○ There are 2048 cache sets per slice  
○ Each set can store N (typically 12-20) cache lines, 

depending on total cache size. Each storage position 
is called a „way“

Source: Anders Fogh. Cache side channel attacks: CPU Design as a security problem (2016)
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L3 cache in depth

Source: Anders Fogh. Cache side channel attacks: CPU Design as a security problem (2016)

If we know the mapping function, we can predict which address is loaded 
in which set 

Addresses that map to the same  
cache set are “congruent”
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Cache operations

● Prime: Place known addresses in the cache 

● Evict: Access memory until a given address is no 
longer cached  

● Flush: Remove a given address using clflush 
instruction  
 

Note: you don’t know what is in the cache, but you can test if 

something particular is in there.

Source: Anders Fogh. Cache side channel attacks: CPU Design as a security problem (2016)
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Cache Attacks: Flush+Reload

● Flush + Reload 
a. flush address from cache 
b. wait for victim 
c. reload and time access to shared address 

■ if c. was fast, the victim used the address 

● needs shared memory 
● live analysis 
● if no flush opcode is available, overload the 

cache with other addresses

Source: Anders Fogh. Cache side channel attacks: CPU Design as a security problem (2016)
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Cache Attacks: Prime+Probe

● Prime + Probe 
a. Prime a cache set to contain known attacker 

addresses 
b. Wait for victim activity 
c. time access to addresses from step a. 

■ if slow (cach miss), victim has used memory congruent with 
cache set from step a. 

● no shared memory needed 
● live analysis 
● need to know cache address mapping 
● works in Javascript

Source: Anders Fogh. Cache side channel attacks: CPU Design as a security problem (2016)
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Cache Attacks: Evict+Time

● Evict + Time 
a. Execute a function to prime cache 
b. Time the function 
c. Evict a cache set 
d. Time the function 

■ if b was faster, then function used memory congruent to the 
cache set in c. 

● no shared memory needed 
● post-analysis 
● works in Javascript

Source: Anders Fogh. Cache side channel attacks: CPU Design as a security problem (2016)
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Cache Attacks: Flush+Flush

● Idea: Flushing an address from cache is slower 
when the address is actually in cache 
○ needs to be written back 

    
● also needs a high resolution timer
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Cache attacks are noisy

● other code running  
○ also uses cache lines / cache sets 
○ use other shared subsystems 

● Operating System 
● Interrupts 
● Hardware prefetcher 
● Speculative execution 

→ Repeat multiple times
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µArchitectural Attacks
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Architecture vs. µArchitecture

● The Intel architecture is a ‘lie’… 
○ a convenient facade 
○ x86 instruction sequences are simulated to match the 

i386 execution model 
○ it is a story told to you to make your life easier and to 

not worry about the details
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Reordering and Parallelism

● CISC (Complex Instruction Set Computers) 
instructions are often composed of multiple 
smaller steps 

● Often-used opcodes have their own hardware 
implementation 
○ Seldom-used and complex instructions are emulated 

in microcode 
● In a classic CPU, only one instruction is active at 

a time. All other hardware functions are idle. 
● What, if we could reorder instructions in a way 

that idle hardware can be utilized?
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● CPU-OPs are translated into 
µOPs 

● Reordered in a way to 
maximize hardware 
utilization of execution units. 

● Results of transient 
instructions are 
“retired” (written back) in 
order 

● Dependant results, use 
virtual registers 

● Unknown values, are 
assumed 
○ if wrong, then they are 

discarded without retiring 
● Conditional branch targets 

are assumed (predicted)
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Speculative Execution

● Fills the hardware execution units with work 
● Tries executing things, even if they turn out 

wrong afterwards 
○ Branch prediction uses run-time statistics 
○ Best case: results are ready before actually “needed” 

● Is ahead of the architectural execution 
● Results become “visible” when retired (in-order) 
● Intel & co is able to transparently hide CPU 

internals from programmers, provide unified 
opcode architecture 
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Meltdown

● 1995: “The Intel 80x86 Processor 
Architecture: Pitfalls for Secure Systems” 
at Usenix 

● July 2017: Anders Fogh posted blog post 
about speculative operations fetching data 
with invalid permissions 

● ~Aug 2017: Jann Horn (Project Zero) first 
to report to Intel 

● Aug-December: independently discovered 
by multiple groups (e.g. TU Graz) 

● Premature release Jan 3rd 2018

Paper: Moritz Lipp , Michael Schwarz , Daniel Gruss , Thomas Prescher , Werner Haas , Anders Fogh , Jann Horn , Stefan Mangard , Paul Kocher , Daniel 
Genkin, Yuval Yarom , Mike Hamburg.  “Meltdown: Reading Kernel Memory from User Space”
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Meltdown observations

● Memory permission is checked when the 
operation is retired, not when executed 
○ i.e., it is fully executed on the µarchitectural level 
○ including fetching the memory contents into the cache 

● Attack 
Have the CPU fetch a value on the 
µArchitectural level 

● before retirement, divert the execution 
“unexpectedly” -- so the branch prediction 
doesn’t optimize the execution



!50

Meltdown

1. raise an exception   [line 4] 
○ read a forbidden memory location 

2. access another (valid) memory location (probe array), based on the 
forbidden value [line 7] 
○ only executed speculatively, code never “officially” reached architecturally 
○ state of cache is changed: the specific cell from the probe array is loaded 

3. in the exception handler, use flush+reload to check which memory 
location was accessed in 2. 
○ read every cell from probe array and time it



!51

Meltdown Walkthrough

CPU execution

speculative execution
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Meltdown Walkthrough

speculative execution reads byte from *rcx → al

CPU execution

speculative execution
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Meltdown Walkthrough

speculative execution generates array offset  
rax ← al*4096

CPU execution

speculative execution



!54

Meltdown Walkthrough

speculative execution reads probe array rbx[al*4096] 
● the specific cell from the probe array is loaded into the cache

CPU execution

speculative execution
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Meltdown Walkthrough

● CPU execution encounters exception: read from kernel 
memory is not allowed

CPU execution

speculative execution

However, the cache state changed. It now contains the cache line for rbx[al<<12] 

…..
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Meltdown Example (probeArray)

256 entries (pages), accessed depending on a byte value read from kernel 
memory → changes cache state 

Reading back all probeArray[] entries reveals timing differences 

Leaking memory up to ~500 KB/s

Source: Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel 
Genkin, Yuval Yarom, Mike Hamburg.  “Meltdown: Reading Kernel Memory from User Space”
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Meltdown Leakage via Cache State

Even though the 
architectural state does 
not change, the 
µarchitectural state 
changes.  

These changes (change 
of cache) are than 
recovered on an 
architectural level.

Source: Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel 
Genkin, Yuval Yarom, Mike Hamburg.  “Meltdown: Reading Kernel Memory from User Space”
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Reading  
Kernel Memory == Full Memory

● The kernel is mapped into every process virtual 
memory address space at an fixed address 

● The kernel mapps the full physical memory within 
its “private” space. 
○ Allows the kernel to access virtual memory from other 

processes 
○ Remember: switching Page Tables is expensive

Source: Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel 
Genkin, Yuval Yarom, Mike Hamburg.  “Meltdown: Reading Kernel Memory from User Space”
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Meltdown Defenses  
(KAISER, KPTI)

● Don’t have the full kernel and the full physical 
memory mapped into every virtual memory 
space 
○ Kernel Page Table Isolation (KPTI) 
○ Only a “small” facade-kernel is mapped 
○ Allows execution transfer between user space and 

kernel 
● Needs to remap memory everytime control is 

transferred between user mode and kernel 
○ but changing page tables is expensive! 
○ both page table sets needs to be held in sync 
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Spectre

● Builds on branch prediction, not exceptions 
○ 1) train the predictor for a specific code branch 
○ 2) at the end, let the predictor execute an illegal 

access  
● Target: not accessing system memory 

but memory of the own process that it does not 
want to share 

● exploitable also via Javascript 
● breaks all kinds of sandboxes 
● Multiple variants
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Spectre (Basic Variant)

Javascript Example: 

let index be 1, 2, 3, 4, 5, 6, 7, 8, 20000 (out of bound) 

● first 8 calls, train the predictor to jump into the if 
statement -- will execute it speculatively  

● 9th call access probeTable with illegal obtained 
value µArchitecturally. 

Use cache timing side channel to find out, which.

some junk added, to disable JIT optimizations
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Rowhammer
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Rowhammer?

"It's like breaking into an apartment by repeatedly slamming a 
neighbor's door until the vibrations open the door you were 
after." -- Vice Motherboard 

● Originally thought to be just a reliability issue 
● Hardware bug that allows attacker to exploit a system 

without relying on any software vulnerability 
● Disturbance error in DRAM chips 
● Modify memory without accessing it 
● Widespread issue: 

~85% of DDR3 [Kim et. al ICSA 2014]
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DRAM Basics: Array of Memory Cells (Capacitors)
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DRAM Basics: Data Storage

● Memory cell is charged to represent 1, otherwise 0 
(or the other way around) 

● Memory cells leak charge and lose their state over time 
→ Need to be periodically refreshed (e.g., every 64ms) 

● Every access (activation) leaks charge to adjacent cells 
→ If enough charge leaks, bits might flip from 1 > 0 or 0 > 1 

Rowhammer = Race against the memory's refresh interval
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DRAM Basics: Memory Access
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DRAM Basics: Memory Access
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DRAM Basics: Memory Access
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DRAM Basics: Memory Access
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DRAM Basics: Memory Access
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Rowhammer Attack Principle
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Rowhammer Attack Principle
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Rowhammer Attack Principle
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Double- vs. Single-sided Hammering

Double-sided Hammering 

● Two aggressor rows 
● One above & one below the victim row

Single-sided Hammering 

● Only one aggressor row 
● Either above or below the victim row 
● Less efficient than double-sided 
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Rowhammer Attack Stages

Not every memory cell/row is vulnerable, but bit flips are largely 
reproducible: once a bit flips we can likely flip it again 

● Stage 1: Reconnaissance (aka Memory Templating) 
Scan memory for vulnerable locations 

● Stage 2: Land sensitive data (aka Memory Massaging) 
Trick the victim (e.g., the OS) to place security-sensitive information in 
vulnerable location 

● Stage 3: Attack (aka Hammertime) 
Reproduce the bit flip to modify the targeted data structure
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Rowhammer Attack in Practice

● DRAM accesses are slow 
● Repeated memory accesses are serviced by the cache instead
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Basic Rowhammer Loop

  loop: 
  mov (A), %eax  // Read from address A 
  mov (B), %ebx  // Read from address B 
  clflush (A)    // Flush cache for address A 
  clflush (B)    // Flush cache for address B 
  jmp loop 

● First observed by Kim et al. in 2014 [ICSA 2014] 
● First exploit by Google Project Zero in 2015 [BH USA 2015] 

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-
rowhammer-bug-to-gain.html
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Rowhammer Attack Primitives

1. Circumventing the cache  
→ Attacker needs to directly access the physical memory each time 
 

2. Determining physical address of aggressor & victim rows 
→ Attacker needs to find adjacent rows in physical memory 
 

3. Memory massaging 
→ Attacker needs to control the physical location of the target data
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Circumventing the Cache (1/2)

Strategy 1: Evict memory from cache after each access 

● Explicitly remove data from cache 
○ Cache flush instruction (clflush) or system call 
○ Like Flush+Reload 

● Build a cache eviction set 
○ Implicitly removes data from the cache by reading more data until 

the cache is full 
○ Like Prime+Probe
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Circumventing the Cache (2/2) 

Strategy 2: Use uncached memory 

● Non-temporal memory access instructions  

○ Tell the CPU there's no need to cache anything because data is 
only accessed once 

○ e.g., MOVNTI, MOVNTDQA  

● Direct Memory Access (DMA) 
○ Sometimes caches are detrimental when offload tasks to 

dedicated hardware (devices for graphics/audio/…) 
○ Simple devices might not be able to translate virtual to physical 

address mappings (i.e., must also provide contiguous memory) 
○ On Android provided through ION memory allocator
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Finding the Aggressor & Victim Rows

● Every process only sees virtual address space 
● How to select the addresses to read from, i.e., the aggressor 

rows surrounding a victim row? 

● Use /proc/self/pagemap 
○ Special file that stores translation of virtual to physical addresses 
○ Newer Linux versions disable user space access as a countermeasure  

● Use specialized memory 
○ Huge Pages: Linux provides 2MB of contiguous memory 
○ Again, DMA to the rescue: Android ION provides flag to request 

physically contiguous memory
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Landing Sensitive Data ("Flip Feng Shui") 

● Probabilistic exploits 
○ Spray memory with data you want to attack, e.g., page tables, and 

hope for the best (original Project Zero attack) 

● Deterministic exploits  
○ Rely on special memory management features,  

e.g., memory deduplication, MMU paravirtualization 
○ Alternative: exploit predictable behavior of memory allocators 
○ They are optimized for performance and to minimize memory 

fragmentation 
○ Attacker can force the OS to place sensitive data in a vulnerable 

location by targeted allocations and deallocations
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Deterministic Attack: 
Free and Used Memory Before the Attack
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Deterministic Attack: 
(1) Allocate Memory for Templating



!85

Deterministic Attack: 
(2) Scan Memory for Bit Flips
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Deterministic Attack: 
(2) Scan Memory for Bit Flips
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Deterministic Attack: 
(2) Scan Memory for Bit Flips (Success!)
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Deterministic Attack: 
(3) Fill up Remaining Memory
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Deterministic Attack: 
(4) Release Vulnerable Memory
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Deterministic Attack: 
(5) Trigger Kernel to Allocate Data

💀 
 💀 
 💀 
 💀 
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What could possibly go wrong? 
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Attack Targets

● Privilege escalation 
○ Bit flips in page table entries (PTEs) can give the attacking process R/

W access to its own page table 
→  R/W access to physical memory 

○ Gain root privileges from user space by modifying credential structures 
(e.g., struct cred) 

○ Break out of the browser sandbox 
○ Flip instructions in a program to bypass authentication 

(e.g., sudo, sshd)
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More Attack Targets

● Break cryptographic keys 
○ Public RSA key from .ssh/authorized keys 
○ Flipping a bit changes the public/private key pair 

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABl8h0VfRbC7naVs…  
ssh-rsa AAAAB4NzaC1yc2EAAAADAQABl8h0VfRbC7naVs... 

○ New public key is easy to factorize 
(i.e., attacker can derive the private key) 

● Domain names 
○ Ubuntu repository for apt-get upgrade  
○ security.ubuntu.com → security.ubunvu.com 
○ Packages are signed, also need to flip bit in the GPG keychain (/etc/

apt/trusted.gpg)
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Demonstrated Attacks ...

● … in the browser: flipping bits from JavaScript 
○ Dedup Est Machina [S&P 2016], Rowhammer.js [DIMVA 2016] 

● … in the cloud: flipping bits in another virtual machine (VM) 
○ Flip Feng Shui [USENIX Sec 2016], Cloud Flops [USENIX Sec 2016] 

● … on phones: flipping bits from an app (without any permissions) 
○ Drammer [CCS 2016] 

● … on phones via the browser: flipping bits through the GPU 
○ Grand Pwning Unit aka GLitch [S&P 2018] 

● … over the network: flipping bits remotely 
○ ThrowHammer [USENIX ATC 2018], NetHammer [arXiv 2018]
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Rowhammer Tests & Source

Tools to test whether your device is vulnerable …  
(at your own risk) 

● Desktop (x86-64) 
https://github.com/google/rowhammer-test 

● Mobile Devices (ARM) 
https://github.com/vusec/drammer
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Defenses: ideally in Hardware

● First response: increase the memory refresh rate 
○ e.g., 64ms → 32ms 
○ Costs performance and battery 
○ Not effective against all types of attacks 

● Since LPDDR4: Target Row Refresh (TRR) 
○ Preemptively refresh rows that exceed a maximum activation count 
○ Needs to be supported by the memory (controller) 

● Error-correcting code (ECC) memory  
○ Not designed to defend against Rowhammer 
○ Raises an alarm if bit flips reach a certain threshold 
○ Only defends against single bit flips in a row
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Defenses in Software 

Replacing hardware is not always feasible, what about legacy 
devices? 

● Disabling cache flush instructions 
○ e.g., in the browser sandbox 
○ But there are numerous other ways to circumvent the cache 

● Disabling DMA APIs 
○ Google disabled contiguous memory through Android ION in  

response to Drammer  
○ Still vulnerable to updated attacks (RAMpage [DIMVA 2018])
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Defenses in Software (ongoing Research Topic)

● Memory separation and isolation 
○ Blacklist vulnerable rows by disabling them at boot (B-CATT [arXiv 2016]) 
○ Strict separation of physical memory into security domains, e.g., kernel and 

user space (C-CATT [USENIX Sec 2017]) 
○ Guard rows between memory of different processes and security domains 

(GuardION [DIMVA 2018], ZebRAM [OSDI 2018]) 

● Hardware performance counters 
○ e.g., Intel Performance Counter Monitor (PMU)  
○ On Linux accessible through perf for system profiling 
○ Detect suspicious peaks in the number of cache misses 
○ Locality of memory accesses (ANVIL [ASPLOS 2016])
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Conclusion

● Software security relies on hardware security  
● … but can we trust the hardware? 

● Side-channels and rowhammer show how this trust-
relationship is broken 
○ Even if we could build the perfect bug-free software… 
○ … it can still be compromised through side-channels 

and bit flips 

● Hard to defend against these types of attacks in software
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Advertisement

● malware analysis, large-
scale mobile app analysis 
for privacy leaks, and 
rowhammering 
 
 
martina@iseclab.org

● infrastructure, radio 
networks, LTE, Wi-Fi, 
power grids, internet 
protocols, secure 
execution environments 

atrox@iseclab.org 

● Praktika, Bachelor & Master theses on applied security & 
privacy topics 

● Also looking for potential PhD students 
● Topics include…. 
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Questions?
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