
!1

Advanced Internet Security 
 

Hardware-Software Co-Attacks

Adrian Dabrowski
Christian Kudera
Martina Lindorfer
Georg Merzdovnik
Michael Pucher

Slides are partially based on "Drammer: Flip Feng
Shui goes mobile" by Victor van der Veen at the 2017
U'Smile Android Symposium

WS2018/19

!2

News from the Field

!3

Overview

● Side Channels - an Introduction
● Cache

○ Flush+Reload Attack
○ & More Cache Attacks

● µArchitectural Attacks
○ The ISA is a lie
○ Meltdown
○ Spectre

● Rowhammer
○ Exploitation Steps and Variants
○ Attack Targets
○ Defenses

!4

!5

No one knows, when the invasion is
going to start

Your career plans changed and you are now a pizza
delivery guy in the DC area...

Sources: http://www.careersatpizzahut.co.uk/drivers/
http://time.com/5412993/pentagon-mail-quarantined-after-traces-of-deadly-poison-found-on-envelopes/

!6

No one knows when the invasion...

Status: USA has
been threatened.
Rumors of an
impending invasion
spread throughout
Washington DC.

!7

No one knows when the invasion...

.. .but you have to
continue doing your job

!8

No one knows when the invasion...

!9

No one knows when the invasion...

!10

No one knows when the invasion...

!11

Side Channels

● unintended (intentional → “covert channel“)

● leaks information about the secret internal state

● typ. a weakness of the implementation not the

algorithm

● Examples:
○ timing, heat, electro-magnetic radiation, power usage,

acoustic, induced faults, optical, cache

!12

Timing Side Channel Example

Runtime is dependent on input!

!13

Timing Side Channel
passwd[] stored_passwd[] for-exec → time
a test 1x
b test 1x
a test 1x
d test 1x
e test 1x
f test 1x
g test 1x
…. …. ….
s test 1x
t test 2x
ta test 2x
tb test 2x
tc test 2x
td test 2x
te test 3x
…..

Note: Fast CPUs do not provide protection.
Faster CPUs have higher resolution timers

Over the network:
Repeat multiple (1000x) times, to cancel
out latency and jitter.

!14

The Cache
and RAM

!15

 No Cache

a=a+2; CPU

load addr(a)

slow

!16

No Cache

a=a+2; CPU

load addr(a)

a+2

slow

!17

No Cache

a=a+2; CPU

load addr(a)

store addr(a)

a+2

slow

!18

Cache

● a fast memory
● temporarily storing values from (slower) RAM
● more expensive than RAM

● Cache miss: a requested value is not stored and
needs to be fetched from RAM

● Cache hit: the requested value is stored

!19

Cache miss

a=a+2; CPU

slow

load addr(a)

!20

Cache miss

a=a+2; CPU

slow

a

load addr(a)

!21

Cache miss

a=a+2; CPUa+2

slow

a

load addr(a)

!22

Cache miss

a=a+2; CPUa+2

slow

a

load addr(a)

!23

Cache miss

a=a+2; CPUa+2

slow

a

load addr(a)

store
(deferred*)

*) with write-back cache

!24

Cache hit

a=a+2; CPUa+2

slow

a

!25

Timing (Intel, typ)

CPU

Register
~ 1 cycle

Cache hit:
10^1 cycle range

RAM:
10^2 cycles range

!26

Virtual Memory Layout Basics

● HW uses physical memory addresses, SW works with virtual ones
● Each process works with a virtually contiguous chunk of memory, but

may be spread across different parts of physical memory 
Vi

rt
ua

l A
dd

re
ss

 S
pa

ce
Physical A

ddress Space

Source: https://en.wikipedia.org/wiki/Page_table

!27

Virtual Memory Basics

● Virtual memory manages a “private”
address space for each process

● Mapping is managed by the OS via
Page Tables (PT) and used by the
CPU’s MMU to lookup virtual
addresses to physical addresses.

● PT includes flags about permissions &
status

● PT are nested, lookups are cached in
the Translation Lookaside Buffer (TLB)

● Switching PT is expensive! e.g., all
caches incl TLB invalidated

virt. addr phys. addr

Source: https://en.wikipedia.org/wiki/Page_table

!28

Real-World Cache

● Multiple levels of cache
● some are shared between cores
● CPU & Memory Management Unit (MMU)

transparently handles cache
○ but offers some cache-related opcodes: e.g., clflush  

● Example:
Core i5-3470

Source: Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack

!29

Flush+Reload - Attack (2013)

● Observations:
○ Cache is a shared resource between all processes
○ On Intel, L3 cache is shared among all CPU cores
○ Memory is cached-in when needed
○ Memory is shared between processes/virtual

machines
■ shared libraries
■ memory deduplication

○ clflush opcode removes an address from all caches
● An attacker can measure load times and

determine if a particular memory has been
recently used.

Source: Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. 2013

!30

Flush+Reload - Attack (2013)

● AES encryption and decryption depends on
raising to the power of the (private-)key
exponent.

● Exponentiation is often  
implemented as
“Square-and-Multiply”

● Multiplication is dependent on 
key bits

● We can measure if the  
multiplication has been loaded 
into the cache

Source: Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. 2013

!31

Flush+Reload - Attack (2013)

Source: Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. 2013

No access by victim

Access by victim

Victim access overlap

Partial overlap

Multiple victim accesses

“clean” states

load times differ

Monitor if the victim has
accessed a particular
memory address

!32

Flush+Reload - Attack (2013)

Source: Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. 2013

No access by victim

Access by victim

Victim access overlap

Partial overlap

Multiple victim accesses

!33

Monitoring Square, Multiply and Mod

reveals actions in every single loop traversal

Source: Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. 2013

!34

Flush+Reload - Attack (2013)

● reconstruction of AES key bits. POC with GnuPG
1.4.13

● low bit errors (after some opt.) 
 
 
 
 
 
 

● Mitigate by always multiplying

Source: Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. 2013

!35

L3 cache in depth

● It takes a lot of infrastructure to keep track of the
position of each byte of memory in the cache

● A mapping function based on the phys. address
determines where a “cache line” (typ. 64 bytes) is
stored in cache.

● N-Way Set associative cache
○ Any cache line belongs to a so called cache set.

Which is determined by the address.
○ There are 2048 cache sets per slice
○ Each set can store N (typically 12-20) cache lines,

depending on total cache size. Each storage position
is called a „way“

Source: Anders Fogh. Cache side channel attacks: CPU Design as a security problem (2016)

!36

L3 cache in depth

Source: Anders Fogh. Cache side channel attacks: CPU Design as a security problem (2016)

If we know the mapping function, we can predict which address is loaded
in which set

Addresses that map to the same
cache set are “congruent”

!37

Cache operations

● Prime: Place known addresses in the cache

● Evict: Access memory until a given address is no
longer cached

● Flush: Remove a given address using clflush
instruction  
 

Note: you don’t know what is in the cache, but you can test if

something particular is in there.

Source: Anders Fogh. Cache side channel attacks: CPU Design as a security problem (2016)

!38

Cache Attacks: Flush+Reload

● Flush + Reload
a. flush address from cache
b. wait for victim
c. reload and time access to shared address

■ if c. was fast, the victim used the address

● needs shared memory
● live analysis
● if no flush opcode is available, overload the

cache with other addresses

Source: Anders Fogh. Cache side channel attacks: CPU Design as a security problem (2016)

!39

Cache Attacks: Prime+Probe

● Prime + Probe
a. Prime a cache set to contain known attacker

addresses
b. Wait for victim activity
c. time access to addresses from step a.

■ if slow (cach miss), victim has used memory congruent with
cache set from step a.

● no shared memory needed
● live analysis
● need to know cache address mapping
● works in Javascript

Source: Anders Fogh. Cache side channel attacks: CPU Design as a security problem (2016)

!40

Cache Attacks: Evict+Time

● Evict + Time
a. Execute a function to prime cache
b. Time the function
c. Evict a cache set
d. Time the function

■ if b was faster, then function used memory congruent to the
cache set in c. 

● no shared memory needed
● post-analysis
● works in Javascript

Source: Anders Fogh. Cache side channel attacks: CPU Design as a security problem (2016)

!41

Cache Attacks: Flush+Flush

● Idea: Flushing an address from cache is slower
when the address is actually in cache
○ needs to be written back

● also needs a high resolution timer

!42

Cache attacks are noisy

● other code running
○ also uses cache lines / cache sets
○ use other shared subsystems

● Operating System
● Interrupts
● Hardware prefetcher
● Speculative execution

→ Repeat multiple times

!43

µArchitectural Attacks

!44

Architecture vs. µArchitecture

● The Intel architecture is a ‘lie’…
○ a convenient facade
○ x86 instruction sequences are simulated to match the

i386 execution model
○ it is a story told to you to make your life easier and to

not worry about the details

!45

Reordering and Parallelism

● CISC (Complex Instruction Set Computers)
instructions are often composed of multiple
smaller steps

● Often-used opcodes have their own hardware
implementation
○ Seldom-used and complex instructions are emulated

in microcode
● In a classic CPU, only one instruction is active at

a time. All other hardware functions are idle.
● What, if we could reorder instructions in a way

that idle hardware can be utilized?

!46

● CPU-OPs are translated into
µOPs

● Reordered in a way to
maximize hardware
utilization of execution units.

● Results of transient
instructions are
“retired” (written back) in
order

● Dependant results, use
virtual registers

● Unknown values, are
assumed
○ if wrong, then they are

discarded without retiring
● Conditional branch targets

are assumed (predicted)

S
ou

rc
e:

 M
or

itz
 L

ip
p

, M
ic

ha
el

 S
ch

w
ar

z
, D

an
ie

l G
ru

ss
 ,

Th
om

as
 P

re
sc

he
r ,

 W
er

ne
r H

aa
s

, A
nd

er
s

Fo
gh

 ,
Ja

nn
 H

or
n

,
S

te
fa

n
M

an
ga

rd
 ,

P
au

l K
oc

he
r ,

 D
an

ie
l G

en
ki

n,
 Y

uv
al

 Y
ar

om
 ,

M
ik

e
H

am
bu

rg
. M

el
td

ow
n:

 R
ea

di
ng

 K
er

ne
l M

em
or

y
fro

m
 U

se
r S

pa
ce

!47

Speculative Execution

● Fills the hardware execution units with work
● Tries executing things, even if they turn out

wrong afterwards
○ Branch prediction uses run-time statistics
○ Best case: results are ready before actually “needed”

● Is ahead of the architectural execution
● Results become “visible” when retired (in-order)
● Intel & co is able to transparently hide CPU

internals from programmers, provide unified
opcode architecture

!48

Meltdown

● 1995: “The Intel 80x86 Processor
Architecture: Pitfalls for Secure Systems”
at Usenix

● July 2017: Anders Fogh posted blog post
about speculative operations fetching data
with invalid permissions

● ~Aug 2017: Jann Horn (Project Zero) first
to report to Intel

● Aug-December: independently discovered
by multiple groups (e.g. TU Graz)

● Premature release Jan 3rd 2018

Paper: Moritz Lipp , Michael Schwarz , Daniel Gruss , Thomas Prescher , Werner Haas , Anders Fogh , Jann Horn , Stefan Mangard , Paul Kocher , Daniel
Genkin, Yuval Yarom , Mike Hamburg. “Meltdown: Reading Kernel Memory from User Space”

!49

Meltdown observations

● Memory permission is checked when the
operation is retired, not when executed
○ i.e., it is fully executed on the µarchitectural level
○ including fetching the memory contents into the cache

● Attack
Have the CPU fetch a value on the
µArchitectural level

● before retirement, divert the execution
“unexpectedly” -- so the branch prediction
doesn’t optimize the execution

!50

Meltdown

1. raise an exception [line 4]
○ read a forbidden memory location

2. access another (valid) memory location (probe array), based on the
forbidden value [line 7]
○ only executed speculatively, code never “officially” reached architecturally
○ state of cache is changed: the specific cell from the probe array is loaded

3. in the exception handler, use flush+reload to check which memory
location was accessed in 2.
○ read every cell from probe array and time it

!51

Meltdown Walkthrough

CPU execution

speculative execution

!52

Meltdown Walkthrough

speculative execution reads byte from *rcx → al

CPU execution

speculative execution

!53

Meltdown Walkthrough

speculative execution generates array offset
rax ← al*4096

CPU execution

speculative execution

!54

Meltdown Walkthrough

speculative execution reads probe array rbx[al*4096]
● the specific cell from the probe array is loaded into the cache

CPU execution

speculative execution

!55

Meltdown Walkthrough

● CPU execution encounters exception: read from kernel
memory is not allowed

CPU execution

speculative execution

However, the cache state changed. It now contains the cache line for rbx[al<<12]

…..

!56

Meltdown Example (probeArray)

256 entries (pages), accessed depending on a byte value read from kernel
memory → changes cache state

Reading back all probeArray[] entries reveals timing differences

Leaking memory up to ~500 KB/s

Source: Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, Mike Hamburg. “Meltdown: Reading Kernel Memory from User Space”

!57

Meltdown Leakage via Cache State

Even though the
architectural state does
not change, the
µarchitectural state
changes.

These changes (change
of cache) are than
recovered on an
architectural level.

Source: Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, Mike Hamburg. “Meltdown: Reading Kernel Memory from User Space”

!58

Reading  
Kernel Memory == Full Memory

● The kernel is mapped into every process virtual
memory address space at an fixed address

● The kernel mapps the full physical memory within
its “private” space.
○ Allows the kernel to access virtual memory from other

processes
○ Remember: switching Page Tables is expensive

Source: Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, Mike Hamburg. “Meltdown: Reading Kernel Memory from User Space”

!59

Meltdown Defenses
(KAISER, KPTI)

● Don’t have the full kernel and the full physical
memory mapped into every virtual memory
space
○ Kernel Page Table Isolation (KPTI)
○ Only a “small” facade-kernel is mapped
○ Allows execution transfer between user space and

kernel
● Needs to remap memory everytime control is

transferred between user mode and kernel
○ but changing page tables is expensive!
○ both page table sets needs to be held in sync

!60

Spectre

● Builds on branch prediction, not exceptions
○ 1) train the predictor for a specific code branch
○ 2) at the end, let the predictor execute an illegal

access
● Target: not accessing system memory 

but memory of the own process that it does not
want to share

● exploitable also via Javascript
● breaks all kinds of sandboxes
● Multiple variants

!61

Spectre (Basic Variant)

Javascript Example:

let index be 1, 2, 3, 4, 5, 6, 7, 8, 20000 (out of bound)

● first 8 calls, train the predictor to jump into the if
statement -- will execute it speculatively

● 9th call access probeTable with illegal obtained
value µArchitecturally.

Use cache timing side channel to find out, which.

some junk added, to disable JIT optimizations

!62

Rowhammer

!63

Rowhammer?

"It's like breaking into an apartment by repeatedly slamming a
neighbor's door until the vibrations open the door you were
after." -- Vice Motherboard

● Originally thought to be just a reliability issue
● Hardware bug that allows attacker to exploit a system

without relying on any software vulnerability
● Disturbance error in DRAM chips
● Modify memory without accessing it
● Widespread issue: 

~85% of DDR3 [Kim et. al ICSA 2014]

!64

DRAM Basics: Array of Memory Cells (Capacitors)

1

1

0

1

0

1

0

1

1

0

0

1

1

0

1

1

1

0

1

0

1

0

0

0

1

!65

DRAM Basics: Data Storage

● Memory cell is charged to represent 1, otherwise 0 
(or the other way around)

● Memory cells leak charge and lose their state over time 
→ Need to be periodically refreshed (e.g., every 64ms)

● Every access (activation) leaks charge to adjacent cells 
→ If enough charge leaks, bits might flip from 1 > 0 or 0 > 1

Rowhammer = Race against the memory's refresh interval

!66

DRAM Basics: Memory Access

CPU

(1) Read 1

1

0

1

0

1

0

1

1

0

0

1

1

0

1

1

1

0

1

0

1

0

0

0

1

Rowbuffer

!67

DRAM Basics: Memory Access

CPU

1

1

0

1

0

1

0

1

1

0

0

1

1

0

1

1

1

0

1

0

1

0

0

0

1

Rowbuffer

(2)
 Tr

an
sfe

r (
Disc

harg
e)

1 0 1 1 0

(1) Read

!68

DRAM Basics: Memory Access

CPU

(3
) R

et
ur

n

1

1

0

1

0

1

0

1

1

0

0

1

1

0

1

1

1

0

1

0

1

0

0

0

1

Rowbuffer

(2)
 Tr

an
sfe

r (
Disc

harg
e)

Rowbuffer1 0 1 1 0

(1) Read

!69

DRAM Basics: Memory Access

CPU

(2)
 Tr

an
sfe

r (
Disc

harg
e)

(3
) R

et
ur

n

1

1

0

1

0

1

0

1

1

0

0

1

1

0

1

1

1

0

1

0

1

0

0

0

1

Rowbuffer

(4
) R

ec
ha

rg
e

Rowbuffer1 0 1 1 0

(1) Read

!70

DRAM Basics: Memory Access

CPU

(2)
 Tr

an
sfe

r (
Disc

harg
e)

(3
) R

et
ur

n

1

1

0

1

0

1

0

1

1

0

0

1

1

0

1

1

1

0

1

0

1

0

0

0

1

Rowbuffer

(4
) R

ec
ha

rg
e

(1) Read

"Activation" (discharge &
recharge) can disturb

adjacent rows

!71

Rowhammer Attack Principle

1

1

0

1

0

1

0

1

1

0

0

1

1

0

1

1

1

0

1

0

1

0

0

0

1

Aggressor Row A

Aggressor Row B

Victim Row

!72

Rowhammer Attack Principle

1

1

0

1

0

1

0

1

1

0

0

1

1

0

1

1

1

0

1

0

1

0

0

0

1

Aggressor Row A

Aggressor Row B

Victim Row

!73

Rowhammer Attack Principle

1

1

0

1

0

1

0

0

1

0

0

1

1

0

1

1

1

0

1

0

1

0

0

0

1

Aggressor Row A

Aggressor Row B

Victim Row

!74

Double- vs. Single-sided Hammering

Double-sided Hammering

● Two aggressor rows
● One above & one below the victim row

Single-sided Hammering

● Only one aggressor row
● Either above or below the victim row
● Less efficient than double-sided

1

1

0

1

0

1

0

1

1

0

0

1

1

0

1

1

1

0

1

0

1

0

0

0

1

1

1

0

1

0

1

0

1

1

0

0

1

1

0

1

1

1

0

1

0

1

0

0

0

1

!75

Rowhammer Attack Stages

Not every memory cell/row is vulnerable, but bit flips are largely
reproducible: once a bit flips we can likely flip it again

● Stage 1: Reconnaissance (aka Memory Templating) 
Scan memory for vulnerable locations 

● Stage 2: Land sensitive data (aka Memory Massaging) 
Trick the victim (e.g., the OS) to place security-sensitive information in
vulnerable location 

● Stage 3: Attack (aka Hammertime) 
Reproduce the bit flip to modify the targeted data structure

!76

Rowhammer Attack in Practice

● DRAM accesses are slow
● Repeated memory accesses are serviced by the cache instead

1

1

0

1

0

1

0

1

1

0

0

1

1

0

1

1

1

0

1

0

1

0

0

0

1CPU

C
ache

!77

Basic Rowhammer Loop

 loop:
 mov (A), %eax // Read from address A 
 mov (B), %ebx // Read from address B 
 clflush (A) // Flush cache for address A 
 clflush (B) // Flush cache for address B 
 jmp loop

● First observed by Kim et al. in 2014 [ICSA 2014]
● First exploit by Google Project Zero in 2015 [BH USA 2015] 

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-
rowhammer-bug-to-gain.html

!78

Rowhammer Attack Primitives

1. Circumventing the cache  
→ Attacker needs to directly access the physical memory each time 
 

2. Determining physical address of aggressor & victim rows 
→ Attacker needs to find adjacent rows in physical memory 
 

3. Memory massaging 
→ Attacker needs to control the physical location of the target data

!79

Circumventing the Cache (1/2)

Strategy 1: Evict memory from cache after each access

● Explicitly remove data from cache
○ Cache flush instruction (clflush) or system call
○ Like Flush+Reload 

● Build a cache eviction set
○ Implicitly removes data from the cache by reading more data until

the cache is full
○ Like Prime+Probe

!80

Circumventing the Cache (2/2)

Strategy 2: Use uncached memory

● Non-temporal memory access instructions

○ Tell the CPU there's no need to cache anything because data is
only accessed once

○ e.g., MOVNTI, MOVNTDQA  

● Direct Memory Access (DMA)
○ Sometimes caches are detrimental when offload tasks to

dedicated hardware (devices for graphics/audio/…)
○ Simple devices might not be able to translate virtual to physical

address mappings (i.e., must also provide contiguous memory)
○ On Android provided through ION memory allocator

!81

Finding the Aggressor & Victim Rows

● Every process only sees virtual address space
● How to select the addresses to read from, i.e., the aggressor

rows surrounding a victim row? 

● Use /proc/self/pagemap
○ Special file that stores translation of virtual to physical addresses
○ Newer Linux versions disable user space access as a countermeasure  

● Use specialized memory
○ Huge Pages: Linux provides 2MB of contiguous memory
○ Again, DMA to the rescue: Android ION provides flag to request

physically contiguous memory

!82

Landing Sensitive Data ("Flip Feng Shui")

● Probabilistic exploits
○ Spray memory with data you want to attack, e.g., page tables, and

hope for the best (original Project Zero attack) 

● Deterministic exploits
○ Rely on special memory management features,  

e.g., memory deduplication, MMU paravirtualization
○ Alternative: exploit predictable behavior of memory allocators
○ They are optimized for performance and to minimize memory

fragmentation
○ Attacker can force the OS to place sensitive data in a vulnerable

location by targeted allocations and deallocations

!83

Deterministic Attack: 
Free and Used Memory Before the Attack

!84

Deterministic Attack: 
(1) Allocate Memory for Templating

!85

Deterministic Attack: 
(2) Scan Memory for Bit Flips

!86

Deterministic Attack: 
(2) Scan Memory for Bit Flips

!87

Deterministic Attack: 
(2) Scan Memory for Bit Flips (Success!)

!88

Deterministic Attack: 
(3) Fill up Remaining Memory

!89

Deterministic Attack: 
(4) Release Vulnerable Memory

!90

Deterministic Attack: 
(5) Trigger Kernel to Allocate Data

💀
 💀
 💀
 💀

!91

What could possibly go wrong?

!92

Attack Targets

● Privilege escalation
○ Bit flips in page table entries (PTEs) can give the attacking process R/

W access to its own page table 
→ R/W access to physical memory

○ Gain root privileges from user space by modifying credential structures
(e.g., struct cred)

○ Break out of the browser sandbox
○ Flip instructions in a program to bypass authentication 

(e.g., sudo, sshd)

!93

More Attack Targets

● Break cryptographic keys
○ Public RSA key from .ssh/authorized keys
○ Flipping a bit changes the public/private key pair 

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABl8h0VfRbC7naVs…  
ssh-rsa AAAAB4NzaC1yc2EAAAADAQABl8h0VfRbC7naVs...

○ New public key is easy to factorize 
(i.e., attacker can derive the private key) 

● Domain names
○ Ubuntu repository for apt-get upgrade
○ security.ubuntu.com → security.ubunvu.com
○ Packages are signed, also need to flip bit in the GPG keychain (/etc/

apt/trusted.gpg)

!94

Demonstrated Attacks ...

● … in the browser: flipping bits from JavaScript
○ Dedup Est Machina [S&P 2016], Rowhammer.js [DIMVA 2016] 

● … in the cloud: flipping bits in another virtual machine (VM)
○ Flip Feng Shui [USENIX Sec 2016], Cloud Flops [USENIX Sec 2016] 

● … on phones: flipping bits from an app (without any permissions)
○ Drammer [CCS 2016] 

● … on phones via the browser: flipping bits through the GPU
○ Grand Pwning Unit aka GLitch [S&P 2018] 

● … over the network: flipping bits remotely
○ ThrowHammer [USENIX ATC 2018], NetHammer [arXiv 2018]

!95

Rowhammer Tests & Source

Tools to test whether your device is vulnerable …  
(at your own risk)

● Desktop (x86-64) 
https://github.com/google/rowhammer-test 

● Mobile Devices (ARM) 
https://github.com/vusec/drammer

!96

Defenses: ideally in Hardware

● First response: increase the memory refresh rate
○ e.g., 64ms → 32ms
○ Costs performance and battery
○ Not effective against all types of attacks 

● Since LPDDR4: Target Row Refresh (TRR)
○ Preemptively refresh rows that exceed a maximum activation count
○ Needs to be supported by the memory (controller) 

● Error-correcting code (ECC) memory
○ Not designed to defend against Rowhammer
○ Raises an alarm if bit flips reach a certain threshold
○ Only defends against single bit flips in a row

!97

Defenses in Software

Replacing hardware is not always feasible, what about legacy
devices?

● Disabling cache flush instructions
○ e.g., in the browser sandbox
○ But there are numerous other ways to circumvent the cache 

● Disabling DMA APIs
○ Google disabled contiguous memory through Android ION in  

response to Drammer
○ Still vulnerable to updated attacks (RAMpage [DIMVA 2018])

!98

Defenses in Software (ongoing Research Topic)

● Memory separation and isolation
○ Blacklist vulnerable rows by disabling them at boot (B-CATT [arXiv 2016])
○ Strict separation of physical memory into security domains, e.g., kernel and

user space (C-CATT [USENIX Sec 2017])
○ Guard rows between memory of different processes and security domains

(GuardION [DIMVA 2018], ZebRAM [OSDI 2018]) 

● Hardware performance counters
○ e.g., Intel Performance Counter Monitor (PMU)
○ On Linux accessible through perf for system profiling
○ Detect suspicious peaks in the number of cache misses
○ Locality of memory accesses (ANVIL [ASPLOS 2016])

!99

Conclusion

● Software security relies on hardware security
● … but can we trust the hardware? 

● Side-channels and rowhammer show how this trust-
relationship is broken
○ Even if we could build the perfect bug-free software…
○ … it can still be compromised through side-channels

and bit flips 

● Hard to defend against these types of attacks in software

!100

Advertisement

● malware analysis, large-
scale mobile app analysis
for privacy leaks, and
rowhammering 
 
 
martina@iseclab.org

● infrastructure, radio
networks, LTE, Wi-Fi,
power grids, internet
protocols, secure
execution environments

atrox@iseclab.org

● Praktika, Bachelor & Master theses on applied security &
privacy topics

● Also looking for potential PhD students
● Topics include….

!101

Questions?

!102

References
[Kim et. al ICSA 2014] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu.
Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors.
International Symposium on Computer Architecture (ISCA), 2014.

[Project Zero, BH USA 2015] M. Seaborn and T. Dullien. Exploiting the DRAM Rowhammer Bug to Gain Kernel
Privileges. Black Hat USA, 2015.

[ANVIL ASPLOS 2016] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and T. Austin. ANVIL:
Software-Based Protection Against Next-Generation Rowhammer Attacks. ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2016.

[Dedup Est Machina S&P 2016] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida. Dedup Est Machina: Memory
Deduplication as an Advanced Exploitation Vector. IEEE Symposium on Security and Privacy (S&P), 2016.

[Rowhammer.js DIMVA 2016] D. Gruss, C. Maurice, and S. Mangard. Rowhammer.js: A Remote Software-
Induced Fault Attack in JavaScript. Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), 2016.

[Flip Feng Shui USENIX Sec 2016] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos. Flip
Feng Shui: Hammering a Needle in the Software Stack. USENIX Security Symposium, 2016.

!103

References
[Cloud Flops USENIX Sec 2016] Y. Xiao, X. Zhang, Y. Zhang, and M.-R. Teodorescu. One Bit Flips, One Cloud
Flops: Cross-VM Row Hammer Attacks and Privilege Escalation. USENIX Security Symposium, 2016.

[Drammer CCS 2016] V. van der Veen, V., Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vigna, H. Bos, K.
Razavi, C. Giuffrida. Drammer: Deterministic Rowhammer Attacks on Mobile Platforms. ACM Conference on
Computer and Communications Security (CCS), 2016.

[B-CATT arXiv 2016] F. Brasser, L. Davi, D. Gens, C. Liebchen, A.R. Sadeghi. CAn’t Touch This: Practical and
Generic Software-only Defenses Against Rowhammer Attacks. arXiv:1611.08396, 2016.

[C-CATT USENIX Sec 2017] F. Brasser, L. Davi, D. Gens, C. Liebchen, A.R. Sadeghi. CAn’t Touch This: Practical
and Generic Software-only Defenses Against Rowhammer Attacks. USENIX Security Symposium, 2017.

[GLitch S&P 2018] P. Frigo, C. Giuffrida, H. Bos, K. Razavi. Grand Pwning Unit: Accelerating Microarchitectural
Attacks with the GPU. IEEE Symposium on Security and Privacy (S&P), 2018.
 
[GuardION & RAMpage DIMVA 2018] V. van der Veen, M. Lindorfer, Y. Fratantonio, H.P. Pil-Lai, G. Vigna, C.
Kruegel, H. Bos, GuardION: Practical mitigation of DMA-based Rowhammer attacks on ARM. Conference on
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA), 2018.

!104

References
[ThrowHammer USENIX ATC 2018] A. Tatar, R. Konoth, E. Athanasopoulos, E. Giuffrida, H. Bos, K. Razavi.
Throwhammer: Rowhammer Attacks over the Network and Defenses. USENIX Annual Technical Conference
(ATC), 2018.

[NetHammer arXiv 2018] M. Lipp, M. Tadesse Aga, M. Schwarz, D. Gruss, C. Maurice, L. Raab, L. Lamster.
Nethammer: Inducing Rowhammer Faults through Network Requests. arXiv:1805.04956, 2018.

[ZebRAM OSDI 2018] R. Konoth, M. Oliverio, A. Tatar, D. Andriesse, H. Bos, C. Giuffrida, K. Razavi. ZebRAM:
Comprehensive and Compatible Software Protection Against Rowhammer Attacks. USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2018.

Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel
Attack. 2013

Anders Fogh. Cache side channel attacks: CPU Design as a security problem. Presentation 2016

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, Mike Hamburg. Meltdown: Reading Kernel Memory from
User Space. 2018

