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News from the Lab

• 21 people solved Challenge 6 so far!

• Challenge 7 will start tomorrow
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News from the Field I

• CastHack
− https://casthack.thehackergiraffe.com/
− Quote: “Hacking Chromecasts/Google Homes/SmartTVs”

◦ Played a video on the chromecast

− Actually it seems to be a problem with routers allowing access
to UPnP from the Internet

◦ Which is bad, but not a chromecast fault

• NSA to release Ghidra at RSA conference
− Reverse Engineering Tool (Disassembler)
− https://github.com/nationalsecurityagency

3

https://casthack.thehackergiraffe.com/


News from the Field II

• unCAPTCHA2
− 2017 researchers cracked the reCAPTCHA Audio challenge with

about 85% accuracy1

− Google responded and changed from numbers to words and
also included bot detection

− Welcome unCAPTCHA2: using the same engine, with additions
against bot detection they cracked it again, now with 90%
accuracy

◦ Works since June 2018, notified Google
◦ Code is on github2

1http://uncaptcha.cs.umd.edu/papers/uncaptcha_woot17.pdf
2https://github.com/ecthros/uncaptcha2
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Format String Exploitation
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A Short Introduction to printf

• int printf(const char *format, ...)

− function with variable number of arguments
◦ as usual, arguments are fetched from the stack

• const char *format is called format string
− used to specify type of arguments
− %d or %x for numbers
− %s for strings
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Format String Example

#include <stdio.h>

void main(int argc, char** argv){
char buf[100];
fgets(buf, 100, stdin);
printf(buf);

}
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What is the Problem?

• User input passed as format string
− Allows user to pass format string which will be interpreted

printf("Hello world\n"); // is ok
printf(user_input); // vulnerable

• Allows to read values with format identifiers
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Simple example

$ echo "AAAABBBB" | ./fmt_ex
AAAABBBB

$ echo "%p-%p-%p-%p" | ./fmt_ex
0x7f6fed1fb730-0x7ffc2a9fb5d0-0xfbad2088-0x557eb97d226c

$ echo "AAAABBBB-%p-%p-%p-%p-%p-%p-%p-%p-%p-%p-%p" | ./fmt_ex
AAAABBBB-0x7eff2e070730-0x7fff534d5520-0xfbad2088-
0x557e9da9428a-0x77-0x7fff534d5678-0x100000000-
0x4242424241414141-0x252d70252d70252d-
0x2d70252d70252d70-0x70252d70252d7025

• If you look closely, you will notice that our format string is also
on the stack
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Simple example

$ echo "AAAABBBB" | ./fmt_ex
AAAABBBB

$ echo "%p-%p-%p-%p" | ./fmt_ex
0x7f6fed1fb730-0x7ffc2a9fb5d0-0xfbad2088-0x557eb97d226c

$ echo "AAAABBBB-%p-%p-%p-%p-%p-%p-%p-%p-%p-%p-%p" | ./fmt_ex
AAAABBBB-0x7eff2e070730-0x7fff534d5520-0xfbad2088-
0x557e9da9428a-0x77-0x7fff534d5678-0x100000000-
0x4242424241414141-0x252d70252d70252d-
0x2d70252d70252d70-0x70252d70252d7025

• If you look closely, you will notice that our format string is also
on the stack

9



Simple example
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Simple example

$ echo "AAAABBBB" | ./fmt_ex
AAAABBBB

$ echo "%p-%p-%p-%p" | ./fmt_ex
0x7f6fed1fb730-0x7ffc2a9fb5d0-0xfbad2088-0x557eb97d226c

$ echo "AAAABBBB-%p-%p-%p-%p-%p-%p-%p-%p-%p-%p-%p" | ./fmt_ex
AAAABBBB-0x7eff2e070730-0x7fff534d5520-0xfbad2088-
0x557e9da9428a-0x77-0x7fff534d5678-0x100000000-
0x4242424241414141-0x252d70252d70252d-
0x2d70252d70252d70-0x70252d70252d7025

• If you look closely, you will notice that our format string is also
on the stack
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Leaking Data

• This means we can read data from the stack

• But the approach is somehow limited
− Possibly limited input (format string) length

• So, can we improve this to read arbitrary data?
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“$” Modifier

• actually we can give an index to format specifiers
− Direct parameter access

• "%<n>$p"
− Tells the interpreter to take the nth argument from the stack

$ echo 'AAAABBBB-%5$p' | ./fmt_ex
AAAABBBB-0x77

$ echo 'AAAABBBB-%8$p' | ./fmt_ex
AAAABBBB-0x4242424241414141
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“$” Modifier

• actually we can give an index to format specifiers
− Direct parameter access

• "%<n>$p"
− Tells the interpreter to take the nth argument from the stack
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$ echo 'AAAABBBB-%8$p' | ./fmt_ex
AAAABBBB-0x4242424241414141
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Reading Arbitrary Data

• Currently we only leak data from the stack

• We can also extend this to leak arbitrary data
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“%s” Modifier

• Allows to print NULL-terminated strings
− Address of the string is passed as parameter

• Our own format string is also accessible
− We can place the address we want to read inside the format

string
− Use this address to indirectly access data
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“%s” Modifier

• Allows to print NULL-terminated strings
− Address of the string is passed as parameter

• Our own format string is also accessible
− We can place the address we want to read inside the format

string
− Use this address to indirectly access data
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Writing Arbitrary Data?

• ok, we can read anything

• but, can we also write something?
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Writing Arbitrary Data!

• %n
− from man 3 printf

◦ The number of characters written so far is stored into the integer
pointed to by the corresponding argument. That argument shall
be an int *, or variant whose size matches the (optionally)
supplied integer length modifier. No argument is converted. (This
specifier is not supported by the bionic C library3.) The behavior is
undefined if the conversion specification includes any flags, a
field width, or a precision.

3Google’s standard C library for Android
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Wrtiting Arbitrary Data!

int i;
printf("01234%n", &i);

• Writes 5 into i

• This means we can write values
− Basically the same way we used to read strings with %s
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Writing Arbitrary Data!

• We can use the width modifier to write arbitrary values
− for example, %.500d
− even in case of truncation, the characters that would have been

written are used for %n
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Writing Arbitrary Data!

• Might still crash the program or take long for addresses
− e.g. for address 0x0804a004 we would need 134520836

characters

• h and hh modifiers
− A following integer conversion corresponds to a signed short or

a signed char respectively
− This means we can also only write 2 bytes (%hn) or a single byte

(%hhn)
− Also means we need the address (with according offest) more

often on the stack
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Taking Control of the Program

• Business as usual:
− Overwrite function pointer
− e.g. GOT entries
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The Heap
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Heap Management

• Implementations

Algorithm Operating System

dlmalloc Doug Lea’ malloc (general purpose)
ptmalloc2 GNU LibC (based on dlmalloc)
jemalloc FreeBSD and Firefox
tcmalloc Google (thread-caching malloc)
…. ….

• Each application can use/implement it’s own allocator
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GlibC Memory Allocation

• Glibc integrated ptmalloc2 (there may be differences now
between these two)

• Previously dlmalloc, but ptmalloc allows for better handling of
threads

− No need for locking/synchronisation
− Per-thread arena
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Glibc Malloc

• Memory Layout
− heap is divided into continuous chunks of memory

WildernessU FU U U UF

U          ... used chunk
F          ... free chunk
Wilderness ... topmost free chunk

Heap      low address              ->                     high address

• Wilderness chunk
− only chunk that may be increased (with system call sbrk)
− treated as bigger than all other chunks

◦ If nothing else fits it will just be increased
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Glibc Malloc

• Memory Chunk
− continuous region of heap memory
− can be allocated, freed, split, joined (two free chunks)

• Public and Internal routines
// allocate size bytes, memory not initialized
malloc(size_t n)
// allocate mem for array of elements, memory set to zero
calloc(size_t unit, size_t quantity)
// change size of memory block
realloc(void* ptr, size_t n)
// free memory space
free(void *ptr)
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Glibc Malloc
• Boundary tag

− holds chunk management information
− stored in front of each chunk
− 16 bytes large -> minimum allocated size

struct malloc_chunk {

INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */

struct malloc_chunk* fd; /* double links -- used only if free. */
struct malloc_chunk* bk;

/* Only used for large blocks: pointer to next larger size. */
struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
struct malloc_chunk* bk_nextsize;

};

• pointer returned by malloc (for user) starts at fd
− usually 8 bytes overhead for allocated chunks
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Glibc Malloc
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Glibc Malloc
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Glibc Malloc

• Status Bits
− Lower 3 bits of chunk size
− Chunk size is always 8-byte aligned, so these would be unused

otherwise

0x01 PREV_INUSE // set when previous chunk is in use
0x02 IS_MMAPPED // set if chunk was obtained with mmap()
0x04 NON_MAIN_ARENA // set if chunk belongs to a thread arena
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Glibc Malloc - Bin Management

• available chunks are stored in bins on a circular doubly-linked
list

• each bin holds chunks of a certain size range

• the bin itself consists of two pointers (forward/back) and acts
as the corresponding list head

• each bin is initially empty

• chunks are maintained in decreasing sorted order by size
− best fit algorithm
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Heap Overflow

• Heap overflow requires modification of boundary tags
− in-band management information
− task is to fake these tags to trick malloc into overwriting

addresses of attackers choice

• However, this strongly depends on the corresponding memory
manager

− They all have their implementation differences

• Often interesting information is stored on the heap
− C++ vtable pointers, function pointers
− Often easier to overwrite these objects
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How2Heap

• Easiest way to learn is to try yourself and look at examples.

• https://github.com/shellphish/how2heap
− A repository for learning various heap exploitation techniques.
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Heap Details

• There is much more about heaps we did not cover in depth:
− Arenas and Binning

◦ Different heaps for threads and different bins for different chunk
sizes

− Chunk coalescing
◦ How free chunks are merged

• These details depended on the underlying implementation
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Resources and Further Reading

• https://sploitfun.wordpress.com/2015/02/10/
understanding-glibc-malloc/

− Understanding glibc malloc, sploitfun

• http://tukan.farm/2017/07/08/tcache/
− Thread local caching in glibc
− relatively new feature
− increased performance for programs
− However: also impacts security
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Heap Spraying

• Requirement:
− we need control over memory allocations
− must create many objects containing shellcode

• Solution: embedded scripts
− today, many applications allow execution of user-provided

scripts in the context of the application/document to enrich
usability

− JavaScript (browsers, pdf readers)
− ActionScript (flash applications)

• Before exploiting a memory corruption bug, allocate many
objects (e.g., strings) filled with shellcode

− It’s actually not a vulnerability, we just use the Heap
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Heap Spraying - 32 vs 64 bit

• 32 bit systems have a maximum address space of 4GB
− pretty easy to fill up

• 64 bit systems have and address space of 264

− 18446744073709551616 bytes
− over 18 exabytes
− no chance to spray the full heap, but you could still do targeted

spraying (e.g. if you are able to modify a heap pointer slightly)
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Payloads for Heap Spraying

• Previously it had been shellcodes (since heap was executable)

• Nowadays mostly fake objects or ROP chains
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Heap Spraying

36



Heap Spraying

36



Heap Spraying

36



Heap Spraying

36



Heap Spraying

36



Heap Spraying

36



Heap Spraying

36



JIT Spraying

• Heap not executable
− Can’t just spray shellcode anymore

• JIT compilers need to create executable code on the fly
− Spray the Heap with JIT code

◦ JavaScript (Browser + PDF)
◦ BPF (Kernel)
◦ . . .

• Code can include constants → Which could also be interpreted
as code
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Dangling Pointer

• A pointer that references data that is freed and which could be
re-used by the program

• No guarantees can be made on the data anymore after it’s freed
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Use after free (UAF)

• Happens when an object is free’d and then used again
(dangling pointer)

delete X;
...
X->func();

• Objects are located in memory
− free/delete release the memory to be reused
− If we can change the content of memory between the free and

the use → Win
− Especially interesting for function pointers (e.g C++ vtables)
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How to exploit UAF

• Free Object on Heap

• Create one or more smaller objects that fit into the free slot
− Larger objects will not fit into the space

• If you can overwrite some function pointer that is reused:
− Execute this function
− WIN
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How NOT to protect against it ;)
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Other Attacks
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Integer Overflows

• Simple unsigned 8 bit integer incremented

0x00
0x01
...
0xfe
0xff
???

• What happens here?
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Integer Overflows

• Simple unsigned 8 bit integer incremented

0x00
0x01
...
0xfe
0xffF
0x00T
0x01O
...
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Integer Overflows

• What about signed integer overflow?

• This is actually undefined behaviour in C and C++
− Might also be optimized away
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Integer Overflows

• What about signed integer overflow?

• This is actually undefined behaviour in C and C++
− Might also be optimized away
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Integer Overflows - Overflow Check Example

Demo Time
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Kernel Exploitation

• Kernel?

• Usually the kernel was exploited by creating the shellcode in
userspace and then jumping back from kernel space to execute

• Protection techniques against this
− SMEP and SMAP
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SMEP & SMAP

• SMEP (Supervisor Mode Execution Protection)
− allows pages to be protected from supervisor-mode instruction

fetches
− Disable execution of userland pages

• SMAP (Supervisor Mode Access Protection)
− allows pages to be protected from supervisor-mode data

accesses
− Disable access to userland pages

◦ Protect against ROP/Stack Pivoting

• Both do not prevent exploitation, they just make it harder by
removing possibility to access user space data from kernel
space
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Kernel ASLR Bypass

• Kernel got ASLR (kASLR)

• To write ROP chains we need to break this
− Can be the same as for other programs, e.g. Memory leaks

• But do we need a kernel vulnerability to leak information?

50



Side channels to the rescue

• Two recent papers/techniques presented at CCS2016

• Get the kernel’s code layout by leveraging processor/hardware
features

• Patched/Protections in place now

• However, with all the recent news on CPU features most likely
more to come
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Summary

• Format String Vulnerability

• The Heap

• Other Problems

We touched a lot, but far from everything!
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