
Kernel exploitation by example

Advanced Internet Security

Adrian Dabrowski
Christian Kudera
Georg Merzdovnik
Aljosha Judmayer

1



Kernel privilege escalation by example exploit

• waitid() CVE-2017-5123

Chris Salls discovered that when the waitid() syscall in Linux kernel
v4.13 was refactored, it accidentally stopped checking that the
incoming argument was pointing to userspace. This allowed local
attackers to write directly to kernel memory, which could lead to
privilege escalation.

• Introduced by commit
4c48abe91be03d191d0c20cc755877da2cb35622

• Fixed with commit
96ca579a1ecc943b75beba58bebb0356f6cc4b51

2

https://git.kernel.org/linus/4c48abe91be03d191d0c20cc755877da2cb35622%5D
https://git.kernel.org/linus/4c48abe91be03d191d0c20cc755877da2cb35622%5D
https://git.kernel.org/linus/96ca579a1ecc943b75beba58bebb0356f6cc4b51
https://git.kernel.org/linus/96ca579a1ecc943b75beba58bebb0356f6cc4b51


Background (CVE-2017-5123)

• waitid() syscall

• int waitid(idtype_t idtype, id_t id, siginfo_t
*infop, int options);

The waitid() system call (available since Linux 2.6.9) provides
more precise control over which child state changes to wait for.
The idtype and id arguments select the child(ren) to wait for, as follows:
idtype == P_PID

Wait for the child whose process ID matches id.
idtype == P_PGID

Wait for any child whose process group ID matches id.
idtype == P_ALL

Wait for any child; id is ignored.

• https://linux.die.net/man/2/waitid

3

https://linux.die.net/man/2/waitid


Background (CVE-2017-5123)
• The siginfo struct that gets written to the address pointed to
by infop

• This structure usually gets written to userspace but since a
check of the pointer is missing data in kernel space can be
overwritten with this struct

• But because of the struct it not arbitary data can be written and
the memory around the data that can be defined get mangled

struct siginfo {
int si_signo; // signal number
int si_errno; // always be equal to 0
int si_code; // signal code
int padding; // this remains unchanged/unused by waitid
int pid; // process id of child

// (somwhat controlled by forking but max value 0x8000)
int uid; // user id of user owning the process
int status; // return code 32bit,

// easiest to controll but constrained to be 0 < status < 256
}

4



Vulnerable kernel code (CVE-2017-5123)

• Last vulnerable version 4.13.6
− https://elixir.bootlin.com/linux/v4.13.6/source/kernel/exit.c

• First fixed version 4.13.7
− https://elixir.bootlin.com/linux/v4.13.7/source/kernel/exit.c

5



Vulnerable kernel code (CVE-2017-5123)
SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,

infop, int, options, struct rusage __user *, ru)
{

struct rusage r;
struct waitid_info info = {.status = 0};
long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
int signo = 0;

if (err > 0) {
signo = SIGCHLD;
err = 0;
if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))

return -EFAULT;
}
if (!infop)

return err;

user_access_begin();
unsafe_put_user(signo, &infop->si_signo, Efault); <- no access_ok call
unsafe_put_user(0, &infop->si_errno, Efault);
unsafe_put_user(info.cause, &infop->si_code, Efault);
unsafe_put_user(info.pid, &infop->si_pid, Efault);
unsafe_put_user(info.uid, &infop->si_uid, Efault);
unsafe_put_user(info.status, &infop->si_status, Efault);
user_access_end();
return err;

Efault:
user_access_end();
return -EFAULT;

}

6



Fixe kernel code (CVE-2017-5123)
SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,

infop, int, options, struct rusage __user *, ru)
{

struct rusage r;
struct waitid_info info = {.status = 0};
long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
int signo = 0;

if (err > 0) {
signo = SIGCHLD;
err = 0;
if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))

return -EFAULT;
}
if (!infop)

return err;

if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
goto Efault;

user_access_begin();
unsafe_put_user(signo, &infop->si_signo, Efault);
unsafe_put_user(0, &infop->si_errno, Efault);
unsafe_put_user((short)info.cause, &infop->si_code, Efault);
unsafe_put_user(info.pid, &infop->si_pid, Efault);
unsafe_put_user(info.uid, &infop->si_uid, Efault);
unsafe_put_user(info.status, &infop->si_status, Efault);
user_access_end();
return err;

Efault:
user_access_end();
return -EFAULT;

}
7



Background (CVE-2017-5123)

• Kernel needs to be able to read and write memroy for the
process which invoked a system call

• Therefore kernel has special functions like copy_from_user,
put_user … which copy data from or to userland e.g., (on high
level)

put_user(x, void __user *ptr)
// checks that the ptr is in userland and not kernel memory!
if (access_ok(VERIFY_WRITE, ptr, sizeof(*ptr)))

return -EFAULT
user_access_begin() // disable SMAP allowing the kernel to access userland
*ptr = x
user_access_end() // re-enable SMAP

• To avoid extra overhead of checks and enabling/disabling
SMAP der are also unsafe versions: __put_user,
unsafe_put_user without checks …

8



Escape the chrome sandbox (CVE-2017-5123)
• This vulnerability can be used in an privilege escalation exploit
to break out of the Chrome sandbox.

• The Chrome sandbox should prevent compromise of the
system in case of brower exploits.

• Therefore it restricts access to resources by:
− changeing user id
− doing a chroot
− applying seccomp filter to block system calls that aren’t needed.

• Normally very effective, but waitid syscall is usually allowed in
seccomp.

• Note: Additional limitation imposed by sandbox is that no
forking is allowd only threads, therefore waitid will always fail
and only 0s can be written to kernel memory.

− Write only 24 bytes of 0s and clobber nearby memory
9



Exploit strategy (CVE-2017-5123)

• Get an information leak and defeat KASLR
− unsafe_put_user will not crash when accessing invalid memory

but instead return -EFAULT
− Therefore guessing where the kernel data and kernel heap

section is possible because of different error messages

• Idea for this exploit:
− Trigger actions that will result in the creation of ‘’usefull

structures” on the kernel heap (i.e., spray kernel heap), then try
to hit them with arbitrary write of 0s to escalate priviliges.

10



Exploit strategy (CVE-2017-5123)
• What action creates useful structres? -> create threads and
overwrite their structure to reset the flag which marks if a
seccomp filter is applied or not!

• task_struct represents each process and thread
−

https://elixir.bootlin.com/linux/v4.13.11/source/include/linux/sched.h#L519

• Create 10000 threads that keep checking if they are still in the
seccomp sandbox

• Stop if one finds that it is no longer affected by seccomp

• Then the exploit knows the address of its task_struct and
there a task that is no longer under seccomp!

• Now the task can use fork() to create children and the exploit
can write not only 0s using waitid() status.

11



Exploit strategy (CVE-2017-5123)

• The author of the exploit used the pid field and shifts after
every call to waidid() to create an arbitrary 5 bytes write.

• Now the author uses a technique from ret2dir
− In physmap the kernel keeps aliases (second virtual address)

mapped to the same physical memory as userspace memory.
− By creating a page (acutally large amount of memory in

userland) filled with some known value (0x41), this alias address
that points to the exact same page can be found

− Found by randomly overwrinting pages in the kernel physmap
while checking if the userland page has changed.

− If change is observed then the kernel virtual address that
corresponds to this userland address has been found.

− Now payload data can be constructed in userspace memory at a
known kernel virtual address! => bypass SMAP

12

https://www.blackhat.com/docs/eu-14/materials/eu-14-Kemerlis-Ret2dir-Deconstructing-Kernel-Isolation.pdf


Exploit strategy (CVE-2017-5123)

• Now overwrite the files pointer in the known task_struct to
point to the alias found in the kernel address space

• In aliased userland memory constrcut a fake files_struct,
these objects have several function pointers e.g., read, lseek,
ioctl

• Redirect function pointer to ioctl to ROP gadgets in the kernel
(bypass SMEP) to get arbitrary read write.

• With that arbitary read write, first the clobbered portions of the
task_struct have to be fixed!

• Finally remove the chroot by resetting the fs pointer

• Done …. fully escaped the Chrome sandbox!

13



Further resources (CVE-2017-5123)

• Blog post
− https://salls.github.io/Linux-Kernel-CVE-2017-5123/

• Other exploits:
− https://www.twistlock.com/labs-blog/escaping-docker-

container-using-waitid-cve-2017-5123/
− https://github.com/nongiach/CVE/tree/master/CVE-2017-5123

14


