
Memory Corruption 2

Advanced Internet Security

Adrian Dabrowski
Christian Kudera
Georg Merzdovnik
Aljosha Judmayer

1

News from the Lab

• 21 people solved Challenge 6 so far!

• Challenge 7 will start tomorrow

2

News from the Field I

• CastHack
− https://casthack.thehackergiraffe.com/
− Quote: “Hacking Chromecasts/Google Homes/SmartTVs”

◦ Played a video on the chromecast

− Actually it seems to be a problem with routers allowing access
to UPnP from the Internet

◦ Which is bad, but not a chromecast fault

• NSA to release Ghidra at RSA conference
− Reverse Engineering Tool (Disassembler)
− https://github.com/nationalsecurityagency

3

https://casthack.thehackergiraffe.com/

News from the Field II

• unCAPTCHA2
− 2017 researchers cracked the reCAPTCHA Audio challenge with

about 85% accuracy1

− Google responded and changed from numbers to words and
also included bot detection

− Welcome unCAPTCHA2: using the same engine, with additions
against bot detection they cracked it again, now with 90%
accuracy

◦ Works since June 2018, notified Google
◦ Code is on github2

1http://uncaptcha.cs.umd.edu/papers/uncaptcha_woot17.pdf
2https://github.com/ecthros/uncaptcha2

4

http://uncaptcha.cs.umd.edu/papers/uncaptcha_woot17.pdf
https://github.com/ecthros/uncaptcha2

Format String Exploitation

5

A Short Introduction to printf

• int printf(const char *format, ...)

− function with variable number of arguments
◦ as usual, arguments are fetched from the stack

• const char *format is called format string
− used to specify type of arguments
− %d or %x for numbers
− %s for strings

6

Format String Example

#include <stdio.h>

void main(int argc, char** argv){
char buf[100];
fgets(buf, 100, stdin);
printf(buf);

}

7

What is the Problem?

• User input passed as format string
− Allows user to pass format string which will be interpreted

printf("Hello world\n"); // is ok
printf(user_input); // vulnerable

• Allows to read values with format identifiers

8

Simple example

$ echo "AAAABBBB" | ./fmt_ex
AAAABBBB

$ echo "%p-%p-%p-%p" | ./fmt_ex
0x7f6fed1fb730-0x7ffc2a9fb5d0-0xfbad2088-0x557eb97d226c

$ echo "AAAABBBB-%p-%p-%p-%p-%p-%p-%p-%p-%p-%p-%p" | ./fmt_ex
AAAABBBB-0x7eff2e070730-0x7fff534d5520-0xfbad2088-
0x557e9da9428a-0x77-0x7fff534d5678-0x100000000-
0x4242424241414141-0x252d70252d70252d-
0x2d70252d70252d70-0x70252d70252d7025

• If you look closely, you will notice that our format string is also
on the stack

9

Simple example

$ echo "AAAABBBB" | ./fmt_ex
AAAABBBB

$ echo "%p-%p-%p-%p" | ./fmt_ex
0x7f6fed1fb730-0x7ffc2a9fb5d0-0xfbad2088-0x557eb97d226c

$ echo "AAAABBBB-%p-%p-%p-%p-%p-%p-%p-%p-%p-%p-%p" | ./fmt_ex
AAAABBBB-0x7eff2e070730-0x7fff534d5520-0xfbad2088-
0x557e9da9428a-0x77-0x7fff534d5678-0x100000000-
0x4242424241414141-0x252d70252d70252d-
0x2d70252d70252d70-0x70252d70252d7025

• If you look closely, you will notice that our format string is also
on the stack

9

Simple example

$ echo "AAAABBBB" | ./fmt_ex
AAAABBBB

$ echo "%p-%p-%p-%p" | ./fmt_ex
0x7f6fed1fb730-0x7ffc2a9fb5d0-0xfbad2088-0x557eb97d226c

$ echo "AAAABBBB-%p-%p-%p-%p-%p-%p-%p-%p-%p-%p-%p" | ./fmt_ex
AAAABBBB-0x7eff2e070730-0x7fff534d5520-0xfbad2088-
0x557e9da9428a-0x77-0x7fff534d5678-0x100000000-
0x4242424241414141-0x252d70252d70252d-
0x2d70252d70252d70-0x70252d70252d7025

• If you look closely, you will notice that our format string is also
on the stack

9

Simple example

$ echo "AAAABBBB" | ./fmt_ex
AAAABBBB

$ echo "%p-%p-%p-%p" | ./fmt_ex
0x7f6fed1fb730-0x7ffc2a9fb5d0-0xfbad2088-0x557eb97d226c

$ echo "AAAABBBB-%p-%p-%p-%p-%p-%p-%p-%p-%p-%p-%p" | ./fmt_ex
AAAABBBB-0x7eff2e070730-0x7fff534d5520-0xfbad2088-
0x557e9da9428a-0x77-0x7fff534d5678-0x100000000-
0x4242424241414141-0x252d70252d70252d-
0x2d70252d70252d70-0x70252d70252d7025

• If you look closely, you will notice that our format string is also
on the stack

9

Leaking Data

• This means we can read data from the stack

• But the approach is somehow limited
− Possibly limited input (format string) length

• So, can we improve this to read arbitrary data?

10

Leaking Data

• This means we can read data from the stack

• But the approach is somehow limited
− Possibly limited input (format string) length

• So, can we improve this to read arbitrary data?

10

“$” Modifier

• actually we can give an index to format specifiers
− Direct parameter access

• "%<n>$p"
− Tells the interpreter to take the nth argument from the stack

$ echo 'AAAABBBB-%5$p' | ./fmt_ex
AAAABBBB-0x77

$ echo 'AAAABBBB-%8$p' | ./fmt_ex
AAAABBBB-0x4242424241414141

11

“$” Modifier

• actually we can give an index to format specifiers
− Direct parameter access

• "%<n>$p"
− Tells the interpreter to take the nth argument from the stack

$ echo 'AAAABBBB-%5$p' | ./fmt_ex
AAAABBBB-0x77

$ echo 'AAAABBBB-%8$p' | ./fmt_ex
AAAABBBB-0x4242424241414141

11

“$” Modifier

• actually we can give an index to format specifiers
− Direct parameter access

• "%<n>$p"
− Tells the interpreter to take the nth argument from the stack

$ echo 'AAAABBBB-%5$p' | ./fmt_ex
AAAABBBB-0x77

$ echo 'AAAABBBB-%8$p' | ./fmt_ex
AAAABBBB-0x4242424241414141

11

Reading Arbitrary Data

• Currently we only leak data from the stack

• We can also extend this to leak arbitrary data

12

“%s” Modifier

• Allows to print NULL-terminated strings
− Address of the string is passed as parameter

• Our own format string is also accessible
− We can place the address we want to read inside the format

string
− Use this address to indirectly access data

13

“%s” Modifier

• Allows to print NULL-terminated strings
− Address of the string is passed as parameter

• Our own format string is also accessible
− We can place the address we want to read inside the format

string
− Use this address to indirectly access data

13

Writing Arbitrary Data?

• ok, we can read anything

• but, can we also write something?

14

Writing Arbitrary Data!

• %n
− from man 3 printf

◦ The number of characters written so far is stored into the integer
pointed to by the corresponding argument. That argument shall
be an int *, or variant whose size matches the (optionally)
supplied integer length modifier. No argument is converted. (This
specifier is not supported by the bionic C library3.) The behavior is
undefined if the conversion specification includes any flags, a
field width, or a precision.

3Google’s standard C library for Android
15

Wrtiting Arbitrary Data!

int i;
printf("01234%n", &i);

• Writes 5 into i

• This means we can write values
− Basically the same way we used to read strings with %s

16

Writing Arbitrary Data!

• We can use the width modifier to write arbitrary values
− for example, %.500d
− even in case of truncation, the characters that would have been

written are used for %n

17

Writing Arbitrary Data!

• Might still crash the program or take long for addresses
− e.g. for address 0x0804a004 we would need 134520836

characters

• h and hh modifiers
− A following integer conversion corresponds to a signed short or

a signed char respectively
− This means we can also only write 2 bytes (%hn) or a single byte

(%hhn)
− Also means we need the address (with according offest) more

often on the stack

18

Taking Control of the Program

• Business as usual:
− Overwrite function pointer
− e.g. GOT entries

19

The Heap

20

Heap Management

• Implementations

Algorithm Operating System

dlmalloc Doug Lea’ malloc (general purpose)
ptmalloc2 GNU LibC (based on dlmalloc)
jemalloc FreeBSD and Firefox
tcmalloc Google (thread-caching malloc)
…. ….

• Each application can use/implement it’s own allocator

21

GlibC Memory Allocation

• Glibc integrated ptmalloc2 (there may be differences now
between these two)

• Previously dlmalloc, but ptmalloc allows for better handling of
threads

− No need for locking/synchronisation
− Per-thread arena

22

Glibc Malloc

• Memory Layout
− heap is divided into continuous chunks of memory

WildernessU FU U U UF

U ... used chunk
F ... free chunk
Wilderness ... topmost free chunk

Heap low address -> high address

• Wilderness chunk
− only chunk that may be increased (with system call sbrk)
− treated as bigger than all other chunks

◦ If nothing else fits it will just be increased

23

Glibc Malloc

• Memory Chunk
− continuous region of heap memory
− can be allocated, freed, split, joined (two free chunks)

• Public and Internal routines
// allocate size bytes, memory not initialized
malloc(size_t n)
// allocate mem for array of elements, memory set to zero
calloc(size_t unit, size_t quantity)
// change size of memory block
realloc(void* ptr, size_t n)
// free memory space
free(void *ptr)

24

Glibc Malloc
• Boundary tag

− holds chunk management information
− stored in front of each chunk
− 16 bytes large -> minimum allocated size

struct malloc_chunk {

INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */

struct malloc_chunk* fd; /* double links -- used only if free. */
struct malloc_chunk* bk;

/* Only used for large blocks: pointer to next larger size. */
struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
struct malloc_chunk* bk_nextsize;

};

• pointer returned by malloc (for user) starts at fd
− usually 8 bytes overhead for allocated chunks

25

Glibc Malloc

26

Glibc Malloc

26

Glibc Malloc

• Status Bits
− Lower 3 bits of chunk size
− Chunk size is always 8-byte aligned, so these would be unused

otherwise

0x01 PREV_INUSE // set when previous chunk is in use
0x02 IS_MMAPPED // set if chunk was obtained with mmap()
0x04 NON_MAIN_ARENA // set if chunk belongs to a thread arena

27

Glibc Malloc - Bin Management

• available chunks are stored in bins on a circular doubly-linked
list

• each bin holds chunks of a certain size range

• the bin itself consists of two pointers (forward/back) and acts
as the corresponding list head

• each bin is initially empty

• chunks are maintained in decreasing sorted order by size
− best fit algorithm

28

Heap Overflow

• Heap overflow requires modification of boundary tags
− in-band management information
− task is to fake these tags to trick malloc into overwriting

addresses of attackers choice

• However, this strongly depends on the corresponding memory
manager

− They all have their implementation differences

• Often interesting information is stored on the heap
− C++ vtable pointers, function pointers
− Often easier to overwrite these objects

29

How2Heap

• Easiest way to learn is to try yourself and look at examples.

• https://github.com/shellphish/how2heap
− A repository for learning various heap exploitation techniques.

30

Heap Details

• There is much more about heaps we did not cover in depth:
− Arenas and Binning

◦ Different heaps for threads and different bins for different chunk
sizes

− Chunk coalescing
◦ How free chunks are merged

• These details depended on the underlying implementation

31

Resources and Further Reading

• https://sploitfun.wordpress.com/2015/02/10/
understanding-glibc-malloc/

− Understanding glibc malloc, sploitfun

• http://tukan.farm/2017/07/08/tcache/
− Thread local caching in glibc
− relatively new feature
− increased performance for programs
− However: also impacts security

32

https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/
https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/
http://tukan.farm/2017/07/08/tcache/

Heap Spraying

• Requirement:
− we need control over memory allocations
− must create many objects containing shellcode

• Solution: embedded scripts
− today, many applications allow execution of user-provided

scripts in the context of the application/document to enrich
usability

− JavaScript (browsers, pdf readers)
− ActionScript (flash applications)

• Before exploiting a memory corruption bug, allocate many
objects (e.g., strings) filled with shellcode

− It’s actually not a vulnerability, we just use the Heap

33

Heap Spraying - 32 vs 64 bit

• 32 bit systems have a maximum address space of 4GB
− pretty easy to fill up

• 64 bit systems have and address space of 264

− 18446744073709551616 bytes
− over 18 exabytes
− no chance to spray the full heap, but you could still do targeted

spraying (e.g. if you are able to modify a heap pointer slightly)

34

Payloads for Heap Spraying

• Previously it had been shellcodes (since heap was executable)

• Nowadays mostly fake objects or ROP chains

35

Heap Spraying

36

Heap Spraying

36

Heap Spraying

36

Heap Spraying

36

Heap Spraying

36

Heap Spraying

36

Heap Spraying

36

JIT Spraying

• Heap not executable
− Can’t just spray shellcode anymore

• JIT compilers need to create executable code on the fly
− Spray the Heap with JIT code

◦ JavaScript (Browser + PDF)
◦ BPF (Kernel)
◦ . . .

• Code can include constants → Which could also be interpreted
as code

37

Dangling Pointer

• A pointer that references data that is freed and which could be
re-used by the program

• No guarantees can be made on the data anymore after it’s freed

38

Use after free (UAF)

• Happens when an object is free’d and then used again
(dangling pointer)

delete X;
...
X->func();

• Objects are located in memory
− free/delete release the memory to be reused
− If we can change the content of memory between the free and

the use → Win
− Especially interesting for function pointers (e.g C++ vtables)

39

How to exploit UAF

• Free Object on Heap

• Create one or more smaller objects that fit into the free slot
− Larger objects will not fit into the space

• If you can overwrite some function pointer that is reused:
− Execute this function
− WIN

40

How NOT to protect against it ;)

41

Other Attacks

42

Integer Overflows

• Simple unsigned 8 bit integer incremented

0x00
0x01
...
0xfe
0xff
???

• What happens here?

44

Integer Overflows

• Simple unsigned 8 bit integer incremented

0x00
0x01
...
0xfe
0xffF
0x00T
0x01O
...

45

Integer Overflows

• What about signed integer overflow?

• This is actually undefined behaviour in C and C++
− Might also be optimized away

46

Integer Overflows

• What about signed integer overflow?

• This is actually undefined behaviour in C and C++
− Might also be optimized away

46

Integer Overflows - Overflow Check Example

Demo Time

47

Kernel Exploitation

• Kernel?

• Usually the kernel was exploited by creating the shellcode in
userspace and then jumping back from kernel space to execute

• Protection techniques against this
− SMEP and SMAP

48

SMEP & SMAP

• SMEP (Supervisor Mode Execution Protection)
− allows pages to be protected from supervisor-mode instruction

fetches
− Disable execution of userland pages

• SMAP (Supervisor Mode Access Protection)
− allows pages to be protected from supervisor-mode data

accesses
− Disable access to userland pages

◦ Protect against ROP/Stack Pivoting

• Both do not prevent exploitation, they just make it harder by
removing possibility to access user space data from kernel
space

49

Kernel ASLR Bypass

• Kernel got ASLR (kASLR)

• To write ROP chains we need to break this
− Can be the same as for other programs, e.g. Memory leaks

• But do we need a kernel vulnerability to leak information?

50

Side channels to the rescue

• Two recent papers/techniques presented at CCS2016

• Get the kernel’s code layout by leveraging processor/hardware
features

• Patched/Protections in place now

• However, with all the recent news on CPU features most likely
more to come

51

Summary

• Format String Vulnerability

• The Heap

• Other Problems

We touched a lot, but far from everything!

52

Summary

• Format String Vulnerability

• The Heap

• Other Problems

We touched a lot, but far from everything!

52

	Format String Exploitation
	The Heap
	Other Attacks

