
IoT Security

Advanced Internet Security

Adrian Dabrowski
Christian Kudera
Georg Merzdovnik
Aljosha Judmayer

1

News from the Lab

• Challenge 4 ends today
− Fastest solve: “Octal Kansis” in 1 day, 3:32:52

• Challenge 5 starts tomorrow

2

News from the Field

• Hacker Infects Node.js Package to Steal from Bitcoin Wallets1

− library called “event-stream” (work with streams), over two
million downloads

− original maintainer handed over maintenance several months
ago

◦ did not use the library himself anymore
◦ got a mail which asked him about the maintenance

− New maintainer released update, which included a dependency
”atmap-streamܨ“

◦ obfuscated code, encrypted payload
◦ attack was undetected for over two months

− The malicious code tried to steal bitcoins from “Copay wallets”

1Hacker Infects Node.js Package to Steal from Bitcoin Wallets

3

News from the Field (contd.)

• Marriott Data Leak (500 Million customers)2

− Through Starwood guest reservation system
◦ Acquired by Marriott in 2016

− Timeline:
◦ On September 8 alert from internal security tool about database

access attempt
◦ On November 19th the Security investigation concluded that there

was unauthorized access
◦ they were able to decrypt the content and identiܧed that it came

from the Starwood guest reservation database

− During investigation, they learned the unauthorized access
began in 2014

2http://news.marriott.com/2018/11/
marriott-announces-starwood-guest-reservation-database-security-incident/

4

http://news.marriott.com/2018/11/marriott-announces-starwood-guest-reservation-database-security-incident/
http://news.marriott.com/2018/11/marriott-announces-starwood-guest-reservation-database-security-incident/

Internet of Things Security
Basics

5

Internet of Things (IoT)

Wikipedia: The Internet of things (IoT) is the network of devices,
vehicles, and home appliances that contain electronics, software,
actuators, and connectivity which allows these things to connect,
interact and exchange data.

• Basically everything connected to the Internet
− High-end devices (PC, laptop, smartphone, tablet)
− Low-end devices (embedded systems, sensors, actuators)

7

Forecast

8

Why so many problems in the IoT

• Today, everything is getting connected
− Time to market is important rstܧ) to market wins)
− However, nobody has time (or knowledge) to implement security

• Providers lack incentives for maintenance, security patches
− cheap devices (just make a new one)
− have not been responsible for incidents
− No consequences for breaches

◦ some changes on the horizon (e.g. California)

9

IoT System Heterogeneity I

• Different Hardware Architectures
− Other processors (than plain old x86)

◦ e.g. ARM, AVR, MIPS, …

− Peripheral device interactions
◦ Sensors/Actuators

• Communication Heterogeneity
− Wired communication (Ethernet, CAN, …)

◦ Yes, cars are also part of the IoT now

− Wide Area Networks
◦ WiFi, 3G/4G/5G, LoraWAN

− Low Range Connections
◦ Bluetooth (LE) / Zigbee / 6LoWPAN

10

IoT System Heterogeneity II

• Different Protocols
− Device2Device and Cloud communications

◦ e.g. BLE
◦ CoAP
◦ MQTT
◦ Websockets
◦ …

11

IoT Security - What is all the fuzz about?

• Connected devices:
− grow in numbers
− control everything from homes to smart factories

◦ and often rely on internet connectivity

− collect sensitive information

• Easy to discover such devices on the internet
− Shodan3 Search engine Internet-connected devices
− or scan yourself (zmap, masscan,…)

3https://www.shodan.io/

12

https://www.shodan.io/

What could possibly go wrong?

13

Denial of Service attacks against devices

• DDoS Attack Takes Down Central Heating System Amidst
Winter In Finland4

• According to the company website:
”Over 90 percent of the [remote systems] in the area of terraced
houses or larger buildings will not send an alarm at the moment, even
if the heat is switched off or radiator pressure disappears,” as the
systems are designed to shut down for safety. ”The systems must be
actively monitored and adjusted.”

• Solution was to place the system behind a rewallܧ

• However, other systems also rely on constant connectivity

4https://thehackernews.com/2016/11/heating-system-hacked.html

14

https://thehackernews.com/2016/11/heating-system-hacked.html

Denial of Service attacks from devices

• E.g. IoT Botnets used for large scale attacks
− e.g. Mirai5 which was used to launch major DDoS attacks

• These infect devices either through default credentials or
known vulnerabilities

5https://en.wikipedia.org/wiki/Mirai_(malware)

15

https://en.wikipedia.org/wiki/Mirai_(malware)

Direct attacks against devices

• IoT Ransomware proof-of-concept demonstration
− Exploited a Smart Thermostat, turned on heating and demanded

1 Bitcoin
− performed local attack

• But could happen as well with remotely connected devices

16

Leak of sensitive information

• Strava offers an application for tnessܧ tracking by means of
smart phones’ location

− released a heat map showing the activities of its users
worldwide

• Eventually revealing:
− not only individual habits,
− but also structure of secret military bases6.

6http://www.wired.co.uk/article/strava-heat-maps-military-app-uk-warning-security

18

http://www.wired.co.uk/article/strava-heat-maps-military-app-uk-warning-security

Leak of sensitive information

• Strava offers an application for tnessܧ tracking by means of
smart phones’ location

− released a heat map showing the activities of its users
worldwide

• Eventually revealing:
− not only individual habits,
− but also structure of secret military bases6.

6http://www.wired.co.uk/article/strava-heat-maps-military-app-uk-warning-security

18

http://www.wired.co.uk/article/strava-heat-maps-military-app-uk-warning-security

Leak of sensitive information (contd.)

• Bluetooth devices were able to connect to the microphone of
My Friend Cayla

− interactive doll for children
− enabling eavesdropping of its users.

• Additionally everything is recorded and sent to the companies
servers

• Under German law the doll was even considered a surveillance
device

− parents were obliged to destroy Cayla7.

7http://www.bbc.com/news/world-europe-39002142

19

http://www.bbc.com/news/world-europe-39002142

IoT Security - Common Misconception

It’s only about the devices!

20

IoT Security - Common Misconception

It’s only about the devices!

20

IoT Security - Reality

• We also need to take care about
− Gateways (e.g. smartphones, smart hubs)
− Cloud backend
− Network communication
− …

21

https://analyticks.wordpress.com/2016/11/07/
how-to-design-an-iot-ready-infrastructure-the-4-stage-architecture/

https://analyticks.wordpress.com/2016/11/07/how-to-design-an-iot-ready-infrastructure-the-4-stage-architecture/
https://analyticks.wordpress.com/2016/11/07/how-to-design-an-iot-ready-infrastructure-the-4-stage-architecture/

Device Challenges

• Lot’s of small devices

• Limited resources
− Processing power
− Internal Memory
− Power Consumption

• -> Small amount of resources for Security

23

Device Challenges

• Lot’s of small devices

• Limited resources
− Processing power
− Internal Memory
− Power Consumption

• -> Small amount of resources for Security

23

Example: Google’s Ofܧce Doors (What happened?)

• Employee analysed the door controller communication of the
encrypted messages on the internal network

− Realized that the messages seemed to be non-random
− Further analysis revealed hardcoded key used by all devices

• Now he could craft his own messages to control door controller
− or he could also have replayed the original messages

• He could also lock out legitimate users

https://www.forbes.com/sites/thomasbrewster/2018/09/03/googles-doors-hacked-wide-open-by-own-employee/

24

Example: Google’s Ofܧce Doors (What happened?)

• Employee analysed the door controller communication of the
encrypted messages on the internal network

− Realized that the messages seemed to be non-random
− Further analysis revealed hardcoded key used by all devices

• Now he could craft his own messages to control door controller
− or he could also have replayed the original messages

• He could also lock out legitimate users

https://www.forbes.com/sites/thomasbrewster/2018/09/03/googles-doors-hacked-wide-open-by-own-employee/

24

Example: Google’s Ofܧce Doors (The (?xܧ

• Quick Fix:
− Google segmented the network to provide protection for

vulnerable systems

• The device company came up with a solution
− v2 of the board uses TLS for encryption of messages

• Con: The upgrade requires a hardware change since the
original board does not have enough memory to run/upgrade
to the new rmwareܧ

25

Example: Google’s Ofܧce Doors (The (?xܧ

• Quick Fix:
− Google segmented the network to provide protection for

vulnerable systems

• The device company came up with a solution
− v2 of the board uses TLS for encryption of messages

• Con: The upgrade requires a hardware change since the
original board does not have enough memory to run/upgrade
to the new rmwareܧ

25

Example: Google’s Ofܧce Doors (The (?xܧ

• Quick Fix:
− Google segmented the network to provide protection for

vulnerable systems

• The device company came up with a solution
− v2 of the board uses TLS for encryption of messages

• Con: The upgrade requires a hardware change since the
original board does not have enough memory to run/upgrade
to the new rmwareܧ

25

How to deal with Security

Four levels:

• Device
− In-Secure devices

• Communications
− Security Problems in connections

• Cloud (Back-End)
− Security/privacy breaches because of data leaks

• Lifecycle Management
− e.g. Update Problems

26

IoT OWASP Top 10

27

OWASP Top 10

• Open Web Application Security Project

• You (should) know the OWASP Top 10 (for Web application
security)8

8Open Web Application Security Project
28

IoT OWASP Top 10

• They also have resources on IoT 9

• And also prepare to release a new Top 10 for IoT10

− Not directly vulnerabilities but things to avoid
− The following is based on this draft version

9https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project
10https://danielmiessler.com/blog/preparing-to-release-the-owasp-iot-top-10-2018/

29

https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project
https://danielmiessler.com/blog/preparing-to-release-the-owasp-iot-top-10-2018/

I1 - Weak, Guessable, or Hardcoded Passwords

• Use of
− easily bruteforced
− hardcoded
− publicly available
− and/or unchangeable passwords

in client-side software/ܧrmware that can grant unauthorized
access to deployed systems

30

I2 - Insecure Network Services / Protocols

• Unneeded and/or insecure listening network services
(especially internet facing) that compromise

− conܧdentiality
− integrity or
− availability/authenticity

of information or

• allow unauthorized remote control
− e.g. Telnet, FTP, SSH, UPnP, etc.

31

I3 - Insecure Access Interfaces

• Insecure
− web
− backend API
− cloud or
− mobile interfaces

that allow compromise of the product and /or its ecosystem.

• Common issues include:
− a lack of authentication/authorization,
− lacking or weak encryption,
− and a lack of input and output lteringܧ

32

I4 - Use of Insecure or Outdated Components

• Use of deprecated and insecure software
components/libraries.

• Insecure customization of
operating systems,

• and use of third-party software
or hardware components from
compromised supply chain

https://threatpost.com/
bad-code-library-triggers-devils-ivy-vulnerability-in-millions-of-iot-devices/126913/

33

https://threatpost.com/bad-code-library-triggers-devils-ivy-vulnerability-in-millions-of-iot-devices/126913/
https://threatpost.com/bad-code-library-triggers-devils-ivy-vulnerability-in-millions-of-iot-devices/126913/

I5 - Lack of Secure Update Mechanism

• Lack of:
− ability to securely update the device/ecosystem
− rmwareܧ validation on device
− secure delivery (un-encrypted in transit)
− anti-rollback mechanisms
− notiܧcations of security

changes due to updates

34

I6 - Insufܧcient Privacy Protection

• User’s personal information
− stored insecurely on device
− is used insecurely, improperly, and/or without permission in logs

and other artifacts
− is transmitted insecurely over the network or the internet
− or the system lacks adequate privacy disclosure before usage

35

I7 - Insecure Data Transfer and Storage

• Lack of security of sensitive data
− at rest
− in transit
− or during processing

• e.g.,
− weak or lacking cryptography,
− mismanagement of keys
− inefܧcient platform access controls
− insufܧcient key rotation
− absence of secure hardware backed storage

36

I8 - Lack of Physical Hardening

• Lack of
− physical anti-tempering defenses and/or
− system integrity checking

that allows potential attackers to gain sensitive information
that can help with a future remote attack

37

I9 - Insufܧcient Security Conܧgurability

• A lack of vendor-provided product features to help the user
secure the device through conܧguration, e.g.,

− stronger authentication
− logging and monitoring
− encryption strength management
− granular policy management
− etc.

38

I10 - Lack of Device Management

• Lack of security support on existing devices deployed in
production

− including asset management
− update management
− and secure decommissioning

39

Top 10 Summary

• IoT Security is currently lacking behind

• But What can we do against it?
− Make devices more secure
− Find vulnerabilities and expose awsܨ

40

IoT Device Basics

Based on: https://media.blackhat.com/us-13/
US-13-Zaddach-Workshop-on-Embedded-Devices-Security-and-Firmware-Reverse-Engineering-Slides.
pdf

41

https://media.blackhat.com/us-13/US-13-Zaddach-Workshop-on-Embedded-Devices-Security-and-Firmware-Reverse-Engineering-Slides.pdf
https://media.blackhat.com/us-13/US-13-Zaddach-Workshop-on-Embedded-Devices-Security-and-Firmware-Reverse-Engineering-Slides.pdf
https://media.blackhat.com/us-13/US-13-Zaddach-Workshop-on-Embedded-Devices-Security-and-Firmware-Reverse-Engineering-Slides.pdf

Basic Overview

Operating Systems and
Applications

ISR
(IN

T0_
vec

t)

{

 un
sig

ned
 ch

ar
i,

tem
p;

 _d

ela
y_m

s(5
00)

;

 te

mp
= D

ata
Por

t;

 fo

r(i
 =

0;
i<5

; i
++)

 {

 D
ata

Por
t =

0x0
0;

 _
del

ay_
ms(

500
);

 D
ata

Por
t =

 0x
FF;

 _
del

ay_
ms(

500
);

 }

 Da

taP
ort

 =
tem

p;

}

5B
E5
05
30
5B
E5
04
00
53
E3
0D
00
00
8A
4C
30
9F
E5
0

02
0A
0E
30
02
08
3E
57
D0
FA
0E
3E
CF
FF
FE
B3
83
1

0F
E5
FF
20
A0
E3
00
20
83
E5
7D
0F
A0
E3
E

7F
FF
FE
B0
53
05
BE
50
13
08
3E
2

05
30
4B
E5
EE
FF
FF
EA
06
30
5B

E5
10
20
9F
E5
00
30
82
E5
00
F0

20
E3
04
D0
4B
E2
00
48
BD
E8
1E

FF
2F
E1
00
00
00
00
00
48
2D
E9

04
B0
8D
E2
10
D0
4D
E2
10
00
0B

E5
7D
0F
A0
E3
F9
FF
FF
EB
6C
30

9F
E5
00
30
93
E5
06
30
4B
E5
00

30
A0
E3
05
30
5B
E5
05
30
5B
E5

04
00
53
E3
0D
00
00
8A
4C
30
9F

E5
00
20
A0
E3
00
20
83
E5
7D
0F

A0
E3
EC
FF
FF
EB
38
31
0F
E5
FF

20
A0
E3
00
20
83
E5
7D
0F
A0

_Z3I
SRi:

 pu
sh {

fp,
lr}

 ad
d fp

, sp
, #4

 su
b sp

, sp
, #1

6

 st
r r0

, [f
p, #-16

]

 mo
v r0

, #5
00

 bl
 _Z9

_del
ay_m

si

 ld
r r3

, .L
5

 ld
r r3

, [r
3]

 st
rb r

3, [
fp,

#-6]

 mo
v r3

, #0

 st
rb r

3, [
fp,

#-5]

.L4:

 ld
rb r

3, [
fp,

#-5]
 @ z

ero_
exte

ndqi
si2

 cm
p r3

, #4

 bh
i .L

3

 ld
r r3

, .L
5

 mo
v r2

, #0

 st
r r2

, [r
3]

 mo
v r0

, #5
00

 bl
 _Z9

_del
ay_m

si

 ld
r r3

, .L
5

 mo
v r2

, #2
55

 st
r r2

, [r
3]

 mo
v r0

, #5
00

 bl
 _Z9

_del
ay_m

si

 ld
rb r

3, [
fp,

#-5]
 @ z

ero_
exte

ndqi
si2

 ad
d r3

, r3
, #1

 st
rb r

3, [
fp,

#-5]

 b
.L4

.L3:

 ld
rb r

3, [
fp,

#-6]
 @ z

ero_
exte

ndqi
si2

 ld
r r2

, .L
5

 st
r r3

, [r
2]

 no
p

 su
b sp

, fp
, #4

 po
p {f

p, l
r}

 bx
 lr

Firmware and
File Formats

Network
Protocols

Wired vs.
Wireless

Peripherals /
Sensors

Interfaces

Architectures

HARDWARE

SOFTWARE

NETWORK

Ha
rd
wa
re
 -
 S
of
tw
ar
e

In
te
rf
ac
e

Network Interface

42

What is Firmware

• Ascher Opler coined the term ”rmwareܧ“ in a 1967

• Originally meant contents of writable control store containing
microcode (not Hardware, not Standard CPU instructions)

“In electronic systems and computing, rmwareܧ is a speciܧc class
of computer software that provides the low-level control for the
device’s speciܧc hardware.”11

• Might provide interface for high level Software

• Or act as the operating system directly for less complex
devices

11https://en.wikipedia.org/wiki/Firmware

43

https://en.wikipedia.org/wiki/Firmware

What is Firmware

• Ascher Opler coined the term ”rmwareܧ“ in a 1967

• Originally meant contents of writable control store containing
microcode (not Hardware, not Standard CPU instructions)

“In electronic systems and computing, rmwareܧ is a speciܧc class
of computer software that provides the low-level control for the
device’s speciܧc hardware.”11

• Might provide interface for high level Software

• Or act as the operating system directly for less complex
devices

11https://en.wikipedia.org/wiki/Firmware

43

https://en.wikipedia.org/wiki/Firmware

Architectures and Firmware

• Usually around some micro CPU / Microcontroller
− e.g. PIC, AVR, Intel, MIPS, ESP, RISC-V, ARC, …

• Very common cores are ARM Cortex M0, M3 and M4 based

• Those devices come with a lot of peripherals to support
virtually any need

• Need to develop both hardware and software side

44

Different Available Operating Systems

• Provide Basic functionality
− e.g. (Simple) Memory Management, Multithreading, network

stacks, standard protocolls (e.g. TCP, UDP, …)

• Examples:
− Linux
− RTOS
− RIOT
− Contiki
− Zephyr
− TinyOS
− VxWorks
− Windows IoT
− …

45

Embedded Bootloaders

• Provide Loading of Code from different interfaces
− e.g. SD Card, NOR Flash (through SPI or I²C) of NAND Flash
− Could also be a staged loader

• Might also have additional functionality
− e.g. Firmware updates

• Examples:
− u-boot
− RedBoot
− BareBox
− …

46

Firmware Challenges

• Non-standard formats
− Encrypted chunks
− Non-standard update channels
− Firmwares come and go, vendors quickly withdraw them from

support/ftp sites

• Non-standard update procedures
− Printer’s updates via vendor-speciܧc Printer Job Language (PJL)

hacks
− different others

47

Updating the Firmware

• Firmware Update built-in functionality
− Web-based upload
− Socket-based upload
− USB-based upload

• Firmware Update function in the bootloader

• USB-boot recovery

• Rescue partition, e.g.:
− New rmwareܧ is written to a safe space and integrity-checked

before it is activated
− Old rmwareܧ is not overwritten before new one is active

• JTAG/ISP/Parallel programming

48

Firmware Update Pitfalls

• TOCTOU attacks

• Non-mutual-authenticating update protocols

• Non-signed packages

• Non-veriܧed signatures

• Incorrectly/inconsistently veriܧed signatures

• Leaking signature keys

49

Firmware Formats

• Firmware comes in different kinds formants

• Usually you need to identify and unpack internals to analyse the
rmwareܧ

50

Firmware Formats - Typical Objects

• Bootloader (1st/2nd stage)

• Kernel

• File-system images

• User-land binaries

• Resources and support lesܧ

• Web-server/web-interface

51

Firmware Formats - Component Category View

• Full-blown (full-OS/kernel + bootloader + libs + apps)

• Integrated (apps + OS-as-a-lib)

• Partial updates (apps or libs or resources or support)

52

Firmware Formats – Packing Category View

• Pure archives (CPIO/Ar/Tar/GZip/BZip/LZxxx/RPM)

• Pure lesystemsܧ (YAFFS, JFFS2, extNfs)

• Pure binary formats (SREC, iHEX, ELF)

• Hybrids (any breed of above)

53

Firmware Analysis

Based on: https://media.blackhat.com/us-13/
US-13-Zaddach-Workshop-on-Embedded-Devices-Security-and-Firmware-Reverse-Engineering-Slides.
pdf

54

https://media.blackhat.com/us-13/US-13-Zaddach-Workshop-on-Embedded-Devices-Security-and-Firmware-Reverse-Engineering-Slides.pdf
https://media.blackhat.com/us-13/US-13-Zaddach-Workshop-on-Embedded-Devices-Security-and-Firmware-Reverse-Engineering-Slides.pdf
https://media.blackhat.com/us-13/US-13-Zaddach-Workshop-on-Embedded-Devices-Security-and-Firmware-Reverse-Engineering-Slides.pdf

Overview

• Get the rmwareܧ

• Reconnaissance

• Unpacking

• Reuse engineering (check code.google.com and
sourceforge.net)

• Localize point of interest
− e.g. embedded application or rmwareܧ entry points

• Decompile/compile/tweak/fuzz/pentest/fun!

55

Getting the Firmware

• Use Low-Level Methods 12

• Sometimes it might be easier to achieve:
− Present on the product CD
− Download from manufacturer FTP/HTTP site

◦ Use Google • FTP index sites (mmnt.net, ftpܧles.net)

− Wireshark traces (manufacturer rmwareܧ download tool or
device communication itself)

− Analyse Mobile Application

12You already had the hardware security lecture

56

Getting the Firmware - Common Hardware Issues

• JTAG & UART ports available

• Exposed buses (I²C, Serial)

• Unprotected external storages (FLASH, sdcard…)

• Unprotected radio interfaces (WiFi, Bluetooth, ZigBee…)

• Debugging consoles left active

• Unprotected bootloader and FW updates

• Fuses not set to make internal ashܨ unreadable

57

Reconnaissance

• Use strings to identify speciܧc Operating Systems,
Manufacturers,… (match against DB)

• Read the Speciܧcation
− Including the speciܧcation of the CPU/Microcontroller in case

you want to do static or dynamic analysis

• Use tools like binwalk to extract known leܧ formats/ܧle
systems or binary blobs from the dump

58

Unpacking

• Depending on the rmwareܧ it might be necessary to unpack
information or convert the dump

− e.g. convert iHEX lesܧ to ELF lesܧ

• This might be a problem for automatic analysis systems, since
they rstܧ need to identify the leܧ

• Also, vendors start encrypting their updates
− However, sometimes their encryption schemes are awedܨ
− e.g. Static Symmetric Key inside the Android Application to

decrypt FW Updates before deploying them on the Device

59

Static Analysis

• When you have the unpacked rmwareܧ use the “usual” tools to
do

− disassembly
− decompilation
− CFG creation
− extraction of static information

◦ e.g. strings

− …

• Examples:
− IDA Pro
− radare2
− …

60

Dynamic Analysis

• IoT Devices come in different ,avoursܨ architectures, leܧ
systems

• How can we analyse these dynamically

61

Debugging

• Attach a debugger to the Device/Embedded OS
− OCD (On chip debugging)
− e.g. through JTAG, PDI (Programming Debugging Interface)
− Software debugger (e.g. GNU stub or ARM Angel Debug monitor)
− OS debug capabilities (e.g. KDB/KGDB)

• Or emulate the target for further analysis
− QEMU is very common here

62

Emulation - Prerequisites

• Kernel image with a superset of kernel modules

• QEMU compiled with embedded device CPU support (e.g.
ARM, MIPS)

• Firmware - most usually split into smaller parts/FS-images
which do not break QEMU

63

Emulation - Peripherals

• IoT Devices might also make use of sensors and actuators

• How can we access these devices during analysis?

• Some solutions have been proposed, e.g.:
− Emulate the peripherals
− Change/Adapt the Firmware
− Bridge the peripherals during analysis

• Several (research) projects working on this…

64

Emulation - Peripherals

• IoT Devices might also make use of sensors and actuators

• How can we access these devices during analysis?

• Some solutions have been proposed, e.g.:
− Emulate the peripherals
− Change/Adapt the Firmware
− Bridge the peripherals during analysis

• Several (research) projects working on this…

64

Prospect

• Allows to tunnel peripheral access from device to host PC

• Works on embedded Linux

• Currently requires TCP/IP stack/communication for
communication with the target under Test

Kammerstetter, Markus, Christian Platzer, and Wolfgang Kastner. ”Prospect: peripheral proxying supported embedded
code testing.” Proceedings of the 9th ACM symposium on Information, computer and communications security. ACM, 2014.

65

Prospect Architecture

66

Avatar

• Orchestrate Emulator execution together with real hardware
− e.g. tunneling of I/O operations

• Allow S2E to work on target environments

• Different target backends:
− GDB serial protocol (e.g. JTAG GDB server or debugger stub)
− Low Level access to the OpenOCD’s (Open On-Chip Debugger)

JTAG debugging interface
− custom binary protocol which talks to custom Avatar debugger

Zaddach, Jonas, et al. ”AVATAR: A Framework to Support Dynamic Security Analysis of Embedded Systems’
Firmwares.” NDSS. 2014.

67

Avatar² - A Multi-target Orchestration Platform I

• Evolution of Avatar to a more generalized binary analysis
framework based on Avatars following concepts:

− Target Orchestration:
◦ includes transfer of execution from one tool to another

− Sepration of Execution and Memory
◦ allows remote memory: execution and memory reads/writes can

happen in different targets

− State transfer and synchronization
◦ transfer states between targets

• Allows to interconnect
− debuggers
− emulators
− and other dynamic binary instrumentation frameworks

68

Avatar² - A Multi-target Orchestration Platform II
• Structured into several components

− Avatar core for orchestration
− Targets to abstract endpoints
− Protocols divided by purpose

◦ e.g. memory protocol, execution protocol, …
− Endpoints (anything that should be orchestrated for analysis)

• Under the Hood:
− Architecture independent
− Internal memory representation (to synchronize tools)
− Peripheral Modeling (and bridging like Avatar)
− Plugin System

• Open Source
− https://github.com/avatartwo/avatar2

Muench, Marius, et al. ”Avatar 2: A Multi-target Orchestration Platform.” Workshop on Binary Analysis Research
(colocated with NDSS Symposium)(February 2018), BAR. Vol. 18. 2018.

69

https://github.com/avatartwo/avatar2

Avatar² - Supported Targets
• The Gnu Debugger (GDB)

• OpenOCD
− Open source tool which is able to control debug dongles

attached to e.g. s Joint Action Test Group (JTAG) or Serial Wire
Debug (SWD) ports

• Quick Emulator (QEMU)
− dynamic binary translation to allow cross-architecture emulation

• PANDA (Platform for Architecture-Neutral Dynamic Analysis)
− dynamic analysis framework with focus on reverse engineering

(based on QEMU)

• angr
− symbolic execution and program analysis framework

70

Other Research Directions I

• Costin, Andrei, et al. “A Large-Scale Analysis of the Security of
Embedded Firmwares.” USENIX Security Symposium. 2014.

• Shoshitaishvili, Yan, et al. “Firmalice-Automatic Detection of
Authentication Bypass Vulnerabilities in Binary Firmware.”
NDSS. 2015.

• Costin, Andrei, Apostolis Zarras, and Aurélien Francillon.
“Automated dynamic rmwareܧ analysis at scale: a case study
on embedded web interfaces.” Proceedings of the 11th ACM
on Asia Conference on Computer and Communications
Security. ACM, 2016.

71

Other Research Directions II

• Muench, Marius, et al. “What you corrupt is not what you crash:
Challenges in fuzzing embedded devices.” NDSS 2018,
Network and Distributed Systems Security Symposium, 18-21
February 2018, San Diego, CA, USA. 2018.

• …

72

Secure Device Architecture

Based on: https://cansecwest.com/slides/2017/CSW2017_ScottKelly_SecureBoot.pdf

73

https://cansecwest.com/slides/2017/CSW2017_ScottKelly_SecureBoot.pdf

Important IoT security architecture features

• Chip security in the form of TPMs (Trusted Platform Modules)
− act as a root of trust by protecting sensitive information and

credentials
− i.e., not releasing encryption keys outside the chip

• Secure booting can be used to ensure only veriܧed software
will run on the device.

• Even physical security protection
− e.g., full metal shield covering all internal circuitry
− can be employed to guard against tampering if an intruder gains

physical access to the device.

74

Why Secure Boot?

• It will always be difܧcult to secure rich applications and remove
all awsܨ

− We have to accept the possibility for exploits happening

• But, we don’t have to allow malware to replace trusted code
(e.g. bootloaders, OS, system software, etc.)

− Not if we correctly implement secure boot.

75

What is Secure Boot?

• Means that only authorized system code runs
− If image is corrupted, or you try to install your own

(unauthorized) code, system will not run.

• Wikipedia: Some devices implement a feature called “veriܧed
boot”, “trusted boot” or “secure boot”, which will only allow
signed software to run on the device, usually from the device
manufacturer. This is considered a restriction unless users
either have the ability to disable it or have the ability to sign the
software.13

13https://en.wikipedia.org/wiki/Hardware_restriction#Secure_boot

76

https://en.wikipedia.org/wiki/Hardware_restriction#Secure_boot

Embedded Systems Startup

• Embedded systems generally include
− NAND/NOR Flash

◦ non-volatile memory in \\ which rmwareܧ is stored

− CPU
◦ processor for OS/apps

− DRAM
◦ random access memory \\ (just like your PC)

− Interfaces
◦ Wiܧ, ethernet, etc.

77

Embedded Systems Startup (contd.)

• At power-on
− Processor comes out of reset
− Begins running code from ROM or ashܨ

• Boot Loader (BL) is rstܧ non-ROM rmwareܧ to run

• ROM/BL initializes HW (memory, etc.)

• BL copied (by ROM or self) into DRAM before continuing

78

Embedded Systems Startup (contd.)

• BL continues hardware initialization from DRAM

• BL validates, loads, and jumps into OS kernel

• OS nishesܧ init, goes to runtime steady state

79

Simplistic View of Secure Boot

• On reset, processor starts
from ROM

− (Practically) immutable code

• ROM code loads/veriܧes
bootloader

− If invalid, halt.

• Bootloader loads/veriܧes OS
and r/o lesystem(s)ܧ

− If invalid, halt.

• Only veriܧed (authorized)
rmwareܧ is allowed to run.

80

Post-boot Secure Execution Environment

• Security protections set up during boot
− Can go forward (set more protections) but should never be able

to go back

• Secure environment established
− Everything inside of boundary is in

known state
− Can “trust” this system

◦ It will behave in a predicable way,
as expected

81

Subverting the Boot Process

• Malware often circumvents boot process
− Attack replaces some part of early boot code
− Takes control of the system early on
− Robust secure boot can prevent this.

• Of course, application may exploit system bug (later)
− But robustly conܧgured system can still protect some assets,

operations

• Compromise at later phase can’t undo previous “locks”
− System can potentially be recovered by reboot

82

How to attack Secure Boot
• Glitching

− Cause system to erroneously accept (or ignore!) invalid
signature

• Compromise signing key
− Then, you can sign your own rmwareܧ images!

• Break crypto (e.g. factor RSA modulus)
− This should only be possible if the crypto is used/implemented

badly

• Find bug/ܨaw in validation code
− Buffer overܨow, integer {under,over}ܨow, etc.
− Incorrect crypto implementation

• Take advantage of awedܨ design.

83

Summary

84

IoT Security?

• IoT Security is not so easy to get right
− Lot’s of things that can break
− see OWASP IoT Top 10

• Today we just got a glimpse at the problem

• Analysis of IoT devices concerning Security Issues still poses
problems

85

Questions?

86

Nintendo Switch - BootROM Vulnerability

https://www.youtube.com/watch?v=L3PPWVPg2WI

87

https://www.youtube.com/watch?v=L3PPWVPg2WI

	Internet of Things Security Basics
	IoT OWASP Top 10
	IoT Device Basics
	Firmware Analysis
	Secure Device Architecture
	Summary

