Secure Systems Lab =~ —
Vienna University of Technology

Advanced Internet Security
VU 183.222

Adrian Dabrowski, Markus Kammerstetter, Johanna
Ullrich, Georg Merzdovnik, Stefan Riegler,

Aljosha Judmayer
inetsec@seclab.tuwien.ac.at

. secure 0 : Info_rmati‘on & Software
@IS&CLAB) S asieciarch jorg IS Engineerin g Group 1

mailto:inetsec@seclab.tuwien.ac.at

Secure Systems Lab =~ —
Vienna University of Technology

Introduction to
Cryptographic Engineering (ll)

. secure 0 . Info!'mati‘on & Software
@ISECLAB) sbha-research .org I‘FS nnnnnnnnnnnnnnnn 20

How to read these slides?

Secure Systems Lab =~ —
Vienna University of Technology

The material presented on the slides does sometimes contain more information
than is necessary to know from the top of your head for the exam, but might be
relevant for some challenges or useful background knowledge or recap

Slide Log Levels:
— [WARN]

* This is highly important to understand and know in detail, also for the
exam

— None

* The default, potentially relevant for exam in shape of comprehension
questions. Not required to be memorized 1:1 for the exam

— [INFO]

* Recap or background information not required to know from the top
of our head for the exam.

* Might though be relevant for challenges

. : Information & Software
@ISECLAB) gae_recsgr[ﬁrg IfS Engineering Group U 31

Cryptographic Primitives

Secure Systems Lab =~ —
Vienna University of Technology

¢ U n keyed p ri m itives Arbitrary length

hash functions

— hash functions

Unkeyed One-way permutations
Primitives

— (real) random sequences

Random sequences

* Symmetric-key primitives Block
: ciphers
— symmetric key ciphers N hers <
. Stream
® b|0Ck ClpheI'S) rJ:\;l:'i'trary Ier(lr%;(gc) ciphers
ash functions S
* stream ciphers o] st :
.] ignatures
— Message Authentication Codes
. Pseudorandom
— signatures sequences
— pseudo_random Sequences Identification primitives
* Public-key primitives e
. . ciphers
— public-key ciphers
Public-key Signatures

— signatures Primitives

[1] http://cacr.uwaterloo.ca/hac/

Information & Software

a1 isecLAB) secure € ifs
LH J sba-research.orgv |_ Engineering Group

w
N

Cryptographic/Security Engineering

Secure Systems Lab =~ —
Vienna University of Technology

* Agenda for today and key takeaways for today:
— Misue of unkeyed primitives
* Don’t use unkeyed primitives as symmetric-key primitives
— i.e., Don’t use plain hash functions as MACs
* Brute force attack strategy against large number of hashes
— Textbook crypto != production crypto
— Nonce stands for number that can only be used once

. secure @ . Info!'mati‘on & Software
e T 2

Secure Systems Lab =~ —
Vienna University of Technology

Hash functions

@iSECLAB)

gae-recsetgr[h%rﬂ

ifS

Information & Software
Engineering Group

Hash length extension attack

* |n a hash length extension attack an attacker can
use H (message_1) and the length of message 1
to calculate H (message_1| |message_2) fora
message_2 chosen by the attacker.

 All algorithms based on the Merkle-Damgard
construction are susceptible to this kind of attack
- e.g., MD5, SHA-1, SHA-2

* That does not mean that these algorithms are
broken! Just that you should not use them directly
as MAC (Message Authentication Code) to ensure
the integrity and authenticity of some message

[WARN]

Hash length extension attack

« Merkle-Damgaard construction

- chain of compression functions and Initialization Vector

- used in MD5, SHA1, SHA256, SHA512

@,

SECRET message Iengjch =[rpemee nevY
padding message padding
comp. comp. comp. comp. comp.
.—.» -_». _> -
func. func. func. I’ func. func.
[WARN

3

]

Hash length extension attack

Flickr's API Signature Forgery Vulnerability [1]
Roughly works like this:

perform
authenticated d
Flickr API operation . 213 |
http
-
http

- 8 -
shared 16byte A shared 16byte
SECRET SECRET

or ask user to confirm some op.

[1] http://netifera.com/research/flickr_api_signature forgery.pdf

Hash length extension attack

 Request:

http://www.flickr.com/services/auth/?
apl _key=44fefalO5lfclcolt

&perms=

&apl_sig=la947ced7375aadf970ccd7ee2bb792b81d5edlc

» Resulting hash function input:
SECRETapi keviddfefalOblfclcb6lfperms

* Resulting output:

$ echo -n "SECRETapi_key44fefalO5lfclchlfperms
| shalsum

1a947ced7375aadf970ccd7eel2bb792b81d5edlc

Hash length extension attack

» Construct new request using hashpumpl1]
» Takes signature (i.e., old hash
- detects hash format

- supported MD5, SHA1, SHA256, SHA512

» Takes old input data after SECRET
» Takes key length (i.e., length of SECRET)
 Takes message/data to add

e Calculates new padding automatically
Calculates new valid signature / hash

[1]https://github.com/bwall/HashPump

$./hashpump

Input Signature:
1a947ced7375aadf970ccd7ee2bb792b81d5edlc

Input Data: apili_keyd44fefalO5lfclc6lfperms

Input Key Length: 6

Input Data to Add:
apl_keyd44fefalO5lfclc6lfpermswriteactionevil
f43a9343fd2ee59dc43cfcf32ce52885a85753£f8
apl_keyd44dfefalOS5lfclcb6lfperms \x80\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x010api_key44fefal05lfclc6lfpermswriteac
tionevil

Check if signature is valid with correct SECRET:

$ perl -e 'print
"SECRETapi_kevy44dfefalS5lfclcbolfpermsread\x80\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x010api_keyd44fefalO5lfclc6lfperms
riteactionevil"' | shalsum
f43a9343fd2ee59dc43cfcf32¢ce52885a85753£f8

Hash length extension attack

* Detalls:
- For the exploit to be practical they needed to
overwrite existing http variables by adding the
variable ‘a="to the beginning

- Then concatinated input to hash function would
stay the same but application logic does not use
unknown variables

http://www.flickr.com/services/auth/?

a=api_key=44fefal51lfclcblfperms [padding]
&apil_key=44fefal051fclc6hlf

&perms=write
&action=evil
&api sig=f43a9343fd2ee59dcd43cfcf32ce52885a85753f8

Hash length extension attack

e Solutions:
— use other hash function not vulnerable to hash
length extension attack e.g., SHA3

- use HMAC as a MAC which is not vulnerable
to length extension attacks by construction

» roughly constructed like that:

HMAC(K,m) = H((K’ & opad)||H (K’ & ipad) \m))

Other examples of Hash function
usage / misuse

» Bitcoin/Cryptocurrency Brain Wallet
- ldea: Derive ECDSA secret and public key from
(memorizable) pass phrase e.g., (roughly):

e str:="how much wood could a woodchuck chuck if
a woodchuck could chuck wood”

» secret key d := SHA256(str)
* public key pk :=dG
- either compressed (x) or uncompressed (X,y) form

e pkhash := RIPEMD160(SHA256(pk))

e address := Base58(pkhash)

- e.d.,: 18s9tQHgcyykbgJkuHaxUad9vrwSXf9aqC
10

Other examples of Hash function
usage / misuse

* Not a good idea
- Blockchain = big (unsalted) “password” hash
database!

* The Bitcoin Brain Drain [1]
* Brainflayer [2]
- 130 K guesses/second against entire
blockchain (on laptop)

- GPU/FPGA/ASIC acceleration possible

[1] https://allquantor.at/blockchainbib/#vasek2016bitcoin 11
[2] https://github.com/ryancdotorg/brainflayer

https://allquantor.at/blockchainbib/#vasek2016bitcoin
https://github.com/ryancdotorg/brainflayer

Bitcoin brain wallet attack with
bloom filters and brute force

* |dea of the attack to be efficient:
- ~ 80,000,000 BTC addresses to one 512 MB Bloom filter

- match each address to ~ 20 locations in bitmask
- difference to other bloom filters, addresses are only bit sliced
- check against all addresses at once with outputs:

e probable match => slower check to identify false positives

e certainly no match (x,y, 2}

oj1041j1}j1y0;0;0(0(0}j1}]0(110]0}1(60

Bloom filter example:

» 3 hash functions per value
=> 3 hits in filter 12

» 3values x,y,z then check if value w in filter W

Bitcoin brain wallet attack with
bloom filters and brute force

Successfully cracked:

* “how much wood could a woodchuck chuck if a

woodchuck could chuck wood”
~ 250 BTC

~ 50 BTC

 “Down the Rabbit-Hole”
~ 85 BTC

e “The Quick Brown Fox Jumped Over The Lazy Dot”
~ 85 BTC

13

Bitcoin brain wallet attack with

bloom filters and brute force

“gate gate paragate parasamgate bodhi svaha”

“The Persistence Of Memory”

“QTC”

“644122178"

“8964009”

“gue me lleve la muerte”

“one two three four five six seven”

“It's a secret to everybody”

“Ph’nglui mglw’'nafh Cthulhu R’lyeh wgah’nagl fhtagn”
“my hovercraft is full of eels”

“Interior Crocodile Alligator”

“No need to worry, my accountant handles that”
“tomb-of-the-unknown-soldier-identification-badge”
“permit me to issue and control the money of a nation and i care not
who makes its laws”

* “who is john galt”

“Live as if you were to die tomorrow. Learn as if you were to live
forever.”

14

Secure Systems Lab =~ —

Vienna University of Technology

Asymmetric cryptography
(Public-key cryptography)

secure 0 H Info_rmati‘on & Software
sba-research .org I‘FS nnnnnnnnnnnnnnnn 1

Public-key encryption

Secure Systems Lab =~ —
Vienna University of Technology

* High level perspective on public-key encryption only
* Alice generates public private/secret key pair (pk, sk)
* Alice transmits pk to bob

Alice Bob

(pk, sk) >

E (pk,data)

. : Information & Software
@ISECLAB) Se_cure IfS Engineering Group 1

Public-key encryption

Secure Systems Lab =~ —
Vienna University of Technology

Def: a public-key encryption system is a triple of algs. (G, E, D)

e (G(): Generation algorithm that outputs a key pair (pk, sk)

e FE(pk,m): Encryption algorithm that takes a message m € M and
outputs a ciphertext c € C

e D(sk,c): Decryption algorithm that takes a ciphertext ¢ € C' and
outputs a message m € M or L

Counsistency: V(pk, sk) that are output of G():
Vm e M : D(sk, E(pk,m))=m

Note: M and C' are defined as the message and the key space
containing every possible message/ciphertext.

. : Information & Software
@ISECLAB) Se_cure IfS Engineering Group 12

Public-key encryption

Secure Systems Lab =~ —
Vienna University of Technology

* High level perspective on public-key encryption only
* Alice generates public private/secret key pair (pk, sk)
* Alice transmits pk to bob

Alice Bob

(pk, sk) >

E (pk,data)

What is a potential
security issues here?

. : Information & Software
@ISECLAB) Se_cure IfS Engineering Group 13

Public-key encryption

Secure Systems Lab =~ —
Vienna University of Technology

* Vulnerable to Man-in-the-middel (MitM) attack by Malory
* Therefore key authenticity is important!
— This problem is not solved with asymmetric cryptography

— In Practice trust anchor is required: PKI (Public Key Infrastructure)
(HTTPS), Web of trust (GPG), business card with fingerprint, ...

Alice Malory Bob
pk_B pk M
(pk, sk) > (pk_M, >
sk M)
E (pk_B,data) E (pk_M, data)
< -

qJisecuan) secure Q) - firs] st [WARN] ™4

RSA

Secure Systems Lab =~ —
Vienna University of Technology

* Rivest Shamir Adelman (RSA)
— Adi Shamir, Ron Rivest, Leonard Adelman (aII MIT at that tlme)

* Algorithm first
published 1977
* Key length of

> 2048 bits AN
: : 41 _é:f 4
still considered MLt
A

secure [2] . % 2“3*
if correctly 154 A3

implemented

[1] https://claudiodinardo.com/content/images/2017/08/shamir-rivest-adleman.jpg
[2] https://www.keylength.com/

H H Information & Software
@ISGCLAB) Secure IfS Engineering Group 18

sba-research.org

Trapdoor function

Secure Systems Lab =~ —
Vienna University of Technology

Def: Trapdoor function is a triple of efficient algs. (G, F, F~1)

e (() : Generation algorithm ouptus (pk, sk)
e F(pk,-): The pk defines a mapping function X — Y
o F~1(sk,-): Defines a function Y — X that inverts F(pk,)
It holds that V(pk, sk) that are output of G():
Vo € X : F~l(sk, F(pk,z)) =«

Note: If the set X =Y then it is called a trapdoor permutation.
A secure trapdoor function/permutation F(pk,-) is one-way without the
trapdoor sk

. secure 0 . Info!'mati‘on & Software
@ISECLAB) sbha-research .org I‘FS Engineerin g Group 1 9

Trapdoor function

Secure Systems Lab =~ —
Vienna University of Technology

L 4
-
.......

Information & Software 20
Engineering Group

@isecma)

Number theory (quick reference)

Secure Systems Lab =~ —
Vienna University of Technology

e NN is a composite number i.e., the product of two primes N = pq

e The set Zy is the set modulo N i.e., Zy = {0,1,2,..., N — 1}

e The set Z% is the set of invertible elements in Zy. (We are only
interested in multiplicative inverses here.)

e An element x € Zy is invertible iff gcd(xz, N) =1 i.e., there exists an
element 7! s.t. x-27! =1 (mod Zy) Examples:
— In R the inverse of 3 would be 1/3 since 3-1/3 =1
— In Zy the inverse of 2 would be % since 2 - % =N+1=1
(mod ZN)

e The number of invertible elements Z}; in Zy is given by
e(N)=p—-1)(¢q—1)=N—-p—qgq+1x=N-2VN=x=N
qJisecuan) secure) EEEETERR [INFO] 22

Number theory (quick reference)

Secure Systems Lab =~ —
Vienna University of Technology

Eulers theorem: Vz € Z%, : 2¥Y) =1 (mod Zy)
Example:

o 715 =40,1,2,...,14} where N =pg=3-5
o p(15) =|Z3s| =1{1,2,4,7,8,11,13,14}| = 8

e Since p,q € Prime this can be calculated by
p-1g—1)=2-1=8

o 4¢c /s

° 4‘70(15) — 48 = 32 =1 (mod Z15)

. : Information & Software
@ISECLAB) gae_recs:lr[srﬂ IfS Engineering Group [] 23

Number theory in Sage Math

= IntegerModRing (15); Zn # or just Integers (15)
Ring of integers modulo 15

Zzn.list () # 1list of all elements
(o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

6*3 # calculation performed in Z
18

= Integers(); Z

Integer Ring

6*3 == Z(6*3)== Z7(6*3) # implicit or other name for Z
True

mod (6*3,15)

n(6*3)

. Information & Software
@ISECLAB) Secure EQ ‘E’ Engineering Group

Number theory in Sage Math

)
5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

(
2, 3, 4,
r() # number of elements

Zn.orde

Zn_inv [x for x in Zn 1f Zn(x**8) == Zn(l)]; Zn_inv

4, 7, 8, 11, 13, 14]1 # invertible elements
n(4d**8)

mod (4**8,15)

inverse mod(7,15) # get the inverse of element

n(7*13)

. secure @ ‘E' InfoArmati‘on & Software
@ISEC LAB) s tatea el Engineering Group

RSA trapdoor

Secure Systems Lab =~ —

Vienna University of Technology

Def: The RSA trapdoor permutation is a triple of efficient algs. (G, F, F'~1)

e (G() : 1) choose random primes p, ¢ = 1024 bits each and compute the
2048 bit RSA modulus N = pq
2) choose integers e, d such that e-d =1 (mod ¢(N))
3) output pk = (N, e) and sk = (N, d)

e F(pk,x) =x¢ (mod Zy)
This is a function mapping all invertable elements Z% — Z}

o FF~1(sk,y) = y? (mod Zy)

To show that F'~!(sk, F(pk,z)) = x we use the fact that there exists some k
such that ed =k - p(IN) + 1 since e-d =1 (mod p(N))

C‘Jd — (a?e)d — g4 = ghe(N)+1 — (aj‘P(N))k - = (1)]~C =

Note: e is called the encryption exponent, and d the decryption exponent

@isecma)

secureg@ [

Information & Software 26
Engineering Group

RSA security
Secure Systems Lab =~ —

Vienna University of Technology

e The difficulty of computing ¢(N), without knowing
the factorization of IV, is the difficulty of computing d.

e This is refered to as the RSA problem, which can be solved
by factoring N and computing ¢(N).

e Knowing ¢(NN), the multiplicative inverse of e
an be calculated fast.

p(N) =

e - e_l
6—1

(p—1)(g—1)
1 (mod ¢N)
d

. secure 0 . Info!'mati‘on & Software
@ISECLAB) sbha-research .org I‘FS Engineerin g Group 27

Textbook/raw RSA example (insecure)

Secure Systems Lab =~ —
Vienna University of Technology

e Lets pick some primes p =2 and ¢ = 11 and compute N = pqg = 22

e Compute p(N)=(p—1)(¢g—1) =10
e Find some e such that:

— It is relatively prime to ¢(N) i.e., gcd(e, p(N)) =1
— There is a d such that e-d =1 (mod ¢(V))

e For our example set e =3 and d =T ie.,3%x7 =1 (mod p(N))
e Publish pk = (N, e) = (22,3) and store sk = (N, d) = (22,7).
e Encryption: of message m = 8
— c¢c=m° (mod N) =8 (mod 2)2 =512 (mod 2)2 = 6
e Decryption: of ciphertext ¢ =6
— m=c? (mod N) =67 (mod 2)2 = 279936 (mod 2)2 = 8

. Information & Software
@ISECLAB) Secure g@ Engineering Group 28

Textbook/raw RSA example (insecure)

#!/usr/bin/sage

def rsa(size=2A1024,e=None) :
proof = (size <= 2A1024) # turn off for large values
p = random prime(size, proof=proof)
g = random prime (size, proof=proof)

if p==g: return None
n =p*dg
phi_n = (p-1) * (g-1)
if not e:
while True:
e = ZZ.random element (1,phi_n)
if ged(e,phi_n)
d = inverse_mod (e, phi_n)
print " (Modulus, enc. exponent, dec. exponent)
return n,e,d

. Information & Software
@ISEC LAB) Engineering Group

Textbook/raw RSA example (insecure)

$ sage
load (”./rsa.sage”)

7 ..
def rsa enc(n,e,m):
return pow(m,e,n)

n,e,d = rsa(2**5) # params

def rsa dec(n,d,c): (Modulus, enc. exponent, dec.

return pow(c,d,n) exponent) =
(22, 3, 7)
* Load the code file in rsa_enc(n,e,8) # encryption
sage

* Then functions can be rsa_dec(n,d,6) # decryption
used in this sage session g

. : Information & Software
@ISEC LAB) gae_rggr[srgw IfS Engineering Group [] 30

Textbook/raw RSA example (insecure)

$ sage
load (”./rsa.sage”)

..
def rsa enc(n,e,m) :

return pow(m, e, n)
n,e,d = rsa(2**5) # params

(Modulus, enc. exponent, dec.

def rsa dec(n,d,c):

return pow(c,d,n) exponent) =
(22, 3, 7)
* Load the code file in rsa_enc(n,e,8) # encryption
sage

* Then functions can be rsa_dec(n,d,6) # decryption
used in this sage session g

Why is this example
obviously insecure?

. secure @ . InfoArmati‘on & Software
@ISECLAB) sba-research.org I'FS g e 31

https://claudiodinardo.com/content/images/2017/08/shamir-rivest-adleman.jpg

Textbook/raw RSA example (insecure)

Parameters are too small, N can be factorized !
Attacker

n = 22, e=3 # pk Alice
load (”./rsa.sage”) factor (n)

n,e,d = rsa(2**5)
(Modulus, enc. exponent,
dec. exponentn) =
(22, 3, 7)

rsa enc(n, e, 8)

rsa_dec (n,d, 6)

. secure @ InfoArmati‘on & Software
@ISEC LAB) S asieciarch org IfS Engineering Group

How fast is factoring?

64 bit key

time factor (random prime (2**32) *random_prime (2**32))
CPU times: user 8 ms, sys: 0 ns, total: 8 ms
all time: 10.6 ms
128 bit key

time factor (random prime (2**64) *random_ prime (2**64))
CPU times: user 76 ms, sys: 0 ns, total: 76 ms
all time: 85.3 ms
192 bit key

time factor (random prime(2**96) *random prime (2**96))
CPU times: user 6.56 s, sys: 12 ms, total: 6.57 s
all time: 6.59 s
256 bit key

time factor (random prime (2**128) *random prime (2**128))
CPU times: user 7min 39s, sys: 656 ms, total: 7min 40s
all time: 7min 40s

. Information & Software
@ISECLAB) Secure EQ ‘E’ Engineering Group

How fast is factoring?

Secure Systems Lab

sba-research.or:

Engineering Group

Acacdemic RSA factorization records gy
Hostile factorizations
{Year-2000)-32+512 hits
1024
bits
896
768
768
66/
B40
576
- 530
512 » &
45 Tl
476 430
. 397
384 354 o
o Blacknet
O
i Yescard
256 ; ; ; . ; ; . —
1990 1955 2000 2005 2010 2015 year 2020
[1] https://i.stack.imgur.com/VVSwml.png
. Se C u re - Information & Software
@ISECLAB) g@ E 34

How fast is factoring?

* Prime factors must be of approximately the same size.
* If one prime factor is too small then factoring is easier [1] !

time factor (3*random prime (2**128))
CPU times: user 24 ms, sys: 0 ns, total: 24 ms
all time: 23.9 ms

time factor (3*random prime (2**512))
CPU times: user 644 ms, sys: 0 ns, total: 644 ms
all time: 645 ms

time factor (3*random prime (2**1024))
CPU times: user 8.25 s, sys: 0 ns, total: 8.25 s
all time: 8.25 s
time factor (3*random prime (2**2048))
CPU times: user 1lmin 55s, sys: 124 ms, total: 1lmin 55s
all time: 1min 55s

. secure @ : InfoArmati‘on & Software
@Isec LAB) sba-research.org 1S g e

35

Textbook/raw RSA example (insecure)

Secure Systems Lab =~ —
Vienna University of Technology

e Lets pick some primes p and g and compute N = pq

o Compute p(N) = (p—1)(¢—1)
e Finde some e such that:

— It is relatively prime to @(N) i.e., ged(e, o(N)) =1
— There is a d such that e-d =1 (mod ¢(N))

e Publish pk = (N, e) and store sk = (N, d).
e Encryption: of message m

— c¢c=m° (mod N)
e Decryption: of ciphertext c

— m =c? (mod N)

. secure 0 . Info!'mati‘on & Software
@ISECLAB) sbha-research.org I‘FS Engineering Group 36

Textbook RSA issue:
Data patterns visible _

Vienna University of Technology

* raw RSA issue: Deterministic encryption, same plain text leads to same
ciphertext. This allows for traffic analysis e.g., alarm system

— E(pk,”all good”)
— E(pk,”all good”)
— E(pk,”error”) Malory
* Since the public key is public, E(pk, ...)
Malory can create a dictionary and
check messages in transit

E(pk,”all good"ﬁ
- Bob

E(pk,”all ood”)§
i 2 pk

Alarm System

(pk, sk) -
E (pk,”error”)

-«

. secure @ - Info!'mati‘on & Software
@IS&CLAB) sba-research.org I.FS Engineering Group 37

Textbook RSA issue:
Data patterns visible

* Tolillustrate the problem of determinism and traffic analysis consider:
— A function to encode a string as number sequence of their 8 bit ASCII
codes
— A function to decode a number into 8 bit sequences of ASCII characters

7 ..
def num to str (num) :
num = Integer (num)

1f len(s) > floor(log(n,256)):
print "Too large for one
rsa round"
return None

while num != 0:
v.append (chr(num %

num = 0

for 1 in range(len(s)) :
num += ord(s[i])*256A1

return num

= floor (num/256)
'.join (v)

. secure @ : InfoArmati‘on&Softvvare
@ISECLAB) sba_rgearch'org IS Engineering Group 38

Textbook RSA issue:
Data patterns visible

Same plain text leads to same cipher text under the same key

n,e,d = rsa(2**1024,e=65537)

(Modulus, encryption exponent, decryption exponentn) =
(144130130...)

num = str to num("error",n)

c = rsa_enc(n,e,num);c # always the same under (n,e)
2866774468414...

m num = rsa_dec(n,d,c)

m = num to str(m num) ;m
'error'!

. secure @ InfoArmati‘on & Software
@ISEC LAB) S asieciarch org IfS Engineering Group

Textbook/raw RSA example (insecure)

Secure Systems Lab =~ —
Vienna University of Technology

e Lets pick some primes p and g and compute N = pq

o Compute p(N) = (p—1)(¢—1)
e Finde some e such that:

— It is relatively prime to @(N) i.e., ged(e, o(N)) =1
— There is a d such that e-d =1 (mod ¢(N))

e Publish pk = (N, e) and store sk = (N, d).
e Encryption: of message m

— c¢c=m° (mod N)
e Decryption: of ciphertext c

— m =c? (mod N)

. secure 0 . Info!'mati‘on & Software
@ISECLAB) sbha-research.org I‘FS Engineering Group 41

Textbook RSA issue:
Integrity not ensured

* The integrity of the ciphertext is not ensured. Therefore, the
message/ciphertext is malleable.

n,e,d = rsa(2**1024,e=65537)
(Modulus, encryption exponent, decryption exponentn) =
(145194...473)

c = rsa_enc(n,e,8); ¢ # small message e.g., sensor value
11983769...072

m = rsa_dec(n,d,c); m

cl = c*c # just multiply the value with itself

= rsa_dec(n,d,cl); m; m==8%*8

c*rsa_enc(n,e,2) # attacker can calc. factor using pk
rsa_dec(n,d,c2); m; m==8%*2

. secure @ InfoArmati‘on&Software
@ISECLAB) sbazresearchiorg IfS Engineering Group

Textbook RSA issue:
e th root attack on small m

* eth root attack
* ifmis small (m<nt/e) and e is small (e.g., e=3) and me << N

* Then you can simply calculate the eth root within the Integers and
decrypt the ciphertext

n,e,d = rsa(2**1024,e=3)
(Modulus, encryption exponent, decryption exponentn) =
(756605...4571)

num = str_ to num("A",n); num; hex(num)

= rsa _enc(n,e=3,65); c

274625 .nth_root(3) # attacker can compute plaintext

. secure @ . InfoArmati‘on & Software
@Isec LAB) sba-research.org I'FS g e 43

Textbook/raw RSA (is insecure)

Secure Systems Lab =~ —
Vienna University of Technology

* Coppersmith attack
— Low encryption exponent e and small message m
— Or partial knowledge of secret key
* Wiener’s attack
— Low decryption exponent d
* Hastad’s broadcast attack
— Same message to different public keys (moduli) with same (small) e
* Meet in the middle attack

— If small (e.g., 128 bit) non padded)value is transferred that is the product of two
(e.g., 64 bit) values.

 Common factor attacks across multiple keys [2]
— Same prime factors in different moduli, Mining your p’s and q'’s
* Side channels e.g., timing, power consumption, ...

[1] https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf
[2] https://factorable.net/weakkeys12.extended.pdf

. Information & Software
@ISECLAB) Secure g@ Engineering Group 46

RSA but how?
Secure Systems Lab =~ —

Vienna University of Technology
RSA is just a trapdoor permutation. Not use directly as encryption system
(textbook RSA)! It has to be embedded /transformed e.g., OAEP, PKCS1v2.0
or ISO 18033-2.
[SO standard (roughly):

e (E,, D) : Symmetric encryption/decryption system which provides
authenticated encryption

e H(): N — K : Secure hash functions that maps elements of Zy to
secrets keys for the symmetric encryption/decryption system

e (G() : Generate RSA params pk = (IV,e), sk = (IV,d)
e F(pk,m) : choose random x in Zy

— y < x° (mod Zy), and k < H(x), also padding is applied
— Output and send (y, Es(k, m))

e D(sk,(y,c): m= D,(H(y? (mod Zx)), c)

. Information & Software
@ISECLAB) Secure g@ Engineering Group 47

Secure Systems Lab =~ —
Vienna University of Technology

(Primer)
Elliptic curve Cryptography
(ECC)

. secure 0 . Info!'mati‘on & Software
e T 0

Why ECC?

Vienna University of Technology
* Problem(s):
— Security of RSA relies on hardness of integer factorization

— Security of Diffie-Hellman relies on hardness of discrete logarithm
problem (DLOG)

* RSA and DH require much higher computational power using longer
keys, not only for breaking, but also to compute the ciphertext

* As computational power is also growing and factorization of shorter keys
(1024 <=) is already a threat

. : Information & Software
@ISECLAB) Se_cure IfS Engineering Group 21

Elliptic Curve Cryptography

Secure Systems Lab =~ —
Vienna University of Technology

* ECC also relies on the discrete logarithm problem but over the algebraic
structure of elliptic curves over finite fields, which makes the (same)
problem harder.

— Elliptic Curve Discrete Logarithm Problem (ECDLP)

* Shorter key length for equivalent computational security

— Means faster computation of ciphertext while retaining hardness
against attacks

* Algorithms:
— Ellipic Curve Diffi-Hellman (ECDH)
— Elliptic Curve Digital Signature Algorithm (ECDSA)

. : Information & Software
@ISECLAB) Se_cure IfS Engineering Group 92

Elliptic Curve Cryptography

Secure Systems Lab =~ —
Vienna University of Technology

* Key sizes for comparable levels of security [1]:

Factoring Discrete Logarithm

Method Symmetric Modulus Key Group Elliptic Curve
[1] Lenstra / Verheul @ 2084 135 7813 6816 241 7813 257
[2] Lenstra Updated ¢ 2090 128 4440 6974 256 4440 256
[3] ECRYPT II 2031 - 2040 128 3248 256 3248 256

[7] RFC3766 ¢ - 136 3707 272 3707 257

[1] https://lwww.keylength.com/en/compare/

. : MATION g Information & Software
@lsecu\s) Bsy secure Q) fies] et 53

GROUP sba-research.org

Elliptic Curve Cryptography

Secure Systems Lab =~ —
Vienna University of Technology

* Comparison of computationally equivalent key sizes for the currently
known best effort attacks (bit):

Symmetric ECC RSA/DH/DSA

80 163 1024
128 283 3072
192 409 7680
256 o571 15360

Performance Analysis of Elliptic Curve Cryptography for SSL - Gupta et al.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.8797&rep=rep 1&type=pdf

. : Information & Software
@IS&CLAB) Secure IfS Engineering Group o4

Elliptic Curve over [,

Secure Systems Lab =~ —
Vienna University of Technology

Def.: Elliptic curve over I, requires the following properties:

e Let [F, prime finite filed
e Let a,b € F, satisfy 4a> + 27°2 # 0

Then an elliptic curve E(F,) over), is defined by:
e The parameters a,b € [F,,

e The set of solutions i.e., points P = (z,y), for all pairs z,y € F,,
to the defining euqation:

> =2 +ax+b (mod p)

e The point at infinity co or O € E(F,) s.t., P+ O =0+ P =P
qJisecuan) secure Q) i inesote [INFO] 55

Elliptic Curve Cryptography

Secure Systems Lab =~ —
Vienna University of Technology

Simplified Weierstral}
equation over real numbers:

2+

y2=:::3—:r:—|—loverﬁ§‘

. : Information & Software
@ISECLAB) gae_recs};'r[srﬂ IfS Engineering Group [] 57

Elliptic Curve Cryptography

Secure Systems Lab =~ —
Vienna University of Technology

Simplified Weierstral}
equation over real numbers:

sage code
EC = EllipticCurve(RR, [0,0,0,-1,1]1); EC

y2 — 333 _|_ a *x T _|_ b p = plot (EC, thickness=3,xmax=2)
a= —1 p.show (xmin=-2, xmax=2,ymin=-2, ymax=2)
b=1

. : Information & Software
@ISECLAB) gae_recs:lr[ﬁrﬂ IfS Engineering Group [] 58

Elliptic Curve Cryptography

Secure Systems Lab =~ —
Vienna University of Technology

Simplified Weierstral}

equation over Z.103 00f, . ot o o
y =2 +axx+b . T
a/ — _1 : ® : [] .. . :
b — 1 : ° . |)
_.!. ¢ 20 20 60 et 30 : 100
yP=2°—z+1 over FF(103)

@isem) secure Q) figs|iiomation softvar [] %9

Elliptic Curve Cryptography

Secure Systems Lab =~ —
Vienna University of Technology

Simplified Weierstral}
equation over Z103

sage code

FF = FiniteField(103)
y2 — 3t axxL+b EC = EllipticCurve(FF, [0,0,0,-1,1]); EC
a = —1 p = plot (EC, size=40)
b=1 p.show ()

. : Information & Software
@ISECLAB) gae_recs:lr[ﬁrﬂ IfS Engineering Group [] 60

Elliptic Curve Cryptography

e The number of points on E(F,) is denoted by #FE(F,) and can be
calculated by the Hasse Theorem:

p+1-2/p <HEF,) <p+1+2p

FF = FiniteField(103); FF.order()
103
EC = EllipticCurve(FF, [0,0,0,-1,1]1); EC
Elliptic Curve defined by yA2 = xA3 + 102*x + 1 over Finite Field of size
103
EC.order (); EC.order() == len(EC.points())
112
True

103+1-2*(103.sgrt()) <= EC.order () <= 103+1+2*(103.sgrt()) # Hasse

True

. : Information & Software
@ISEC LAB) gae_rggr[srgw IfS Engineering Group [] 61

Elliptic Curve Cryptography

e A generator GG of the curve has the same order as the curve and hence
can generate all points on the curve:

{G,G2,G3,...,G#E(F,)}

G = EC.gen(0); C.xy(); G
, 84)

: 84 : 1) # (x : y : 0 iff point at infinity, 1 otherwise)
G.order ()

(G*1) == G

G*2; G*3; G*111; G*112; G*113
: 76 : 1)
: 11 : 1)
: 19 : 1)

: 84 :

. : Information & Software
@ISEC LAB) gae_rggr[srgw IfS Engineering Group [] 62

Elliptic Curve Cryptography

Secure Systems Lab =~ —
Vienna University of Technology

Inverse: 2|
P1=(x, y)=(1,1)
P2=-P1=(x, -y)=(1,-1)
P1

v =z 4+axxz+Db

a= —1 4] 5

b=1
- P2
v =2® —x+1 \

@isem) secure T i [] 65

rrrrrrrrrrrrrrrr

Elliptic Curve Cryptography

Secure Systems Lab =~ —
Vienna University of Technology

Inverse: # sage script
_ _ EC = EllipticCurve (RealField (53) , [0 ,0 ,0 , -1 ,11);
P1=(x, y)=(1,1) BC
P2=-P1=(X, _y)=(1,_1) # define two points to add on curve
Pl = EC (1 ,1)
P2 = EC (1 , -1)

calculate Q
Q = P1 + P2

v =z 4+axxz+Db

p = EC . plot (thickness =2)
p += point ([P1 . xy () , P2 . xy ()] , size =60 , hue
. 1 =0.1 , zorder =4)
a = — p += line ([(Pl.xy()[0] , -2) ,(P2.xy() (0] ,2)] ,
rgbcolor =(0 ,0 ,1))
b p—]_ p.show (xmin = -2 , xmax =2 , ymin = -2 , ymax =2)

. : Information & Software
@ISECLAB) gae_recs:'r[ﬁrﬂ IfS Engineering Group [] 66

Elliptic Curve Cryptography

Secure Systems Lab =~ —
Vienna University of Technology

Point addition:

P1+P2=Q I /
7 -Q

v =z 4+axz+Db Pl/

a=—1

b=1

TN

@iSECLAB) secure ifS Inr:’ormati‘on&Software

https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf
https://factorable.net/weakkeys12.extended.pdf

Elliptic Curve Cryptography

Secure Systems Lab

Point addition:
P1+P2=Q

v =z 4+axz+Db
—1

Vienna University of Technology

create elliptic curve over the Reals with 53 bit precision

EC = EllipticCurve (RealField (53) , [0 ,0 ,0 , -1 ,11); EC
define two points to add on curve

Pl = EC (-1.20 , RealField (54) (1/25* sqgrt (5)* sgrt (59)));
Pl

P2 = EC (0.0 ,1); P2

calculate Q

Q =Pl + P2 ; Q

plot grafics

p = EC . plot (thickness =2)

p += point ([P1 . xy () , P2 . xy () , Q . xy () ,

(1.26802422014902 , 1.33071914365621)] , size =60 ,

p— p += line ([P1 . xy () ,(1.26802422014902 , 1.33071914365621)]
, rgbcolor =(0 ,0 ,1))
p += line ([(1.26802422014902 , 1.33071914365621) , Q . Xy
l) —]_ ()1 , linestyle =" - -" , rgbcolor =(
p . show (xmin = -2 , xmax =2 , ymin = -2 , ymax =2)
. : Information & Software
@ISECLAB) gae-recseli[h.eurg IfS Engineering Group [] &

Elliptic Curve Cryptography

Secure Systems Lab =~ —
Vienna University of Technology

Point addition:

Pl+iP2=0c0=0 i /
P1

> 3 ~—_
y"=x"+axxr+0>b
a=—1 _,
b=1
R

, P2
2 =zl \

@isem) secure T i [] 72

rrrrrrrrrrrrrrrr

Elliptic Curve Cryptography

Secure Systems Lab =~ —
Vienna University of Technology

Point multiplying: 2
P+P = 2P /

a=—1 2 1 1
b=1

_Q _/)

Q
v =z 4+axz+Db /

o =ad —x+1

@isem) secure T i [] ™

rrrrrrrrrrrrrrrr

Elliptic Curve Cryptography

Secure Systems Lab

Point multiplying:
P+P = 2P

—1

> Laxx b

Vienna University of Technology

create elliptic curve over the Reals with 53 bit precision

EC = EllipticCurve (RealField (53) , [0 ,0 ,0 , -1 ,11); EC
define two points to add on curve

P =EC (1 ,1); P

calculate Q

Q=P *2; Q

plot

p = EC . plot (thickness =2)

p += point ([P xy () , Q xy () , (-1.00000000000000 ,
-1.00000000000000)] , size =60 , hue =0.1

p += line ([P xy () ,(-1.00000000000000 ,
-1.00000000000000)] , rgbcolor =(0 ,0 ,1))

p += line ([(-1.00000000000000 , -1.00000000000000) , Q Xy
()1 , linestyle =" - -" , rgbcolor

p += text (" P " ,(1.20000000000000 , 1.00000000000000) ,
fontsize =16 , color = ' black ')

p += text (" Q " ,(-1.20000000000000 , 1.00000000000000) ,
fontsize =16 , color = ' black ')

p += text (" - Q@ " ,(-1.20000000000000 , -1.00000000000000) ,
fontsize =16 , color = ' black ')

p += text (" $y A2 = x A3 - x +1 ¢ ", (-1.3, -1.8) ,
fontsize =20 , color = ' black ')

o) show (xmin = -2 , xmax =2 , ymin = -2 , ymax =2)

secure

sba-research.or:

@isecma)

0 s

Information & Software
Engineering Group

75

Elliptic Curve Cryptography

Secure Systems Lab =~ —
Vienna University of Technology

Point multiplying:
P+P=2P=00=0

v =z 4+axz+Db

a=—1

b=1

@isem) secure T i [] 76

rrrrrrrrrrrrrrrr

Elliptic Curve Cryptography

Secure Systems Lab =~ —
In case of ECC over prime fields), where p € Prime,

the following domain parameters have to be defined:

e p: The prime defining the field F,, under which the curve
operates. All point operations (4, *) are taken moduo p.

e a,b: Two integers which are the coefficients defining the curve E().

e (5: The generator- or base-point. Used as a starting point for
multiplications.

e n: The order of G, which is the number of distinct points on the curve
which can be computed by multiplying G with a scalar value.

e #FE(IF,): The number of points on the elliptic curve over I,

e h: The cofactor, i.e. number of points on the elliptic curve divided by n

@isem) secure Q) figs|iiomation softvar [1 ™

ECDSA: Signature creation

Secure Systems Lab =~ —

Vienna University of Technoloqy

Given a curve (p,a,b,G,n), and a secret key d 4.

Compute public key Q4 =da *x G
Compute hash of data e = hash(m)
Generate random numer k sucht that 0 < k <n

Compute the first part of the signature:

Calculate point R=kxG = <Z:x) and form that generate r = r, mod n,
Y

where r # 0. k and R are ephemeral key pairs

Then generate the rest of the signature:

Calculate s = MTA*T mod n

Publish the signature (r,8) together with the public key Q 4

@isem) secure Q) figs|iiomation softvar [] @

ECDSA: Signature verification

Secure Systems Lab =~ —
.) Vienna University of Technoloqy
Given a curve (p, a,b,G,n), a public key Q 4 together with a signature (r, s).

The signature (7, s) over m is valid iff:

e The signature values are plausible, i.e. 0 <r <n and 0 < s < n.

e Compute the hash of the data e = hash(m)

1

e Invert s modulo n, i.e. w =s"" mod n

e (Calculate u; = e *x w mod n, and us = r * w mod n.

e Derive point P = (px) =u1 *x G+ us*xQa
y

e If p, = r mod n, the signature is valid.

@isem) secure Q) figs|iiomation softvar [] 8

ECDSA: Signature verification

Secure Systems Lab =~ —
.) Vienna University of Technoloqy
Given a curve (p, a,b,G,n), a public key @Q 4 together with a signature (r, s).

The signature checking algorithm for (7, s) over m is correct because:

P=u1 G4+ uyxQ4y

up =exw and ug =r*xw
P=exwxG+rxw*xQx
P=exwxG+rxwxdy*xG
P=(exw+rxwxda)*xG
P=wx(e+rxdy)*xG

w=s = = mod n
k et+dyx*xr
k
P = e+dA*7“*(6+dA*T)*G:k*G

. : Information & Software
@ISECLAB) gae_recs:lr[srﬂ IfS Engineering Group [] 83

ECDSA: Signature random reuse

Secure Systems Lab =~ —
Vienna University of Technology

* Sony PS3 ECDSA fail(Overflow)
— PS3 used code signing to only allow code from trusted sources
— Nonce was not random
— Secret key was recovered

— After failOverflow presented the attack at 27c3 [1] George Hotz
(geohot) released the private key of the PS3 using this techniques
together with a “Hello world program” for the PS3

— Lawsuits followed [2,3]
— Now the case is settled [2]

[1] https://events.ccc.de/congress/2010/Fahrplan/events/4087.en.html
[2] https://len.wikipedia.org/wiki/Sony_Computer_Entertainment_America,_Inc._v._Hotz
[3] https://en.wikipedia.org/wiki/PlayStation_3_homebrew

EWREIMATION . i
. AL TOMealled), secure 0 Information & Software
@ISGCLAB) L“_'w:ll, sba-research.org IfS Engineerin g Group I N FO 84

ECDSA: Signature random reuse

Secure Systems Lab =~ —
Vienna University of Technology

Given a curve (p,a,b,G,n), a public key Q) 4 together with
e a signature (r, s1) together with a message m;
e a signature (7, so) together with a message mso

It can be observed that both signatures used the same value r
and hence the same random value k.
This can be used to reconstruct the private key d 4.

. : Information & Software
@ISECLAB) gae_recs:lr[srﬂ IfS Engineering Group [] 85

ECDSA: Signature random reuse

Secure Systems Lab =~ —
Vienna University of Technology

The only unknown variables in this two equations (1) and (2) are,
k and d4. To solve for d 4 first rearrange the euqations to (3) and (4)
and replace k in (5).

d
31:€1+kA*Tmodn (1)

d
32262+k’4*rm0dn (2)

d
A S s S (3)

S1

d
k:€2+ A*T hod n (4)

S2

d

e1 + A*Tzel—l—dA*TmOdn (5)

S1 S9

. : Information & Software
@ISECLAB) gae_recs:lr[srﬂ IfS Engineering Group [] 86

ECDSA: Signature random reuse

Secure Systems Lab =~ —
Vienna University of Technology

Then solve for d4.

e1 +daxr ep+dax*r
— mod n
S1 52

Sox(e1+daxr) =51 %(ea +da*7) mod n
Soke1+Soxdyg*r =81 %xey+ 81 %dg *xr mod n
Soke1 — Sy *keyg =81 kda*1Tr —Soxdyg *xr mod n
Sokey — 8y key =da*7 % (81— S2) mod n
S9 k€1 — S1 ¥ €9

r* (81 — S3)

dy =

mod n

. : Information & Software
@ISECLAB) gae_recs:lr[ﬁrﬂ IfS Engineering Group [] 87

ECDSA: Signature random reuse

Secure Systems Lab =~ —
Vienna University of Technology

* Sony PS3 ECDSA fail(Overflow)

Sony’s ECDSA code

int et RandomNumber ()

t
return 4. // chosen by fair dice roll.

// quaranteed to be random.

. secure @ - Info!'mati‘on & Software
@IS&CLAB) sba-research .org I.FS Engineerin g Group 88

Other example: Bitcoin Wallets
Online/web wallet Counterwallet.io

Secure Systems Lab =~ —

(Ap I 20 1 4) Vienna University of Technology
)

Used the same nonce for multiple signed
messages

M Reused R values again
April 23, 2014, 01:21:01 PM

Hello,

there has been a lot of reused R values in the signatures on the blockchain, recently.
addresses in alphabetic order. Most keys were exposed very recently, 1.e., in the last

If you own one of the following addresses, you should transfer the money to a fresh .
notify the author of that tool.

112KZ24UgNndZqdnu2eXwXStSitY 78ZRUK
127X%Aga2nRyBECSMDjFypWuUL9UKKEaS4Z3
12sisXmNPmF TpekBKEqZ CELYXESPYUHCB

[1] https://bitcointalk.org/index.php?topic=581411.0
[2] https://bitcointalk.org/index.php?topic=395761.msg6354587#msg6354587

. Information & Software
@ISECLAB) Secure g@ Engineering Group 89

ECC Conclusion
Secure Systems Lab =~ —

Vienna University of Technology

* Do not reuse nonces in ECDSA!
— nonce = number only use once
— Either derive from secure RNG or deterministically
* http://tools.ietf.org/html/rfc6979

* Important to use safe curve and domain parameters for ECC
— https://safecurves.cr.yp.to/
— EdDSA
* https://tools.ietf.org/html/rfc8032
* https://ed25519.cr.yp.to/
— Brainpool curves (non-NIST)
* http://www.ecc-brainpool.org/download/Domain-parameters.pdf
— NIST curves
* http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf

* Good online resources on ECC and ECDSA:
— http://www.secg.org/sec1-v2.pdf
— http://www.johannes-bauer.com/compsci/ecc/
— http://www.infosecwriters.com/Papers/Anoopms_ECC.pdf

. secure 0 . Info!'mati‘on & Software
@IS&CLAB) sbha-research.org I‘FS Engineering Group 90

References

Secure Systems Lab =~ —
Vienna University of Technology

* Excellent coursera course on cryptography by Dan Boneh

— https://www.coursera.org/learn/crypto
— Read-through book for deeper understanding:
— https://crypto.stanford.edu/~dabo/cryptobook/
— “A Graduate Course in Applied Cryptography”
Dan Boneh and Victor Shoup
* Handbook and quick reference:
— “Handbook of Applied Cryptography”
Alfred J. Menzes, Paul C. van Oorschot and Scott A. Vanstone
— http://cacr.uwaterloo.ca/hac/
* Getting started on cryptographic engineering
— “Cryptographic Engineering: Design Principles and Practical Applications®
Niels Ferguson, Bruce Schneier and Tadayoshi Kohno
— Only scratches the surface on some topics, no ECC

. secure @ : Info_rmati‘on & Software
@IS&CLAB) sbazresearchiorg IS Engineering Group 1

https://www.coursera.org/learn/crypto
https://crypto.stanford.edu/~dabo/cryptobook/
http://cacr.uwaterloo.ca/hac/

	PowerPoint Presentation
	Slide 20
	Slide 31
	Cryptographic Primitives
	Slide 33
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 1
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 18
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 46
	Slide 47
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 65
	Slide 66
	Slide 70
	Slide 71
	Slide 72
	Slide 74
	Slide 75
	Slide 76
	Slide 79
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 1

