
(Offensive) Binary Analysis

Advanced Internet Security

Adrian Dabrowski
Christian Kudera
Georg Merzdovnik
Aljosha Judmayer

1

News from the Lab

• Challenge 3 ends soon
− Fastest solve by ”Octal Kansis” (1day, 0:41:50)

• Challenge 4 starts tomorrow

2

News from the Field

• Pwn2Own Tokyo 2018
− disclosure of a total of 18 Zero-Day Vulnerabilities
− exploited several devices (iPhone X, Samsung Galaxy S9, Xiaomi

Mi6 Phones)

• Samsung Galaxy S9
− heap over ow in the baseband component to get code

execution

• Apple iPhone X running iOS 12.1
− combination of a JIT bug in the Safari browser together with
− out-of-bounds access to ex ltrate data from the phone

3

Overview

1. Binary Analysis Recap

2. Fuzz Testing (Fuzzing)

3. Instrumentation

4. Symbolic Execution

4

Binary Analysis Recap

5

Goals of Binary Analysis

• ”Defensive”
− Program veri cation
− Program testing
− Debugging

• ”Offensive”
− Reverse engineering
− Vulnerability detection
− Exploit generation

6

Binary Analysis

• Internet Security already covered:
− Reverse engineering in general
− Static (Disassembly) vs. Dynamic (Debugging)
− Mostly manual work

• Now:
− Let’s look at some techniques that can help us with automation

7

Fuzz Testing (Fuzzing)

Based on: https://www.slideshare.net/DmitryVyukov/fuzzing-the-new-unit-testing

8

https://www.slideshare.net/DmitryVyukov/fuzzing-the-new-unit-testing

What is Fuzzing

• brute-force vulnerability detection
− penetrate program with lots and lots of (semi-)random input
− monitor program for crashes, dead-locks, etc.

• particularly successful in nding protocol/ le parsing errors

9

User Testing vs Fuzzing

• User testing
− Run program on many normal inputs, look for bad things to

happen
− Goal: Prevent normal users from encountering errors

• Fuzzing
− Run program on many abnormal inputs, look for bad things to

happen
− Goal: Prevent attackers from encountering exploitable errors

10

Fuzzing in a Nutshell

https://xkcd.com/1354/

11

Fuzzing can nd lots of bugs

• With the help of sanitizers1:
− Use-after-free, buffer over ows
− Uses of uninitialized memory
− Memory leaks
− Data races, deadlocks
− Int/ oat over ows, bitwise shifts by invalid amount (other UB)

• Plain crashes:
− NULL dereferences, uncaught exceptions, div-by-zero

• Resource usage bugs:
− Memory exhaustion, hangs or in nite loops, in nite recursion

(stack over ows)
− Logical bugs

1We come back to that later
12

Not necessarily “random” input

• several ways to create input data

• may be human assisted or automated

• can achieve high levels of code coverage

13

What can be fuzzed?
• Anything that consumes complex inputs:

− Parsers of any kind (xml, json, asn.1, pdf, truetype, …)
− Media codecs (audio, video, raster & vector images, etc)
− Network protocols (HTTP, RPC, SMTP, MIME…)
− Crypto (boringssl, openssl)
− Compression (zip, gzip, bzip2, brotli, …)
− Formatted output (sprintf, template engines)
− Compilers and interpreters (Javascript, PHP, Perl, Python, Go,

Clang, …)
− Regular expression matchers (PCRE, RE2, libc’s regcomp)
− Text/UTF processing (icu)
− Databases (SQLite)
− Browsers, text editors/processors (Chrome, vim, OpenOf ce)
− OS Kernels (Linux), drivers, supervisors and VMs

• Must have for everything that consumes untrusted inputs, open
to internet or otherwise security sensitive.

14

Types of Fuzzers I

• Mutation Based - “Dumb” Fuzzing
− has no knowledge about the program currently fuzzed (e.g. no

information about input structure, protocols,…)
− mutate existing data samples to create test data
− Requires smallest amount of work to get running

15

Types of Fuzzers II

• Generation Based - “Smart” Fuzzing
− has knowledge (model) about the program and input formats
− de ne new tests based on models of the input
− e.g Program that parses a protocol

◦ might never parse certain elds if the structure of the input is not
correct

◦ but a wrong length eld could still produce problematic outputs
(see Heartbleed)

− the greater the level of intelligence, the better the code coverage
might be

• Evolutionary
− generate inputs based on response from program

16

Input Generation I

• Blind mutation
− Requires a corpus of representative inputs, apply random

mutations to them
− e.g., ZZUF, Radamsa

• Grammar-based generation
− Generate random inputs according to grammar rules
− e.g., Peach, packetdrill, csmith, gosmith, syzkaller

• Grammar reverse-engineering
− Learn grammar from existing inputs using algorithmic approach

of machine learning
− e.g., go-fuzz

17

Input Generation II

• Symbolic execution + SAT solver
− Synthesize inputs with maximum coverage
− e.g., KLEE - Coverage-guided fuzzers

• Genetic algorithm that strives to maximize code coverage
− e.g., libFuzzer, AFL, honggfuzz, syzkaller

• Hybrid Approaches

18

Coverage-guided fuzzing

Build the program with code coverage instrumentation;

Collect initial corpus of inputs (optional);

while (true) {
Choose a random input from corpus and mutate it;

Run the target program on the input,
collect code coverage;

If the input gives new coverage, add mutation
back to the corpus;

}

19

Coverage-guiding in action

if input[0] == '{' {
if input[1] == 'i' && input[2] == 'f' {

if input[3] == '(' {
input[input[4]] = input[5]; // potential OOB write

}
}

}

• Requires ”{if(” input to crash
− ∼ 232 guesses to crack when blind.

• Coverage-guiding:

− Guess ”{” in ∼ 28, add to corpus.
− Guess ”{i” in ∼ 28, add to corpus.
− Guess ”{if” in ∼ 28, add to corpus.
− Guess ”{if(” in ∼ 28, add to corpus.
− Total: ∼ 210 guesses.

20

Coverage-guiding in action

if input[0] == '{' {
if input[1] == 'i' && input[2] == 'f' {

if input[3] == '(' {
input[input[4]] = input[5]; // potential OOB write

}
}

}

• Requires ”{if(” input to crash
− ∼ 232 guesses to crack when blind.

• Coverage-guiding:

− Guess ”{” in ∼ 28, add to corpus.
− Guess ”{i” in ∼ 28, add to corpus.
− Guess ”{if” in ∼ 28, add to corpus.
− Guess ”{if(” in ∼ 28, add to corpus.
− Total: ∼ 210 guesses.

20

Coverage-guiding in action

if input[0] == '{' {
if input[1] == 'i' && input[2] == 'f' {

if input[3] == '(' {
input[input[4]] = input[5]; // potential OOB write

}
}

}

• Requires ”{if(” input to crash
− ∼ 232 guesses to crack when blind.

• Coverage-guiding:

− Guess ”{” in ∼ 28, add to corpus.
− Guess ”{i” in ∼ 28, add to corpus.
− Guess ”{if” in ∼ 28, add to corpus.
− Guess ”{if(” in ∼ 28, add to corpus.
− Total: ∼ 210 guesses.

20

Coverage-guiding in action

if input[0] == '{' {
if input[1] == 'i' && input[2] == 'f' {

if input[3] == '(' {
input[input[4]] = input[5]; // potential OOB write

}
}

}

• Requires ”{if(” input to crash
− ∼ 232 guesses to crack when blind.

• Coverage-guiding:
− Guess ”{” in ∼ 28, add to corpus.

− Guess ”{i” in ∼ 28, add to corpus.
− Guess ”{if” in ∼ 28, add to corpus.
− Guess ”{if(” in ∼ 28, add to corpus.
− Total: ∼ 210 guesses.

20

Coverage-guiding in action

if input[0] == '{' {
if input[1] == 'i' && input[2] == 'f' {

if input[3] == '(' {
input[input[4]] = input[5]; // potential OOB write

}
}

}

• Requires ”{if(” input to crash
− ∼ 232 guesses to crack when blind.

• Coverage-guiding:
− Guess ”{” in ∼ 28, add to corpus.
− Guess ”{i” in ∼ 28, add to corpus.

− Guess ”{if” in ∼ 28, add to corpus.
− Guess ”{if(” in ∼ 28, add to corpus.
− Total: ∼ 210 guesses.

20

Coverage-guiding in action

if input[0] == '{' {
if input[1] == 'i' && input[2] == 'f' {

if input[3] == '(' {
input[input[4]] = input[5]; // potential OOB write

}
}

}

• Requires ”{if(” input to crash
− ∼ 232 guesses to crack when blind.

• Coverage-guiding:
− Guess ”{” in ∼ 28, add to corpus.
− Guess ”{i” in ∼ 28, add to corpus.
− Guess ”{if” in ∼ 28, add to corpus.

− Guess ”{if(” in ∼ 28, add to corpus.
− Total: ∼ 210 guesses.

20

Coverage-guiding in action

if input[0] == '{' {
if input[1] == 'i' && input[2] == 'f' {

if input[3] == '(' {
input[input[4]] = input[5]; // potential OOB write

}
}

}

• Requires ”{if(” input to crash
− ∼ 232 guesses to crack when blind.

• Coverage-guiding:
− Guess ”{” in ∼ 28, add to corpus.
− Guess ”{i” in ∼ 28, add to corpus.
− Guess ”{if” in ∼ 28, add to corpus.
− Guess ”{if(” in ∼ 28, add to corpus.

− Total: ∼ 210 guesses.

20

Coverage-guiding in action

if input[0] == '{' {
if input[1] == 'i' && input[2] == 'f' {

if input[3] == '(' {
input[input[4]] = input[5]; // potential OOB write

}
}

}

• Requires ”{if(” input to crash
− ∼ 232 guesses to crack when blind.

• Coverage-guiding:
− Guess ”{” in ∼ 28, add to corpus.
− Guess ”{i” in ∼ 28, add to corpus.
− Guess ”{if” in ∼ 28, add to corpus.
− Guess ”{if(” in ∼ 28, add to corpus.
− Total: ∼ 210 guesses.

20

Mutation Based Fuzzing

• Little or no knowledge of the structure of the inputs is assumed

• Requires little to no set up time

• Anomalies are added to existing valid inputs

• Anomalies may be completely random or follow some
heuristics

• Dependent on the inputs being modi ed

• May fail for protocols with checksums, those which depend on
challenge response, etc.

21

Mutations

• erase/insert/change/shuf e bit/byte/bytes

• crossover/splice 2 inputs

• insert magic numbers (2^10±1, 2^16±1, 2^31±1, 2^32±1)

• change an ASCII integer (e.g. “123” => “2465357635”)

• insert token from a dictionary

• …

22

Mutation dictionaries

• User-provided
− e.g. for HTTP: “HTTP/1.1”, “Host”, “Accept-Encoding”

• Automatically extracted from program
− memcpy(input, “HTTP/1.1”, 8)

23

Mutation Based Example: PDF Fuzzing

• Collect .pdf les
− e.g. search on Google and download

• Use a mutation Fuzzer:
1. get PDF
2. mutate the le
3. open it with viewer
4. monitor if program crashes

24

Generation Based Fuzzing

• Test cases are generated from some description of the format:
RFC, documentation, etc.

• Anomalies are added to each possible spot in the inputs

• Knowledge of protocol should give better results than random
fuzzing

• Can take signi cant time to set up

25

Mutation vs. Generation

Mutation Generation

Easy setup and automation Writing the generator can be
cumbersome/take a lot of work

Little to no knowledge about
the input required

Need the input speci cation

Limited by initial corpus Completeness (Better input space
coverage)

May fail for protocols with
checksums/complexities

Can deal with
complexities/dependencies
between input elements

26

Black-, Grey-, Whitebox Fuzzing

• Black-box fuzzer treats the program as black box
− no knowledge about it’s internal structure

• White-box fuzzer uses program analysis to increase code
coverage

− e.g. using symbolic execution

• Gray-box fuzzer uses instrumentation instead of program
analysis to extract information

− e.g. AFL and libFuzzer track basic block transitions

27

Challenges in Fuzzing

• Mutation based
− could run forever.
− When do we stop?

• Generation based
− Stops eventually
− But is this enough?

• How to determine if the program did something “bad”?

28

Code Coverage

• can give a metric to determine how “well” the code was tested

• Coverage avours:
− Statement Coverage - which statements have been executed

◦ tries to cover all basic blocks in the program at least once

− Branch coverage - which branches have been taken
◦ cover all transitions (edges) in the program at least once

− Path coverage - which paths were taken
◦ coverage of e.g. iterations (edges taken multiple times)

29

Finding logical bugs

• Not only security/stability

• We could also detect logic bugs/errors

• Problem: We might not know the right result/output!

• Solution: Be inventive

30

Finding logical bugs

• Not only security/stability

• We could also detect logic bugs/errors

• Problem: We might not know the right result/output!

• Solution: Be inventive

30

Finding logical bugs

• Not only security/stability

• We could also detect logic bugs/errors

• Problem: We might not know the right result/output!

• Solution: Be inventive

30

Finding logical bugs

• sanity checks on results
− uncompressed image decoder: 100 byte input -> 100 MB

output?
− function returns both error and object, or no error and no object
− know that some substring must be present in output, but it is not
− encrypt, check that decryption with wrong key fails

• sometimes we do know the right result
− any sorting: check that each element is present in output, check

that it’s not in wrong order
− building a trie: check size, all elements are present

• include asserts
− assert(a == b)

31

Finding logical bugs

• Round-trip:
− encode-decode
− serialize-deserialize
− compress-decompress
− encrypt-decrypt
− assemble-disassemble

• Checks:
− decode-encode: check that encode don’t fail
− decode-encode-decode: check that second decode don’t fail
− decode-encode-decode: check that decode results are equal
− encode-decode-encode: check that encode results are equal

• Very powerful technique.

32

Finding logical bugs

• Comparing two (or more) implementations:
− check that output is equal
− or at least check that ok/fail result is the same

◦ e.g. gcc and clang both accept or reject the code

• If you don’t want to implement second one yourself, consider:
− there can be several libraries implementing the same (libxmlFoo

vs libxmlBar)
− implementation in a different language (re2 vs Go’s regexp)
− compare “fast but complex” with “slow but dumb” (sometimes

easy to write)
− compare different functions (marshalBinary vs marshalText)

33

Regression testing

• Normally you run fuzzer for a long time.

• But any guided fuzzer accumulates corpus of inputs with max
coverage.

• And that’s perfect for regression testing! Just run it once on
every change!

34

Different Fuzzing Projects

• OSS-Fuzz
− fuzzing as a service by Google for open source projects

• The Fuzzing Project
− information on fuzzing efforts

35

https://opensource.google.com/projects/oss-fuzz
https://fuzzing-project.org/

Fuzzing Lessons

• Protocol knowledge is helpful
− Generational beats random, better speci cation make better

fuzzers

• Using more fuzzers is better
− Each one will vary and nd different bugs

• The longer you run (typically) the more bugs you’ll nd

• Guide the process, x it when it break or fails to reach where
you need it to go

• Code coverage can serve as a useful guide

36

Fuzzing Summary

• Fuzzing is complimentary to any other testing technique

• Fuzzing is mandatory for anything security-related

• Fuzzing nds LOTS of bugs

• Fuzzing is easy to use

37

Tool Example: American Fuzzy Lop (AFL)

• Security oriented guided fuzzer

• Based on compile time instrumentation

• Uses genetic algorithms to get better code coverage
− Use together with AddressSantizer for even better results

38

AFL - Why use it

• Simple to use

• No con guration of AFL necessary
− But usually re-compilation of the target required

• Fast

• Produces good input les (e.g. also for use in other fuzzers)

39

AFL - Pulling JPEGs out of thin air

• fuzzing of djpeg with AFL

• input was txt with “hello”

• AFL started to produce the rst valid JPEG le after about six
hours on an 8 core machine.

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

40

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

AFL - Usual use case

• You have access to the source code and compile it yourself

• Your are on 32bit or 64bit on Linux/OSX/BSD

• The to‐be‐fuzzed code (e.g. parser) reads it’s input from stdin
or from a le

• The input le is usually only max. 10kb

• This covers a lot of Linux libraries

41

AFL - What if prerequisites are not met

• No source code?
− Try the experimental QEMU instrumentation

• Not on 32/64 bit?
− There is an experimental ARM version

• Not reading from stdin or le?
− Maybe your project has a utility command line tool that does

read from le
− Or you write a wrapper to do it
− Same if you want to test (parts of) network protocol parsers

42

AFL - Steps of fuzzing I

1. Compile/install AFL (once)

2. Compile target project with AFL
− a ‐gcc / a ‐g++ / a ‐clang / a ‐clang++ / (a ‐as)

3. Chose target binary to fuzz in project
− Chose its command line options to make it run fast

4. Chose valid input les that cover a wide variety of possible
input les

− a ‐cmin / (a ‐showmap)

5. Fuzzing
− a ‐fuzz

43

AFL - Steps of fuzzing II

6. Check how your fuzzer is doing
− command line UI / a ‐whatsup / a ‐plot / a ‐gotcpu

7. Analyze crashes
− a ‐tmin / triage_crashes.sh / peruvian were rabbit
− ASAN / valgrind / exploitable gdb plugin / …

8. Have a lot more work than before
− CVE assignment / responsible disclosure / …

44

Instrumentation

45

What is Instrumentation I

46

What is Instrumentation II

• Is the capability to monitor and modify program behaviour
during execution

• source code or binary

• static vs dynamic

• Source/Compile-time Instrumentation
− instrument the source code of programs

• Binary Instrumentation
− instrument executables directly

47

Instrumentation Example

• Assume the following code
− Obvious problem if len > 10

char num[10];
for(x=0;x<len;x++) {

num[x] = x * 2;
}

48

Instrumentation Example

• Assume the following code
− We could add debug output

char num[10];
for(x=0;x<len;x++) {
printf("%d", x);
num[x] = x * 2;

}

48

Instrumentation Example

• Assume the following code
− Or checks

char num[10];
for(x=0;x<len;x++) {
assert(x < 10);
num[x] = x * 2;

}

48

Source-based Instrumentation

• Basically every compiler can do this/does this
− GCC
− LLVM + Clang
− …

• E.g adding security checks to software during compilation

• Can also be used for deeper analyses or Bug Hunting

49

Example: *Sanitizers I

• Sanitizers that can be activated during compilation

• Pro: Can be used to detect several issues in the code

• Con: they add runtime overhead (slowdown, memory usage) to
the binary

• Mostly only for testing, not for productive use

50

Example: *Sanitizers II

• AddressSanitizer (ASan)
− memory error detector

◦ Out-of-bounds accesses to heap, stack and globals
◦ Use-after-free
◦ Use-after-return
◦ Use-after-scope
◦ Double-free, invalid free
◦ Memory leaks (experimental)

− 2x slowdown typical

• ThreadSanitizer (TSan)
− detects data races and deadlocks
− 5x-15x slowdown
− 5x-10x memory overhead

51

Example: *Sanitizers III

• MemorySanitizer (MSan)
− detects uninitialized reads
− 3x slowdown

• Unde nedBehaviourSanitizer (UBSan)
− Detects unde ned behaviour during execution

◦ Using misaligned or null pointer
◦ Signed integer over ow
◦ Conversion to, from, or between oating-point types which would

over ow the destination

• LeakSanitizer (LSan)
− detects memory leaks during run-time

https://github.com/google/sanitizers

52

Binary Instrumentation

• Insert additional code into binary, without access to the source
code

• No need to recompile or relink

• Static vs Dynamic Approaches

53

Static Binary Instrumentation

• Works without executing the binary

• Has to deal with all problems involved in static analysis

orig.
elf, pe,
coff,
etc.

binary stream
(instructions
& data)

Parsing Analysis Code Generation

altered
elf, pe,
coff,
etc.

(1) (2a&2b)

rewritten
primitives

(4)

Transformation

(3)

primitives
(instructions,
f(), var., etc.)

54

Dynamic Binary Instrumentation (DBI)

• DBI allows you to insert additional code into a binary during
runtime

− “Hooking” instructions, functions,…
− Execute your own code before and/or after instructions

• Advantages:
− Discover Code at runtime
− Handle dynamically-generated code

◦ You can’t do this on the source

− Attach to/instrument already running processes

55

DBI at a glance

orig.
elf, pe,
coff,
etc.

load

analyse
next
instruction

transform
next
instruction

altered
elf, pe,
coff,
etc.

save

(1)

dynamic instrumenter

primitives
(instructions,
f(), var., etc.)

(2a&2b)

(3)

transformed
primitives

binary

generate
code

(4)

(4a)

56

DBI Use-Cases

• Instrument Binary to extract further information during runtime
− Inject code into the binary
− Monitor/Modify State during execution
− Usually used for:

◦ Simulation, Performance, Call graphs,…

− We use it for:
◦ Covert Debugging, Automated DeObfuscation, Taint Analysis, …

57

DBI Engines

• Several Engines out there
− Pin
− DynamoRIO
− Valgrind
− Frida
− Unicorn
− … (Many More)

58

Dynamic Taint Analysis

• Sometimes we can’t identify if data is interesting/sensitive
when it is written or read

− e.g., user inputs, contact book, …

• However, we know if data is sensitive when it’s used
− e.g., change of control ow (return address, function pointer),

information leaks, …

59

Dynamic Taint Analysis - Basic Idea

• Keep track of interesting information
− (privacy-)sensitive information
− input from untrusted sources

• Detect when data is used in a sensitive/untrusted way

• Label information with tags
− e.g. trusted/untrusted, interesting/boring, public/secret
− Control how the data and labels propagate

◦ When copying the data also copy the tag

• Either on binary or source level

• Can be used to check where information is propagated/used in
a program

60

Symbolic Execution

Based on: https://faculty.ist.psu.edu/wu/ist597a-ssa/Pinyao_040815.pdf

61

https://faculty.ist.psu.edu/wu/ist597a-ssa/Pinyao_040815.pdf

SAT/SMT Solvers

• Complex code / obfuscations
− e.g. Obfuscated Checks of input
− You want to know which input solves the Problem
− Sometimes it is hard to understand/reverse the effects of the

code

• You can use SAT/SMT Solvers to solve the problem for you
− e.g. Z3 from Microsoft (there are also python bindings)

• But there is even more…

62

Symbolic Execution

• Based on Abstract interpretation
− Usually binary is lifted to some intermediate representation (IR)
− Reasoning on this abstract interpretation
− Explore paths in parallel (beware: possible state explosion)

• Try to reason about what inputs will trigger different paths
− Compared to random fuzzing

• We can use it to:
− Identify inputs to trigger possible paths through the binary
− or bug hunting
− and more

63

Symbolic Execution

• values can be symbolic formulas over the inputs (not only
concrete values)

• Track symbolic state rather than concrete input

• When execution path diverges, fork and add constraints on
symbolic values

64

Goals

Identify semantics of a program
• detect infeasible paths

• generate test inputs

• generating program invariants

• debugging

• repair/patch programs

• nding bugs and vulnerabilities

65

Symbolic Execution Example

66

Symbolic Execution Example

66

Symbolic Execution Example

66

Symbolic Execution Example

66

Symbolic Execution Example

66

Symbolic Execution Example

66

Symbolic Execution Example

66

Symbolic Execution Example

66

Symbolic Execution Example

66

Symbolic Execution Example

66

Symbolic Execution Example

66

Challenges

• Path explosion
− we can hit it with better computers and more hardware
− mix symbolic with concrete execution

• Modeling program statements and environment handling

• Powerful constraint solvers

67

Path explosion: Branches

1 if(input()==true){
2 x = x+1;
3 }
4 if(input()==true){
5 x = x+2;
6 }
7 if(input()==true){
8 x = x+4;
9 }

10 assert(x <= 7);

• How many paths are there?

− 23

− Exponential in branching structures

68

Path explosion: Branches

1 if(input()==true){
2 x = x+1;
3 }
4 if(input()==true){
5 x = x+2;
6 }
7 if(input()==true){
8 x = x+4;
9 }

10 assert(x <= 7);

• How many paths are there?
− 23

− Exponential in branching structures

68

Path explosion: Branches

1 if(input()==true){
2 x = x+1;
3 }
4 if(input()==true){
5 x = x+2;
6 }
7 if(input()==true){
8 x = x+4;
9 }

10 assert(x <= 7);

• How many paths are there?
− 23

− Exponential in branching structures

68

Path explosion: Loops

1 int x=input()
2 while (x){
3 ... // do something
4 }

• Loops are also a problem

• Potentially in nite number of iterations

69

Path explosion: Loops

1 int x=input()
2 while (x){
3 ... // do something
4 }

• Loops are also a problem

• Potentially in nite number of iterations

69

Path explosion: Loops

1 int x=input()
2 while (x){
3 ... // do something
4 }

• Loops are also a problem

• Potentially in nite number of iterations

69

Environment Handling: the Problem

• System/Library Calls
− Inputs/outputs need to be included into analysis

• Pointers and Memory
− Analysis might need to be aware of the memory layout (e.g.

heap)

• Input data (les, stdin) and command line arguments

70

Tool Example: KLEE

• Symbolic Virtual Machine based on LLVM compiler
infrastructure

• First widely used symbolic execution tool

https://klee.github.io/

71

KLEE - Path explosion

• Provides several strategies to mitigate the problem

• DFS
− search can get stuck in long running loops

• BFS
− very slow to determine properties for a path with many branches

• Random search
− reproducibility problem

• Coverage guided search
− tries to reach everything, but might never be able to get to

certain statements

72

KLEE - Environment handling

• Create simple versions of library/system calls or concretize
values

− for libc call: KLEE compiles the uclibc and links to the target
program

− other library calls: concretize symbolic value and use JIT to do
library call

• Limit loop execution
− execution time
− instructions

• Simulate system calls
− e.g. for le system calls exists a simple le system model in

KLEE

73

Concolic Execution

• A combination between “Concrete” and “Symbolic” Execution
− Or dynamic symbolic execution

• Uses both techniques to solve a constraint path
− Symbolic execution creates new concrete inputs to maximize

code coverage

• Instrument Program to do symbolic execution as program runs
− Shadow concrete program state with symbolic variables

• Explore one path at a time, start to nish
− Can always rely on a concrete underlying value

• Can be used for Bug hunting, automatic exploit generation,…

74

Concolic Execution - Bene ts

• Solve complex formulas
− x == (y*y) mod 50, unsolvable if both x and y are symbolic
− if we concretize y to its concrete value, now solvable
− Angr does this!

• External library call and system call
− E.g., fd=open(filename)
− Set lename to its concrete value “/tmp/abc.txt”
− Execute the system call concretely
− Set fd to be concrete after the system call return
− High level idea of S2E!

75

Online vs Of ine

• Online
− When encounter a new symbolic branch, solve predicates for

both directions
− If both directions are feasible, fork the execution state (concrete

and symbolic)

• Of ine (or trace‐based)
− Choose an input and execute the program, collect execution

trace
− Compute path constraints from the trace
− Negate each conjunct, solve the new path constraint, and get a

new input
− Given the new input to the program and execution again

76

Online vs Of ine

Online Of ine

Ef ciency High Low
Implementation dif culty High Low
Symbolic State Quickly explodes No state management

77

How to execute symbolically? I

• Trace based
− BAP: Use Pintraceto collect execution trace, and then convert

the trace into BAP IL (derived from VEX)
− BitBlaze: Use tracecapplugin to collect execution trace, Convert

the trace into Vine IR
− Low ef ciency and possibly very long trace!

• Dynamic Instrumentation
− S2E:

◦ Run in QEMU with two machines (concrete and symbolic)
simultaneously

◦ Convert TCG IR to LLVM Bitcode

− KLEE:
◦ Compile C/C++ into LLVM Bitcode
◦ Add instrumentation on LLVM Bitcode

78

How to execute symbolically? II

• Complete Interpretation or Simulation
− Interpret binary execution and add symbolic execution
− Angr: convert each instruction into VEX, and interpret each VEX

statement in Python
− Pro: full control, easy to implement
− Con: low ef ciency by nature. All instructions must be

interpreted, no matter if symbolic variables are involved or not.
For long execution trace, it will take very long time!

79

How to deal with state explosion

• State merging and pruning

• Targeted search
− nd an interesting target
− at each branch point, take the direction “closer” to the target
− need to de ne “closer” through tness function (e.g. distance in

terms of edges in the CFG)

• Combine online and concrete re-execution
− e.g., Mayhem

• Combine symbolic execution with evolutionary fuzzing
− e.g., Driller

80

https://github.com/shellphish/driller

Mayhem

Combine online symbolic execution and concrete re‐execution

• Perform online symbolic execution in BFS fashion

• When it reaches a limit, store the symbolic states on disk

• Pick one state to continue. To do so, solve the path constraint,
and use it as input to re‐execute the program up to the current
state

• Start to perform online execution from this state

81

Driller

Combine symbolic execution with evolutionary fuzzing

• Evolutionary fuzzing drives the path selection
− AFL
− Share the seeds with symbolic execution

• Symbolic execution takes each seed and perform a very
localized path exploration

− Angr
− Generate new inputs and feed them back to the fuzzer

• Problems
− Most of these new inputs will be unfortunately dropped
− Some seeds lead to very long trace, take very long time to

execute in Angr, and impossible to solve

82

Tool Example: Angr
• Control- ow graph recovery.

• Symbolic execution.

• Automatic ROP chain building using angrop.

• Automatically binaries hardening using patcherex.

• Automatic exploit generation (for DECREE and simple Linux
binaries) using rex.

• Use angr-management, a (very alpha state!) GUI for angr, to
analyze binaries!

• Achieve cyber-autonomy in the comfort of your own home,
using Mechanical Phish, the third-place winner of the DARPA
Cyber Grand Challenge.

https://angr.io/ 83

Summary

1. Binary Analysis Recap

2. Fuzz Testing (Fuzzing)

3. Instrumentation

4. Symbolic Execution

84

Next Challenge Starts Tomorrow

85

References I

Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. “KLEE:
Unassisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs.”. In: OSDI. Vol. 8. 2008,
pp. 209–224.

Sang Kil Cha et al. “Unleashing mayhem on binary code”. In:
Security and Privacy (SP), 2012 IEEE Symposium on. IEEE. 2012,
pp. 380–394.

Pinyao Guo. Symbolic execution. :
https://faculty.ist.psu.edu/wu/ist597a-
ssa/Pinyao_040815.pdf.

Yan Shoshitaishvili et al. “SoK: (State of) The Art of War:
Offensive Techniques in Binary Analysis”. In: IEEE Symposium
on Security and Privacy. 2016.

86

https://faculty.ist.psu.edu/wu/ist597a-ssa/Pinyao_040815.pdf
https://faculty.ist.psu.edu/wu/ist597a-ssa/Pinyao_040815.pdf

References II

Nick Stephens et al. “Driller: Augmenting Fuzzing Through
Selective Symbolic Execution.”. In: NDSS. Vol. 16. 2016,
pp. 1–16.

Dmitry Vyukov. Fuzzing - the new unit testing. :
https://github.com/GopherConRu/talks/blob/
master/2018/Fuzzing%20-
%20the%20new%20unit%20testing%20-
%20Dmitry%20Vyukov.pdf.

Heng Yin. CS 260-001. :
https://www.cs.ucr.edu/~heng/teaching/cs260-
winter2017/index.html.

87

https://github.com/GopherConRu/talks/blob/master/2018/Fuzzing%20-%20the%20new%20unit%20testing%20-%20Dmitry%20Vyukov.pdf
https://github.com/GopherConRu/talks/blob/master/2018/Fuzzing%20-%20the%20new%20unit%20testing%20-%20Dmitry%20Vyukov.pdf
https://github.com/GopherConRu/talks/blob/master/2018/Fuzzing%20-%20the%20new%20unit%20testing%20-%20Dmitry%20Vyukov.pdf
https://github.com/GopherConRu/talks/blob/master/2018/Fuzzing%20-%20the%20new%20unit%20testing%20-%20Dmitry%20Vyukov.pdf
https://www.cs.ucr.edu/~heng/teaching/cs260-winter2017/index.html
https://www.cs.ucr.edu/~heng/teaching/cs260-winter2017/index.html

	Binary Analysis Recap
	Fuzz Testing (Fuzzing)
	Instrumentation
	Symbolic Execution

