
Probability

Conditional probability and the Bayes theorem

Please send your comments to: T. Levajković, tijana.levajkovic@tuwien.ac.at



Terminology
• Random experiment ... a repeatable procedure with well-defined possible

outcomes

• Sample spaceΩ ... the set of all possible outcomes
• Discrete sample space - countable (listable) and it can be finite or infinite

• Example: {H, T}, {1, 3, 5, . . . } are discrete sample spaces
The interval 0 6 x 6 1 is not discrete, but continuous

• Describe (list) all possible outcomes
• Describe the probability of the outcomes

... Probability tables

• Event A ...a subset of the sample space
• Events are sets that can be described in: words, notation, with Venn

diagrams

• Probability mass function ...a function that gives the probability
P: P(Ω)→ [0, 1] of each outcome

Axioms: P(Ω) = 1; P(A) > 0 for all A; and
P(A ∪ B) = P(A) + P(B) for all disjoint A, B

• (Ω,P(Ω), P) is called a probability space
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Discrete probability space

• LetΩ = {ω1,ω2, . . . } countable. Let pi be the probability pi = P(ωi).

• The probability (mass function) P is uniquely determined by the
probabilities of the elementary events

Probability table

elementary events ωi ω1 ω2 . . . ωn . . .
probability pi p1 p2 . . . pn . . .

0 6 pi 6 1 and
∑

i

pi = 1

• Probability of an event A

P(A) =
∑
ωi∈A

pi
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Simple examples

(1) Let us toss a fair coin twice.

• Random experiment: toss a fair coin twice, list the outcomes

• Sample space: Ω = {HH, HT, TH, TT} and |Ω| = 4

• Probability: each outcome is equally likely with probability 1
4

ωi HH HT TH TT
pi

1
4

1
4

1
4

1
4 1

• Event A: head appeared once

A = {HT, TH} and P(A) = 1
2

• Event B: head appeared at least once

B = {HH, HT, TH} and P(B) = 3
4

• Event C: head appeared three times

C = ∅ and P(C) = 0
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Simple examples

(2) We toss a fair coin (infinite sample space)

• Random experiment: We toss a fair coin until the first heads.

• Sample space: Ω = {H, TH, TTH, TTTH, . . . }

• Probability:
ωi H TH TTH TTTH TTTTH . . .
pi

1
2

1
22

1
23

1
24

1
25 . . .

Is the sum of all probabilities equal 1?
We use geometric series:

1
2 + 1

22 + 1
23 + · · · = 1

2 · (1 + 1
2 + 1

22 + . . . ) = 1
2 ·

1
1− 1

2
= 1

• Event A: head was obtained in a maximum of 4 tosses

A = {H, TH, TTH, TTTH} and P(A) = 1
2 + 1

22 + 1
23 + 1

24 = 0.9375

• Event B: head appears in at least 3 throws

B =Ω\{H, TH} and P(B) = 1 − ( 1
2 + 1

22 ) = 0.25
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Simple examples

(3) Taxis (an infinite discrete sample space)

• Random experiment: count the number of taxis that pass through Wiedner
Hauptstrasse during our class

• Sample space: Ω = {0, 1, 2, . . . }.

• Probability: this is often modelled using the probability mass function

pk = P(k) = e−λ · λ
k

k!
, k = 0, 1, . . .

known as the Poisson distribution, where λ is the average number of taxis.

• We can put this in a table:

ωi 0 1 . . . n . . .
pi e−λ e−λ · λ . . . e−λ · λn

n! . . .

Is the sum of the probabilities of all possible outcomes 1?

Yes!

Using the Taylor series eλ =
∞∑

k=0

λk

k! , we obtain

∞∑
k=0

pk = e−λ ·
∞∑

k=0

λk

k! = e−λ · eλ = 1

HW What is the probability that 2 taxis will pass by? 5? at least 8?
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k!
, k = 0, 1, . . .

known as the Poisson distribution, where λ is the average number of taxis.

• We can put this in a table:
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n! . . .

Is the sum of the probabilities of all possible outcomes 1?
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k! , we obtain

∞∑
k=0

pk = e−λ ·
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k! = e−λ · eλ = 1

HW What is the probability that 2 taxis will pass by? 5? at least 8?
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Simple examples

(4) Two dice (choice of sample space)

• Random experiment (a): roll two dice, note the pair of numbers showing on
the dice (first dice, second dice)

• Sample space: the product of the result sets for each die

Ω = {(1, 1), (2, 1), . . . (6, 5), (6, 6)}, |Ω| = 36

• The probability of each outcome is 1
36 .
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36
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36

1
36

1
36
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36

two dimensional
probability table (Table 1)

• A: one gets the same number on both dice

• A = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)} and P(A) = 6
36 = 1

6
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Simple examples

(5) Two dice (choice of sample space)

• Random experiment (b): roll two dice and note the sum of the numbers on
the dice

• Sample space: Ω = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, |Ω| = 11

• probability: these 11 outcomes are not all equally likely.

ωi 2 3 4 5 6 7 8 9 10 11 12
pi

1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36 1

Table 2

• A: the sum is smaller than 6

• A = {2, 3, 4, 5} and P(A) = 1
36 + 2

36 + 3
36 + 3

36 = 5
18

HW • B: The total is even
• C: the sum is at most 10
• D: the sum is 1
• Are A and C disjoint? Compute A∩ B, B∪ C and Bc ∩D.

• Question: What is the relationship between the two probability tables above?
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Simple examples

HW The statistical experiment

• Experiment: random selection of k objects from a set of n distinguishable
objects M = {1, 2, . . . , n}, k 6 n, assuming an object that has been selected
cannot be selected a second time.

Describe the result sets and determine their size when selected a second
time.

• the order of selection does not matter
• the order of selection is important.



Simple examples

(6) Measure the lifetime of a transistor
(Real probability space)

... continuous space

• Random experiment: measure the lifetime (in operating hours) of a
transistor and report the result

• Sample space: Ω = [0,∞), i.e. we can obtain any nonnegative real value

• Probability: Since there is a continuum of possible outcomes,
we have to use a probability density function.

We will talk about it later.
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Some rules of probability

• Let A, B and C be events contained inΩ.

(1) P(Ac) = 1 − P(A)

(2) P(B ∪ C) = P(B) + P(C) − P(B ∩ C) for all B, C

(3) A ⊆ B =⇒ P(A) 6 P(B)

We can visualize these rules using Venn diagrams.
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Examples

• For the following examples suppose we have an experiment that produces a
random integer between 1 and 20. The probabilities are not necessarily the same
for each outcome.

(a) If the probability of an odd number is 0.65 what is the probability of an even
number?

• If A is an event of being an odd random number, then Ac is an event of
being an even random number. Then, P(Ac) = 1 − P(A) = 0.35.

(b) Consider two events, A is an integer divisible by two and B is odd and less
than 10. Suppose P(A) = 0.6 and P(B) = 0.25. What is A ∩ B? What is the
probability P(A ∪ B)?

• A and B are disjoint, since all numbers in A are even and all numbers in B are
odd, i.e. A∩ B = ∅.

• P(A∪ B) = P(A) + P(B) = 0.85

(c) Consider three events, A is a random number and is a multiple of 2, B is a
multiple of 3 and C is a multiple of 6. Suppose P(A) = 0.6 and P(B) = 0.3
and P(C) = 0.2. What is the probability of the event A or B?
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HW If P(Ac) = 1
4 and P(B) = 1

3 , can A and B be disjoint?
Justify your answer.

HW The 24h express delivery has increased significantly in the last ten years.
Customer service has consistently been shown to be the greatest influence on a
company’s success. A study was conducted to examine customer satisfaction
with an express delivery service. In addition to their satisfaction, the customers
were asked how often they had used the overnight shipping option. The results
are shown below

Frequency of Use Satisfaction level Total
High Medium Low

< 2 per month 250 140 10 400
2-5 per month 140 55 5 200
> 5 per month 70 25 5 100
Total 460 220 20 700

• What is the probability that a randomly selected person will use the
company two to five times a month or have moderate satisfaction?



Another example

(1) Playing poker
52 cards: 13 ranks 2, . . . 9, 10, J, Q, K, A and 4 suits ♥, ♠, ♦, ♣
Poker hands consist of 5 cards

• Random experiment: playing poker with cards
• Sample space: Ω contains all poker handsω

In total |Ω| =
(52

5

)
poker hands

• Probability: allω ∈ Ω are equally probable

(a) A: we got exactly one pair
The number of hands with exactly one pair is

• 13 ... number of ways to select the pair
•
(4

2

)
... number of ways to choose the two cards from the pair

•
(12

3

)
... number of ways to specify the other three cards

• 43 ... number of ways to choose the other three cards from these values

P(exactly one pair) =
13 ·

(4
2

)
·
(12

3

)
· 43(52

5

) =
1098240
2598960

≈ 42.3%

... note, a full house is not a hand with exactly one pair
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Another example

(b) B: we get four kings

• How many different hands are there with four kings?

What is the
probability of having four kings?

• If we specify that four of the cards are kings, there are 48 different ways to
determine the fifth card. Thus,

P(four kings) =
48(52
5

) =
1

54145
<

1
50000

.

• We can also calculate the probability through an ”updating” argument, by
calculating conditional probabilities.

• The probability that the first card is a king is 4
52 .

Assuming the first card is a
king, the probability that the second card is a king is 3

51 . If we continue this
argument, we get that the probability is four kings

P(four kings) =
4

52
· 3

51
· 2

50
· 1

49
· 48

48
·
(

5
1

)
=

1
54145

.

This is called the conditional probability because additional
conditions are taken into account.
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1

54145
<

1
50000

.

• We can also calculate the probability through an ”updating” argument, by
calculating conditional probabilities.

• The probability that the first card is a king is 4
52 .

Assuming the first card is a
king, the probability that the second card is a king is 3

51 . If we continue this
argument, we get that the probability is four kings

P(four kings) =
4
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Conditional probability

• The conditional probability answers the question of how the probability of an
event changes when we have additional information.

• The conditional probability of A given B is defined by

P(A|B) =
P(A ∩ B)

P(B)
, with P(B) > 0.

• If B becomes the sample space we have P(B|B) = 1

• Let A and B be disjoint, then P(A ∩ B) = 0 and thus P(A|B) = P(B|A) = 0.

HW Draw two cards from a deck of cards. Let the events be
D1 = ”first card is a diamond” and D2 = ”second card is a diamond”.
What are P(D2|D1), P(D1|D2) und P(D2|Dc

1)?
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Multiplication theorem and the Bayes theorem

• We rewrite the definition of conditional probability and obtain

P(A ∩ B) = P(A|B) · P(B) for P(B) > 0 and
P(A ∩ B) = P(B|A) · P(A) for P(A) > 0.

... these equations are called Multiplication theorem ...

• We equate the two expressions and obtain

P(A|B) = P(B|A)·P(A)
P(B) and P(B|A) = P(A|B)·P(B)

P(A)

which gives the formula for reversing (”turning around”) conditional
probabilities. The previous equation is called the Bayes theorem (for two
events).
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Independence

• If for two events A und B it holds

P(A|B) = P(A)

then we say that A and B are independent.

• Then,
P(A ∩ B) = P(A|B) · P(B) = P(A) · P(B)

Thus, two events A and B are independent if it holds

P(A ∩ B) = P(A) · P(B)

HW Let A and B be independent. Show that
• A and Bc

... Prove P(A ∩ Bc) = P(A) · P(Bc)

• Ac and Bc

... Prove P(Ac ∩ Bc) = P(Ac) · P(Bc)

are also independent.

HW Let A and B be independent. Knowning that P(A|B) = 0.2 and P(B|A) = 0.5,
compute the probability P(Ac ∩ B).
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Example

• We toss a fair coin four times. Consider the events
A = ” at least three heads” and
B = ”first toss is tail”
What are P(A|B) and P(B|A)? Are A and B independent?

Answer:

• Ω = {HHHH, HHHT, . . . , TTTT}, |Ω| = 24 = 16

• A = {HHHT, HHTH, HTHH, THHH, HHHH}, |A| = 5, P(A) = 5
16

• B = {Tijk : i, j, k ∈ {T, H}}, |B| = 23 = 8, P(B) = 1
2

• A ∩ B = {THHH}, |A ∩ B| = 1, P(A ∩ B) = 1
16

• The conditional probabilities are

P(A|B) =
P(A ∩ B)

P(B)
=

1
16
1
2

=
1
8

and P(B|A) =
P(B ∩ A)

P(A)
=

1
16
5

16

=
1
5

.

• Since P(A|B) = 1
8 ,

5
16 = P(A) , we conclude that A and B are not

independent.
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Independence

• Three events A, B and C are independent if the following hold

P(A ∩ B) = P(A) · P(B)
P(A ∩ C) = P(A) · P(C)
P(B ∩ C) = P(B) · P(C)

P(A ∩ B ∩ C) = P(A) · P(B) · P(C)

HW Roll two dice and consider the following events
A = ”first die is 3”
B = ”the sum is 6”
C = ”the sum is 7”

A is independent of :

(a) B and C (b) only B (c) only C (d) neither B nor C
Answer: (c)
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(a) B and C (b) only B (c) only C (d) neither B nor C
Answer: (c)
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Law of total probability

• If only the conditional probabilities and the probabilities of the conditional event
are known, the total probability of A results from

P(A) = P(A|B) · P(B) + P(A|Bc) · P(Bc),

where Bc denotes the opposite event to B.

• Let C1, C2, . . . with P(Cj) > 0 be a partition of the sample spaceΩ, i.e. these events
are pairwise disjoint Ci ∩ Cj = ∅ for i , j and

⋃∞
i=1 Ci = Ω.

• The total probability of an event A is given by

P(A) =

∞∑
i=1

P(A ∩ Ci) =

∞∑
i=1

P(A|Ci) · P(Ci)
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The Bayes theorem

• The Bayes theorem describes the probability of an event based on prior
knowledge of the conditions that might be related to the event.

• Let C1, C2, . . . be a partition ofΩ and P(Ci) > 0 for all i > 1.
Then, for an event A with P(A) > 0 it holds:

P(Ci|A) = P(A∩Ci)
P(A)

= P(A|Ci)·P(Ci)∑∞
j=1 P(A|Cj)·P(Cj)

The Bayes theorem
(for two and more events)

• The partition events C1, C2, . . . are also called hypotheses

• P(Ci) is called the a priori probability of Ci, i.e.
the probability before the entry of A

• P(Ci|A) is called the posterior probability, i.e.
the probability after the entry of A
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Example

• An urn contains 5 red and 2 green balls. A random ball is selected and
replaced with a ball of the other color, then a second ball is drawn.

(1) What is the probability the second ball is red?
(2) What is the probability the first ball was red given the second ball was red?

Use the probability tree to solve the problems.

Answer:

• Denote by R1 = ”the first ball is red” and R2= the second ball is red.

• Rc
1=”the first ball is green” and Rc

2=”the second ball is green”

• P(R1) =
5
7 and P(Rc

1) = 1 − 5
7 = 2

7

• P(R2|R1) =
4
7 and P(Rc

2|R1) =
3
7

• P(R2|Rc
1) =

6
7 and P(Rc

2|R
c
1) =

1
7



Example cont.

• We draw the probability tree
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4
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3
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5
7

Rc
1

R2|Rc
1

6
7

Rc
2|R

c
1

1
7

2
7

(1) From the Law of total probability we obtain

P(R2) = P(R2|R1) · P(R1) + P(R2|Rc
1) · P(Rc

1) =
5
7
· 4

7
+

2
7
· 6

7
=

32
49

(2) By the Bayes theorem we obtain

P(R1|R2) =
P(R1 ∩ R2)

P(R2)
=

P(R2|R1) · P(R1)

P(R2)
=

20/49
32/49

=
20
32
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Example: Monty Hall problem

• In a TW show, a candidate can win a car if he guesses correctly behind which of
the three doors the car is.

• There are three doors, one door hides a car, two hide goats.
• The participant chooses any door.
• The presenter always opens a door with a goat

(because he knows where the car is).
• The candidate can then change doors if he wants.

What is the best strategy for winning a car?

(a) switch (b) do not switch (c) it does not matter

Answer:
• We build a tree representing the switching strategy:

first the candidate chooses a door (then Monty shows a goat),
then the candidate switches doors or not
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Example: Monty Hall problem

• Denote the doors by T1, T2 and T3. Let the car be behind the first door T1.

• We form the probability tree

T1

T2

1
2

T3

1
2

1
3 T2

T3

1

1
3 T3 Candidate chooses the door

T2

The moderator opens the other door

1

1
3

1
6

1
6

1
3

1
3 probability

the decision:
T1 T1 T2 T3 stick to the first choice
T3 T2 T1 T1 switch

• The probability of winning the car for both scenarios is

P(win the car|stick to the first choice) =
1
6
+

1
6
=

1
3

P(win the car|switch the first choice) =
1
3
+

1
3
=

2
3
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Example: Batteries

• A container contains three types of batteries Type 1, Type 2 and Type 3 in the ratio
of 20 : 30 : 50. A battery is good if it lasts more than 100 hours. The probability
that a Type 1 battery is good is 0.7, the probability that a Type 2 battery is good is
0.4 and the probability that a Type 3 battery is good is 0.3. A battery is randomly
taken from the container.

(1) What is the probability the chosen battery is good?
(2) What is the probability the battery is of Type 3 given it was not good?

Answer:

• Let G = ’battery is good”, Hi = ”battery is of Type i”, where i = 1, 2, 3.

(1) Then,

P(G) = P(G|H1) · P(H1) + P(G|H2) · P(H2) + P(G|H3) · P(H3)

= 0.2 · 0.7 + 0.3 · 0.4 + 0.5 · 0.3 = 0.41

(2)

P(H3|Gc) =
P(Gc|H3) · P(H3)

P(Gc)
=

P(Gc|H3) · P(H3)

1 − P(G)
=

0.5 · 0.7
0.59

=
35
59

= 0.593
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0.4 and the probability that a Type 3 battery is good is 0.3. A battery is randomly
taken from the container.

(1) What is the probability the chosen battery is good?
(2) What is the probability the battery is of Type 3 given it was not good?

Answer:
• Let G = ’battery is good”, Hi = ”battery is of Type i”, where i = 1, 2, 3.

(1) Then,

P(G) = P(G|H1) · P(H1) + P(G|H2) · P(H2) + P(G|H3) · P(H3)

= 0.2 · 0.7 + 0.3 · 0.4 + 0.5 · 0.3 = 0.41

(2)

P(H3|Gc) =
P(Gc|H3) · P(H3)

P(Gc)
=

P(Gc|H3) · P(H3)

1 − P(G)
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0.5 · 0.7
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More examples

HW A blood test reacts 95% positive if there is a disease. It also reacts to 1%
”false positive”. It is assumed that 0.5% of the population are ill.

(1) What is the probability a randomly selected person whose blood test is positive
is actually sick?

(2) What is the probability of being sick if the blood test is positive?

HW The Randomizer holds the 6-sided die in one fist and the 8-sided die in the
other. The Roller selects one of the Randomizer’s fists and takes the die face
down. The Roller rolls the die in secret and reports the result to the table.

• Given the reporeted number, what is the probability that the 6-sided die was
selected? (Find the probability for each possible number reported.)



Questions



A few multiple-choice questions

(1) A medical treatment has a success rate of 0.8. Two patients will be treated
with this treatment. Assuming the results are independent for the two
patients, what is the probability that at least one of them will be successfully
cured?

(a) 0.96
(b) 0.32
(c) 0.64
(d) 0.04

(2) In a list of 15 households, 9 own homes and 6 do not own homes. Four
households are randomly selected from these 15 households. Find the
probability that the number of households in these four who own homes
is at most one.

(a) 0.1536
(b) 0.1792
(c) 0.3456
(d) 0.4752



A few multiple-choice questions

(3) Suppose that there are 4 women and 8 men. How many 5 person
committees can be formed with exactly 2 women and 3 men?

(a)
(12

5

)
(b)

(4
2

)
·
(8

2

)
(c)

(4
2

)
·
(8

3

)
(d)

(12
5

)
−
(4

1

)
·
(8

4

)

(4) Suppose box A contains 4 red and 5 blue coins and box B contains 6 red and
3 blue coins. A coin is chosen at random from the box A and placed in box B.
Finally, a coin is chosen at random from among those now in box B. What is
the probability a blue coin was transferred from box A to box B given that
the coin chosen from box B is red?

(a) 15
29

(b) 14
29

(c) 1
2

(d) 7
10



A few multiple-choice questions

(5) A fair die is rolled. Find the probability of getting an even number or a
number bigger than 2.

(a) 1
3

(b) 7
12

(c) 2
3

(d) 5
6

(6) Anna has an unfair coin. She knows that when fliping this coin, head is
obtained twice as often as a tail. Anna rolls this coin until she obtains a tail.
What is the probability that she rolled the coin at most three times?

(a) 19
27

(b) 26
27

(c) 5
9

(d) 4
27



Thank you for your attention!


