
Central limit theorem and Law of large numbers

Please send you comments to: T. Levajković, tijana.levajkovic@tuwien.ac.at



Reminder

• X ∼ N(µ,σ2)

• One of the most important distributions in statistics and probability theory.

Normal distribution on the front of the

German 10 Mark banknote from 1990s

• X has a Normal distribution (or Gauss distribution) with the parameters
µ ∈ R and σ > 0, if its pdf is given by

f (x) =
1√

2πσ2
· e−

(x−µ)2

2σ2 for x ∈ R

• E(X) = µ, Var(X) = σ2

Y = aX + b ∼ N(aµ+ b, a2σ2)
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We recall

• Z ∼ N(0, 1) is the Standard normal random variable

... E(Z) = 0, Var(Z) = 1

• Its cdf is given byΦ(z) = P(Z 6 z)
• The following hold

P(−1 6 Z 6 1) ≈ 0.68

P(−2 6 Z 6 2) ≈ 0.95

P(−3 6 Z 6 3) ≈ 0.997
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Sample mean

• Let X1, X2, . . . , Xn be independent identically distributed (i.i.d.) random
variables with E(X1) = µ and Var(X1) = σ

2.

... X1, X2, . . . , Xn is allso called a random sample of size n

• For the sample mean X̄ = 1
n

n∑
i=1

Xi it holds

E(X̄) = µ and Var(X̄) =
σ2

n

• E(X̄) = E
( 1

n

n∑
i=1

Xi
) linearity

=
1
n

n∑
i=1

E(Xi)
ident. distr.

=
1
n

n∑
i=1

E(X1)

=
1
n
· n E(X1) = E(X1) = µ

• Var(X̄) = Var
( 1

n

n∑
i=1

Xi
)
=

1
n2 Var

( n∑
i=1

Xi
) independ.

=
1
n2

n∑
i=1

Var (Xi)

ident. distr.
=

1
n2

n∑
i=1

Var (X1) =
1
n2 · n Var (X1) =

Var (X1)

n
=
σ2

n



Sample mean

• Let X1, X2, . . . , Xn be independent identically distributed (i.i.d.) random
variables with E(X1) = µ and Var(X1) = σ

2.
... X1, X2, . . . , Xn is allso called a random sample of size n

• For the sample mean X̄ = 1
n

n∑
i=1

Xi it holds

E(X̄) = µ and Var(X̄) =
σ2

n

• E(X̄) = E
( 1

n

n∑
i=1

Xi
) linearity

=
1
n

n∑
i=1

E(Xi)
ident. distr.

=
1
n

n∑
i=1

E(X1)

=
1
n
· n E(X1) = E(X1) = µ

• Var(X̄) = Var
( 1

n

n∑
i=1

Xi
)
=

1
n2 Var

( n∑
i=1

Xi
) independ.

=
1
n2

n∑
i=1

Var (Xi)

ident. distr.
=

1
n2

n∑
i=1

Var (X1) =
1
n2 · n Var (X1) =

Var (X1)

n
=
σ2

n



Sample mean

• Let X1, X2, . . . , Xn be independent identically distributed (i.i.d.) random
variables with E(X1) = µ and Var(X1) = σ

2.
... X1, X2, . . . , Xn is allso called a random sample of size n

• For the sample mean X̄ = 1
n

n∑
i=1

Xi it holds

E(X̄) = µ and Var(X̄) =
σ2

n

• E(X̄) = E
( 1

n

n∑
i=1

Xi
) linearity

=
1
n

n∑
i=1

E(Xi)
ident. distr.

=
1
n

n∑
i=1

E(X1)

=
1
n
· n E(X1) = E(X1) = µ

• Var(X̄) = Var
( 1

n

n∑
i=1

Xi
)
=

1
n2 Var

( n∑
i=1

Xi
) independ.

=
1
n2

n∑
i=1

Var (Xi)

ident. distr.
=

1
n2

n∑
i=1

Var (X1) =
1
n2 · n Var (X1) =

Var (X1)

n
=
σ2

n



Sample mean

• Let X1, X2, . . . , Xn be independent identically distributed (i.i.d.) random
variables with E(X1) = µ and Var(X1) = σ

2.
... X1, X2, . . . , Xn is allso called a random sample of size n

• For the sample mean X̄ = 1
n

n∑
i=1

Xi it holds

E(X̄) = µ and Var(X̄) =
σ2

n

• E(X̄) = E
( 1

n

n∑
i=1

Xi
) linearity

=
1
n

n∑
i=1

E(Xi)
ident. distr.

=
1
n

n∑
i=1

E(X1)

=
1
n
· n E(X1) = E(X1) = µ

• Var(X̄) = Var
( 1

n

n∑
i=1

Xi
)
=

1
n2 Var

( n∑
i=1

Xi
) independ.

=
1
n2

n∑
i=1

Var (Xi)

ident. distr.
=

1
n2

n∑
i=1

Var (X1) =
1
n2 · n Var (X1) =

Var (X1)

n
=
σ2

n



Sample mean

• Let X1, X2, . . . , Xn be independent identically distributed (i.i.d.) random
variables with E(X1) = µ and Var(X1) = σ

2.
... X1, X2, . . . , Xn is allso called a random sample of size n

• For the sample mean X̄ = 1
n

n∑
i=1

Xi it holds

E(X̄) = µ and Var(X̄) =
σ2

n

• E(X̄) = E
( 1

n

n∑
i=1

Xi
) linearity

=
1
n

n∑
i=1

E(Xi)
ident. distr.

=
1
n

n∑
i=1

E(X1)

=
1
n
· n E(X1) = E(X1) = µ

• Var(X̄) = Var
( 1

n

n∑
i=1

Xi
)
=

1
n2 Var

( n∑
i=1

Xi
) independ.

=
1
n2

n∑
i=1

Var (Xi)

ident. distr.
=

1
n2

n∑
i=1

Var (X1) =
1
n2 · n Var (X1) =

Var (X1)

n
=
σ2

n



Sample mean

• Let X1, X2, . . . , Xn be independent identically distributed (i.i.d.) random
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2.
... X1, X2, . . . , Xn is allso called a random sample of size n

• For the sample mean X̄ = 1
n

n∑
i=1

Xi it holds
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• Especially if X1, . . . Xn are normally distributed, the sample mean is also

normally distributed X̄ ∼ N(µ, σ
2

n )

−3 −1 1 2 3

µ − 3σ µ − 2σ µ − σ µ µ + σ µ + 2σ µ + 3σ



Convergence

• Two important theorems of probability theory:

• Law of Large Numbers (LLN)

• in German: Gesetz der großen Zahlen (GGZ)

• Central Limit Theorem (CLT)

• in German: Zentraler Grenzwertsatz (ZGWS)

... We state the theorems for

independent and identically distributed random variables
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Theorems

• Let X1, . . . , Xn be independent and identically distributed (i.i.d.) random
variables with E(X1) = µ and finite Var(X1) = σ

2 <∞.
... n i.i.d. random variables X1, . . . , Xn are called a random sample of size n

• Note that X1, . . . , Xn are not necessarily normally distributed.

• We consider the sample mean

X̄n =
X1 + · · ·+ Xn

n
=

1
n

n∑
i=1

Xi

• The Law of large numbers and the Central limit theorem provide
information about the value and the distribution of X̄n.

• LLN: As n grows, the probability of X̄n being
in the neighborhood of µ tends to 1.

• CLT: For large n, the distribution of X̄n is approximatelly N(µ, σ
2

n ).



Law of large numbers

• The Law of large numbers says that the sample mean X̄n will be with high
probability very close to the expectation µ of the underlying distribution

• Formal statement:

Suppose X1, X2, . . . , Xn . . . are i.i.d. random variables with expectation µ and
finite variance σ2. For each n, let X̄n be the mean of the first n variables.
Then for any a > 0, we have

lim
n→∞ P(|X̄n − µ| < a) = 1



Law of large numbers

• The Law of large numbers says that the sample mean X̄n will be with high
probability very close to the expectation µ of the underlying distribution

• Formal statement:

Suppose X1, X2, . . . , Xn . . . are i.i.d. random variables with expectation µ and
finite variance σ2. For each n, let X̄n be the mean of the first n variables.
Then for any a > 0, we have

lim
n→∞ P(|X̄n − µ| < a) = 1



Law of large numbers

• The Law of large numbers says that the sample mean X̄n will be with high
probability very close to the expectation µ of the underlying distribution

• Formal statement:

Suppose X1, X2, . . . , Xn . . . are i.i.d. random variables with expectation µ and
finite variance σ2. For each n, let X̄n be the mean of the first n variables.
Then for any a > 0, we have

lim
n→∞ P(|X̄n − µ| < a) = 1



Example

• We consider a discrete random variable with the pmf

x 0 1 2 3 4
p(x) 0.1 0.2 0.3 0.35 0.05

• Then, E(X) =
4∑

x=0
x p(x) = 2.05 and Var(X) =

4∑
x=0

(x − 2.05)2 p(x) = 1.1475

• Since the variance of X exists, the Law of Large Numbers says

X̄n =
1
n

n∑
i=1

Xi → E(X) = 2.05 for large n
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Example 2

• The mean values of the Bernoulli random variables

• Let X1..., Xn denote n independent flips of a fair coin

• Xi ∼ ber(0.5) and E(Xi) = µ = 0.5
• Sn = X1 + · · ·+ Xn ∼ B(n, 0.5)

• Then X̄n = 1
n Sn is the number of heads obtained in n flips.

• We expect that this number for large n is close to µ = 0.5.

• LLN: The sample mean X̄n is very likely to be close to the expected value 0.5 for
large n.

• For example, let us consider the probability of being within 0.1 from the
expected value µ = 0.5, i.e.

P(|X̄n − µ| < 0.1) or equivalently P(0.4 < X̄n < 0.6)

• in R:
n = 10: diff(pbinom(c(3,6),10,0.5)) = 0.65625
n = 50: diff(pbinom(c(19,30), 50, 0.5)) = 0.8810795
n = 100: diff(pbinom(c(39,60), 100, 0.5) = 0.9647998
n = 500: diff(pbinom(c(199,300), 500, 0.5)) = 0.9999941
n = 1000: diff(pbinom(c(399,600), 1000, 0.5)) = 1

HW Repeat the calculations and determine the probability
P(|X̄n −µ| < 0.01).
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• LLN: The sample mean X̄n is very likely to be close to the expected value 0.5 for

large n.
• For example, let us consider the probability of being within 0.1 from the

expected value µ = 0.5, i.e.

P(|X̄n − µ| < 0.1) or equivalently P(0.4 < X̄n < 0.6)

• in R:
n = 10: diff(pbinom(c(3,6),10,0.5)) = 0.65625
n = 50: diff(pbinom(c(19,30), 50, 0.5)) = 0.8810795
n = 100: diff(pbinom(c(39,60), 100, 0.5) = 0.9647998
n = 500: diff(pbinom(c(199,300), 500, 0.5)) = 0.9999941
n = 1000: diff(pbinom(c(399,600), 1000, 0.5)) = 1

HW Repeat the calculations and determine the probability
P(|X̄n −µ| < 0.01).
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Histograms

• Histograms (frequency and density histogram)

... A graphical representation of a frequency distribution
based on a previous classification of the data.

• Made by binning data ... data binning is a way to group a number of
continuous values into a smaller number of bins

• Frequency: height of bar over bin = number of data points in bin.
• Density: area of bar is the fraction of all data points that lie in the bin.

... Thus, total area is 1.

in R: hist(x,freq=TRUE) hist(x,freq=FALSE) oder hist(x,prob=TRUE)
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Law of Large Numbers and histograms

• The Law of Large Numbers implies that density histogram converges to
probability density function.

The histogram with bin width 0.5 showing 1000 draws from an exponential
exp(1) distribution. The pdf of exp(1) is given in red.



Central Limit Theorem

• The Central Limit Theorem states that the sum, resp. mean, of many
independent copies of a random variable is approximately a normal
random variable.

• Let X1, X2, . . . be a sequence of i.i.d. with expectation µ and standard
deviation σ.

• For each n:
• the sum Sn = X1 + X2 + · · ·+ Xn

• the sample mean X̄n = 1
n
(
X1 + X2 + · · ·+ Xn

)
• The Central Limit Theorem says that for large n it holds

Sn ≈ N(nµ, nσ2)

X̄n ≈ N(µ,
σ2

n
)

• Thus, the standardized X̄n and Sn have approximately N(0, 1), i.e.
Sn − nµ√

nσ
≈ N(0, 1) and

X̄n −µ
σ√

n
≈ N(0, 1)



Central Limit Theorem

• The Central Limit Theorem states that the sum, resp. mean, of many
independent copies of a random variable is approximately a normal
random variable.

• Let X1, X2, . . . be a sequence of i.i.d. with expectation µ and standard
deviation σ.

• For each n:
• the sum Sn = X1 + X2 + · · ·+ Xn

• the sample mean X̄n = 1
n
(
X1 + X2 + · · ·+ Xn

)
• The Central Limit Theorem says that for large n it holds

Sn ≈ N(nµ, nσ2)

X̄n ≈ N(µ,
σ2

n
)

• Thus, the standardized X̄n and Sn have approximately N(0, 1), i.e.
Sn − nµ√

nσ
≈ N(0, 1) and

X̄n −µ
σ√

n
≈ N(0, 1)



Central Limit Theorem

• The Central Limit Theorem states that the sum, resp. mean, of many
independent copies of a random variable is approximately a normal
random variable.

• Let X1, X2, . . . be a sequence of i.i.d. with expectation µ and standard
deviation σ.

• For each n:
• the sum Sn = X1 + X2 + · · ·+ Xn

• the sample mean X̄n = 1
n
(
X1 + X2 + · · ·+ Xn

)

• The Central Limit Theorem says that for large n it holds

Sn ≈ N(nµ, nσ2)

X̄n ≈ N(µ,
σ2

n
)

• Thus, the standardized X̄n and Sn have approximately N(0, 1), i.e.
Sn − nµ√

nσ
≈ N(0, 1) and

X̄n −µ
σ√

n
≈ N(0, 1)



Central Limit Theorem

• The Central Limit Theorem states that the sum, resp. mean, of many
independent copies of a random variable is approximately a normal
random variable.

• Let X1, X2, . . . be a sequence of i.i.d. with expectation µ and standard
deviation σ.

• For each n:
• the sum Sn = X1 + X2 + · · ·+ Xn

• the sample mean X̄n = 1
n
(
X1 + X2 + · · ·+ Xn

)
• The Central Limit Theorem says that for large n it holds

Sn ≈ N(nµ, nσ2)

X̄n ≈ N(µ,
σ2

n
)

• Thus, the standardized X̄n and Sn have approximately N(0, 1), i.e.
Sn − nµ√

nσ
≈ N(0, 1) and

X̄n −µ
σ√

n
≈ N(0, 1)



Central Limit Theorem

• The Central Limit Theorem states that the sum, resp. mean, of many
independent copies of a random variable is approximately a normal
random variable.

• Let X1, X2, . . . be a sequence of i.i.d. with expectation µ and standard
deviation σ.

• For each n:
• the sum Sn = X1 + X2 + · · ·+ Xn

• the sample mean X̄n = 1
n
(
X1 + X2 + · · ·+ Xn

)
• The Central Limit Theorem says that for large n it holds

Sn ≈ N(nµ, nσ2)

X̄n ≈ N(µ,
σ2

n
)

• Thus, the standardized X̄n and Sn have approximately N(0, 1), i.e.
Sn − nµ√

nσ
≈ N(0, 1) and

X̄n −µ
σ√

n
≈ N(0, 1)



Example

• Simulation for CLT

• Let X1, X2, . . . be a sequence of i.i.d. exp(1) random variables.

• Then, E(Xi) = 1 and Var(Xi) = 1 <∞.

• We consider sample means X̄n = 1
n (X1 + · · ·+ Xn).

• Central Limit Theorem:

• X̄n: E(X̄n) = 1 and Var(X̄n) = 1
n

X̄n ≈N(1,
1
n
)

• The standardized means Yn

Yn =
X̄n − E(X̄n)√

Var(X̄n)
=

X̄n − 1
1√

n

≈N(0, 1)



Example

• Simulation for CLT

• Let X1, X2, . . . be a sequence of i.i.d. exp(1) random variables.

• Then, E(Xi) = 1 and Var(Xi) = 1 <∞.

• We consider sample means X̄n = 1
n (X1 + · · ·+ Xn).

• Central Limit Theorem:

• X̄n: E(X̄n) = 1 and Var(X̄n) = 1
n

X̄n ≈N(1,
1
n
)

• The standardized means Yn

Yn =
X̄n − E(X̄n)√

Var(X̄n)
=

X̄n − 1
1√

n

≈N(0, 1)



Example

• Simulation for CLT

• Let X1, X2, . . . be a sequence of i.i.d. exp(1) random variables.

• Then, E(Xi) = 1 and Var(Xi) = 1 <∞.

• We consider sample means X̄n = 1
n (X1 + · · ·+ Xn).

• Central Limit Theorem:

• X̄n: E(X̄n) = 1 and Var(X̄n) = 1
n

X̄n ≈N(1,
1
n
)

• The standardized means Yn

Yn =
X̄n − E(X̄n)√

Var(X̄n)
=

X̄n − 1
1√

n

≈N(0, 1)



Example

• Simulation for CLT

• Let X1, X2, . . . be a sequence of i.i.d. exp(1) random variables.

• Then, E(Xi) = 1 and Var(Xi) = 1 <∞.

• We consider sample means X̄n = 1
n (X1 + · · ·+ Xn).

• Central Limit Theorem:

• X̄n: E(X̄n) = 1 and Var(X̄n) = 1
n

X̄n ≈N(1,
1
n
)

• The standardized means Yn

Yn =
X̄n − E(X̄n)√

Var(X̄n)
=

X̄n − 1
1√

n

≈N(0, 1)



Example

• Simulation for CLT

• Let X1, X2, . . . be a sequence of i.i.d. exp(1) random variables.

• Then, E(Xi) = 1 and Var(Xi) = 1 <∞.

• We consider sample means X̄n = 1
n (X1 + · · ·+ Xn).

• Central Limit Theorem:

• X̄n: E(X̄n) = 1 and Var(X̄n) = 1
n

X̄n ≈N(1,
1
n
)

• The standardized means Yn

Yn =
X̄n − E(X̄n)√

Var(X̄n)
=

X̄n − 1
1√

n

≈N(0, 1)



Example

• Simulation for CLT

• Let X1, X2, . . . be a sequence of i.i.d. exp(1) random variables.

• Then, E(Xi) = 1 and Var(Xi) = 1 <∞.

• We consider sample means X̄n = 1
n (X1 + · · ·+ Xn).

• Central Limit Theorem:

• X̄n: E(X̄n) = 1 and Var(X̄n) = 1
n

X̄n ≈N(1,
1
n
)

• The standardized means Yn

Yn =
X̄n − E(X̄n)√

Var(X̄n)
=

X̄n − 1
1√

n

≈N(0, 1)



Example

• The following plots show the results for respectively n = 3, 5, 10, 50 based on
10000 simulated values for Xn. The density of the N(1, 1

n ) distribution is
drawn in red.



Normal approximation of B(n, p) distribution

• The sum Sn = X1 + · · ·+ Xn of independent ber(p) random variables
X1, . . . , Xn has B(n, p) distribution.

• E(Sn) = np and Var(Sn) = np(1 − p)

• Using the continuity correction it holds for a 6 b, where a, b ∈ {0, 1, . . . , n}:

P(a 6 Sn 6 b) ≈ Φ
( b + 1

2 − np√
np(1 − p)

)
−Φ

( a − 1
2 − np√

np(1 − p)

)

• Let T be a continuous random variable such that E(T) = E(Sn) = np and
Var (T) = Var (Sn) = np(1 − p). Then,

P(a 6 Sn 6 b) = P
(

a −
1
2
6 Sn < b +

1
2

)
≈ P

(
a −

1
2
6 T < b +

1
2
)

= P
(a − 1

2 − E(T)√
Var (T)

6
T − E(T)√

Var (T)
<

b + 1
2 − E(T)√
Var (T)

)
CLT≈ P

( a − 1
2 − np√

np(1 − p)
6 Z <

b + 1
2 − np√

np(1 − p)

)
= Φ

( b + 1
2 − np√

np(1 − p)

)
−Φ

( a − 1
2 − np√

np(1 − p)

)
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• Approximation of the cdf of Sn:

P(Sn 6 x) ≈ Φ
( x + 1

2 − np√
np(1 − p)

)
Φ is the cdf of N(0, 1)

• Rule of thumb: The approximation is considered reasonable, when
min{np, np(1 − p)} > 10
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Normal approximation of P(λ) distribution

• Let X ∼ P(λ). Then, by providing the continuity correction for a 6 b, with
a, b ∈N0

P(a 6 X 6 b) ≈ Φ
(b + 1

2 − λ
√
λ

)
−Φ

(a − 1
2 − λ
√
λ

)
,

• Approximation of the cdf of X:

P(X 6 x) ≈ Φ
(x + 1

2 − λ
√
λ

)

• Rule of thumb: The approximation is considered to be reasonable when λ > 15.
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Example

• An accountant rounds to the nearest euro. We assume the error in rounding
follows uniform distribution on (−0.5, 0.5). Estimate the probability that the total
error in 300 entries is more than 5 euro.

Answer

• Let Xj be the rounding error of the jth entry. Then, Xj ∼ U(−0.5, 0.5)

E(Xj) = 0 and Var (Xj) =
1

12

• The overall error is S = X1 + · · ·+ X300.

E(S) = 0, Var (S) = 300
12 = 25 and σS = 5.

• CLT: for the standardized S it holds

Z =
S − E(S)√

Var(S)
=

S
5
∼ N(0, 1)

• Then,
P(|S| > 5) = 1 − P(|S| 6 5) ≈ 1 − P(|Z| 6 1) ≈ 0.32
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Examples

HW Let X1, X2, . . . , X25 be independent and identically distributed (i.i.d.) random
variables and X1 ∼ N(1, 4). Find the probability P(X1 + X2 + . . . . . . X25 > 26).

HW Transportation officials tell us that 60% of the population wear their seatbelts
while driving. A random sample of 1000 drivers has been taken. What is the
probability that between 580 and 630 of the drivers were wearing their seatbelts?

HW Let X1, X2, . . . X121 be i.i.d. with the expectation µ = 35 and variance σ2 = 25.
Denote by

X̄121 =
1

121
(X1 + · · ·+ X121)

the sample mean. Approximate the probability P(X̄121 > 35.2) using the Central
limit theorem.

HW We toss a fair coin 100 times.
What is the probability of obtaining 60 or more heads?



Questions



A few multiple-choice questions

(1) Let X1, X2, . . . X81 be i.i.d. sample from a population with population mean µ = 5
and population variance σ2 = 4 and let S = X1 + X2 + . . . X81. Approximate the
probability P(S < [387, 423]) using the Central limit theorem.

a. 68%
b. 78%
c. 45%
d. 32%

(2) Assume that X is a binomial random variable with n = 100 and p = 0.1. Use the
normal probability distribution to compute P(X 6 15).

a. 0.5336
b. 0.9664
c. 0.0336
d. 0.4664



A few multiple-choice questions

(3) Transportation officials tell us that 60% of the population wear their seatbelts
while driving. A random sample of 1000 drivers has been taken. What is the
probability that between 220 and 550 of the drivers were wearing their seatbelts?

a. 1.0
b. 0.4015
c. 0.9066
d. 0



Thank you for your attention!


