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All examples are fictitious. All data are simulated and the graphics were
created with the statistical program package R.
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Reminder
How is the mean distributed under normal distribution?

Let X1, . . . , Xn be independent and identically distributed (i.i.d.) random
variables and X1 ∼ N(µ,σ2)

For the mean it holds X̄ = 1
n

∑n
i=1 Xi ∼ N(µ,σ2/n)

X̄ is also normally distributed
X̄ has expectation µX̄ = µ (equal to the expectation of Xi)
X̄ has standard deviation σX̄ = σ/

√
n (decrease of factor 1/

√
n)

Interpretation: the typical deviation of the mean from its expectation is
σ/
√

n

Standardization: X̄−µ
σ/

√
n ∼ N(0, 1)
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Previous lecture: Short excursion to descriptive Statistics
How do data look like? How can they be summarized?

Today: inferentiell Statistics (Modelling)
How did the data occur?
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Basic problem

Reminder:
Runtimes of an algorithm implemented by nA = 121 students

Additionally implemented from nB = 16 students that took a certain
programming course
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positive effect...
In the following consider only group B (one-sample situation)
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A skeptic colleague claims: ”the course is useless. The 16 students were
just over average beforehand!” And further he claims:
”The course was held by the lecturer a couple of times before. If all
participants that have ever taken the course had implemented this
algorithm, then the mean runtime would have been µ0 = 30.”
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Basic problem

Assertion:
”If all participants that have ever taken the course, had implemented this
algorithm, then the mean runtime would have been µ0 = 30.”

huge population 
 (unknown)

Problem: Assertion about a huge unknown population

However, a subset known: the sample x1, . . . , xn

Main questions:
How ’compatible’ are the data with the assertion?

To do:
Quantification of the ’discrepancy’ of the data and the assertion
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Question: What does ’large’ mean?

So far we do not have a notion for ’size’!
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Statistical model
Main questions: How ’compatible’ are the data with the assertion?
Idea of the statistical model:

Interpret the data x1, . . . , xn as realizations
of random variables X1, . . . , Xn
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Upside: Notion of ’size’ through probability statements
Observe: almost all data lie in the left tail of the blue distribution
Interpretation: Assume that the data indeed derived from independent
drawings of the blue distribution, then something unlike has happened. (↔
incompatibility of data and assertion)
Gain: In the context of the model, we can quantify the discrepancy via
probability statements (’notion of size’)
→ Hypothesis test: the procedure is as follows...
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Hypothesis test, exemplary: z-Tests
model assumption: X1, . . . , Xn i.i.d. RVs, with X1 ∼ N(µ, 112) and µ ∈ R (here n = 16)
(The data x1, . . . , xn are assumed to be realizations of i.i.d. normal-distributed RVs,
with unknown expectation µ ∈ R, but known variance σ2 = 121)

null hypothesis: H0 : µ = 30
(Describes the assertion: the claimed expectation is µ0 = 30)

test statistic: for the evaluation of the data (measures discrepancy). Here z-statistic

z =
x̄ − µ0

σ/
√

n
≈ 16.5 − 30

11/4
≈ −4.9

Theoretical distribution of the test statistic if H0 is true

Z =
X̄ − µ0

σ/
√

n
H0
∼ N(0, 1)

p-value: quantifies the discrepancy (judge z according to the distribution of Z)

p = PH0(|Z| > |z|) ≈ 9 · 10−7

Probability to make an observation which is at least as extreme as in the data, if H0

holds true
Decision: Reject the null hypothesis (reason: p is small)
We say: the observed discrepancy was significant (p < 10−6)

Interpretation: the p-value is negligible. If the null hypothesis holds true, then
something unlikely has happened. In that sense, the data are barely compatible
with the null hypothesis.



Hypothesis test, exemplary: z-Tests
model assumption: X1, . . . , Xn i.i.d. RVs, with X1 ∼ N(µ, 112) and µ ∈ R (here n = 16)
(The data x1, . . . , xn are assumed to be realizations of i.i.d. normal-distributed RVs,
with unknown expectation µ ∈ R, but known variance σ2 = 121)

null hypothesis: H0 : µ = 30
(Describes the assertion: the claimed expectation is µ0 = 30)

test statistic: for the evaluation of the data (measures discrepancy). Here z-statistic

z =
x̄ − µ0

σ/
√

n
≈ 16.5 − 30

11/4
≈ −4.9

Theoretical distribution of the test statistic if H0 is true

Z =
X̄ − µ0

σ/
√

n
H0
∼ N(0, 1)

p-value: quantifies the discrepancy (judge z according to the distribution of Z)

p = PH0(|Z| > |z|) ≈ 9 · 10−7

Probability to make an observation which is at least as extreme as in the data, if H0

holds true
Decision: Reject the null hypothesis (reason: p is small)
We say: the observed discrepancy was significant (p < 10−6)

Interpretation: the p-value is negligible. If the null hypothesis holds true, then
something unlikely has happened. In that sense, the data are barely compatible
with the null hypothesis.



Hypothesis test, exemplary: z-Tests
model assumption: X1, . . . , Xn i.i.d. RVs, with X1 ∼ N(µ, 112) and µ ∈ R (here n = 16)
(The data x1, . . . , xn are assumed to be realizations of i.i.d. normal-distributed RVs,
with unknown expectation µ ∈ R, but known variance σ2 = 121)

null hypothesis: H0 : µ = 30
(Describes the assertion: the claimed expectation is µ0 = 30)

test statistic: for the evaluation of the data (measures discrepancy). Here z-statistic

z =
x̄ − µ0

σ/
√

n
≈ 16.5 − 30

11/4
≈ −4.9

Theoretical distribution of the test statistic if H0 is true

Z =
X̄ − µ0

σ/
√

n
H0
∼ N(0, 1)

p-value: quantifies the discrepancy (judge z according to the distribution of Z)

p = PH0(|Z| > |z|) ≈ 9 · 10−7

Probability to make an observation which is at least as extreme as in the data, if H0

holds true
Decision: Reject the null hypothesis (reason: p is small)
We say: the observed discrepancy was significant (p < 10−6)

Interpretation: the p-value is negligible. If the null hypothesis holds true, then
something unlikely has happened. In that sense, the data are barely compatible
with the null hypothesis.

−6 −4 −2 0 2 4 6

z



Hypothesis test, exemplary: z-Tests
model assumption: X1, . . . , Xn i.i.d. RVs, with X1 ∼ N(µ, 112) and µ ∈ R (here n = 16)
(The data x1, . . . , xn are assumed to be realizations of i.i.d. normal-distributed RVs,
with unknown expectation µ ∈ R, but known variance σ2 = 121)

null hypothesis: H0 : µ = 30
(Describes the assertion: the claimed expectation is µ0 = 30)

test statistic: for the evaluation of the data (measures discrepancy). Here z-statistic

z =
x̄ − µ0

σ/
√

n
≈ 16.5 − 30

11/4
≈ −4.9

Theoretical distribution of the test statistic if H0 is true

Z =
X̄ − µ0

σ/
√

n
H0
∼ N(0, 1)

p-value: quantifies the discrepancy (judge z according to the distribution of Z)

p = PH0(|Z| > |z|) ≈ 9 · 10−7

Probability to make an observation which is at least as extreme as in the data, if H0

holds true
Decision: Reject the null hypothesis (reason: p is small)
We say: the observed discrepancy was significant (p < 10−6)

Interpretation: the p-value is negligible. If the null hypothesis holds true, then
something unlikely has happened. In that sense, the data are barely compatible
with the null hypothesis.

−6 −4 −2 0 2 4 6

z

Distribution of Z under H0 : µ = 30



Hypothesis test, exemplary: z-Tests
model assumption: X1, . . . , Xn i.i.d. RVs, with X1 ∼ N(µ, 112) and µ ∈ R (here n = 16)
(The data x1, . . . , xn are assumed to be realizations of i.i.d. normal-distributed RVs,
with unknown expectation µ ∈ R, but known variance σ2 = 121)

null hypothesis: H0 : µ = 30
(Describes the assertion: the claimed expectation is µ0 = 30)

test statistic: for the evaluation of the data (measures discrepancy). Here z-statistic

z =
x̄ − µ0

σ/
√

n
≈ 16.5 − 30

11/4
≈ −4.9

Theoretical distribution of the test statistic if H0 is true

Z =
X̄ − µ0

σ/
√

n
H0
∼ N(0, 1)

p-value: quantifies the discrepancy (judge z according to the distribution of Z)

p = PH0(|Z| > |z|) ≈ 9 · 10−7

Probability to make an observation which is at least as extreme as in the data, if H0

holds true

Decision: Reject the null hypothesis (reason: p is small)
We say: the observed discrepancy was significant (p < 10−6)

Interpretation: the p-value is negligible. If the null hypothesis holds true, then
something unlikely has happened. In that sense, the data are barely compatible
with the null hypothesis.

−6 −4 −2 0 2 4 6

z

Distribution of Z under H0 : µ = 30

1−p



Hypothesis test, exemplary: z-Tests
model assumption: X1, . . . , Xn i.i.d. RVs, with X1 ∼ N(µ, 112) and µ ∈ R (here n = 16)
(The data x1, . . . , xn are assumed to be realizations of i.i.d. normal-distributed RVs,
with unknown expectation µ ∈ R, but known variance σ2 = 121)

null hypothesis: H0 : µ = 30
(Describes the assertion: the claimed expectation is µ0 = 30)

test statistic: for the evaluation of the data (measures discrepancy). Here z-statistic

z =
x̄ − µ0

σ/
√

n
≈ 16.5 − 30

11/4
≈ −4.9

Theoretical distribution of the test statistic if H0 is true

Z =
X̄ − µ0

σ/
√

n
H0
∼ N(0, 1)

p-value: quantifies the discrepancy (judge z according to the distribution of Z)

p = PH0(|Z| > |z|) ≈ 9 · 10−7

Probability to make an observation which is at least as extreme as in the data, if H0

holds true
Decision: Reject the null hypothesis (reason: p is small)
We say: the observed discrepancy was significant (p < 10−6)

Interpretation: the p-value is negligible. If the null hypothesis holds true, then
something unlikely has happened. In that sense, the data are barely compatible
with the null hypothesis.

−6 −4 −2 0 2 4 6

z

Distribution of Z under H0 : µ = 30

1−p



Hypothesis test, exemplary: z-Tests
model assumption: X1, . . . , Xn i.i.d. RVs, with X1 ∼ N(µ, 112) and µ ∈ R (here n = 16)
(The data x1, . . . , xn are assumed to be realizations of i.i.d. normal-distributed RVs,
with unknown expectation µ ∈ R, but known variance σ2 = 121)

null hypothesis: H0 : µ = 30
(Describes the assertion: the claimed expectation is µ0 = 30)

test statistic: for the evaluation of the data (measures discrepancy). Here z-statistic

z =
x̄ − µ0

σ/
√

n
≈ 16.5 − 30

11/4
≈ −4.9

Theoretical distribution of the test statistic if H0 is true

Z =
X̄ − µ0

σ/
√

n
H0
∼ N(0, 1)

p-value: quantifies the discrepancy (judge z according to the distribution of Z)

p = PH0(|Z| > |z|) ≈ 9 · 10−7

Probability to make an observation which is at least as extreme as in the data, if H0

holds true
Decision: Reject the null hypothesis (reason: p is small)
We say: the observed discrepancy was significant (p < 10−6)

Interpretation: the p-value is negligible. If the null hypothesis holds true, then
something unlikely has happened. In that sense, the data are barely compatible
with the null hypothesis.

−6 −4 −2 0 2 4 6

z

Distribution of Z under H0 : µ = 30

1−p



Remark - Model assumptions
Model assumption: X1, . . . , Xn i.i.d. RVs, with X1 ∼ N(µ, 112) and µ ∈ R (n = 16)
(The data are realizations of i.i.d. normal-distributed RVs, with unknown expectation
µ ∈ R, but known variance σ2 = 121) runtimes

time [seconds]

D
en
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0.04

0.06
● B (n=16)

Why are the assumptions reasonable?

Normal distribution: the data are distributed approximately bell-shaped
Knowledge of the standard deviation σ: Actually, this assumption is
nonsense – why should we know something about the variance, when we do
not know the expectation? Here assumed to be known for simplicity. Next
lecture: replace σ by estimate s→ yields t-test
Independence: We do not have a reason to assume that the observed
individuals have too much in common.
In general: A model is always a simplification. The description of the
’reality’ through a theoretical construct (’model’) is basically always ’wrong’.
A complicated model (which is possibly not appropriately understood) is
often useless. Models should be chosen as ’simple’ objects.
George Box: ’All models are wrong’ (but some are useful)
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Remark - Test statistic
The test statistic should accomplish two things:

1. It should measure the discrepancy between the data and the null hypothesis H0

z =
x̄ − µ0

σ/
√

n

Otherwise the procedure was nonsense.

2. It should be chosen such that its distribution was known under H0

Z =
X̄ − µ0

σ/
√

n
H0
∼ N(0, 1)

Otherwise we can not judge the discrepancy in 1.
The abbreviation ′ H0

∼
′

in Z
H0
∼ N(0, 1) means that the left hand side is distributed

according to the right hand side, if the null hypothesis holds true, short: ’under
H0’

z measures the discrepancy of x̄ from µ0 in the units σ/
√

n, i.e., according to the
variability of X̄. Under H0, the ’typical’ deviation is one unit. In the data we
observed |z| ≈ 4.9 units. This is untypically large!

If on the other hand H0 does not hold true , i.e., if the Xi have an expectation µ1,
with µ1 , µ0, then Z is not distributed according to N(0, 1), as we did not center
correctly
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Otherwise the procedure was nonsense.
2. It should be chosen such that its distribution was known under H0

Z =
X̄ − µ0

σ/
√

n
H0
∼ N(0, 1)

Otherwise we can not judge the discrepancy in 1.

The abbreviation ′ H0
∼

′
in Z

H0
∼ N(0, 1) means that the left hand side is distributed

according to the right hand side, if the null hypothesis holds true, short: ’under
H0’
z measures the discrepancy of x̄ from µ0 in the units σ/

√
n, i.e., according to the

variability of X̄. Under H0, the ’typical’ deviation is one unit. In the data we
observed |z| ≈ 4.9 units. This is untypically large!
If on the other hand H0 does not hold true , i.e., if the Xi have an expectation µ1,
with µ1 , µ0, then Z is not distributed according to N(0, 1), as we did not center
correctly



Remark - p-value
p-value (quantifies discrepancy)

p = PH0(|Z| > |z|) ≈ 9 · 10−7

Probability to make an observation which is at least as extreme as in the data, if the null
hypothesis holds true.

−6 −4 −2 0 2 4 6

z

Distribution of Z under H0 : µ = 30

1−p

Index H0 again means : ’if the null hypothesis holds true’
p-value ’small’↔ If H0 holds true, then something unlikely has occurred↔
incompatibility of the the data and the assertion.
The choice of ’small’ / ’unlikely’ is to be fixed by the statistician in advance(!).
This is done by the choice of the significance level α ∈ (0, 1). Often α = 5%
Decision rule:

p 6 α↔ incompatible enough↔ reject null hypothesis
p > α↔ not incompatible↔ do not reject the null hypothesis
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Remark - p-value and rejection area

Significance level α ∈ (0, 1)

p-value: p = PH0(|Z| > |z|)

decision rule:

p 6 α

⇔ z ∈ R

↔ reject H0

↔ say: ’the discrepancy was significant’

p > α

⇔ z < R

↔ do not reject H0

↔ ’discrepancy was not significant’
A different point of view of the upper decision rule: the rejection area R

Reject H0 if and only if z ∈ R
set R to the tails of the distribution↔ rejection at high discrepancy
Set R such that PH0(Z ∈ R) = α. Here α = 5%→ R ≈ (−∞,−1.96] ∪ [1.96,∞)
Meaning: If H0 holds true, then we falsely reject with probability α
Equivalent to decision rule via p-value
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Remark - significance level

Significance level α ∈ (0, 1)

p-Wert: P = PH0(|Z| > |z|)

Decision rule:

p 6 α⇔ z ∈ R↔ reject H0 ↔ say: ’the discrepancy was significant’
p > α⇔ z < R↔ do not reject H0 ↔ ’discrepancy was not significant’
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Distribution of Z under H0

1 − α

R(eject) R(eject)

α 2 α 2

Decrease of α↔ smaller rejection area R, i.e., more ’strict’ with rejecting

popular choices: α = 5%, 1%, 0.1%.

Here: Reject H0 on the 5% level, but not on the 0.1% level

Important: The level α has to be chosen in advance! It is self-delusive to increase
α in order to reject!
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Remark - Interpretation
A skeptic colleague claims: ”the course is useless. The 16 students were just
over average beforehand!” And further he claims:
”The course was held by the lecturer a couple of times before. If all
participants that have ever taken the course had implemented this algorithm,
then the mean runtime would have been µ0 = 30.”
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● B (n=16)µ0

p = PH0(|Z| > |z|) ≈ 9 · 10−7

What is our opinion on that? (Apart from the fact, that we might find the
delicate statement inappropriate from an interpersonal level)

The data are not at all compatible with the assertion
If the colleague is right, then a discrepancy which is at least as extreme as
in the observed data, will occur in less than one of 1 million cases (as
p ≈ 9 · 10−7 < 10−6)
→ The data give us good reason to doubt the assertion!
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We cannot say anything about the huge unknown population / the null
hypothesis!
Rejecting the null hypothesis does not mean that its wrong or probably wrong!

Throughout the course we will stay in the realm of the so-called frequentists approach of statistics, where the

unknown parameters (like µ) are treated as non-random. In contrast, the Bayesian statisticians will want to make

probability statements about the parameter as in their world parameters are modeled as random variables.
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Two-sided and one-sided testing
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H0 rejected↔ z ∈ R

Let qα be the α-quantile of N(0, 1), i.e., P(Y < qα) = α for Y ∼ N(0, 1)
Differentiation between two-sided and one-sided tests

two-sided: null hypothesis H0 : µ = µ0 (→ alternative HA : µ , µ0)
R = (−∞, qα/2] ∪ [q1−α/2,∞)
p = PH0(|Z| > |z|)
Extreme values if z speak against the null hypothesis
left-sided: null hypothese H0 : µ > µ0 (→ alternative HA : µ < µ0)
R = (−∞, qα]
p = PH0(Z 6 z)
Small values of z speak against the null hypothesis
right sided: null hypothesis H0 : µ 6 µ0 (→ alternative HA : µ > µ0)
R = [q1−α,∞)
p = PH0(Z > z)
Large values of z speak against the null hypothesis
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In our example we could also have tested left-sided, because we knew in
advance that the mean of the observed runtimes was smaller than the
assertion, and we wanted to detect this fact of being ’faster’.

However, we preferably formulate hypothesis before we observe the data.
And it might have happened that the mean observed runtime was slower
(larger) than the assertion. This would then have suggested a ’negative
effect’, which would not been detected with a left-sided test.
Thus, depending on the context we need to decide of whether to perform
a one- or two-sided test. (Rule of thumb: two-sided)
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Errors and test power
Null hypothesis rejected (with prob) not rejected (with prob)
holds true

α-error (= α) (= 1 − α)
does not hold true (test power = 1 − β) β-error (= β)

1 − α

R

α

If H0 holds true

α-error: H0 is rejected although H0 holds true

The probability to commit the α-error is given through the choice of the
significance level α, as by construction PH0(Z ∈ R) = α

β-error: H0 is not rejected although H0 does not hold true

The probability β to commit the β-error depends on the concrete alternative

Test power 1 − β is the probability to reject H0, if H0 does not hold true

The question of whether we commit these errors can never be answered in practice,
because hypotheses are theoretical assumptions
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holds true α-error (= α) (= 1 − α)
does not hold true (test power = 1 − β) β-error (= β)

If H0 holds NOT true

R

β1 − β

If H0 holds NOT true

R

β1 − β
z

H0 rightly rejected, test power 1−β

α-error: H0 is rejected although H0 holds true

The probability to commit the α-error is given through the choice of the
significance level α, as by construction PH0(Z ∈ R) = α

β-error: H0 is not rejected although H0 does not hold true

The probability β to commit the β-error depends on the concrete alternative

Test power 1 − β is the probability to reject H0, if H0 does not hold true

The question of whether we commit these errors can never be answered in practice,
because hypotheses are theoretical assumptions



Thank you!


