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All examples are fictitious. All data are simulated and the graphics were
created with the statistical program package R.
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Reminder: χ2-test (goodnes of fit)
Is the die fair? (d = 6 sides, data: n = 120 times rolled)
observed frequencies: x1, · · · , xd

Model: let X = (X1, . . . , Xd)
t ∼ mult(n, p), with p ∈ (0, 1)d and

∑d
k=1 pk = 1

null hypothesis: H0 : p = (1/6, 1/6, . . . , 1/6)t (↔ ’fair’)
expected occupations under H0 EH0 [Xk] = n/6 = 20

k 1 2 3 4 5 6
∑

xk 21 22 16 17 19 25 120

EH0 [Xk] 20 20 20 20 20 20 120
The χ2-statistic (measures discrepancy of ’observed’ to ’expected under H0’)

x2 :=

d∑
k=1

(xk − EH0 [Xk])
2

EH0 [Xk]

=
(21 − 20)2

20
+· · ·+(25 − 20)2

20
=

1
20

+· · ·+25
20

=
56
20

= 2.8

x2 ’large’?

No! Comparison with χ2(5)-distribution (as X2 H0
∼ χ2(d − 1) approx)

→ x2 < R⇔ p > α = 5%→’If H0 holds true, then the discrepancy is not unlikely’
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Overview

So long:
χ2-test, good of fit:

One feature (here: outcome of the rolling die)

→ in d categories (here: colors)

data: frequencies / occupations
Question: How good do the observed frequencies fit the claimed
occupation probabilities?
Statistic: χ2-statistic

In the following:
χ2-test for independence:
Two features (e.g.,: 1. outcome of the die, and 2. underground used)
data: frequencies / occupations→ as above
Question: Is the first feature independent from the second feature?
Statistic: χ2-statistic→ as above

Message: On the one hand there is a different question (and setup)...
...on the other hand we will ’technically’ work with the same statistics
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Motivation

A game designer develops a four sided die
(sides: red, orange, green and blue)

She presents the cube to a broad audience (n = 230 people)...
...and claims that the outcome depends on the underground used: soft
underground systematically yielded different outcomes than solid
underground – a magic cube!
Are we skeptical? (→What do the data say?)
Each person from the audience is allowed to roll the die once:

first the underground has to be chosen, solid or soft (feature 1)...
...then on this underground the die is rolled and the outcome noted (feature 2)

The observed frequencies were as follows
xj,k side red orange green blue

xj,·

underground solid

25 22 19 14 80

soft

27 19 44 60 150

x·,k 52 41 63 74

n = 230

For example, 22 people chose the solid underground and then the die
showed the orange side
Also, we obtain the

column frequencies x·,k, the row frequencies xj,·, as well as
the total number n = 230
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Graphically

solid (nsolid=80) soft (nsoft=150)

frequencies of colors

0

20

40

60
depending on the underground

xj,k side red orange green blue xj,·

underground solid 25 22 19 14 80
soft 27 19 44 60 150

x·,k 52 41 63 74 n = 230

Question: what does ’independence of the features’ mean intuitively?
If the color did not depend on the underground, then the outcomes of
both undergrounds should show about the same distribution.
Here: at ’solid’ all colors show about the same frequency, while at ’soft’
e.g., the color blue appeared more than thrice as orange
Can this difference be explained easily by chance under independence?
Not really, when considering the standard errors

→more precisely: χ2-test for independence
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Model
n = 230 data in d = d1 · d2 = 8 categories

feature 1 (underground) has d1 = 2 categories
and feature 2 (color) has d2 = 4 categories
observed frequencies: x1,1, x1,2, · · · , x2,4 (xj,k → row j, column k)
Model: Let X = (X1,1, . . . , Xd1,d2)

t ∼ mult(n, p)

with p = (p1,1, . . . , pd1,d2)
t ∈ (0, 1)d1·d2 and

∑
j,k pj,k = 1

xj,k side red orange green blue xj,·

underground solid 25 22 19 14 80
soft 27 19 44 60 150

x·,k 52 41 63 74 n = 230

occupation probabilities red orange grün blue pj,·

solid

p1,1 p1,2 p1,3 p1,4 p1,·

soft

p2,1 p2,2 p2,3 p2,4 p2,·

p·,k

p·,1 p·,2 p·,3 p·,4
∑

= 1

while pj,k denotes the probability to fall into row j and column k
and the

row sums pj,·, the column sums p·,k, and total sum
∑

j,k pj,k = 1

Independence means, that

(e.g., p1,2 = p1,· · p·,2)

pj,k = P(row j and column k) = P(row j) · P(column k) = pj,· · p·,k
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Observed and expected frequencies
xj,k red orange green blue xj,·

solid 25 22 19 14 80
soft 27 19 44 60 150

x·,k 52 41 63 74 n = 230

EH0 [·] red orange green blue

solid n · p1,· · p·,1 n · p1,· · p·,2 n · p1,· · p·,3 n · p1,· · p·,4
soft n · p2,· · p·,1 n · p2,· · p·,2 n · p2,· · p·,3 n · p2,· · p·,4

Now we can compare ’observed’ and ’expected under H0’∑
j,k

(xj,k − n · pj,· · p·,k)2

n · pj,· · p·,k
(∗)

Problem: products pj,· · p·,k unknown in practice
Solution: Estimate marginal probabilities via marginal frequencies
More precisely: row proportions xj,·/n estimate row probabilities pj,· and
column proportions x·,k/n estimates column probabilities p·,k

i.e., (xj,· · x·,k)/n estimates n · pj,· · p·,k plugging into (∗) yields the χ2-statistic

x2 =
∑

j,k

(
xj,k −

xj,··x·,k
n

)2

xj,··x·,k
n
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≈ 19.3 ...is this a large value?

yes, as the comparison with the χ2-distribution reveals...
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ÊH0 [·] rot orange green blue

hard (80 · 52)/n (80 · 41)/n (80 · 63)/n (80 · 74)/n
soft (150 · 52)/n (150 · 41)/n (150 · 63)/n (150 · 74)/n

Now we can compare ’observed’ and ’expected under H0’∑
j,k

(xj,k − n · pj,· · p·,k)2

n · pj,· · p·,k
(∗)

Estimate marginal probabilities via marginal frequencies
i.e., (xj,· · x·,k)/n estimates n · pj,· · p·,k
plugging the estimator into (∗) yields the χ2-statistic

x2 =
∑

j,k

(
xj,k −

xj,··x·,k
n

)2

xj,··x·,k
n

≈ 19.3 ...is this a large value?

yes, as the comparison with the χ2-distribution reveals...



Observed and expected frequencies
xj,k red orange green blue xj,·

hard 25 22 19 14 80
soft 27 19 44 60 150

x·,k 52 41 63 74 n = 230
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The χ2-test for independence
Model: Let X = (X1,1, . . . , Xd1,d2)

t ∼ mult(n, p)
with p = (p1,1, . . . , pd1,d2)

t ∈ (0, 1)d1·d2 and
∑

j,k pj,k = 1

Under H0 : p = p0 := (p1,· · p·,1, . . . , pd1,· · p·,d2)
t ∈ (0, 1)d1·d2

and
∑d1

j=1 pj,· =
∑d2

k=1 p·,k = 1it holds (approximately)

X2 :=
∑

j,k

(
Xj,k −

Xj,··X·,k
n

)2

Xj,··X·,k
n

d≈ χ2((d1 − 1) · (d2 − 1))

in fact, it holds that X2 d−→ χ2((d1 − 1)(d2 − 1)) as n→∞

Here: d1 = 2, d2 = 4, i.e., X2 H0
∼ χ2(3) (approx)

for α = 5% the (1 − α)-quantile of the χ2(3)-distribution is q1−α ≈ 7.8
rejection area: R = [q1−α,∞) (one-sided, x2 large speaks against H0)
data: x2 = 19.3 ∈ R,→ reject H0
p ≈ 2.4 · 10−4.

If the features are independent, then in less than one of 4000
cases we observe a discrepancy, which is at least as extreme as in the data

solid (nsolid=80) soft (nsoft=150)

frequencies of colors

0

20

40

60
depending on the underground

0 5 10 15 20 25

Under H0: X
2 ≈ χ2(3)
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Remarks

It holds: X2 d−→ χ2((d1 − 1) · (d2 − 1)) under H0 as n→∞
Why (d1 − 1) · (d2 − 1) degrees of freedom?
Intuition: only (d1 − 1) · (d2 − 1) probabilities can be chosen ’freely’

The marginal probabilities

already fix the other probabilities e.g.,

pj,d2 = pj,· −

d2−1∑
k=1

pj,k

pj,k

p1,1 · · · p1,d2−1

p1,d2 p1,·

...
. . .

...

...
...

pd1−1,1 · · · pd1−1,d2−1

pd1−1,d2 pd1−1,·
pd1 ,1 · · · pd1 ,d2−1 pd1 ,d2 pd1 ,·

p·,1 · · · p·,d2−1 p·,d2

1

The convergence of X2 to the χ2-distribution is again reasonable, as
according to the central limit theorem we find every summand approx
distributed like a square of a N(0, 1)-distributed random variable (and
just (d1 − 1) · (d2 − 1) summands are ’free’).
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χ2-test in R
# Enter data

die_solid <- c("red","blue","blue",...)

die_soft <- c("blue","green","blue",...)

# Compute frequencies , e.g., via

x_solid <- table(die_solid)

x_soft <- table(die_soft)

# Combine frequencies , e.g., as a matrix

x <- rbind(x_solid,x_soft)

x

1 2 3 4

[1,] 25 22 19 14

[2,] 27 19 44 60

# Perform chiˆ2-test

chisq.test(x)

# Output

Pearson‘s Chi-squared test

data: x

X-squared = 19.295, df = 3, p-value = 0.0002376



Questions

On which test could you think?
Does the property ’smoker’ (yes/no) depend on the age group
(young/old)?

→ χ2-test for independence (2 features, smoker and age group)
Is the proportion of students, that regularly visit the cafeteria the same as
the proportion of those that do not visit the cafeteria?

→ χ2-goodness of fit test (1 feature, regular visit of cafeteria, p0 = 50%)

Between the majors math, physics and computer science, is there a
difference in the proportions of students that regularly drink coffee?

→ χ2-test for independence (2 features, coffee drinker and major)

Between the sports basketball, table tennis and swimming, is there a
difference in the mean body size (in m) of the sportsmen?

→ ANOVA, metric data
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Thank you!


