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Linear regression

n=100 p=-0.5
r=-0.48

[ I ]
Mx = 30x Mx Hx +30x

For comments please email: M. Messer, michael. messer@tuwien.ac.at



All examples are fictitious. All data are simulated and the graphics were
created with the statistical program package R.

The materials are protected by copyright and are only provided for personal
use for studies at TU Vienna. Further use is not permitted. In particular, it is
not permitted to distribute the materials or make them publicly available (e.g.
in social networks, on learning platforms, etc.).

Samtliche Beispiele sind frei erfunden. Alle Daten sind simuliert und die
Grafiken wurden mit statistischen Programmpaket R erstellt.

Die Materialien sind urheberrechtlich geschiitzt und diirfen ausschliefilich fiir
den Eigengebrauch im Rahmen des Studiums an der TU Wien genutzt
werden. Eine weitere Nutzung ist nicht gestattet. Insbesondere ist es nicht
gestattet, die Materialien zu verbreiten oder 6ffentlich zugdnglich zu machen
(etwa im Rahmen sozialer Netzwerke, Lernplattformen etc.).
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Reminder: Correlation

o Xi,...,X,1id.RVs, X; ~ N(ny, (7%). Here n = 100

Y1,..., Y, iid. RVs, Y1 ~ Ny, 0'5)

also let the pairs (X;, Y;)i—1,. ., be independent overi =1,2, ...

So long, nothing said about the relation between X; and Y;

This is accomplished (e.g.,) through the notion of correlation
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o Xi,...,X,1id.RVs, X; ~ N(ny, (7%). Here n = 100

Y1,..., Y, iid. RVs, Y1 ~ Ny, 0'5)

also let the pairs (X;, Y;)i—1,. ., be independent overi =1,2, ...

So long, nothing said about the relation between X; and Y;

This is accomplished (e.g.,) through the notion of correlation
Definition: For the RVs X and Y (with Var(X), Var(Y) € (0, c0)) their
correlation p is given as
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Y1,..., Y, iid. RVs, Y1 ~ Ny, 0'5)

also let the pairs (X;, Y;)i—1,. ., be independent overi =1,2, ...

So long, nothing said about the relation between X; and Y;

This is accomplished (e.g.,) through the notion of correlation
Definition: For the RVs X and Y (with Var(X), Var(Y) € (0, c0)) their
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Reminder: Correlation

o Xi,...,X,1id.RVs, X; ~ N(ny, (7%). Here n = 100

Y1,..., Y, iid. RVs, Y1 ~ Ny, 0‘5)

also let the pairs (X;, Y;)i—1,. ., be independent overi =1,2, ...

So long, nothing said about the relation between X; and Y;

This is accomplished (e.g.,) through the notion of correlation

Definition: For the RVs X and Y (with Var(X), Var(Y) € (0, c0)) their

correlation P is given as p is also known as Pearson’s coefficient of correlation
G, y) e OXY) EX— JE[X])(Y E[Ym

VVar(X) - /Var(Y) \/Var é/War
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Examples: Correlation
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@ p positive: the product (X — E[X]) - (Y — E[Y]) is positive in expectation.
Naively: if X larger than its expectation, then tendentially also Y larger
than its expectation, or the other way around, if X smaller than its
expectation, then also Y tendentially smaller than its expectation
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@ pnegative: the product (X — E[X]) - (Y — E[Y]) is negative in expectation.
Naively: if X larger than its expectation, then tendentially Y smaller than
its expectation, or vice versa
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Examples: Correlation
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Naively: if X larger than its expectation, then tendentially Y smaller than
its expectation, or vice versa



Properties of the correlation

@ The correlation p is a measure for the degree of the linear relation



Properties of the correlation
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@ The correlation p is a measure for the degree of the linear relation
@ p =0 < no linear relation (say: X and Y are uncorrelated)
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@ The correlation p is a measure for the degree of the linear relation
@ p =0 < no linear relation (say: X and Y are uncorrelated)
@ p > (0 & positive linear relation
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@ p > (0 & positive linear relation

@ p < 0 < negative linear relation
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The correlation p is a measure for the degree of the linear relation

p = 0 < no linear relation (say: X and Y are uncorrelated)

p > 0 < positive linear relation

p < 0 & negative linear relation

lpl = 1 < perfect linear relation Itholds p € [-1,1]
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o For realizations (x;, ¥i)i=12,..» estimate p through the empirical correlation
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here: » =~ 0.78
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o For realizations (x;, ¥i)i=12,..» estimate p through the empirical correlation

@ inRvia cor()
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here: r ~ 0.78 Itisr € [-1,1]



Perfect linear relation for p = 1
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@ p = 1: the points lie on a line y = by + b;x.
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@ p = 1: the points lie on a line y = by + by x.
@ For the slope by and the intercept by it holds
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o itisy; =by+ byx;foralli=1,2,...,n
e Summation: ) ;yi =Y ;(bo+ bix;) =nby+ b1 Y ; x;
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e division through n yields: 7 = by + b1 X



Perfect linear relation for p = 1

b= and by=y—b %

Wy + 30y

Hy
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X
o ad intercept by:
o itisy; =by+ byx;foralli=1,2,...,n
e Summation: ) ;yi =Y ;(bo+ bix;) =nby+ b1 Y ; x;
e division through n yields: 7 = by + b1 X

@ Thus: by = 7 — b1 X. Graphically: the line passes the center of mass (¥, 77)



Perfect linear relation for p = 1

=2 and by=y—b %

Sy
n=100 p = 1
>
<3
[32]
+
> o
< =
z 8
> £
. |E
g |=
7
S
=3
I T -
\ \ \
px —30x Mx x +30x

@ ad slope b;:



Perfect linear relation for p = 1

=2 and by=y—b %

n=100 p=1

N

o}

32}

+

> =

= =

z 8
> H

. |E

e

o™

|

.

=3

[ I 1
px —30x Mx x +30x

X

@ ad slope b;:
o itisy; =by+ byx;foralli=1,2,...,naswell as § = by + b1 X



Perfect linear relation for p = 1

=2 and by=y—b %

n=100 p=1

N

o}

32}

+

> =

= =

z 8
> H

. |E

e

o™

|

.

=3

[ I 1
px —30x Mx x +30x

X

@ ad slope b;:
o itisy; =by+ byx;foralli=1,2,...,naswell as § = by + b1 X

o difference and squaring: (y; — ) = b?(x; —X)* foralli =1,2,...
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@ ad slope b;:
itisy; = by + byx; foralli=1,2,...,nas well as § = by + b1 X
difference and squaring: (y; —%)* = b?(x; —x)? foralli=1,2,...,n
summation and division throughn —1: -1 > (y; —9)* =12 - -5 3, (x; — X)?
square-root: b; = s, /s,
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@ y; is ‘explained’ by x;
@ the line passes the center of mass (X, )
o regarding the slope think in the standard deviations
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In summary: X
@ y; is ‘explained’ by x;
@ the line passes the center of mass (X, )
o regarding the slope think in the standard deviations
o one step to the right of size s, results in an increase of size s,
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o regarding the slope think in the standard deviations
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e but this particular slope is a consequence of the special case p = 1
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In summary: X

@ y; is ‘explained’ by x;

@ the line passes the center of mass (X, )

o regarding the slope think in the standard deviations
o one step to the right of size s, results in an increase of size s,
e but this particular slope is a consequence of the special case p = 1
e general p induces the factor r (empirical correlation)...
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@ For |p| # 1 the relation is ‘only” approximately linear
@ ;i = o+ P1x; +e;
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@ For |p| # 1 the relation is ‘only” approximately linear

® yi = o+ P1xi +ei
e while ¢; is denoted the (i-th) error, respectively, the (i-th) residual



General: linear relation plus error
n=100 p=0.6

Hy + 30y

Hy

Wy — 30y

[ I 1
Ux —30x Px Hx +30x

X
@ For |p| # 1 the relation is ‘only” approximately linear
@ ;i = o+ P1x; +e;

e while ¢; is denoted the (i-th) error, respectively, the (i-th) residual
o thus the assumed relation is: linear proportion plus error



RegrQSSion line google: C. F. Gaufl
n=100 p=0.6
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@ ;i = o+ P1x; +e;
@ in principle there are many possible lines
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® yi = o+ P1xi +ei
@ in principle there are many possible lines
@ Definition: the line, which minimizes the sum of squares of the residuals,
is called the regression line
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® yi = o+ P1xi +ei
@ in principle there are many possible lines
@ Definition: the line, which minimizes the sum of squares of the residuals,
is called the regression line
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n=100 p=0.6
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Yi = Po+ Pixi tei

in principle there are many possible lines

Definition: the line, which minimizes the sum of squares of the residuals,
is called the regression line

i.e., search Bpand i suchthat Y ! ¢ =31  (y; — [Bo + B1x])* minimal
the minimizers by and b; yield the regression line y = by + b1 x



RegreSSion line google: C. F. Gaufl
n=100 p=0.6
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yi = Bo + B1xi +e;

in principle there are many possible lines

Definition: the line, which minimizes the sum of squares of the residuals,
is called the regression line

i.e., search Bpand i suchthat Y ! ¢ =31  (y; — [Bo + B1x])* minimal
the minimizers by and b; yield the regression line y = by + b1 x

procedure called ‘method of least squares’



RegreSSion line google: C. F. Gaufl
n=100 p=0.6

Hy + 30y

Hy

Wy — 30y

[ I 1
Ux —30x Px Hx +30x

X
yi = Bo + B1xi +e;
in principle there are many possible lines
Definition: the line, which minimizes the sum of squares of the residuals,
is called the regression line
i.e., search Bpand i suchthat Y ! ¢ =31  (y; — [Bo + B1x])* minimal
the minimizers by and b; yield the regression line y = by + b1 x
procedure called ‘method of least squares’

the estimators by and b; are the least-squares estimators for 3o and
1
greek [3; <> parameters (“unknown’), latin b; <+ statistics / estimators (’known’, functions of the (x;, y;);)



Regression line: by and by

For the slope and the intercept of the regression line it holds
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Meaning:



Regression line: by and by

For the slope and the intercept of the regression line it holds
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Meaning:
o the regression line passes the center of mass (¥, )



Regression line: by and by

For the slope and the intercept of the regression line it holds

Sx

n=100 p=0.6

My + 30y

Hy
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X
Meaning:
o the regression line passes the center of mass (¥, )
@ one step to the right of size s, yields an increase of size r - s,



Regression line: by and by

For the slope and the intercept of the regression line it holds

Sx

n=100 p=0.6
N r=0.57
3
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B
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[ I 1
px = 30x Hx Hx +30x
X
Meaning:
o the regression line passes the center of mass (¥, )

@ one step to the right of size s, yields an increase of size r - s,
For the derivation of by and by see e.g., Messer, M. and Schneider, G. Statistik: Theorie und Praxis im Dialog,
Springer Berlin



Regression line: examples
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Regression line: examples
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@ in fact, the data have their own standard deviations s, and s,



Regression line: examples
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@ in fact, the data have their own standard deviations s, and s,
@ however, the relation is negligible r ~ —0.01



Regression line: examples

My + 30y

Hy

Wy =30y

[ I |
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@ in fact, the data have their own standard deviations s, and s,
@ however, the relation is negligible r ~ —0.01

@ and thus, the regression line is found flat
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Regressionsgerade: examples
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by :y—bl X
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Data analysis: regression line

@ Is there a relation between age and weight in teenage years?
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Data analysis: regression line

@ Is there a relation between age and weight in teenage years?

@ the relation is approximately linear, i.e., y; = Bo + B1X; + ¢
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Data analysis: regression line
@ Is there a relation between age and weight in teenage years?

°
@ the relation is approximately linear, i.e., y; = Bo + B1X; + ¢
@ the data show a strong positive correlation, r ~ 0.9
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Data analysis: regression line
@ Is there a relation between age and weight in teenage years?

the relation is approximately linear, i.e., y; = Bo + B1x; + ¢;
the data show a strong positive correlation, » ~ 0.9

°
°
°
@ For the regression line we estimate by ~ 6.7[kg] and b; ~ 3.3[kg/year]

n=20
r=0.9
o y =bg +b1x
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Data analysis: regression line
@ Is there a relation between age and weight in teenage years?

the relation is approximately linear, i.e., y; = Bo + B1x; + ¢;

the data show a strong positive correlation, » ~ 0.9

For the regression line we estimate by ~ 6.7[kg] and b; ~ 3.3[kg/year]
interpretation: per year the weight of a teenager increases about 3.3kg in the mean
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Data analysis: regression line

@ Is there a relation between age and weight in teenage years?
the relation is approximately linear, i.e., y; = Bo + B1x; + ¢;
the data show a strong positive correlation, » ~ 0.9
For the regression line we estimate by ~ 6.7[kg] and b; ~ 3.3[kg/year]
interpretation: per year the weight of a teenager increases about 3.3kg in the mean
prediction: a 16-year old weighs in the mean 6.7 4 3.3 - 16 = 59.5kg
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Data analysis: regression line

weight [kg]

Is there a relation between age and weight in teenage years?

the relation is approximately linear, i.e., y; = Bo + B1x; + ¢;

the data show a strong positive correlation, » ~ 0.9

For the regression line we estimate by ~ 6.7[kg] and b; ~ 3.3[kg/year]
interpretation: per year the weight of a teenager increases about 3.3kg in the mean

prediction: a 16-year old weighs in the mean 6.7 4 3.3 - 16 = 59.5kg
Attention: predictions meaningful only in the observed range [13,19].
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Data analysis: regression line

weight [kg]

Is there a relation between age and weight in teenage years?

the relation is approximately linear, i.e., y; = Bo + B1x; + ¢;

the data show a strong positive correlation, » ~ 0.9

For the regression line we estimate by ~ 6.7[kg] and b; ~ 3.3[kg/year]
interpretation: per year the weight of a teenager increases about 3.3kg in the mean

prediction: a 16-year old weighs in the mean 6.7 4 3.3 - 16 = 59.5kg
Attention: predictions meaningful only in the observed range [13,19]. 80-year old
people do not weigh about 270kg.
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Data analysis: regression line

weight [kg]

Is there a relation between age and weight in teenage years?

the relation is approximately linear, i.e., y; = Bo + B1x; + ¢;

the data show a strong positive correlation, » ~ 0.9

For the regression line we estimate by ~ 6.7[kg] and b; ~ 3.3[kg/year]
interpretation: per year the weight of a teenager increases about 3.3kg in the mean
prediction: a 16-year old weighs in the mean 6.7 4 3.3 - 16 = 59.5kg

Attention: predictions meaningful only in the observed range [13,19]. 80-year old
people do not weigh about 270kg. Similarly, the intercept by = 6.7 is biologically

meaningless (newborns don’t weigh about 6.7kg in the mean)
n=20
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y =bg+b;x
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Regression line in R

# Enter data, x- and y- values as vectors
x <- c(...)
y

<- c(...)
# Calculate regression line
Im(y"x)
# Output
Call:

Im(formula = y x)

Coefficients:
(Intercept) X
6.701 3.322

o Im(y~x) means: describe the y; as a linear function of the x; plus error,
thus y; = Bo + B1 - Xi + ¢;, and estimate the intercept 3o and the slope (31
through least-squares (1m() for 'linear model’).

o the estimated intercept is by ~ 6.7 and the estimated slope is b; =~ 3.3.
@ the regression line can be added to a plot via abline (Im(y~x)).
@ Alternatively 'by hand’ as before: by =1 -s,/sy and by = 7 — by - X.



Significance test for the slope

@ by~6.7and b; ~ 3.3
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Significance test for the slope

weight [kg]

n = 20 teenagers asked for their age and weight — data (x;, ¥i)i=1,.n
by ~ 6.7 and b; ~ 3.3
question: can the positive relation observed in the data have easily happened by

chance, if there was actually no difference in the mean weights in population of
all teenagers between 13 and 19 years?
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Significance test for the slope

weight [kg]

@ n = 20 teenagers asked for their age and weight — data (x;, yi)i=1
@ by~6.7and b; ~ 3.3

@ question: can the positive relation observed in the data have easily happened by
chance, if there was actually no difference in the mean weights in population of
all teenagers between 13 and 19 years?

@ Answers: this depends on the variability of the estimated slope b,
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Significance test for the slope
@ n = 20 teenagers asked for their age and weight — data (x;, yi)i=1
@ by~ 6.7and b; ~ 3.3

@ question: can the positive relation observed in the data have easily happened by
chance, if there was actually no difference in the mean weights in population of
all teenagers between 13 and 19 years?

@ Answers: this depends on the variability of the estimated slope b,

@ More precisely, need a statistical model in which we can speak about the
variability of the estimated slope
n=20

r=0.9
y =hg +byx

weight [kg]
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Linear regression model

@ Model: Fori=1,...,nlet
Yi=Bo+B1-x +0Z,

with Z4,...,Z,iid. RVsand Z; ~N(0,1), and (Bg,B1,0) € R x R x R*
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o The pairs (x;, y;); are given data and y; is interpreted as a realization of Y;
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@ Y; depends on linear proportion 39 + (3; - x; as well as a random error 0Z;
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@ Model: Fori=1,...,nlet
Y = Bo+B1-x +0Z,
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@ The pairs (J?i,[qui)i ]are given data and y; is interpreted as a realization of Y;
@ Y; depends on linear proportion 39 + (3; - x; as well as a random error 0Z;
@ consequence: in the context of the model, the least-squares estimators By
and B, for 3 and 31 become random statistics...
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@ Model: Fori=1,...,nlet
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o The pairs (x;, y;); are given data and y; is interpreted as a realization of Y;
@ Y; depends on linear proportion 39 + (3; - x; as well as a random error 0Z;
@ consequence: in the context of the model, the least-squares estimators By
and B, for 3y and 31 become random statistics...and have a standard error



Linear regression model
@ Model: Fori=1,...,nlet
Yi=Po+P1-xi+ 0Z;,

with Zy,...,Z,iid. RVsand Z; ~N(0,1), and (Bg,B1,0) € R xR x R*
@ Null hypothesis: Hp : 31 = 0 (no relation of age and weight)
Intuitively implausible, as around x; ~ 14 all y; in the lower tail, while for x; ~ 18 all y; in the upper tail
n =20 Ho:B1=0

EEANENIN
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o The pairs (x;, y;); are given data and y; is interpreted as a realization of Y;
@ Y; depends on linear proportion 39 + (3; - x; as well as a random error 0Z;
@ consequence: in the context of the model, the least-squares estimators By
and B, for 3y and 31 become random statistics...and have a standard error
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with Zy,...,Z,1id. RVsand Z; ~N(0,1), and (Bo,P1,0) € Rx R x R*
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@ By and B least-squares estimators for 39 and 3
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@ Model: Fori=1,...,nlet
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@ the variance 0” is estimated from the residuals via
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Linear regression model
@ Model: Fori=1,...,nlet
Yi=Po+P1-xi+0Z;

with Zy,...,Z,1id. RVsand Z; ~N(0,1), and (Bo,P1,0) € Rx R x R*
n=20

weight [kg]
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@ By and B least-squares estimators for 39 and 3
@ the variance 0” is estimated from the residuals via

— (Bo + By - x;)1?

,,I 7’1—2

@ Definition: S, is called the standard error of the regression



Standard error of the slope B; — Definition

@ By and B least-squares estimators for 39 and 3
o Definition: The standard error of the slope B; is

while

1 n
5= J n—2 Z[Yi_ (B + By - x;)12

i=1

denotes the standard error of the regression and

1 n
2 _ AV
%7n*1§f% x)
1=

is the (non-random) empirical variance of the data (x;);




Standard error of the slope B; — Definition

@ By and B least-squares estimators for 3y and (3
o Definition: The standard error of the slope B; is

SEg, := Sr
Sy n—1
while
1 n
S = — Z[Yi — (Bo + B1 - x)I?

i=1

denotes the standard error of the regression and

1 n
2 _ AV
%7n*1§f% x)
1=

is the (non-random) empirical variance of the data (x;);
Note: In general a standard error denotes an estimator for the standard deviation of a statistic, for example

@ the standard error of the regression S, estimates Var(Y;)/? = o
@ the standard error of the slope SEp, estimates WVar(B1)Y/? = o /(sy vn — 1) (latter equality not shown)
@ the standard error of the mean SEM estimates Var(Z)'/2 = o/ y/n (not used in this context)



Standard error of the slope B; — Intuition
o The standard error of the slope By is

SE S
oLbp, =
Sy-vVn—1
=3 s=1.7 n=20
S
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Why is SEg, plausible? In other words: How "variable’ is the regression line?



Standard error of the slope B; — Intuition
o The standard error of the slope By is
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Why is SEg, plausible? In other words: How "variable’ is the regression line?
It is “intuitively stable” if
@ S, (the estimator for o) is small here on right side



Standard error of the slope B; — Intuition
o The standard error of the slope By is
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Why is SEg, plausible? In other words: How "variable’ is the regression line?
It is “intuitively stable” if
@ S, (the estimator for o) is small
@ s, (the variability of the (x;); data) is large here on left side



Standard error of the slope B; — Intuition
o The standard error of the slope By is

SE/; =

Sy-vVn—1

o=3 Sy=1.7 n=20 o=3 sy=1.7 n=200
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Why is SEg, plausible? In other words: How "variable’ is the regression line?
It is “intuitively stable” if
@ S, (the estimator for o) is small
@ s, (the variability of the (x;); data) is large
@ 7 (the number of observations) is large here on right side



Significance test for the slope B,
@ Fori=1,...,nlet
Yi=Bo+P1-xi+0Z;
with Zy,...,Z,1id. RVsand Z; ~N(0,1), and (Bo,R1,0) € Rx R x R"
® g1_u /2 the (1 — a/2)-quantile of the t(n — 2)-distribution

Under Hy : 1 = [350) it holds
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Significance test for the slope B,
@ Fori=1,...,nlet
Yi=Bo+P1-xi+0Z;
with Zy,...,Z,1id. RVsand Z; ~N(0,1), and (Bo,R1,0) € Rx R x R"
® g1_u /2 the (1 — a/2)-quantile of the t(n — 2)-distribution
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and equivalently: the confidence interval
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overlaps Bgm with probability 1 — o

o known structure: T = (d — &) /band [ = (6 —g-H», d+g- &)



Significance test for the slope B,
@ Fori=1,...,nlet
Yi=Bo+P1-xi+0Z;
with Zy,...,Z,1id. RVsand Z; ~N(0,1), and (Bo,R1,0) € Rx R x R"
® g1_u /2 the (1 — a/2)-quantile of the t(n — 2)-distribution

Under Hy : 1 = [350) it holds

By — Bim

T:=
SEg,

~tn—2)

and equivalently: the confidence interval
I:= (B] —J1—x/2" SEIM; By +Q1,0¢/2 . SE/;‘ )

overlaps Bgm with probability 1 — o

o known structure: T = (d — &) /band [ = (6 —g-H», d+g- &)
o typically: null hypothesis [350) = 0 ¢+ no relation




Significance test for the slope B,
@ Fori=1,...,nlet
Yi=Bo+P1-xi+0Z;
with Zy,...,Z,1id. RVsand Z; ~N(0,1), and (Bo,R1,0) € Rx R x R"
® g1_u /2 the (1 — a/2)-quantile of the t(n — 2)-distribution

Under Hy : 1 = [350) it holds

By — Bim

T:=
SEg,

~tn—2)

and equivalently: the confidence interval
I:= (B] —J1—x/2" SEIM; By +Q1,0¢/2 . SE/;‘ )

overlaps Bgm with probability 1 — o

o known structure: T = (d — &) /band [ = (6 —g-H», d+g- &)
o typically: null hypothesis [350) = 0 ¢+ no relation
@ In the model both 3) and (3; are estimated, thus df =n —2
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Data analysis: significance test for the slope

n=20
;2 8 Under Hy: T~t(18)
2 r Ya/2 G1-a/2 o
= 8
A
? T T — \ T |_)\
13 15 17 19 -10 -5 0 5 10
age [years]
@ evaluation of the data . by —0 _ 8.7
5€p, '
o for the significance level « = 5% itis q1_,» ~ 2.1
@ — rejection area R ~ (—o0, —2.1] U [2.1, c0) (two-sided)
@ Ast € Rwereject Hy : 31 = 0 on the 5%-level
e the p-valueis p = Py, (IT| > [t|) ~ 7.5 - 1078 (tiny)
@ Interpretation: The positive relation observed in the data is barely

compatible with the assertion that there is no relation.



Data analysis: significance test for the slope

weight [kg]

70

60

50

40

n=20
Under Hy: T~t(18)
r Ya/2 G1-a/2 o
t
= -
[ I T I 1
13 15 17 19 -10 -5 0 5 10
age [years]
evaluation of the data . by —0 _ 8.7

5€p,
for the significance level « = 5% itis q;_/» ~ 2.1
— rejection area R =~ (—oo, —2.1] U [2.1, 0c0) (two-sided)
Ast € Rwereject Hy : 31 = 0 on the 5%-level
the p-value is p = Py, (IT| > [t|) ~ 7.5 - 1078 (tiny)
Interpretation: The positive relation observed in the data is barely
compatible with the assertion that there is no relation. If Hy holds true,
then we observe in less than one of 107 cases a relation that is at least as
extreme as the relation observed (p < 1077)



Significance test for slope B; using R

# Enter data, x- and y- values as vectors
x <- c(...)

y <- c(...)

# compute regression line

rg <- lm(y™"x)

# perform test

summary (rg)

# Output
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 6.7005 6.0949 1.099 0.286
X 3.3222 0.3826 8.684 7.47e-08 ***

@ 2nd row: slope, 1st row: intercept (usually not interesting)
@ by ~ 33,50, ~04,t~87,p~75-10"8

@ there are also other statistics returned (not shown here), for example a
summary of the residuals or the standard error of the regression s,, etc.



Check model assumptions
@ Model: Fori=1,...,nlet

Yi=Bo+B1-x+ 07,
with Zy,...,Z,1id. RVsand Z; ~N(0,1), and (Bo,P1,0) € Rx R x R*
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@ linear model: observe a linear proportion plus error
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e constant variance 0?: the spread of the errors does not change with age



Check model assumptions
@ Model: Fori=1,...,nlet

Yi=Bo+B1-x+ 07,
with Zy,...,Z,1id. RVsand Z; ~N(0,1), and (Bo,P1,0) € Rx R x R*
n=20

(=3
©

weight [kg]

o
)

o
<

13 15 17 19
age [years]
@ linear model: observe a linear proportion plus error
@ normal distributed errors: the data are distribute bell-shaped around the
line
e constant variance 0?: the spread of the errors does not change with age
@ independence: it is plausible to assume the errors as independent, as the
teenagers were ‘randomly’ chosen for the survey. Besides linearity we
observe no further ’structure’ in the data
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data in [14, 18]
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@ estimate regression line via eye
@ slope: b; =~ (70 —50)/(19 —13) =20/6 ~ 3
@ standard error of the slope: s¢;,, =s,/(sy- vn—1)~3/(2-4) =3/8
o Vn—1=+V19~4
e standard deviation of the data (x;);: sy =~ 2, as X ~ 16 and about 2/3 of the
data in [14, 18]
e standard error of the regression: s, ~ 3, captures about 2/3 of the data
‘around the regression line’



Linear regression naively
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@ estimate regression line via eye
@ slope: b; =~ (70 —50)/(19 —13) =20/6 ~ 3
@ standard error of the slope: s¢;,, =s,/(sy- vn—1)~3/(2-4) =3/8
o Vn—1=+V19~4
e standard deviation of the data (x;);: sy =~ 2, as X ~ 16 and about 2/3 of the
data in [14, 18]
e standard error of the regression: s, ~ 3, captures about 2/3 of the data
‘around the regression line’

@ =by/se, =~ 8 (huge!)



Linear regression naively

n=20
]
5 s 1 1
age [years]
@ estimate regression line via eye
@ slope: b; =~ (70 —50)/(19 —13) =20/6 ~ 3
@ standard error of the slope: s¢;,, =s,/(sy- vn—1)~3/(2-4) =3/8
o Vn—1=+V19~4
e standard deviation of the data (x;);: sy =~ 2, as X ~ 16 and about 2/3 of the
data in [14, 18]
e standard error of the regression: s, ~ 3, captures about 2/3 of the data
‘around the regression line’
@ =by/se, =~ 8 (huge!)
o for o = 5% the rejection area is R ~ (—o0, —2] U [2, o0)



Linear regression naively
n=20

weight [kg]
60 70

50

40

13 15 17 19

age [years]
estimate regression line via eye
slope: by ~ (70 —50)/(19 —13) =20/6 ~ 3
standard error of the slope: s¢;,, =s,/(sy- vn—1)~3/(2-4) =3/8
o Vn—1=+V19~4
e standard deviation of the data (x;);: sy =~ 2, as X ~ 16 and about 2/3 of the
data in [14, 18]
e standard error of the regression: s, ~ 3, captures about 2/3 of the data
‘around the regression line’
t =b1/se;, = 8 (huge!)
for « = 5% the rejection area is R ~ (—oo0, —2] U [2, 00)
reject Hy



Thank you!



