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All examples are fictitious. All data are simulated and the graphics were
created with the statistical program package R.

The materials are protected by copyright and are only provided for personal
use for studies at TU Vienna. Further use is not permitted. In particular, it is
not permitted to distribute the materials or make them publicly available (e.g.
in social networks, on learning platforms, etc.).

Sämtliche Beispiele sind frei erfunden. Alle Daten sind simuliert und die
Grafiken wurden mit statistischen Programmpaket R erstellt.

Die Materialien sind urheberrechtlich geschützt und dürfen ausschließlich für
den Eigengebrauch im Rahmen des Studiums an der TU Wien genutzt
werden. Eine weitere Nutzung ist nicht gestattet. Insbesondere ist es nicht
gestattet, die Materialien zu verbreiten oder öffentlich zugänglich zu machen
(etwa im Rahmen sozialer Netzwerke, Lernplattformen etc.).



Reminder
At four universities students of a certain study program were interviewed
regarding the level of their satisfaction with the study situation. An extensive
survey had to be filled out. Subsequently, for every respondent a global value
of ’contentment’ was evaluated.
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Reminder: two-sample situation
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Data x1, . . . , xn1 , y1, . . . , yn2

Mean x̄ and ȳ far apart?
Depends on the standard errors semx = sx/

√
n1 and semy = sy/

√
n2

In the model X1, . . . , Xn1 , Y1, . . . , Yn2 independent RVs with
Xi ∼ N(µ1,σ2

1) for i = 1, . . . , n1 and
Yj ∼ N(µ2,σ2

2) for j = 1, . . . , n2 with (µ1,σ2
1,µ2,σ2

2) ∈ R×R+×R×R+

it holds under H0 : µy − µx = d0 that T := (Ȳ−X̄)−d0√
SEM2

y+SEM2
x
∼ t(ν) (R knows ν)

Judge data via t = (ȳ−x̄)−d0√
sem2

y+sem2
x

according to the t(ν)-distribution

Example: for d0 = 5 it is p > α = 5% resp. t < R, thus do not reject H0 on
the α-level
In practice often d0 = 0, i.e., ’no shift’→ here rejected

This is the Welch-test. Remember that there is also Student’s t-test, were equal variances σ2
1 = σ2

2 are assumed,

for which we found under H0 that T ∼ t(n1 +n2 − 2) while a different scaling was used in T (’pooled variance’)
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sem2

y+sem2
x

according to the t(ν)-distribution

Example: for d0 = 5 it is p > α = 5% resp. t < R, thus do not reject H0 on
the α-level
In practice often d0 = 0, i.e., ’no shift’→ here rejected

This is the Welch-test. Remember that there is also Student’s t-test, were equal variances σ2
1 = σ2

2 are assumed,

for which we found under H0 that T ∼ t(n1 +n2 − 2) while a different scaling was used in T (’pooled variance’)



Reminder: two-sample situation

contentment
U

ni

30 40 50 60 70 80

A

B n =

16
25

|

|

Data x1, . . . , xn1 , y1, . . . , yn2

Mean x̄ and ȳ far apart?
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Mean x̄ and ȳ far apart?
Depends on the standard errors semx = sx/

√
n1 and semy = sy/

√
n2

In the model X1, . . . , Xn1 , Y1, . . . , Yn2 independent RVs with
Xi ∼ N(µ1,σ2

1) for i = 1, . . . , n1 and
Yj ∼ N(µ2,σ2

2) for j = 1, . . . , n2 with (µ1,σ2
1,µ2,σ2

2) ∈ R×R+×R×R+

it holds under H0 : µy − µx = d0 that T := (Ȳ−X̄)−d0√
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The t-statistic says:
the discrepancy between the groups is large,
if the variability within the groups is small



Today: Comparison of k > 2 groups
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Here k = 4 groups

Two possibilities to deal with that:
Multiple pairwise t-tests
Analysis of variance (ANOVA)
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Multiple testing
Multiple pairwise t-tests: for every pair a two-sample t-test
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Naive: Discrepancy between A and D small, between B and D large
k = 4 groups→ six t-tests (d0 = 0, no shift)

groups A/B A/C A/D B/C B/D C/D
p-value

0.004 0.067 0.710 0.090 0.001 0.014

red: p < 5%, green: p > 5%
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Multiple testing

With 4 groups the number of t-tests performed is 6

How many t-tests do we have to perform with k groups?

Answer:

m =

(
k
2

)
(the number of 2-element subsets of a k-element set)

We mention that

m =
k(k − 1)

2
grows quadratically in k
Meaning: the number of tests to perform increases rapidly with the
number of groups
. . . and the application of many statistical tests brings a
conceptional problem . . .
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and we knew, that the null hypothesis H0 was true
What was the probability to commit the α-error (i.e., falsely reject) in at
least one of the tests?

In the picture α = 5%
Message: The probability to commit the α-error at least once tended to 1,
for m→∞ (’α-error cumulation’)
And this is bad news! If we only perform enough tests, then the null
hypothesis will be rejected at some point (even if it was always true)
Meaning for practice: do not perform unnecessary tests!
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m (independent) tests at level α
Assume H0 always holds true
Looking for the probability to commit the α-error at least once

Let Vi be the event, that the i-th null hypothesis is rejected

m = 1
PH0(V1) = α

by construction of the test
m = 2:

PH0(V1 ∪ V2) = 1 − PH0(V
c
1 ∩ Vc

2) = 1 − PH0(V
c
1)PH0(V

c
2) = 1 − (1 − α)2

used: P(’at least one’) = 1 − P(’none’) as well as indpendence
general m:

PH0(

m⋃
i=1

Vi) = 1−PH0(

m⋂
i=1

Vc
i ) = 1−

m∏
i=1

PH0(V
c
i ) = 1 − (1 − α)m

→ 1 (m→∞)
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Way out: Bonferroni correction

m tests at level α
Problem: the global α-error is increased

A possible way out: be more ’strict’ with each of the m tests
More precisely: Correct the original significance level α to

α∗ =
α

m

known as the Bonferroni-correction (’divide by number of tests’)
Consequence: the probability to commit the α-alpha error at least once is
restricted by α
Quantitatively:

PH0(

m⋃
i=1

Vi) 6
m∑

i=1

PH0(Vi) = m · α∗ = α

Alternatively: Use the original level α, but correct every p-value p to

p∗ = m · p

(’multiplication with the number of tests’)
Equivalent, as p 6 α∗ ⇔ p∗ 6 α
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Multiple testing and Bonferroni-correction

contentment

U
ni

30 40 50 60 70 80

A
B
C
D

n =

36
25
16
25|

|
|

|

groups A/B A/C A/D B/C B/D C/D
p-value p (prior Bonferroni) 0.004 0.067 0.710 0.090 0.001 0.014
p-value p∗ (after Bonferroni)

0.024 0.268 1 0.540 0.006 0.084

red: < 5%, green: > 5%

Bonferroni: multiply the original p-value with m = 6

One additional null hypothesis cannot be rejected after the Boferroni
correction.

We are more strict!
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correction.
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k = 4 groups
m = 6 pairwise t-tests→ the global α-error is increased

Another possible ’way out’:
The analysis of variance

short ANOVA
Basic idea: test all k groups simultaneously
Null hypothesis: the data all derive from the same normal distribution
(→ particularly no shift)
Intuitively in the graphic: this is not very plausible, because the group
means are partly far away (multiple sem) from each other
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ANOVA - Model
Model:
Let X1,1, . . . , X1,n1 , X2,1, . . . , X2,n2 , . . . , Xk,1, . . . , Xk,nk be independent RVs
and for i = 1, . . . , k let Xi,j ∼ N(µi,σ2) for j = 1, . . . , ni,
with (µ1, . . . ,µk,σ2) ∈ Rk ×R+

A
B
C
D

ni=

36
25
16
25

Notation

k groups
ni observations in the i-th group
the j-th observation in the i-th group is Xi,j

Assumptions

independence
normal distribution
own (unknown) expectation µi in the i-th group (i.e., possible ’shift’ between
groups)
the variance σ2 is constant

Note that for k = 2 groups, this model equals the model in Student’s two-sample t-test.
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ANOVA - Null hypothesis

Let X1,1, . . . , X1,n1 , X2,1, . . . , X2,n2 , . . . , Xk,1, . . . , Xk,nk be independent RVs
and for i = 1, . . . , k let Xi,j ∼ N(µi,σ2) for j = 1, . . . , ni,
with (µ1, . . . ,µk,σ2) ∈ Rk ×R+

A
B
C
D

ni=

36
25
16
25

Null hypothesis: H0 : µ1 = µ2 = · · · = µk
the distributions are equal, in particular no shift

Alternative: at least two expectations are not equal, µi , µ`

How can we test the null hypothesis?
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Reminder: t-Statistic
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The t-statistic says:
the discrepancy between the groups is large,
if the variability within the groups is small



Idea of the ANOVA analog
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The f -statistic will tell us:
the variability between the groups is large,
if the variability within the groups is small



F-Statistic
Naive:

f !
=

’variability between the groups’
’variability within the groups’
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25

Need 1.: group means, for i = 1, . . . , k

X̄i,· :=
1
ni

ni∑
j=1

Xi,j

Need 2.: global mean over all groups

X̄ :=
1
n

∑
i,j

Xi,j

with n = n1 + · · ·+ nk total number of observations
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F-Statistic (google: R. A. Fisher)
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X̄i,· =
1
ni

∑ni
j=1 Xi,j and X̄ = 1

n

∑
i,j Xi,j with n =

∑k
i=1 ni

The F-Statistic is

F :=
1

k−1

∑k
i=1 ni(X̄i,· − X̄)2

1
n−k

∑
i,j(Xi,j − X̄i,·)2

=
’variability between the groups’
’variability within the groups’

F > 0, due to squaring
If the evaluation of the data f is very large, this speaks against H0

Because then the numerator is large compared to the denominator
The test is always right-sided (only large values speak against H0)

The distribution of F is known under H0: the Fisher-distribution with
(k − 1)-numerator- and (n − k)-denominator- degrees of freedom, short

F
H0
∼ F (k − 1, n − k)

(R knows it well, rf(...), pf(...) etc.)

For more details on the F(k − 1, n − k)-distribution and the derivation of the distribution of F see e.g.,
Messer, M. and Schneider, G. Statistik: Theorie und Praxis im Dialog, Springer Berlin
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Under H0: F~F (k−1,n−k)

Null hypothesis H0 : µ1 = · · · = µk
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Evaluation of the data yields f

k = 4 groups, n1 = 25, n2 = 16, n3 = 25, n4 = 36, thus n = 102
means: x̄1,· ≈ 50.8, x̄2,· ≈ 61.3, x̄3,· ≈ 55.5, x̄4,· ≈ 50.0 and x̄ ≈ 53.3
thus: f ≈ 7.0

For α = 5% it is q1−α ≈ 2.69 (95%-quantile of F (3, 98)), thus R ≈ [2.69,∞)
f ∈ R, and hence reject H0 on the 5%-level
p = PH0(F > f ) ≈ 0.00025 = 1/4000. Only in about one of 4000 cases we
observe a discrepancy, which is at least as extreme as in the data, if the
null hypothesis holds true.
Result plausible, given the variability (sem) of the means



F-test

30 40 50 60 70 80

ni=

36
25
16
25|

|
|

|

0 2 4 6 8

Under H0: F~F (k−1,n−k)

Null hypothesis H0 : µ1 = · · · = µk
F-statistic

F :=
1

k−1

∑k
i=1 ni(X̄i,· − X̄)2

1
n−k

∑
i,j(Xi,j − X̄i,·)2

F
H0
∼ F (k − 1, n − k)

Evaluation of the data yields f
k = 4 groups, n1 = 25, n2 = 16, n3 = 25, n4 = 36, thus n = 102

means: x̄1,· ≈ 50.8, x̄2,· ≈ 61.3, x̄3,· ≈ 55.5, x̄4,· ≈ 50.0 and x̄ ≈ 53.3
thus: f ≈ 7.0

For α = 5% it is q1−α ≈ 2.69 (95%-quantile of F (3, 98)), thus R ≈ [2.69,∞)
f ∈ R, and hence reject H0 on the 5%-level
p = PH0(F > f ) ≈ 0.00025 = 1/4000. Only in about one of 4000 cases we
observe a discrepancy, which is at least as extreme as in the data, if the
null hypothesis holds true.
Result plausible, given the variability (sem) of the means



F-test

30 40 50 60 70 80

ni=

36
25
16
25|

|
|

|

0 2 4 6 8

Under H0: F~F (k−1,n−k)

Null hypothesis H0 : µ1 = · · · = µk
F-statistic

F :=
1

k−1

∑k
i=1 ni(X̄i,· − X̄)2

1
n−k

∑
i,j(Xi,j − X̄i,·)2

F
H0
∼ F (k − 1, n − k)

Evaluation of the data yields f
k = 4 groups, n1 = 25, n2 = 16, n3 = 25, n4 = 36, thus n = 102
means: x̄1,· ≈ 50.8, x̄2,· ≈ 61.3, x̄3,· ≈ 55.5, x̄4,· ≈ 50.0 and x̄ ≈ 53.3

thus: f ≈ 7.0
For α = 5% it is q1−α ≈ 2.69 (95%-quantile of F (3, 98)), thus R ≈ [2.69,∞)
f ∈ R, and hence reject H0 on the 5%-level
p = PH0(F > f ) ≈ 0.00025 = 1/4000. Only in about one of 4000 cases we
observe a discrepancy, which is at least as extreme as in the data, if the
null hypothesis holds true.
Result plausible, given the variability (sem) of the means



F-test

30 40 50 60 70 80

ni=

36
25
16
25|

|
|

|

0 2 4 6 8

Under H0: F~F (k−1,n−k)

f

Null hypothesis H0 : µ1 = · · · = µk
F-statistic

F :=
1

k−1

∑k
i=1 ni(X̄i,· − X̄)2

1
n−k

∑
i,j(Xi,j − X̄i,·)2

F
H0
∼ F (k − 1, n − k)

Evaluation of the data yields f
k = 4 groups, n1 = 25, n2 = 16, n3 = 25, n4 = 36, thus n = 102
means: x̄1,· ≈ 50.8, x̄2,· ≈ 61.3, x̄3,· ≈ 55.5, x̄4,· ≈ 50.0 and x̄ ≈ 53.3
thus: f ≈ 7.0

For α = 5% it is q1−α ≈ 2.69 (95%-quantile of F (3, 98)), thus R ≈ [2.69,∞)
f ∈ R, and hence reject H0 on the 5%-level
p = PH0(F > f ) ≈ 0.00025 = 1/4000. Only in about one of 4000 cases we
observe a discrepancy, which is at least as extreme as in the data, if the
null hypothesis holds true.
Result plausible, given the variability (sem) of the means



F-test

30 40 50 60 70 80

ni=

36
25
16
25|

|
|

|

0 2 4 6 8

Under H0: F~F (k−1,n−k)

f

R
q1−α

1 − α

Null hypothesis H0 : µ1 = · · · = µk
F-statistic

F :=
1

k−1

∑k
i=1 ni(X̄i,· − X̄)2

1
n−k

∑
i,j(Xi,j − X̄i,·)2

F
H0
∼ F (k − 1, n − k)

Evaluation of the data yields f
k = 4 groups, n1 = 25, n2 = 16, n3 = 25, n4 = 36, thus n = 102
means: x̄1,· ≈ 50.8, x̄2,· ≈ 61.3, x̄3,· ≈ 55.5, x̄4,· ≈ 50.0 and x̄ ≈ 53.3
thus: f ≈ 7.0

For α = 5% it is q1−α ≈ 2.69 (95%-quantile of F (3, 98)), thus R ≈ [2.69,∞)

f ∈ R, and hence reject H0 on the 5%-level
p = PH0(F > f ) ≈ 0.00025 = 1/4000. Only in about one of 4000 cases we
observe a discrepancy, which is at least as extreme as in the data, if the
null hypothesis holds true.
Result plausible, given the variability (sem) of the means



F-test

30 40 50 60 70 80

ni=

36
25
16
25|

|
|

|

0 2 4 6 8

Under H0: F~F (k−1,n−k)

f

R
q1−α

1 − α

Null hypothesis H0 : µ1 = · · · = µk
F-statistic

F :=
1

k−1

∑k
i=1 ni(X̄i,· − X̄)2

1
n−k

∑
i,j(Xi,j − X̄i,·)2

F
H0
∼ F (k − 1, n − k)

Evaluation of the data yields f
k = 4 groups, n1 = 25, n2 = 16, n3 = 25, n4 = 36, thus n = 102
means: x̄1,· ≈ 50.8, x̄2,· ≈ 61.3, x̄3,· ≈ 55.5, x̄4,· ≈ 50.0 and x̄ ≈ 53.3
thus: f ≈ 7.0

For α = 5% it is q1−α ≈ 2.69 (95%-quantile of F (3, 98)), thus R ≈ [2.69,∞)
f ∈ R, and hence reject H0 on the 5%-level

p = PH0(F > f ) ≈ 0.00025 = 1/4000. Only in about one of 4000 cases we
observe a discrepancy, which is at least as extreme as in the data, if the
null hypothesis holds true.
Result plausible, given the variability (sem) of the means



F-test

30 40 50 60 70 80

ni=

36
25
16
25|

|
|

|

0 2 4 6 8

Under H0: F~F (k−1,n−k)

f

R
q1−α

1 − α

Null hypothesis H0 : µ1 = · · · = µk
F-statistic

F :=
1

k−1

∑k
i=1 ni(X̄i,· − X̄)2

1
n−k

∑
i,j(Xi,j − X̄i,·)2

F
H0
∼ F (k − 1, n − k)

Evaluation of the data yields f
k = 4 groups, n1 = 25, n2 = 16, n3 = 25, n4 = 36, thus n = 102
means: x̄1,· ≈ 50.8, x̄2,· ≈ 61.3, x̄3,· ≈ 55.5, x̄4,· ≈ 50.0 and x̄ ≈ 53.3
thus: f ≈ 7.0

For α = 5% it is q1−α ≈ 2.69 (95%-quantile of F (3, 98)), thus R ≈ [2.69,∞)
f ∈ R, and hence reject H0 on the 5%-level
p = PH0(F > f ) ≈ 0.00025 = 1/4000. Only in about one of 4000 cases we
observe a discrepancy, which is at least as extreme as in the data, if the
null hypothesis holds true.

Result plausible, given the variability (sem) of the means



F-test

30 40 50 60 70 80

ni=

36
25
16
25|

|
|

|

0 2 4 6 8

Under H0: F~F (k−1,n−k)

f

R
q1−α

1 − α

Null hypothesis H0 : µ1 = · · · = µk
F-statistic

F :=
1

k−1

∑k
i=1 ni(X̄i,· − X̄)2

1
n−k

∑
i,j(Xi,j − X̄i,·)2

F
H0
∼ F (k − 1, n − k)

Evaluation of the data yields f
k = 4 groups, n1 = 25, n2 = 16, n3 = 25, n4 = 36, thus n = 102
means: x̄1,· ≈ 50.8, x̄2,· ≈ 61.3, x̄3,· ≈ 55.5, x̄4,· ≈ 50.0 and x̄ ≈ 53.3
thus: f ≈ 7.0

For α = 5% it is q1−α ≈ 2.69 (95%-quantile of F (3, 98)), thus R ≈ [2.69,∞)
f ∈ R, and hence reject H0 on the 5%-level
p = PH0(F > f ) ≈ 0.00025 = 1/4000. Only in about one of 4000 cases we
observe a discrepancy, which is at least as extreme as in the data, if the
null hypothesis holds true.
Result plausible, given the variability (sem) of the means



ANOVA - Summary
Model:

Let X1,1, . . . , X1,n1 , X2,1, . . . , X2,n2 , . . . , Xk,1, . . . , Xk,nk be independent RVs
and for i = 1, . . . , k let Xi,j ∼ N(µi,σ2) for j = 1, . . . , ni,
with (µ1, . . . ,µk,σ2) ∈ Rk ×R+

Thus, k groups and n =
∑k

i=1 ni observations in total

Under H0 : µ1 = · · · = µk it holds

F :=
1

k−1

∑k
i=1 ni(X̄i,· − X̄)2

1
n−k

∑
i,j(Xi,j − X̄i,·)2

∼ F (k − 1, n − k)
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Under H0: F~F (k−1,n−k)
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ANOVA in R
# Sizes of groups as vector (k groups)

ni <- c(n1,n2,...,nk)

# Data as vector, all from group 1, then all from group 2 etc..

x <- c(...)

# Groups as factor variable

gr <- factor(rep(1:k,ni))

# Perform ANOVA (F-test)

anova(aov(x˜gr))

# Output

Analysis of Variance Table

Response: x

Df Sum Sq Mean Sq F value Pr(>F)

gr 3 1709.8 569.92 7.0332 0.000248 ***

Residuals 98 7941.2 81.03

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’’ 1

1. column: degrees of freedom (first row numerator, second row denominator)
3. column: numerator and denominator of the f-statistic
4. column: f-statistic
5. column: p-value (2.column = 1.column · 3.column)



In practice

Procedure in practice often:
First apply the ANOVA...

...if the null hypothesis is rejected, then perform post-hoc t-tests (and
correct the p-values e.g., using Bonferroni correction)

Rethink of whether the data comply with the model assumptions of the
ANOVA:

Independence and own expectation per group

→makes sense due to the practical setup

normal distribution and constant variance (between the groups)
→ plausible when looking at the data
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Thank you!


