Revision

=100 p=08

runtimes Null hypothesis rejected

Rieject)

Reeiec)
z

observed frequencies
vs. expected frequencies under Hy

REEEELEY

relative frequency

For comments please email: M. Messer, michael. messer@tuwien.ac.at



All examples are fictitious. All data are simulated and the graphics were
created with the statistical program package R.

The materials are protected by copyright and are only provided for personal
use for studies at TU Vienna. Further use is not permitted. In particular, it is
not permitted to distribute the materials or make them publicly available (e.g.
in social networks, on learning platforms, etc.).

Samtliche Beispiele sind frei erfunden. Alle Daten sind simuliert und die
Grafiken wurden mit statistischen Programmpaket R erstellt.

Die Materialien sind urheberrechtlich geschiitzt und diirfen ausschliefilich fiir
den Eigengebrauch im Rahmen des Studiums an der TU Wien genutzt
werden. Eine weitere Nutzung ist nicht gestattet. Insbesondere ist es nicht
gestattet, die Materialien zu verbreiten oder 6ffentlich zugdnglich zu machen
(etwa im Rahmen sozialer Netzwerke, Lernplattformen etc.).
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We differentiate:
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Theory of randomness
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Statistics

Description of data —»
(using stochastic models)
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Data collection

How long is the runtime of an algorithm that you implemented?
n = 121 students requested (same technical setup)
Results (in seconds):

24.6,24,31.4,29.9,37.8,19.9,46.1, 32.8, 30.3, 29, 47.1, 27.8, 33.8, 30.1, 53.3, 23.8,
32.1,4.2,42.8,25.2,52.3,35,30.1, 43.2, 25.4, 62.5, 35.4, 25.2, 37.6, 37.1, 22.9, 29.5,
44.5,34.8,33.3,21.9,37.2,24, 37,34, 24.1, 10.8, 24.9, 37.2, 52, 30.8, 22, 18.6, 22,
26.8,52.3,27,23.6,33.5,30.8,20.9, 35.6, 37.2, 57.5, 46.2, 36.1, 19.8, 38.1, 36.9,
26.5,23.6,30.3,49.9,39,50.2,35.7,11.4, 24.1, 27.5, 36.4, 29.8, 49, 42.6, 22.5, 32.7,
34.3,21.4,34.7,47.3,20.3,354,41.8,24.9,15.2,42.2,29.1,25.1,22.7,41,28.2,
30.3,25.6,41.8,16.6, 38, 43.1, 29.5, 40.3, 20.5, 39.9, 24.5, 33.7, 14.6, 23.3, 36.7,
34.7,34.9,39.1,32.2,43,12.1, 19.8, 27 .4, 39.3, 35, 46.3
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How long is the runtime of an algorithm that you implemented?
n = 121 students requested (same technical setup)
Results (in seconds):

24.6,24,31.4,29.9,37.8,19.9,46.1, 32.8, 30.3, 29, 47.1, 27.8, 33.8, 30.1, 53.3, 23.8,
32.1,4.2,42.8,25.2,52.3,35,30.1, 43.2, 25.4, 62.5, 35.4, 25.2, 37.6, 37.1, 22.9, 29.5,
44.5,34.8,33.3,21.9,37.2,24, 37,34, 24.1, 10.8, 24.9, 37.2, 52, 30.8, 22, 18.6, 22,
26.8,52.3,27,23.6,33.5,30.8,20.9, 35.6, 37.2, 57.5, 46.2, 36.1, 19.8, 38.1, 36.9,
26.5,23.6,30.3,49.9,39,50.2,35.7,11.4, 24.1, 27.5, 36.4, 29.8, 49, 42.6, 22.5, 32.7,
34.3,21.4,34.7,47.3,20.3,354,41.8,24.9,15.2,42.2,29.1,25.1,22.7,41,28.2,
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34.7,34.9,39.1,32.2,43,12.1, 19.8, 27 .4, 39.3, 35, 46.3

We see: n data: x;1 =24.6,x, =24.0,...,x, =46.3
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How long is the runtime of an algorithm that you implemented?
n = 121 students requested (same technical setup)
Results (in seconds):

24.6,24,31.4,29.9,37.8,19.9,46.1, 32.8, 30.3, 29, 47.1, 27.8, 33.8, 30.1, 53.3, 23.8,
32.1,4.2,42.8,25.2,52.3,35,30.1, 43.2, 25.4, 62.5, 35.4, 25.2, 37.6, 37.1, 22.9, 29.5,
44.5,34.8,33.3,21.9,37.2,24, 37,34, 24.1, 10.8, 24.9, 37.2, 52, 30.8, 22, 18.6, 22,
26.8,52.3,27,23.6,33.5,30.8,20.9, 35.6, 37.2, 57.5, 46.2, 36.1, 19.8, 38.1, 36.9,
26.5,23.6,30.3,49.9,39,50.2,35.7,11.4, 24.1, 27.5, 36.4, 29.8, 49, 42.6, 22.5, 32.7,
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30.3,25.6,41.8,16.6, 38, 43.1, 29.5, 40.3, 20.5, 39.9, 24.5, 33.7, 14.6, 23.3, 36.7,
34.7,34.9,39.1,32.2,43,12.1, 19.8, 27 .4, 39.3, 35, 46.3

We see: n data: x;1 =24.6,x, =24.0,...,x, =46.3

We understand: nothing?



Data collection

How long is the runtime of an algorithm that you implemented?
n = 121 students requested (same technical setup)
Results (in seconds):

24.6,24,31.4,29.9,37.8,19.9,46.1, 32.8, 30.3, 29, 47.1, 27.8, 33.8, 30.1, 53.3, 23.8,
32.1,4.2,42.8,25.2,52.3,35,30.1, 43.2, 25.4, 62.5, 35.4, 25.2, 37.6, 37.1, 22.9, 29.5,
44.5,34.8,33.3,21.9,37.2,24, 37,34, 24.1, 10.8, 24.9, 37.2, 52, 30.8, 22, 18.6, 22,
26.8,52.3,27,23.6,33.5,30.8,20.9, 35.6, 37.2, 57.5, 46.2, 36.1, 19.8, 38.1, 36.9,
26.5,23.6,30.3,49.9,39,50.2,35.7,11.4, 24.1, 27.5, 36.4, 29.8, 49, 42.6, 22.5, 32.7,
34.3,21.4,34.7,47.3,20.3,354,41.8,24.9,15.2,42.2,29.1,25.1,22.7,41,28.2,
30.3,25.6,41.8,16.6, 38, 43.1, 29.5, 40.3, 20.5, 39.9, 24.5, 33.7, 14.6, 23.3, 36.7,
34.7,34.9,39.1,32.2,43,12.1, 19.8, 27 .4, 39.3, 35, 46.3

We see: n data: x;1 =24.6,x, =24.0,...,x, =46.3
We understand: nothing?

Thus: descriptive Statistics — graphical representation and summary of data



Descriptive statistics

@ Graphical representations

@ Summarizing statistics



Graphical representations

@ stripchart
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Graphical representations

@ stripchart
@ histogram
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Graphical representations

@ stripchart
@ histogram
@ boxplot
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Graphical representations

@ stripchart
@ histogram
@ boxplot
@ barplot

relative frequncies relative frequencies
and standard error (groupwise)
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Graphical representations

@ stripchart
@ histogram
@ boxplot

@ barplot

@ plot
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Graphical representations

@ stripchart
@ histogram
@ boxplot

@ barplot

@ plot

° .7



Summary statistics

@ mean Xx
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Summary statistics

@ mean X
@ empirical standard deviation s (and emp. variance s?)
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Summary statistics

@ mean X
@ empirical standard deviation s (and emp. variance s?)
@ minimum x(;) and maximum x,

left right

whisker whisker
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Summary statistics

@ mean X
@ empirical standard deviation s (and emp. variance s?)
@ minimum x(;) and maximum x,

@ empirical quantiles g, (e.g., median, quartiles)

left box right
whisker whisker
> > > >
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minimum  1st quartile | 3rd quartile  maximum

median



Summary statistics

mean X
empirical standard deviation s (and emp. variance s?)
minimum x ;) and maximum x,)
empirical quantiles g, (e.g., median, quartiles)
?

For details see the lecture: "Descriptive Statistics’



Statistical hypothesis test

@ How compatible are the data with an assertion?

runtimes Null hypothesis rejected
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Statistical hypothesis test

e How compatible are the data with an assertion?
@ Notion of incompatibility via probability statements within
statistical models ('data interpreted as realizations of random variables’)

runtimes Null hypothesis rejected
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Statistical hypothesis test

@ How compatible are the data with an assertion?
@ Notion of incompatibility via probability statements within

statistical models ('data interpreted as realizations of random variables’)
@ Formalized in hypothesis tests (or confidence intervals)

runtimes Null hypothesis rejected
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Statistical hypothesis test

e How compatible are the data with an assertion?
@ Notion of incompatibility via probability statements within
statistical models ('data interpreted as realizations of random variables’)
@ Formalized in hypothesis tests (or confidence intervals)
@ Need additional statistics
o test statistics (t-statistic, f-statistic, x2-statistic etc.)
e auxiliary statistics (e.g., standard errors)

e p-value
runtimes Null hypothesis rejected
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Statistical hypothesis test

e How compatible are the data with an assertion?
@ Notion of incompatibility via probability statements within
statistical models ('data interpreted as realizations of random variables’)
@ Formalized in hypothesis tests (or confidence intervals)
@ Need additional statistics
o test statistics (t-statistic, f-statistic, x2-statistic etc.)
e auxiliary statistics (e.g., standard errors)

e p-value
runtimes Null hypothesis rejected
0.06 - R(eject) R(eject)
A - — —
% 00s ke z /\
2 :
8 il [ —] M- —
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time [seconds]

For general concepts of modeling and testing see the lecture: "Basic ideas of
hypothesis testing’



Example: the (one-sample) t-Test

@ Set significance level: Choose (e.g.,) « = 5%

® Model assumption: Xy, ..., X, iid. RVs, with X; ~N(n,0?),pn € R, 0 > 0 (n = 16)
(The data x4, ..., x, are assumed to be realizations of i.i.d. normal distributed RVs
with unknown expectation p and unknown variance ¢2)
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® Model assumption: Xy, ..., X, iid. RVs, with X; ~N(n,0?),pn € R, 0 > 0 (n = 16)
(The data x4, ..., x, are assumed to be realizations of i.i.d. normal distributed RVs
with unknown expectation p and unknown variance ¢2)
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Example: the (one-sample) t-Test

@ Set significance level: Choose (e.g.,) « = 5%

® Model assumption: Xy, ..., X, iid. RVs, with X; ~N(n,0?),pn € R, 0 > 0 (n = 16)
(The data x4, ..., x, are assumed to be realizations of i.i.d. normal distributed RVs
with unknown expectation p and unknown variance ¢2)

@ Null hypothesis: Hy : p = 30
Describes the assertion: the claimed expectation is py = 30)
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Example: the (one-sample) t-Test

@ Set significance level: Choose (e.g.,) « = 5%

® Model assumption: Xy, ..., X, iid. RVs, with X; ~N(n,0?),pn € R, 0 > 0 (n = 16)
(The data x4, ..., x, are assumed to be realizations of i.i.d. normal distributed RVs
with unknown expectation p and unknown variance ¢2)

@ Null hypothesis: Hy : p = 30
Describes the assertion: the claimed expectation is py = 30)

@ Test statistic for the evaluation of the data (measures discrepancy). Now t-statistic
— Under Hy: T~t(15)
_x-p  165-30 _

t= = ~—6.2
s/\/n 8.7/4 t
@ Distribution of the test statistic if Hy holds true 4 1-p .
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@ p-value: quantifies discrepancy (judge f according to the distribution of T)
p =Py, (T > [f]) ~1.5-107°

Probability to make an observation which is at least as extreme as in the data, if
Hj holds true (here: two-sided test)



Example: the (one-sample) t-Test

Set significance level: Choose (e.g.,) « = 5%

Model assumption: Xy, ..., X, i.i.d. RVs, with X; ~ N(i, 0%), p € R, 0 > 0 (1 = 16)
(The data x4, ..., x, are assumed to be realizations of i.i.d. normal distributed RVs
with unknown expectation p and unknown variance ¢2)

Null hypothesis: Hy : p = 30

Describes the assertion: the claimed expectation is py = 30)

Test statistic for the evaluation of the data (measures discrepancy). Now t-statistic
T— 1o 16.5 — 30 Under Hy: T~t(15)
t= ~ ~ —6.2
s/Vn 8.7/4 .
Distribution of the test statistic if Hy holds true 4 1-p .
_ XM H 6 o4 2 0 2 4 6
T= NG £(15)

p-value: quantifies discrepancy (judge f according to the distribution of T)
p =Py, (T > [f]) ~1.5-107°

Probability to make an observation which is at least as extreme as in the data, if
Hj holds true (here: two-sided test)

Decision: Reject the null hypothesis, because p < «

Say: the observed discrepancy was significant (p < 107*%)



Example: the (one-sample) t-Test

Set significance level: Choose (e.g.,) « = 5%

Model assumption: Xy, ..., X, i.i.d. RVs, with X; ~ N(i, 0%), p € R, 0 > 0 (1 = 16)
(The data x4, ..., x, are assumed to be realizations of i.i.d. normal distributed RVs
with unknown expectation p and unknown variance ¢2)

Null hypothesis: Hy : p = 30

Describes the assertion: the claimed expectation is py = 30)

Test statistic for the evaluation of the data (measures discrepancy). Now t-statistic

— Under Hy: T~t(15)
_ X —Ho 16.5 —30 ~ 62 r Ya/2 * i a2 "
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p-value: quantifies discrepancy (judge f according to the distribution of T)
p =Py, (T > [f]) ~1.5-107°

Probability to make an observation which is at least as extreme as in the data, if
Hj holds true (here: two-sided test)

Decision: Reject the null hypothesis, becausep < x &t € R

Say: the observed discrepancy was significant (p < 107*%)
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Example: the (one-sample) t-Test

@ Set significance level: Choose (e.g.,) « = 5%

® Model assumption: Xy, ..., X, iid. RVs, with X; ~N(n,0?),pn € R, 0 > 0 (n = 16)
(The data x4, ..., x, are assumed to be realizations of i.i.d. normal distributed RVs
with unknown expectation p and unknown variance ¢2)

@ Null hypothesis: Hy : p = 30
Describes the assertion: the claimed expectation is py = 30)

@ Test statistic for the evaluation of the data (measures discrepancy). Now t-statistic
— Under Hy: T~t(15)
_x-p  165-30 _

t= ~ ~—6.2 g Yo Qi-a/2 4
s/\/n 8.7/4 N
@ Distribution of the test statistic if Hy holds true 4 .
X . H{] Hy T T T T T T 1"
T = ~ t(15 -6 -4 -2 0 2 4 6
S/ v (15)

@ p-value: quantifies discrepancy (judge f according to the distribution of T)

p =Py, (T > [f]) ~1.5-107°
Probability to make an observation which is at least as extreme as in the data, if
Hj holds true (here: two-sided test)
@ Decision: Reject the null hypothesis, becausep < x &t € R
Say: the observed discrepancy was significant (p < 107*%)

@ Interpretation: If Hy holds true, then something very unlikely was observed. In
that sense, the data are hardly compatible with Hy.



Equivalence of test and confidence interval

Under Hy: T~t(15) runtimes
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Reject Hy if and only if pg is not overlapped by the confidence interval

i= (X —q1_y2 -5, X + q1_gy2 - 5C11) with senm :=s/+/n
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Reject Hy if and only if pg is not overlapped by the confidence interval
i= (X —q1_y2 -5, X + q1_gy2 - 5C11) with senm :=s/+/n

Recall that the upper test and confidence interval are referred to as ‘Student’s’
versions (one-sample situation).
But also remember that the structure of the test statistic and the confidence
interval is inherited to other situations, i.e., ‘more general’
-—

T:T‘ and I=(M—q-h &+q-H)
while & denotes some summary statistic, # denotes the null-parameter, and &
a standard-error of the statistic, see e.g., the two-sample situation.



Equivalence of test and confidence interval

Under Hy: T~t(15) runtimes
R Ca/2 Qi-a/2z g
] e e 0.06 _
B (n=16)
t /\ % 004 X Mo
: 2 0.02
‘—I =0 Cl [ [
[ I I I I I 7 0.00 [ I I I I I I 1
-6 -4 -2 0 2 4 6 0 10 20 30 40 50 60 70
time [seconds]

Reject Hy if and only if pg is not overlapped by the confidence interval
i= (X —q1_y2 -5, X + q1_gy2 - 5C11) with senm :=s/+/n

Recall that the upper test and confidence interval are referred to as ‘Student’s’
versions (one-sample situation).
But also remember that the structure of the test statistic and the confidence
interval is inherited to other situations, i.e., ‘more general’
-—

T:T‘ and I=(M—q-h &+q-H)
while & denotes some summary statistic, # denotes the null-parameter, and &
a standard-error of the statistic, see e.g., the two-sample situation.
For details see the lecture: ‘Surrounding the one-sample t-test’



Two-sample t-test

d=5




Two-sample t-test

@ LetX,,..., X,,Yy,...,Y,, beindependent RVs with

Xi~N(w,07) fori=1,...,m and

Yj~N(up,03) forj=1,...,1m with (g, 0%, 12, 03) € Rx RY x R x RT
0 d=1—
@ Let g1_«/2 be the (1 — «/2)-quantile of the t(v)-distribution (R knows v)
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@ LetXy,...,X,,Yy,...,Y,, beindependent RVs with

Xi~N(w,07) fori=1,...,m and
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Two-sample t-test

Under Hq: T~t(27.3)
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@ LetXy,...,X,,Yy,...,Y,, beindependent RVs with
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S EM?, + SEM?
and equivalently: The confidence interval
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overlaps the parameter d, with probability (approx) 1 — «
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@ Under Hy :d =5 (& up = g + 5) — here: can not reject H (— Welch-test)



Two-sample t-test

Under Hq: T~t(27.3)
g Ya/2 Qa2 4
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@ LetXy,...,X,,Yy,...,Y,, beindependent RVs with

Xi~N(w,07) fori=1,...,m and

Yj~N(up,03) forj=1,...,1m with (g, 0%, 12, 03) € Rx RY x R x RT
0 d=1—
@ Let g1_«/2 be the (1 — «/2)-quantile of the t(v)-distribution (R knows v)

Under Hy : d = d, it holds (approx)
T (Y —X) —d,

S EM?, + SEM?
and equivalently: The confidence interval

[:= ((Y—X)—%,m- JSEMZ + SEM2, (Y = X) + g1_a2 - 1/SFA/IHSFJ\/L%)

overlaps the parameter d, with probability (approx) 1 — «

~ )

@ Under Hy :d =5 (& up = g + 5) — here: can not reject H (— Welch-test)

For details see the lecture: 'Surrounding the two-sample t-test’



ANOVA

Model:

o LetXi1,...,Xun, Xo1,..., X0, -+ Xki1,..., Xkn, be independent RVs
andfori=1,...,kletX;j ~ N(p;, 0?) forj=1,...,m,
with (p, ..., 1, 02) € RE x R*

@ Thus, k groups and n = Zle n; observations in total

n=
D Heloweecos * 36
= C * He oo * 25
S B . ;_{._4 o * 16
A 5 e o * 25

30 40 50 60 70 80

contentment



ANOVA

Model:
o Let Xl,l/ ey Xlrnl, X2,1/ ey XZ,nz, ey Xk,lr ey Xk,nk be independent RVs
andfori=1,...,kletX;j ~ N(p;, 0?) forj=1,...,m,
with (p, ..., 1, 02) € RE x R*
@ Thus, k groups and n = Zi-;l n; observations in total

n=
D |-I-|s“q o ° o * 36
= C = Heeoose o * 25
S B o HH e * 16
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ANOVA

Model:
o LetXi1,...,Xun, Xo1,..., X0, -+ Xki1,..., Xkn, be independent RVs
andfori=1,...,kletX;j ~ N(p;, 0?) forj=1,...,m,
with (p, ..., 1, 02) € RE x R*
@ Thus, k groups and n = Z?Zl n; observations in total

Fo ﬁ Zi-czl ni(X;. — X)? _’variability between the groups’
L Zi,j(Xi,j —X;.)?  ’variability within the groups’




ANOVA
Model:

o LetXi1,...,Xun, Xo1,..., X0, -+ Xki1,..., Xkn, be independent RVs

andfori=1,...,kletX;j ~ N(p;, 0?) forj=1,...,m,
with (p, ..., 1, 02) € RE x R*
@ Thus, k groups and n = Zle n; observations in total

Under Hp : w = - -+ = W it holds

1 k % 72
— > onm(X;. — X
— Z;—ln( )y ) Nf(k*l,l’l*k)

Under Hy: F~F (k-1,n—-k)
n=
Oi-a

\ S T
30 40 50 60 70 80 0 2 4 6
o Here: reject H.



ANOVA

Model:
o LetXi1,...,Xun, Xo1,..., X0, -+ Xki1,..., Xkn, be independent RVs
andfori=1,...,kletX;j ~ N(p;, 0?) forj=1,...,m,
with (p, ..., 1, 02) € RE x R*
@ Thus, k groups and n = Zle n; observations in total

Under Hp : w = - -+ = W it holds

1 k % 72
— > onm(X;. — X
— Z;—ln( )y ) Nf(k*l,l’l*k)

Under Hy: F~F (k-1,n—-k)
n=
Oi-a

3“0 4‘0 ;; 6‘0 70 80 0 2 4 6 8
o Here: reject H.
For details on comparisons on multiple groups see the lecture: "Analysis of
variance and multiple testing’



Linear regression
@ Fori=1,...,nlet
Y=o+ B1-x+ 07,
with Zy,...,Z,iid. RVsand Z; ~N(0,1), and (Bg,B1,0) € Rx R x R*
@ g1_u /2 the (1 — or/2)-quantile of the t(n — 2)-distribution
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Linear regression

@ Fori=1,...,nlet
Y=o+ B1-x+ 07,
with Zy,...,Z,iid. RVsand Z; ~N(0,1), and (Bg,B1,0) € Rx R x R*
@ g1_u /2 the (1 — or/2)-quantile of the t(n — 2)-distribution
@ estimators By, By and S, via ‘least-squares’, SEp, = S,/(sx - vVn—1)
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Linear regression
@ Fori=1,...,nlet
Y= Bo+B1-x+0Z,
with Zy,...,Z,iid. RVsand Z; ~N(0,1), and (Bg,B1,0) € Rx R x R*
@ g1_u /2 the (1 — or/2)-quantile of the t(n — 2)-distribution
@ estimators By, By and S, via ‘least-squares’, SEp, = S,/(sx - vVn—1)
n=20 Ho:B1=0

[ o _
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D o _| S o _| \ \ \
X © x ©
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Linear regression
@ Fori=1,...,nlet
Yi=Bo+P1-xi+0Z;
with Zy,...,Z,iid. RVsand Z; ~N(0,1), and (Bg,B1,0) E Rx R x R*
@ g1_u /2 the (1 — or/2)-quantile of the t(n — 2)-distribution
@ estimators By, By and S, via 'least-squares’, SEg, = S, /(sx - Vn—1)

Under Hy : 1 = [350) it holds

By — 650’

T .=
SE/;J

~tn—2)

and equivalently: the confidence interval
I:=(Bi—q1—as2-SEs, Bi+q1—ay - SEs, )

overlaps Bgo) with probability 1 — o




Linear regression

@ Fori=1,...,nlet
Y=o+ B1-x+ 07,
with Zy,...,Z,iid. RVsand Z; ~N(0,1), and (Bg,B1,0) € Rx R x R*
@ g1_u /2 the (1 — or/2)-quantile of the t(n — 2)-distribution
@ estimators By, By and S, via ‘least-squares’, SEp, = S,/(sx - vVn—1)

n=20
o _
154
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2 Under Hq: T~t(18)
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@ Here: reject Hy: 31 =0



Linear regression

@ Fori=1,...,nlet
Y=o+ B1-x+ 07,
with Zy,...,Z,iid. RVsand Z; ~N(0,1), and (Bg,B1,0) € Rx R x R*
@ g1_u /2 the (1 — or/2)-quantile of the t(n — 2)-distribution
@ estimators By, By and S, via ‘least-squares’, SEp, = S,/(sx - vVn—1)

n=20
o
IS
g 2
.‘tEn -
2 Under Hy: T~t(18)
= B g Go/2 Gi-a/2 4
- t
g - < P
[ I I 1 N N
[ I T I 1
13 15 17 19

-10 -5 0 5 10
age [years]
@ Here: reject Hy: 31 =0
For details on correlation and linear regression see the lecture: 'Linear
Regression’



Frequencies

o LetYi1,...,Y1u, Y21,..., You, be independent RVs with Y4 ; ~ ber(p;) for
i=1,...,npand Yy~ ber(p2) forj=1,...,my,
and (p1,p2) S (0,1)2
@ letg;_ 2 be the (1 — «/2)-quantile of the N (0, 1)-distribution

math

hy
relative frequency
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Frequencies

@ LetYi1,..., Y1, Y21,..., You, be independent RVs with Y4 ; ~ ber(p;) for
i= 1,. R (51 and YZ,j ~ ber(p2) fOI'j = 1,. .., Ny,
and (PLPZ) € (0/1)2
@ letq;_ 2 be the (1 — «/2)-quantile of the N(0, 1)-distribution

Under Hy : p, — p1 = 0 it holds (approximately)

H, — Hy) —
(- M) -0 £ N(0,1)

Z:=
\/SER, + SEf,
and equivalently: the confidence interval

I:= <(H2 —Hy) —qi_ay2 -

overlaps 0 with probability about 1 — o

Hj = — Z Y]‘,,' and SEH‘ = \



Frequencies

o LetYi1,...,Y1u, Y21,..., You, be independent RVs with Y4 ; ~ ber(p;) for
i=1,...,npand Yy~ ber(p2) forj=1,...,my,

and (p1,p2) € (0,1)?

@ letg;_ 2 be the (1 — «/2)-quantile of the N (0, 1)-distribution

math

hy
relative frequency

=]
i

Under Hy: Z=N(0, 1)

R Ja/2 J1-a/2 R
|
[ I T 1
-4 -2 0 2 4
H:(1—H
and SEy, = i /)



Frequencies

o LetYi1,...,Y1u, Y21,..., You, be independent RVs with Y4 ; ~ ber(p;) for
i=1,...,npand Yy~ ber(p2) forj=1,...,my,
and (p1,p2) S (0,1)2
@ letg;_ 2 be the (1 — «/2)-quantile of the N (0, 1)-distribution

Under Hy: Z=N(0, 1)
R Qa/2 Qi-a/2 R

hy
|
— —————
cs 7\

0 hy 1 -4 -2 0 2 4
relative frequency
nj
1 H;(1— H;)
H]' = Z Yj,i and SEH“. =
11]' Py ' n;

@ Here: can not reject Hy : p» = p1



Frequencies

o LetYi1,...,Y1u, Y21,..., You, be independent RVs with Y4 ; ~ ber(p;) for
i=1,...,npand Yy~ ber(p2) forj=1,...,my,
and (p1,p2) S (0,1)2
@ letg;_ 2 be the (1 — «/2)-quantile of the N (0, 1)-distribution

Under Hy: Z=N(0, 1)
R Qa/2 Qi-a/2 R

hy
|
— —————
cs 7\

0 hy 1 -4 -2 0 2 4
relative frequency
nj
1 H;(1— H;)
Hi==>Y;; and SEy =
11]' Py n;

@ Here: can not reject Hy : p» = p1
For details on frequencies see the lecture: "Proportions’



The x?-test (goodness of fit)
o Let X = (X,...,X;)! ~mult(n,p), withp € (0,1)%and Y {_ pr =1

observed frequencies
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The x?-test (goodness of fit)
o Let X = (X,...,X;)! ~mult(n,p), withp € (0,1)%and Y {_ pr =1

Under Hy : p = (po1,---,poa) it holds (approximately)

d

X, — gy [X4)2
Xz:Z%éX%d_n

in fact, it holds that X2 —% x2 (d —1) as 11 — oo

@ here: n =120 and d = 6, as wellas py = (1/6,...,1/6)"

observed frequencies
vs. expected frequencies under Hg
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The x?-test (goodness of fit)
o Let X = (X,...,X;)! ~mult(n,p), withp € (0,1)%and Y {_ pr =1

Under Hy : p = (po1,---,poa) it holds (approximately)

d

Xi — Eg, [Xi])?
X2::Z( ’]EH&E]’D -1

in fact, it holds that X2 —% x2(d —1) asn — oo

@ here: n =120 and d = 6, as wellas py = (1/6,...,1/6)"
@ Let g, denote the (1 — «)-quantile of the x*(d — 1)-distribution

observed frequencies Under Hy: X2 = X?(d-1)
vs. expected frequencies under Hy J1-a
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The x?-test (goodness of fit)
o Let X = (X,...,X;)! ~mult(n,p), withp € (0,1)%and Y {_ pr =1

Under Hy : p = (po1,---,poa) it holds (approximately)

d

Xi — Eg, [Xi])?
X2::Z( ’]EH&E]’D -1

in fact, it holds that X2 —% x2(d —1) asn — oo

@ here: n =120 and d = 6, as wellas py = (1/6,...,1/6)"
@ Let g, denote the (1 — «)-quantile of the x*(d — 1)-distribution
@ Here: can not reject Hy

observed frequencies Under Hy: X2 = X?(d-1)
vs. expected frequencies under Hy J1-a
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The x?-test (goodness of fit)
o Let X = (X,...,X;)! ~mult(n,p), withp € (0,1)%and Y {_ pr =1

Under Hy : p = (po1,---,poa) it holds (approximately)

d

X, — gy [X4)2
Xz:Z%éX%d_n

in fact, it holds that X2 —% x2(d —1) asn — oo

@ here: n =120 and d = 6, as wellas py = (1/6,...,1/6)"
@ Let g, denote the (1 — «)-quantile of the x*(d — 1)-distribution
@ Here: can not reject Hy

observed frequencies Under Hy: X2 = X?(d-1)
vs. expected frequencies under Hy J1-a
20 - e e = T EE B 2 R
|
j EI E’I i [P
0 T T T T i
0 10 20 30 40

For details see the lecture: "The x*-test (goodness of fit)’



The x?-test for independence

@ Model: Let ¥ = (X11,..., X4,4,)" ~ mult(n,p)
withp = (p11,...,Pa,a)" € (0,1)7% and 2ikbik=1

frequencies of colors
depending on the underground

solid (nselig=80) soft (Ngor=150)




The x?-test for independence

@ Model: Let ¥ = (X11,..., X4,4,)" ~ mult(n,p)
withp = (p11,..., Paya)’ € (0, 1) and Y, pjs =1

Under Hy : p=po:= (Pl,- “Doaseee Py, P~,d2)t € (0, 1)d1'd2
it holds (approximately) and Z] 1Pi- = Zk 1Px=1
XX\ 2
Xip — 2bte
1 d
X =) (X,X:l) ~x((di=1) - (dy—1))
ik n in fact, it holds that X2 —1» X2 ((dy —1)(dy —1))asn — oo

o Here: di =2,d, =4,i.e., X? o x?(3) (approx)
@ X;., X i, pj. and p.x are the ‘marginal frequencies / probabilites’

frequencies of colors Under Ho: X* = x(3)
depending on the underground
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solid (Nsejig=80) soft (Ngor=150)




The x?-test for independence

@ Model: Let ¥ = (X11,..., X4,4,)" ~ mult(n,p)
withp = (p11,..., Paya)’ € (0, 1) and Y, pjs =1

Under Hy : p=po:= (Pl,- “Doaseee Py, P~,d2)t € (0, 1)d1'd2
it holds (approximately) and Z] 1Pi- = Zk 1Px=1
XX\ 2
Xip — 2bte
1 d
X =) (X,X:l) ~x((di=1) - (dy—1))
ik n in fact, it holds that X2 —1» X2 ((dy —1)(dy —1))asn — oo

o Here: di =2,d, =4,i.e., X? o x?(3) (approx)
@ X;., X i, pj. and p.x are the ‘marginal frequencies / probabilites’
@ Let g, denote the (1 — )-quantile of the x%([dy — 1] - [dy — 1])-distr.

frequencies of colors Under Hq: X2 = x%(3)
depending on the underground U1
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The x?-test for independence

@ Model: Let ¥ = (X11,..., X4,4,)" ~ mult(n,p)
withp = (p11,..., Paya)’ € (0, 1) and Y, pjs =1

Under Hy:p =po = (p1. - Pps--- P - Pot)t € (0,1)47

it holds (approximately) and Z] 1Pi- = Zk 1Px=1

X, X0\ 2
2 . (Xj’k_ T A) d 5
X =) A A 1) - (da — 1))
ik “n

in fact, it holds that X2 —1» X2 ((dy —1)(dy —1))asn — oo

o Here: di =2,d, =4,i.e., X? o x?(3) (approx)

@ X;., X i, pj. and p.x are the ‘marginal frequencies / probabilites’

@ Let g, denote the (1 — )-quantile of the x%([dy — 1] - [dy — 1])-distr.
@ Here: reject Hy

frequencies of colors Under Ho: X2 =X%(3)
depending on the underground O1-a
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The x?-test for independence

@ Model: Let ¥ = (X11,..., X4,4,)" ~ mult(n,p)
withp = (p11,..., Paya)’ € (0, 1) and Y, pjs =1

Under Hy:p =po = (p1. - Pps--- P - Pot)t € (0,1)47

it holds (approximately) and Z] 1Pi- = Zk 1Px=1

X, X0\ 2
2 . (Xj’k_ T A) d 5
X =) A A 1) - (da — 1))
ik “n

in fact, it holds that X2 —1» X2 ((dy —1)(dy —1))asn — oo

o Here: di =2,d, =4,i.e., X? o x?(3) (approx)

@ X;., X i, pj. and p.x are the ‘marginal frequencies / probabilites’

@ Let g, denote the (1 — )-quantile of the x%([dy — 1] - [dy — 1])-distr.
@ Here: reject Hy

frequencies of colors Under Hy: X2 = =X (3)
depending on the underground q
1-a
R X2
W—V_- P
T T T 1
solid (Nsejig=80) soft (Ngor=150) 10 15 20 25

For details see the lecture: "The x>-test for 1ndependence’



Thank you!



