
Winfried Auzinger Sommersemester 2019
Kevin Sturm 15.05.2019

Übungsaufgaben zur VU Computermathematik

Serie 7

Test your code with examples.

Exercise 7.1: Strings.

(a) Write a function which gets as an input three strings s_in, s_find and s_replace. The return value of
the function is s_out where the string s_out consists of all words of s_in in which all occurring words
s_find are replaced by s_replace.

(b) Write a function f(s) which takes a string s and removes all its spaces. Let the function have an optimal
argument which if set to True capitalises the input string.

Exercise 7.2: Classes. I.

� Write a class Complex with methods add, multiply and divide which realises the addition, multiplication
and division of two complex numbers z1 and z2. Define complex numbers by its real and imaginary parts
and use python tuple, i.e., z = (imag, compl). (Do not use the build in complex numbers of python).
The constructor __init__ should initialise z1 and z2.

Exercise 7.3: Classes. II.

(a) Write a class Vector with methods add(z1, z2) and scalar(a, z1) which realise the addition and scalar
multiplication of two lists z1 and z2 and the scalar a and the vector z1, respectively.

(b) Write an inherited class of Vector named VectorPlus which additionally has the functions vector_prod(z1, z2)

and tensor(z1, z2) realising the tensor and vector product of two lists z1 and z2.

Exercise 7.4: Classes. III.

The faculty n! can be approximated using the Stirling formula
√

2πn
(
n
e

)n
; (e is the Euler number). A second

way to approximate the faculty is by the formula

(z + 1)! ≈
√

2π

z

(
1

e

(
z +

1

12z − 1
10z

))z
(1)

(a) Write a class faculty which has the methods fac(n), fac_stir(n), fac_gam(n), fac_stir_err(n),
fac_gam_err(n). The function fac returns the exact faculty of the number n and fac_stir(n) and
fac_gam(n) an approximation using Stiring’s formal and (1), respectively. The methods fac_stir_err

and fac_gam_err return the error the approximations fac_stir and fac_gam, respectively.

(b) Equip all methods of the class with an additional positional argument ptr (that means for instance
fac_stir(n,ptr=True)), which is by default False. If ptr is set to True, then the result of the called
method shall be printed with print.

Exercise 7.5: Decorators. I.

(a) Write a decorator dec(ev, fun) which gets a function fun and returns a function that evaluates fun at
ev. Test your code with the functions gamma and exp of the standard library math.



(b) Write a decorator comp(fun1, fun2, fun3) which returns the function decomposition of fun1, fun2 and
fun3.

Exercise 7.6: Decorators. II.

� Let f be a python function. Write a decorator count which counts how often the function f was called.
Test your program with sin and cos of the math library. Example: with f = count(sin) the call f(0.1)
should return 1 and sin(0.1) and another call f(0.2) would return 2 and sin(0.1). HINT: in the
inner definition of the decorator define the ’counter’ variable which counts the function calls as nonlocal
(syntax: nonlocal counter). This makes the variable ’counter’ available in the outer function definition.

Exercise 7.7: Doc String

� Write a detailed doc string documentation for the classes Complex and Vector and their functions of the
previous exercise. Test your code by call help in the console as well as calling the functions and the module
with “. doc “!

Exercise 7.8: Exceptions

(a) Read the Python online tutorial https://docs.python.org/3.6/tutorial/errors.html on exceptions.
How are exception defined in python?

(b) Write a function division(x,y) which return x/y. Write an exception when the absolute value of y is smaller
than 1e-14.

https://docs.python.org/3.6/tutorial/errors.html

