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Exercise 2.1: Oops.

Compute the derivative w.r.t. x of
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Exercise 2.2: Two computer-assisted proofs.

a) Provide a computer-assisted proof of the identity

arctanx+ arctan y = arctan
( x+ y

1− x y

)
.

Hint: Differentiate the left- and right-hand sides with respect to x and simplify. 1 Argue why the outcome of this compu-
tation provides a proof.

(For x = 0 the identity is trivially valid. What about the special case x y = 1 ?)

b) Provide a computer-assisted proof of the fact that for all n ∈ N there exists x > 0 such that

(1 + x)
n
< enx .

Find such an x (depending on n).

Remark: It may be necessary to manipulate the result by hand to finish the proof.

Exercise 2.3: A formula due to Gauß.

The following formula required 20 pages of factorization tables 2 in the edition of Gauß’ works (cf. Werke, ed. Königl. Ges. d. Wiss.,
Göttingen, vol. 2, pp. 477–502):
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with c = . . . (?).

a) Determine the number c.

b) Use ? taylor (about x = 0) to derive a series representation for π
4 based on a).

Exercise 2.4: Another computer-assisted proof.

a) Provide a computer-assisted proof of Young’s inequality

x y ≤ xp

p
+
yq

q

for all x, y ≥ 0, where p > 1 and q such that 1
p + 1

q = 1.

Hint: Consider f(x) = xp

p + yq

q − x y (for fixed y) and investigate the zeros of f ′.

b) In a), p = q = 2 is a special case. Design a plot displaying the left- and right-hand sides in Youngs’s inequality for this
special case.

Hint: Two variables x, y : use ? plot3d.

1 Sometimes simplification does not work (in this example it should work); a pragmatic approach in such cases is to test numerical values or
produce a plot.

2 Gauß was using Exercise 2.2 a).



Exercise 2.5: Analyzing a real function.

Use Maple as a computational tool for analyzing the real function (Kurvendiskussion)

f(x) = x2 ln(x2),

including nice plots of the function and its first and second derivatives.

Hint: Pay special attention to x = 0.

Exercise 2.6:

The Bernstein polynomials of degree n are defined as

Bk,n(t) =

(
n

k

)
tk (1− t)n−k , k = 0 . . . n.

a) Design a function B(k,n,t) implementing the Bernstein polynomials of degree n.

b) Use plot and plots[display] to plot the Bk,n(t) together for some n on the interval [0, 1].

c) Design a function Bapprox(f,n,t) which, for a given function f to be approximated, returns the Bernstein-type appro-
ximation 3 of f of degree n,

Bn(f)(t) =

n∑
k=0

Bk,n(t) f( kn )

in form of a function, using the functions B(k,n,t) from c).

d) Use plot and plots[display] to plot f(t) and Bn(f)(t) for some n together on the interval [0, 1]. Use two different
colors for these curves.

Exercise 2.7: A parametric integral.

Consider the integral (as a function of x)

I(x) =

∫ x

0

(x− t) sin(t2) dt.

a) Check what answer is delivered by Maple, and plot the function I(x).

b) From a) you see that, apparently, I(x) cannot be represented via standard functions like sin, cos, . . ..

But: What about I ′(x)?

c) What about I ′′(x)? 4

d) Now we ask ourselves whether the result delivered by Maple under c) is indeed correct.

Assume you are doubting the result, but you do not know the correct answer. Suggest and realize a strategy to ‘verify’ the
result delivered by Maple.

Exercise 2.8: Newton, schau owa.

Newton iteration is a standard approach for determining numerically (in floating point arithmetic) a zero (Nullstelle) of a
differentiable real function f(x), starting from an initial guess x0,

xi := xi−1 −
f(xi−1)

f ′(xi−1)
, i = 1, 2, 3, . . .

a) Design a procedure Isaac(...) which expects a function f , an initial guess 5 x0 ∈ R and a tolerance parameter tol as
its arguments and which iterates until |f(xi)| ≤ tol. Your procedure returns the list [i, xi]. If the criterion |f(xi)| is not
satisfied after 100 steps, we consider the iteration having failed. In this case, return [NULL]. (NULL is the Maple symbol
for ‘nothing’.)

Example: Computation of 1/x for x > 0. This sounds awkward, but the point is that Newton iteration requires no
division (/) if f is chosen in an appropriate way. Explain how to do this and realize a numerical example.

3 It can be shown that for a function f continuous on [0, 1], the sequence {Bn(f)} converges uniformly to f for n → ∞, i.e.,
lim

n→∞
max
t∈[0,1]

|Bn(f)(t)− f(t)| = 0 .

4 This can also be easily be computed by hand (assuming you know how to differentiate a parametric integral).
5 Convergence is only guaranteed if x0 is sufficiently close to the exact solution. Do not worry about this here – just choose ‘harmless’ data,

where no convergence problems are to be expected.



b) An improved iteration involving the second derivative f ′′ reads

xi = xi−1 −
f(xi−1)

f ′(xi−1)

(
1 +

1

2

f(xi−1) f ′′(xi−1)
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)
.

Proceed as in a) and compare both versions: Which one converges faster?

Hint: For testing, choose e.g. Digits = 50 and tol = 1E-40.


