
Winfried Auzinger Sommersemester 2019
Kevin Sturm 10.04.2019

Übungsaufgaben zur VU Computermathematik

Serie 5

A mixed collection of exercises on different topics.

Exercise 5.1: A stability investigation.

Consider the trivial differential equation y′(t) = 0 with given initial value y(0) = 0, such that the solution is y(t) ≡ 0. This
serves as a simple model problem for the following stability investigation.

Mr. Rembremerdeng proposes to approximate the solution y(t) at integer values t = n ∈ N by the three-step recursion(
y(n) ≈

)
yn :=

18

11
yn−1 −

9

11
yn−2 +

2

11
yn−3 , n = 3, 4, . . . (1)

Here we need three initial values y0, y1, y2. For y0 = y1 = y2 = 0 the solution is yn ≡ 0 (it is exact). Now assume that these
zero initial values are perturbed a little bit, e.g., by rounding errors. We ask: What is the effect of such a perturbation?

a) First, perform a numerical experiment to investigate the behavior of the sequence
(
yn
)

in floating point arithmetic for
increasing values of n. (For what range of values of n you observe a significant effect depends on the size of the initial
perturbations.)

b) Now we try to understand theoretically what we have observed in a).

Determine λ1, λ2, and λ3 such that the general solution of (1) (for given initial values y0, y1, y2) can be represented in
the form

yn = c1 λ
n
1 + c2 λ

n
2 + c3 λ

n
3

with constants c1, c2, c3 (which will depend on y0, y1, and y2).

Hint: You can guess one of the solutions (λ1) and reduce the problem to a quadratic equation. Or simply use solve.

c) Is such a solution asymptotically stable, i.e., does it remain uniformly bounded for n→∞?

You can answer this question by just inspecting the λk; however, λ2, λ3 form a complex conjugate pair. If you are not
sure, plot the absolute values of the λnk for increasing n.

Exercise 5.2: Formatted input.

Assume that the coefficients of a multivariate polynomial expression are encoded in a text file in a way as shown here (this
example refers to six variables x1, . . . , x6):

[0,2,0,1,0,1] 7

[0,1,1,1,1,0] 6

[0,0,2,1,0,0] -2

[2,0,0,0,0,0] 3

[0,0,0,0,0,0] -1

Each of the lines represents a power product, where the entries in the list specify the powers with which the variables
x1, . . . , x6 occur, and the number at the end of the line specifies a multiplicative factor. I.e., this text file represents the
expression

7x22 x4 x6 + 6x2 x3 x4 x5 − 2x23 x4 + 3x21 − 1 .

• Design a procedure readmultinom(filename,var) which reads the data from such a file and returns the corresponding
multinomial expression. var is the variable name (e.g., var=x).

Hint: Use readline followed by sscanf. Note that with the %a format specifier, a list is scanned as a single object. For the
coefficient at the end of the line, use %d. You may assume that the format is correct, in particular, that all lists have the
same length (which you have to determine in a first step when scanning the first line).

Exercise 5.3: Exploring the behavior of a sequence via experiment.

We consider sequences (xn) defined in a recursive way by

xn := f(xn−1), n = 1, 2, 3, . . . , with f(x) =
1

2

(
x− 1

x

)
starting from a given initial value x0. We observe:

• For x0 = 0 we immediately end up with x1 =∞.

• For x0 = ±1 we have x1 = 0 and x2 =∞.

• For all other x0 ∈ Q, the sequence (xn) is well-defined for all n. (Why? This is simple to prove. Note that for x0 ∈ Q,
all xn are rational numbers.)

• For complex x0 ∈ C, x0 6∈ R, the sequence (xn) is well-defined, with xn 6∈ R for all n.

• For x0 ∈ R, the (real) sequence (xn) cannot be convergent, since the only possible limits are i and −i. (Can you explain
this?)

a) Design a procedure which, for given n ∈ N, produces a plot of the points (n, xn) for given x0.

Hint: For pointplot, a recommended set of options is

style=point, axes=boxed, symbolsize=20, and symbol=solidcircle

b) Conjecture: For all x0 ∈ C with Imx0 > (<) 0, the iteration converges to ±i. We explore this experimentally:

Design a procedure which expects x0 ∈ C, ε > 0 and nmax ∈ N as its arguments and which returns the minimal value
n ∈ N such that |xn − (±i)| ≤ ε. If no such n ≤ nmax is detected, use error to issue an error message including the
value of xnmax

. Use evalf.

Play with your procedure, in particular with x0 very close to 0.

Exercise 5.4: Simulating the movement of a pendulum.

We consider the movement of a pendulum, described by its angle of deflection ϕ = ϕ(t) as a function of time t. The governing
diffferential equation is

ϕ̈(t) = − sin(ϕ(t))

where ϕ̈ is the second derivative of ϕ w.r.t. t. Together with initial conditions for ϕ and ϕ̇, e.g.,

ϕ(0) = 1, ϕ̇(0) = 1

the problem has a unique solution ϕ(t) for all t, but the solution cannot be represented in an exact, analytic form. Therefore
we investigate some numerical methods. First of all, we introduce the angular velocity ψ(t) := ϕ̇(t) as a separate variable
and consider the equivalent system ϕ̇(t)

ψ̇(t)

 =

 ψ(t)

− sin(ϕ(t))

 with initial conditions

 ϕ(0)

ψ(0)

 =

 1

1

a) We choose a timestep h and use the simplest numerical scheme in order to compute approximations (ϕn, ψn) to the

solution (ϕ(tn), ψ(tn)) at the times tn := nh, n = 0, 1, 2, To this end we replace the derivative ϕ̇(tn) by the forward
difference quotient, i.e.,

ϕ̇(tn) ≈ ϕn+1 − ϕn
h

and analogously for ψ. This leads to the recursion ϕn+1

ψn+1

 =

 ϕn

ψn

+ h

 ψn

− sin(ϕn)

 , n = 0, 1, 2, . . . , starting from

 ϕ0

ψ0

 =

 1

1

Implement this method by a simple loop, using evalf, to generate a list of vectors containing the solution values (ϕn, ψn)
at the times tn, n = 0, 1, 2, Choose the timestep h = 0.1 and produce a pointplot of the (ϕn, ψn), n = 0, 1, 2, . . ., for
n up to 200 (i.e., t = 20). The solution should behave periodic. What do you observe?

b) For larger t - intervals, the method from a) produces a qualitatively incorrect approximation. Here is a simple remedy:
We use the modified recursion ϕn+1

ψn+1

 =

 ϕn

ψn

+ h

 ψn

− sin(ϕn+1)

Repeat the experiment from a) using the modified recursion. What do you observe?

c) In addition, apply dsolve with option numeric (without further special settings),

and use plots[odeplot]:

sol:=dsolve([D(u)(t)=v(t),D(v)(t)=-sin(u(t)),u(0)=1,v(0)=1],[u(t),v(t)],numeric)

plots[odeplot](sol,[u(t),v(t)],t=0..200,axes=boxed,thickness=2)

What do you observe? Also extend the range from t = 20 to t = 300 and repeat a), b), and c).

Remark: dsolve/numeric delivers a procedure, and calls to this procedure can be use to evaluate the numerical approxi-
mation at particular particular times t, or it can be passed to ? plots[odeplot].

Exercise 5.5: Matrix representation of a linear mapping.

Design a procedure GenerateMatrix(f::procedure)

which expects a function f: Rn → Rm (in form of a procedure) as its argument and which returns the corresponding coefficient
matrix A ∈ Rm×n. Test with an example of your choice.

(Assume a priori that f indeed is linear and maps Vector s into Vector s.)

Exercise 5.6: Unapply.

Assume that you generate a complicated symbolic formula f(x), and later on you need to evaluate it numerically for many
different numerical values of x within a loop. Here it is very inefficient to repeat the symbolic computation again and again
within the loop. 1

To this end, one can use ? unapply. Check this and prepare a tutorial on the topic. Choose your own example, implement
and test it, and demonstrate.

Exercise 5.7: Try / catch.

Similarly as in other modern programming languages (e.g., C, Python, Matlab, Julia, . . .), the try .. catch construct
is convenient for supervising sections of a code where successful execution is not a priori guaranteed but some error (which
nay be difficult to predict) may occur.

This is typically used within procedures:

try

...

... # do something; if it is O.K. then it is O.K.

...

catch:

specify what has to be done if try has failed for some reason, e.g.

error("oops, this does not work"):

or some alternative part of code to be executed:

...

end try:

Choose your own example, implement it, and test it.

Exercise 5.8: Implicit plots.

Curves in the (x, y) - plane are often specified in an implicit way, i.e., via a functional relation f(x, y) = 0. Finding an
explicit representation of the curve may be not so easy (or impossible), but ? plots[implicitplot] tries to do a good job
using a numerical pathfollowing algorithm.

Consider the curve defined by

f(x, y) = (x2 + y2)
3 − 4x2 y2 = 0,

and produce a nice plot.

1 This topic has been discussed in the lecture: The point is that symbolic computation usually performs much slower than numerical computation.

