
Software Engineering VU
[194.020]

Maria Christakis

TU Wien

https://mariachris.github.io

https://mariachris.github.io/

Summary

Informal modeling

3

Design

• Informal models

• Formal models

• Design by contract

Formal modeling

 Notations and tools are based on math and are precise

 Typically used to describe some aspect of a system

 Formal models enable automatic analysis

 Finding ill-formed examples

 Checking properties

5

Alloy

 Alloy is a formal modeling language based on set theory

 An Alloy model specifies a collection of constraints describing a set of structures

 The Alloy analyzer reasons about the constraints of a model

 Generates sample structures

 Generates counterexamples for invalid properties

 Visualizes structures

6

Alloy documentation and download

 https://alloytools.org

 The documentation includes

 Tutorials

 Book by Daniel Jackson

7

https://alloytools.org/

Design

• Informal models

• Formal models

• Static models

• Analyzing models

• Design by contract

Signatures

 A signature declares a set of atoms

 Think of signatures as classes

 Think of atoms as immutable objects

 Different signatures declare disjoint sets

 Extends-clauses declare subset relations

 File and Dir are disjoint subsets of FSObject

9

sig FSObject {}

sig File extends FSObject {}
sig Dir extends FSObject {}

Operations on sets

 Standard set operators

 + (union)

 & (intersection)

 - (difference)

 in (subset)

 = (equality)

 # (cardinality)

 none (empty set)

 univ (universal set)

10

sig File extends FSObject {}
sig Dir extends FSObject {}

#{f: FSObject | f in File + Dir} >= #Dir

#(File + Dir) >= #Dir

More on signatures

 Signatures can be abstract

 Like abstract classes

 Closed-world assumption: the declared set

contains exactly the elements of the declared subsets

 Signatures may constrain the cardinalities of the declared sets

 one: singleton set

 lone: singleton or empty

 some: non-empty set

11

abstract sig FSObject {}
sig File extends FSObject {}
sig Dir extends FSObject {}

FSObject = File + Dir

one sig Root extends Dir {}

Fields

 A field declares a relation on atoms

 f is a binary relation with domain A and range given by expression e

 Think of fields as associations

 Range expressions may denote multiplicities

 one: singleton set (default)

 lone: singleton or empty set

 some: non-empty set

 set: any set

12

sig A {
 f: e
}

abstract sig FSObject {
 parent: lone Dir
}

sig Dir extends FSObject {
 contents: set FSObject
}

Operations on relations

 Standard relation operators

 -> (cross product)

 . (relational join)

 ~ (transposition)

 ^ (transitive closure)

 * (reflexive transitive closure)

 <: (domain restriction)

 >: (range restriction)

 ++ (override)

 iden (identity relation)

 [] (box join: e1[e2] = e2.e1)

13

abstract sig FSObject {
 parent: lone Dir
}

sig Dir extends FSObject {
 contents: set FSObject
}

one sig Root extends Dir {}

FSObject in Root.*contents

Relational join: Example

 Consider a structure with four FSObject atoms

 r: Root, d1,d2: Dir, f: File

 And contents relation

 (r,d1) (d1,d2) (d2,f)

 The reflexive transitive closure *contents is

 (r,d1) (d1,d2) (d2,f)

(d1,f) (r,d2) (r,f)

(r,r) (d1,d1) (d2,d2) (f,f)

14

More on fields

 Fields may range over relations

 Relation declarations may include multiplicities on both sides

 one, lone, some, set (default)

 Range expressions may depend on other fields

15

sig University {
 enrollment: Student set -> one Program
}

sig University {
 students: set Student,
 enrollment: students set -> one Program
}

Constraints

 Quantified expressions

 some e

e has at least one tuple

 no e

e has no tuples

 lone e

e has at most one tuple

 one e

e has exactly one tuple

16

 Boolean operators

 ! or not (negation)

 && or and (conjunction)

 || or or (disjunction)

 => or implies (implication)

 else (alternative)

 <=> or iff (equivalence)

 Four equivalent constraints

F => G else H
F implies G else H
(F && G) || ((!F) && H)
(F and G) or ((not F) and H) no Root.parent

Quantification

 Alloy supports five quantifiers

 all x: e | F

F holds for every x in e

 some x: e | F

F holds for at least one x in e

 no x: e | F

F holds for no x in e

 lone x: e | F

F holds for at most one x in e

 one x: e | F

F holds for exactly one x in e

17

 Quantifiers may have the following
forms:

 all x: e | F

 all x: e1, y: e2 | F

 all x, y: e | F

 all disj x, y: e | F

 E.g., the contents relation is acyclic

no d: Dir | d in d.^contents

Predicates and functions

 Predicates are named, parameterized formulas

 Functions are named, parameterized expressions

18

pred p[x1:e1,…,xn:en]{F}

pred isLeaf[f:FSObject] {
 f in File || no f.contents
}

fun f[x1:e1,…,xn:en]: e {E}

fun leaves[f:FSObject]: set FSObject {
 {x: f.*contents | isLeaf[x]}
}

Kippi
returns bool

Kippi
returns e

Kippi

Exploring the model

 The Alloy analyzer can search for structures that satisfy the constraints M in a
model

 Find instance of a predicate

 A solution to M && some x1:e1,…,xn:en | F

 Find instance of a function

 A solution to M && some x1:e1,…,xn:en, res:e | res = E

19

pred p[x1:e1,…,xn:en]{F}

run p

fun f[x1:e1,…,xn:en]: e {E}

run f

Exploring the model: Scopes

 The existence of a structure that satisfies the constraints in a model is in general
undecidable

 The Alloy analyzer searches exhaustively for structures up to a given size

 The problem becomes finite, and thus, decidable

20

run isLeaf
run isLeaf for 5
run isLeaf for 5 Dir, 2 File
run isLeaf for exactly 5 Dir
run isLeaf for 5 but 3 Dir
run isLeaf for 5 but exactly 3 Dir

Exploring the model: Example

21

abstract sig FSObject {
 parent: lone Dir
}

sig File extends FSObject {}

sig Dir extends FSObject {
 contents: set FSObject
}

one sig Root extends Dir {}

Adding constraints

 Facts add constraints that always hold

 run searches for solutions that satisfy all constraints

 Facts express value and structural invariants of the model

22

fact { F }
fact f { F }
sig S {...}{F}

Adding constraints: Example

23

// Root is the root
fact { no Root.parent }

// A directory is the parent of its contents
fact { all d: Dir, o: d.contents | o.parent = d }

// The contents path is acyclic
fact { no d: Dir | d in d.^contents }

Checking the model

 Exploring models by manually inspecting instances is cumbersome

 The Alloy analyzer can search for structures that violate a given property

 It can find counterexamples to an assertion

 The search is complete for a given scope

 For a model with constraints M, find a solution to M && !F

24

assert a { F }

check a scope

Checking the model: Example

 Finding a counterexample

 Proving a property

25

pred isLeaf[f: FSObject] {
 f in File || no f.contents
}

assert nonEmptyRoot { !isLeaf[Root] }
check nonEmptyRoot for 3

assert acyclic { no d: Dir | d in d.^contents }
check acyclic for 5

Under and over-constrained models

 Missing or weak facts under-constrain the model

 They permit undesired structures

 Under-constrained models are typically easy to detect during model exploration
(using run) and assertion checking (using check)

 Unnecessary facts over-constrain the model

 They exclude desired structures

 Inconsistencies are an extreme case of over-constraining

 They preclude the existence of any structure

 All assertion checks will succeed!

26

// The contents path is acyclic
fact acyclic { no d: Dir | d in d.*contents }

assert nonsense { 0 = 1}
check nonsense

Guidelines to avoid over-constraining

 Simulate model to check consistency

 Use run to ensure that structures exist

 Prefer assertions over facts

 When in doubt, check whether the current model already ensures a desired property
before adding it as a fact

27

// The contents path is acyclic
fact acyclic { no d: Dir | d in d.*contents }

pred show {}
run show

Design

• Informal models

• Formal models

• Static models

• Analyzing models

• Design by contract

Consistency and validity

 An Alloy model specifies a collection of constraints C that describe a set of
structures

 Consistency:

A formula F is consistent (satisfiable) if it evaluates to true in at least one of these
structures

 Validity:

A formula F is valid if it evaluates to true in all these structures

29

Analyzing models within a scope

 Validity and consistency checking for Alloy is undecidable

 The Alloy analyzer sidesteps this problem by checking validity and consistency
within a given scope

 A scope gives a finite bound on the sizes of the sets in the model (which makes
everything else in the model also finite)

 Naïve algorithm: enumerate all structures of a model within the bounds and check
the formula for each of them

30

Consistency checking

31

Translation into Boolean formula

 Internally, Alloy represents all data types as relations

 A relation is a set of tuples

 Constraints and formulas in the model are represented as formulas over
relations

32

sig Node {
 next: lone Node
}

fact {
 all n: Node | n != n.next
}

Translation into Boolean formula

 A relation is translated into Boolean variables

 Introduce one Boolean variable for each tuple that is potentially contained in the
relation

 Constraints and formulas are translated into Boolean formulas over these
variables

33

sig Node {
 next: lone Node
}
pred show {}
run show for 3

fact {
 all n: Node | n != n.next
}

Check for satisfying assignments

 Satisfiability of formulas over Boolean variables is a well understood problem

 Find a satisfying assignment if one exists and return UNSAT otherwise

 The problem is NP-complete

 In practice, SAT solvers are extremely efficient

34

Translation back to model

 A satisfying assignment can be translated back to relations

and then visualized

35

Interpretation of UNSAT

 If a Boolean formula has no satisfying assignment, the SAT solver returns UNSAT

 The Boolean formula encodes an Alloy model within a given scope

 There are no structures within this scope, but larger structures may exist

 The model may be, but is not necessarily inconsistent

36

sig Node {
 next: lone Node
}
fact { #Node = 4 }
pred show {}
run show for 3

Validity and invalidity checking

 A formula F is valid if it evaluates to true in all structures that satisfy the
constraints C of the model

 Enumerating all structures within a given scope is possible but too slow

 Instead of checking validity, the Alloy analyzer checks for invalidity, that is, it
looks for counterexamples

37

Validity checking

38

Interpretation of UNSAT

 Validity checking searches for a counterexample within a given scope

 There are no structures within this scope, but larger structures may exist

 The model may be, but is not necessarily valid

39

sig Node { next: Node }

assert demo { all n: Node | some m: Node | m.next = n }

check demo for 1 check demo for 2

Analyzing models: Summary

 Consistency checking

 Performed by run command within a scope

 Positive answers are definite (structures)

 Validity checking

 Performed by check command within a scope

 Negative answers are definite (counterexamples)

 Small model hypothesis

Most interesting errors are found by looking at small instances

40

Design

• Informal models

• Formal models

• Static models

• Analyzing models

• Design by contract

Design by contract

 Pioneered by Bertrand Meyer in the Eiffel language

 Defining formal, precise, and verifiable interface specifications for software
components, with preconditions, postconditions, and invariants

 Three key questions that the designer must repeatedly ask:

 What does this code expect?

 What does it guarantee?

 What does in maintain?

42

Preconditions

 Preconditions express requirements on the input state (parameters, heap) of a
method

 Semantics

 Condition must be true at the entry of the method

43

// requires 0 <= index < size
public int getElemAtIndex(int index) {
 return elems[index];
}

Checking preconditions

 Approach 1: Return error value

44

// requires 0 <= index < size
public int getElemAtIndex(int index) {
 if (index < 0 || index >= size) {
 return -1;
 } else {
 return elems[index];
 }
}

Checking preconditions

 Approach 2: Throw exception

45

// requires 0 <= index < size
public int getElemAtIndex(int index) {
 if (index < 0 || index >= size) {
 throw new IndexOutOfBoundsException(index);
 } else {
 return elems[index];
 }
}

Checking preconditions

 Approach 3: Use assertions

 An assertion is a logical statement that can be made at a particular program point
and is expected to be true

 In Java, assertions can be enabled (they are off by default)

46

// requires 0 <= index < size
public int getElemAtIndex(int index) {
 assert (0 <= index && index < size) : “index must be within bounds”;
 return elems[index];
}

Postconditions

 Postconditions express guarantees about the result and output state (out-
parameters, heap) of a method

 Semantics

 Condition must be true at the normal exit of the method

47

// requires 0 <= capacity
// ensures capacity <= elems.length
public int ensureCapacity(int capacity) {
 while (capacity > elems.length) {
 elems = Arrays.copyOf(elems, 2*elems.length);
 }
}

Checking postconditions

 Use assertions

48

// requires 0 <= capacity
// ensures capacity <= elems.length
public int ensureCapacity(int capacity) {
 while (capacity > elems.length) {
 elems = Arrays.copyOf(elems, 2*elems.length);
 }
 assert (capacity <= elems.length) : “elems does not have enough capacity”;
}

Pre- and postconditions: Methods and callers

49

Dafny

 There are many languages that natively support design by contact

 Dafny is a such a programming language that comes with a program verifier for
automatically checking the specifications

 Dafny compiles to mainstream languages, such as Java, C#, Go, etc.

 Check it out: https://dafny.org/

 Tutorials, examples, documentation, …

50

https://dafny.org/

Dafny

51

Inheritance and contracts: Example

52

Inheritance and contracts: Example

 Suppose the client class receives a TaxCalculator in its constructor and uses it in
its methods

 Due to polymorphism, any of the child classes can also be passed to the client

 Since the client does not know which tax calculator was given to it, it can only
assume that whatever class it received will respect the pre- and post-conditions
of the base class (the only class the client knows)

53

Inheritance and contracts: Example

54

Inheritance and contracts: Example

55

Inheritance and contracts: Example

56

Inheritance and contracts: Rules

Whenever a subclass S (e.g., TaxCalculatorBrazil) inherits from a base class B (e.g.,
TaxCalculator):

1. The pre-conditions of subclass S should be the same as or weaker (accept
more values) than the pre-conditions of base class B

2. The post-conditions of subclass S should be the same as or stronger (return
fewer values) than the post-conditions of base class B

Liskov substitution principle (LSP): The idea that a subclass may be used as a
substitution for a base class without breaking the system’s expected behavior

57

Weak or strong pre-conditions?

 An important design decision when modeling contracts is whether to use strong
or weak contracts: it’s a trade-off!

 Weak pre-condition

 E.g., the method accepts any input value, including null

 It’s easy to use for clients: any call to it will work and the method will never throw an
exception related to a pre-condition being violated

 This puts an extra burden on the method, as it must handle any invalid inputs

58

Weak or strong pre-conditions?

 An important design decision when modeling contracts is whether to use strong
or weak contracts: it’s a trade-off!

 Strong pre-condition

 E.g., the method only accepts positive numbers and does not accept null

 This puts an extra burden on the client, as it must make sure it does not violate the
pre-conditions of the method

 The method implementation is easier, as it may assume that inputs are always valid

59

Suggested reading

From Book: "Effective Software Testing A Developer's Guide" by M. Aniche

• Section 4.3.1

• Section 4.5.1

	Slide 1: Software Engineering VU [194.020]
	Slide 2: Summary
	Slide 3: Informal modeling
	Slide 4: Design
	Slide 5: Formal modeling
	Slide 6: Alloy
	Slide 7: Alloy documentation and download
	Slide 8: Design
	Slide 9: Signatures
	Slide 10: Operations on sets
	Slide 11: More on signatures
	Slide 12: Fields
	Slide 13: Operations on relations
	Slide 14: Relational join: Example
	Slide 15: More on fields
	Slide 16: Constraints
	Slide 17: Quantification
	Slide 18: Predicates and functions
	Slide 19: Exploring the model
	Slide 20: Exploring the model: Scopes
	Slide 21: Exploring the model: Example
	Slide 22: Adding constraints
	Slide 23: Adding constraints: Example
	Slide 24: Checking the model
	Slide 25: Checking the model: Example
	Slide 26: Under and over-constrained models
	Slide 27: Guidelines to avoid over-constraining
	Slide 28: Design
	Slide 29: Consistency and validity
	Slide 30: Analyzing models within a scope
	Slide 31: Consistency checking
	Slide 32: Translation into Boolean formula
	Slide 33: Translation into Boolean formula
	Slide 34: Check for satisfying assignments
	Slide 35: Translation back to model
	Slide 36: Interpretation of UNSAT
	Slide 37: Validity and invalidity checking
	Slide 38: Validity checking
	Slide 39: Interpretation of UNSAT
	Slide 40: Analyzing models: Summary
	Slide 41: Design
	Slide 42: Design by contract
	Slide 43: Preconditions
	Slide 44: Checking preconditions
	Slide 45: Checking preconditions
	Slide 46: Checking preconditions
	Slide 47: Postconditions
	Slide 48: Checking postconditions
	Slide 49: Pre- and postconditions: Methods and callers
	Slide 50: Dafny
	Slide 51: Dafny
	Slide 52: Inheritance and contracts: Example
	Slide 53: Inheritance and contracts: Example
	Slide 54: Inheritance and contracts: Example
	Slide 55: Inheritance and contracts: Example
	Slide 56: Inheritance and contracts: Example
	Slide 57: Inheritance and contracts: Rules
	Slide 58: Weak or strong pre-conditions?
	Slide 59: Weak or strong pre-conditions?
	Slide 60: Suggested reading

