
Software Engineering VU
[194.020]

Maria Christakis

TU Wien

https://mariachris.github.io

https://mariachris.github.io/


Implementation

• Effective and systematic testing

• Developing for testability

• Test-driven development



Effective testing during development

4



Requirement

 The developer receives some requirement, e.g., in UML

 The developer builds up some understanding (requirement analysis)

 The developer starts writing code

5



Test-driven development

 The developer performs short test-driven development (TDD) cycles

 These cycles give the developer rapid feedback about whether the code they just 
wrote makes sense

 They also support the developer through the many refactorings that occur when a 
new feature is being implemented

7



Contracts and testability

 Requirements are often large and complex and are rarely implemented by a 
single class or method

 The developer creates several units (classes and methods) with different 
contracts that together implement the required functionality

 The developer should design the implementation with testability in mind – 
writing classes that are easy to test is challenging

9



Unit testing

 Once the developer believes the requirement is complete and is satisfied with 
the units, testing begins

 The first step is to exercise each unit

 Domain testing

 Boundary testing

 Structural testing

 …

11



Larger tests

 Some parts of the system may require the developer to write larger tests

 Integration tests

 System tests

 To devise larger tests, the developer uses the same techniques as for unit 
testing but looking at larger parts of the software system

13



Intelligent testing

 When the developer has engineered tests using the various techniques, they 
apply automated, intelligent testing tools to look for tests that humans are not 
good at spotting

 Test case generation

 Mutation testing

 …

15



Effective testing during development

16



Effective and systematic testing

 Being effective means we focus on writing the right tests

 Testers want to maximize the number of detected bugs while minimizing the effort 
required to detect them

 Being systematic means that for a given piece of code, any developer should 
come up with the same test suite

 We should be able to systematize our processes to reduce the dependency on the 
developer who is doing the job

17



Isn’t the cost of testing too high?

 Yes, but it’s worth it!

 The cost of bugs that happen in production often outweighs the cost of prevention

 Teams that produce many bugs spend a lot of time as follows: developers write bugs, 
customers find bugs, developers fix bugs, customers find other bugs, etc.

 Once developers are used to engineering tests, they can do it much faster

18



Principles of software testing

1. Exhaustive testing is impossible

 We do not have the resources to completely test our programs

 Testing all possible situations of a system might be impossible even with 
unlimited resources

 E.g., imagine 300 Boolean flags

 Prioritize what to test, i.e., write effective tests

19



Principles of software testing

2. Know when to stop testing

 Too few tests may leave us with a software system that is full of bugs

 Too many tests can be ineffective, costing time and money

 Use adequacy criteria to decide when to stop testing

20



Principles of software testing

3. Variability is important

 There is no single testing technique that you can always apply to find all bugs

 Different testing techniques help reveal different bugs

 This is known as the pesticide paradox: Every method you use to find bugs leaves a 
residue of subtler bugs against which the method is ineffectual

 Use different testing strategies to minimize the number of bugs

21



Principles of software testing

4. Bugs happen in some places more than others

 Bugs are not uniformly distributed or equally important

 E.g., compare a Payment module with a Marketing module

 Watch and learn from the software system – data other than the source code 
may help prioritize the testing efforts

22

Kippi
We don't know the bug distribution in advance, but we know the importance



Principles of software testing

5. No matter what testing you do, it will never be perfect or enough

 Program testing can be used to show the presence of bugs, but never to show 
their absence

 Our test suites, however large they may be, can never ensure that the software 
system is 100% bug free

 Set expectations (of developers and customers) – bugs will still happen

23



Principles of software testing

6. Context is king

 Testing is context dependent

 E.g., testing a mobile app is very different from testing software used in a rocket

 Take context into account when devising tests

24



Principles of software testing

7. Verification is not validation

 Verification is about having the system right; validation is about having the right 
system

 Verification ensures that, given a specific requirement, the system implements it 
correctly

 Validation focuses on, e.g., collaborating with customers to understand their needs

 Testers face the absence-of-errors fallacy when they focus on verification but not on 
validation – we don’t want systems that work flawlessly but are useless

 Do not underestimate validation
25



The testing pyramid

26



Unit testing: Definition

Unit testing is to test a single feature / unit in isolation, purposefully ignoring the 
other units of the system

A unit test is an automated piece of code that invokes a unit of work in the 
system; and a unit of work can span a single method, a whole class, or multiple 
classes working together to achieve one single logical purpose that can be verified 

A unit test typically tests the software by giving certain parameters to a method 
and then comparing the return value of this method to the expected result

27



Unit testing: Pros

 Unit tests are fast

 Fast test suites give constant feedback about huge parts of the system in little time

 Unit tests are easy to control

 The input values and expected result value are easy to adapt

 Unit tests are easy to write

 No complicated setup is required

28



Unit testing: Cons

 Unit tests lack reality

 The large number of classes in a system and their interaction can cause the system to 
behave differently in its real application

 Some types of bugs are not caught

 Some bugs only happen in the integration of different components

 E.g., think of multithreaded code where bugs only appear once threads are running 
together

29



Integration testing: Definition

Integration testing is the test level we use to test the integration between our 
code and external parties

30



Integration testing: Definition

Integration testing is the test level we use to test the integration between our 
code and external parties

31

Kippi
Integration test would be encircled in green



System testing: Definition

System testing is testing the system in its entirety

We do not care how the system works from the inside; we only care that, given 
input X, the system will provide output Y

32



Manual testing: Definition

Manual testing is not automated and refers to manually exploring the software 
system

Manual tests typically focus on validation

33



Unit, integration, system testing: Pros and Cons

34

Kippi
flaky ... test case failing every blue moon



When to use each test level

35



Why favor unit tests?

 Because of their advantages

 Unit testing fits very well with the way developers work

 To implement a new feature, they write separate units that will eventually work 
together to deliver larger functionality

 While developing each unit, it is easy to ensure that it works as expected

36



Implementation

• Effective and systematic testing

• Developing for testability

• Test-driven development



Testability: Definition

Testability is how easy it is to write automated tests for the system, class, or 
method under test

If code is hard to test, it will likely remain untested

What is the right time to think about testability? All the time, and especially 
during implementation!

Good, testable code costs more than bad code, but it ensures quality

38



Separating infrastructure from domain code

 The domain is where the core of the system lies

 The infrastructure is all the code that handles external dependencies

 When domain and infrastructure code are mixed, the system is harder to test

 Simpler code is easier to write and test

 There are fewer possibilities and corner cases

39



Hexagonal architecture: Definition

To enforce clear separation of responsibilities, we use hexagonal architecture (or 
the ports and adapters pattern)

 The domain depends on ports, not directly on the infrastructure

 Ports are interfaces that define what the infrastructure can do and enable the 
application to get information from or send information to something else

 Adapters are very close to the infrastructure

 Adapters are the implementations of the ports that talk to the infrastructure; they 
know how the infrastructure works and how to communicate with it

40



Hexagonal architecture

41



Hexagonal architecture: Online shop example

 For all the shopping carts that were paid today, the system should:

 Notify the delivery center to send the goods to the customer

 Set the status of the shopping cart as ready for delivery and persist its new state in 
the database

 Send an email to the customer about when the delivery will happen

42



Hexagonal architecture: Online shop example

43



Why does this pattern improve testability?

 We can easily control what to test

 If the domain classes depend only on ports, we can exercise their behavior by 
implementing fake ports

 E.g., method deliver of DeliveryCenter could return the current LocalDate

 We will check if DeliverySenderAPI does its job properly in its own test suite

 We will use integration testing to check communication with external dependencies

45



Dependency injection: Definition

Dependency injection is an implementation strategy that allows to easily separate 
domain from infrastructure code

Code that instantiates its dependencies hinders our ability to control the internals 
of the class and write unit tests

Dependency injection is as easy as receiving the dependencies via the constructor 
or via setters

48



Dependency injection: Pros

 It enables to fake the dependencies during testing

 It makes all dependencies more explicit

 It offers separation of concerns: classes do not need to know how to build the 
dependencies

 The class becomes more extensible: any new dependency can just be passed via 
the constructor

49



Dependency inversion principle

 High-level modules (such as domain code) should not depend on low-level 
modules, but on abstractions (such as interfaces)

 Abstractions should not depend on details, but details should depend on 
abstractions

50

Kippi
Same as hexagonal architecture



Dependency inversion principle

51



Implementation

• Effective and systematic testing

• Developing for testability

• Test-driven development



Test-driven development (TDD)

 Write a test for the next small feature we want to implement

 The test of course fails because the feature is not yet implemented

 Implement the feature

 The test passes

 Refactor the code we wrote

53



TDD: Example

Convert Roman numerals to integers

 Roman numerals represent numbers with 7 symbols

 I = 1, V = 5, X = 10, L = 50, C = 100, D = 500, M = 1000

 All numbers are represented using two rules, starting from right to left

 Digits of higher or equal value on the left are added

 Digits of lower value on the left are subtracted

 E.g., XV = 10 + 5 = 15 and XXIV = 10 + 10 – 1 + 5 = 24

54



TDD differently

56



TDD: Pros

 Looking at requirements first

 The tests are basically executable requirements

 Control over the pace of writing production code

 If we are confident about the problem, the tests can be more complicated

 Quick feedback about problems

 It is easier to identify new problems as they arise because we have only written a 
small amount of code since the last time everything was under control

57



TDD: Pros

 Testable code

 We think from the beginning about how to (easily) test production code

 Feedback about design

 The tests are often the first client of the code

 E.g., a test method instantiates the class under test, invokes a method passing all its 
parameters, and asserts that the method produces the expected results

 If the client is hard to write, perhaps there is a better way to design the code

58



Suggested reading

From Book: "Effective Software Testing A Developer's Guide" by M. Aniche

• Sections 1.2.1, 1.2.5, 1.2.6, 1.3, 1.4

• Introduction of Chapter 7

• Sections 7.1, 7.2

• Sections 8.1, 8.2


