
Software Engineering VU
[194.020]

Maria Christakis

TU Wien

https://mariachris.github.io

https://mariachris.github.io/


Implementation

• Effective and systematic testing

• Developing for testability

• Test-driven development



Effective testing during development

4



Requirement

 The developer receives some requirement, e.g., in UML

 The developer builds up some understanding (requirement analysis)

 The developer starts writing code

5



Test-driven development

 The developer performs short test-driven development (TDD) cycles

 These cycles give the developer rapid feedback about whether the code they just 
wrote makes sense

 They also support the developer through the many refactorings that occur when a 
new feature is being implemented

7



Contracts and testability

 Requirements are often large and complex and are rarely implemented by a 
single class or method

 The developer creates several units (classes and methods) with different 
contracts that together implement the required functionality

 The developer should design the implementation with testability in mind – 
writing classes that are easy to test is challenging

9



Unit testing

 Once the developer believes the requirement is complete and is satisfied with 
the units, testing begins

 The first step is to exercise each unit

 Domain testing

 Boundary testing

 Structural testing

 …

11



Larger tests

 Some parts of the system may require the developer to write larger tests

 Integration tests

 System tests

 To devise larger tests, the developer uses the same techniques as for unit 
testing but looking at larger parts of the software system

13



Intelligent testing

 When the developer has engineered tests using the various techniques, they 
apply automated, intelligent testing tools to look for tests that humans are not 
good at spotting

 Test case generation

 Mutation testing

 …

15



Effective testing during development

16



Effective and systematic testing

 Being effective means we focus on writing the right tests

 Testers want to maximize the number of detected bugs while minimizing the effort 
required to detect them

 Being systematic means that for a given piece of code, any developer should 
come up with the same test suite

 We should be able to systematize our processes to reduce the dependency on the 
developer who is doing the job

17



Isn’t the cost of testing too high?

 Yes, but it’s worth it!

 The cost of bugs that happen in production often outweighs the cost of prevention

 Teams that produce many bugs spend a lot of time as follows: developers write bugs, 
customers find bugs, developers fix bugs, customers find other bugs, etc.

 Once developers are used to engineering tests, they can do it much faster

18



Principles of software testing

1. Exhaustive testing is impossible

 We do not have the resources to completely test our programs

 Testing all possible situations of a system might be impossible even with 
unlimited resources

 E.g., imagine 300 Boolean flags

 Prioritize what to test, i.e., write effective tests

19



Principles of software testing

2. Know when to stop testing

 Too few tests may leave us with a software system that is full of bugs

 Too many tests can be ineffective, costing time and money

 Use adequacy criteria to decide when to stop testing

20



Principles of software testing

3. Variability is important

 There is no single testing technique that you can always apply to find all bugs

 Different testing techniques help reveal different bugs

 This is known as the pesticide paradox: Every method you use to find bugs leaves a 
residue of subtler bugs against which the method is ineffectual

 Use different testing strategies to minimize the number of bugs

21



Principles of software testing

4. Bugs happen in some places more than others

 Bugs are not uniformly distributed or equally important

 E.g., compare a Payment module with a Marketing module

 Watch and learn from the software system – data other than the source code 
may help prioritize the testing efforts

22

Kippi
We don't know the bug distribution in advance, but we know the importance



Principles of software testing

5. No matter what testing you do, it will never be perfect or enough

 Program testing can be used to show the presence of bugs, but never to show 
their absence

 Our test suites, however large they may be, can never ensure that the software 
system is 100% bug free

 Set expectations (of developers and customers) – bugs will still happen

23



Principles of software testing

6. Context is king

 Testing is context dependent

 E.g., testing a mobile app is very different from testing software used in a rocket

 Take context into account when devising tests

24



Principles of software testing

7. Verification is not validation

 Verification is about having the system right; validation is about having the right 
system

 Verification ensures that, given a specific requirement, the system implements it 
correctly

 Validation focuses on, e.g., collaborating with customers to understand their needs

 Testers face the absence-of-errors fallacy when they focus on verification but not on 
validation – we don’t want systems that work flawlessly but are useless

 Do not underestimate validation
25



The testing pyramid

26



Unit testing: Definition

Unit testing is to test a single feature / unit in isolation, purposefully ignoring the 
other units of the system

A unit test is an automated piece of code that invokes a unit of work in the 
system; and a unit of work can span a single method, a whole class, or multiple 
classes working together to achieve one single logical purpose that can be verified 

A unit test typically tests the software by giving certain parameters to a method 
and then comparing the return value of this method to the expected result

27



Unit testing: Pros

 Unit tests are fast

 Fast test suites give constant feedback about huge parts of the system in little time

 Unit tests are easy to control

 The input values and expected result value are easy to adapt

 Unit tests are easy to write

 No complicated setup is required

28



Unit testing: Cons

 Unit tests lack reality

 The large number of classes in a system and their interaction can cause the system to 
behave differently in its real application

 Some types of bugs are not caught

 Some bugs only happen in the integration of different components

 E.g., think of multithreaded code where bugs only appear once threads are running 
together

29



Integration testing: Definition

Integration testing is the test level we use to test the integration between our 
code and external parties

30



Integration testing: Definition

Integration testing is the test level we use to test the integration between our 
code and external parties

31

Kippi
Integration test would be encircled in green



System testing: Definition

System testing is testing the system in its entirety

We do not care how the system works from the inside; we only care that, given 
input X, the system will provide output Y

32



Manual testing: Definition

Manual testing is not automated and refers to manually exploring the software 
system

Manual tests typically focus on validation

33



Unit, integration, system testing: Pros and Cons

34

Kippi
flaky ... test case failing every blue moon



When to use each test level

35



Why favor unit tests?

 Because of their advantages

 Unit testing fits very well with the way developers work

 To implement a new feature, they write separate units that will eventually work 
together to deliver larger functionality

 While developing each unit, it is easy to ensure that it works as expected

36



Implementation

• Effective and systematic testing

• Developing for testability

• Test-driven development



Testability: Definition

Testability is how easy it is to write automated tests for the system, class, or 
method under test

If code is hard to test, it will likely remain untested

What is the right time to think about testability? All the time, and especially 
during implementation!

Good, testable code costs more than bad code, but it ensures quality

38



Separating infrastructure from domain code

 The domain is where the core of the system lies

 The infrastructure is all the code that handles external dependencies

 When domain and infrastructure code are mixed, the system is harder to test

 Simpler code is easier to write and test

 There are fewer possibilities and corner cases

39



Hexagonal architecture: Definition

To enforce clear separation of responsibilities, we use hexagonal architecture (or 
the ports and adapters pattern)

 The domain depends on ports, not directly on the infrastructure

 Ports are interfaces that define what the infrastructure can do and enable the 
application to get information from or send information to something else

 Adapters are very close to the infrastructure

 Adapters are the implementations of the ports that talk to the infrastructure; they 
know how the infrastructure works and how to communicate with it

40



Hexagonal architecture

41



Hexagonal architecture: Online shop example

 For all the shopping carts that were paid today, the system should:

 Notify the delivery center to send the goods to the customer

 Set the status of the shopping cart as ready for delivery and persist its new state in 
the database

 Send an email to the customer about when the delivery will happen

42



Hexagonal architecture: Online shop example

43



Why does this pattern improve testability?

 We can easily control what to test

 If the domain classes depend only on ports, we can exercise their behavior by 
implementing fake ports

 E.g., method deliver of DeliveryCenter could return the current LocalDate

 We will check if DeliverySenderAPI does its job properly in its own test suite

 We will use integration testing to check communication with external dependencies

45



Dependency injection: Definition

Dependency injection is an implementation strategy that allows to easily separate 
domain from infrastructure code

Code that instantiates its dependencies hinders our ability to control the internals 
of the class and write unit tests

Dependency injection is as easy as receiving the dependencies via the constructor 
or via setters

48



Dependency injection: Pros

 It enables to fake the dependencies during testing

 It makes all dependencies more explicit

 It offers separation of concerns: classes do not need to know how to build the 
dependencies

 The class becomes more extensible: any new dependency can just be passed via 
the constructor

49



Dependency inversion principle

 High-level modules (such as domain code) should not depend on low-level 
modules, but on abstractions (such as interfaces)

 Abstractions should not depend on details, but details should depend on 
abstractions

50

Kippi
Same as hexagonal architecture



Dependency inversion principle

51



Implementation

• Effective and systematic testing

• Developing for testability

• Test-driven development



Test-driven development (TDD)

 Write a test for the next small feature we want to implement

 The test of course fails because the feature is not yet implemented

 Implement the feature

 The test passes

 Refactor the code we wrote

53



TDD: Example

Convert Roman numerals to integers

 Roman numerals represent numbers with 7 symbols

 I = 1, V = 5, X = 10, L = 50, C = 100, D = 500, M = 1000

 All numbers are represented using two rules, starting from right to left

 Digits of higher or equal value on the left are added

 Digits of lower value on the left are subtracted

 E.g., XV = 10 + 5 = 15 and XXIV = 10 + 10 – 1 + 5 = 24

54



TDD differently

56



TDD: Pros

 Looking at requirements first

 The tests are basically executable requirements

 Control over the pace of writing production code

 If we are confident about the problem, the tests can be more complicated

 Quick feedback about problems

 It is easier to identify new problems as they arise because we have only written a 
small amount of code since the last time everything was under control

57



TDD: Pros

 Testable code

 We think from the beginning about how to (easily) test production code

 Feedback about design

 The tests are often the first client of the code

 E.g., a test method instantiates the class under test, invokes a method passing all its 
parameters, and asserts that the method produces the expected results

 If the client is hard to write, perhaps there is a better way to design the code

58



Suggested reading

From Book: "Effective Software Testing A Developer's Guide" by M. Aniche

• Sections 1.2.1, 1.2.5, 1.2.6, 1.3, 1.4

• Introduction of Chapter 7

• Sections 7.1, 7.2

• Sections 8.1, 8.2


