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Summary



Effective and systematic testing
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Testing

• Structural testing

• Data flow coverage

• Property-based testing

• Test doubles and mocks



Coverage criteria 
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Data flow coverage

 Covering all program paths is infeasible

 Their number grows exponentially in the number of branches

 Loops

 Idea: Consider those paths where a computation in one part of the path affects 
the computation of another
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Variable definition and use

 A variable definition for a variable v is a basic block that assigns to v

 v can be a local variable, formal parameter, object field, or array element

 A variable use for a variable v is a basic block that reads the value from v

 In conditions, computations, output, etc.
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Definition-clear paths

 A definition-clear path for a variable v is a path n1, …, nk in the control flow 
graph such that

 n1 is a variable definition for v

 nk is a variable use for v

 No ni, where 1 < i ≤ k, is a variable definition for v

 Note: Definition-clear paths do not necessarily go from entry to exit, in contrast 
to our earlier definition of path
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Example revisited
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int Foo(boolean a, boolean b) {
  int x = 1;
  int y = 1;
  if (a)
    x = 0;
  else
    y = 0;
  if (b)
    return 5 / x;
  else 
    return 5 / y;
}

y = 0;

x = 1;
y = 1;

entry

b1 = a;

x = 0; 

exit

b1 !b1

return 
5 / y; 

b2 = b;

return 
5 / x; 

b2 !b2



Definition-use pairs

 A definition-use pair for a variable v is a 
pair of nodes (d,u) such that there is a 
definition-clear path d, …, u in the CFG

 We say DU pair for definition-use pair
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x = 1;
y = 1;

entry

b1 = a;

x = 0; 

exit

b1 !b1

return 
5 / y; 

b2 = b;

return 
5 / x; 

b2 !b2

y = 0;

Variable definition 
for x

Variable definition 
for x

Variable use
for x



Definition-use pairs – Example 
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y = 0;

x = 1;
y = 1;

entry

b1 = a;

x = 0; 

exit

b1 !b1

return 
5 / y; 

b2 = b;

return 
5 / x; 

b2 !b2



Definition-use pairs – Example 
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y = 0;

x = 1;
y = 1;

entry

b1 = a;

x = 0; 

exit

b1 !b1

return 
5 / y; 

b2 = b;

return 
5 / x; 

b2 !b2



DU-pairs coverage

DU−pairs coverage =
Number of executed DU pairs

Total number of DU pairs 
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DU-pairs coverage – Example

 Consider the inputs

a = true, b = false

a = false, b = true

 What is the DU-pairs coverage?

a) 50%     b) 70%     c) 100%

(but 100% branch coverage)

 In this example, DU-pairs coverage is 
equivalent to path coverage
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y = 0;

x = 1;
y = 1;

entry

b1 = a;

x = 0; 

exit

b1 !b1

return 
5 / y; 

b2 = b;

return 
5 / x; 

b2 !b2



Determining all DU pairs

 DU pairs are computed with a reaching-definitions static analysis

 Algorithm: For each node n and for each variable v, compute all variable 
definitions for v that possibly reach n via a definition-clear path

 The reaching definitions at a node n are:

 The reaching definitions of n’s predecessors in the CFG

 Minus the definitions killed by one of n’s predecessors

 Plus the definitions made by one of n’s predecessors
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Reaching definitions – Algorithm 

 We use the sets

 pred(n) = {m | (m,n,c) is an edge in the CFG}

 succ(m) = {n | (m,n,c) is an edge in the CFG}

 gen(n) = {vn | n is a variable definition for v}

 kill(n) = {vm | n is a variable definition for v and m ≠ n}

 We compute via fixpoint iteration

 Reach(n): The reaching definitions at the beginning of n

 ReachOut(n): The reaching definitions at the end of n
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Reaching definitions – Algorithm 

22

foreach node n do ReachOut(n) := ⦰ end
worklist := nodes
while worklist ≠ ⦰ do
  n := any(worklist)
  remove n from worklist
  Reach(n) := ⋃m ∊ pred(n) ReachOut(m)
  ReachOut(n) := Reach(n) \ kill(n) ⋃ gen(n)
  if ReachOut(n) has changed then
    worklist := worklist ⋃ succ(n)
  end
end



Reaching definitions – Example 
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y = 0;

x = 1;
y = 1;

entry

b1 = a;

x = 0; 

exit

b1 !b1

return 
5 / y; 

b2 = b;

return 
5 / x; 

b2 !b2

1:

2:

3: 4:

5:

6: 7:

n Reach(n) ReachOut(n)

1 ⦰ x1, y1

2 x1, y1 x1, y1

3 x1, y1 x3, y1

4 x1, y1 x1, y4

5 x1, x3, y1, y4 x1, x3, y1, y4

6 x1, x3, y1, y4 x1, x3, y1, y4

7 x1, x3, y1, y4 x1, x3, y1, y4

foreach node n do ReachOut(n) := ⦰ end
worklist := nodes
while worklist ≠ ⦰ do
  n := any(worklist)
  remove n from worklist
  Reach(n) := ⋃m ∊ pred(n) ReachOut(m)
  ReachOut(n) := Reach(n) \ kill(n) ⋃ gen(n)
  if ReachOut(n) has changed then
    worklist := worklist ⋃ succ(n)
  end
end



Reaching definitions to DU pairs

 The set of DU pairs is easily determined as

{(d,u) | u is a variable use for v and vd ∊ Reach
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y = 0;

x = 1;
y = 1;

entry

b1 = a;

x = 0; 

exit

b1 !b1

return 
5 / y; 

b2 = b;

return 
5 / x; 

b2 !b2

1:

2:

3: 4:

5:

6: 7:

n Reach(n)

1 ⦰

2 x1, y1

3 x1, y1

4 x1, y1

5 x1, x3, y1, y4

6 x1, x3, y1, y4

7 x1, x3, y1, y4

 DU pairs of x:

(1,6), (3,6)

 DU pairs of y:

(1,7), (4,7)



DU-pairs coverage – Discussion 

 Convert character sequence to integer

 Input format: ddec* | ‘x’(dhex*)
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static int Convert(char[] a) {
  int base; int i = 0; int val = 0;
  if (a.length == 0) return 0;
  if (a[i] == 'x') { base = 12; i = i + 1; }
  else { base = 10; }
  while (i < a.length) {
    val = val * base + Character.digit(a[i], base);
    i = i + 1;
  }
  return val;
}

We assume that
all inputs are of
the right format

Is this method correct?



DU-pairs coverage – Discussion 
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8:
val = val * base + Character.digit(a[i], base);

i = i + 1;

i = 0;
val = 0;

b1 = (a.length == 0);

entry

b2 = (a[i] == 'x');

base = 12;
i = i + 1;

exit

return 0;

!b1

b1

!b2b2

!b3

b3

base = 10;

b3 = (i < a.length);

return val;

1:

2:

3:4: 5:

6:

7:



DU-pairs coverage – Discussion

31

n Reach(n) ReachOut(n)

1 ⦰ i1, val1

2 i1, val1 i1, val1

3 i1, val1 i1, val1

4 i1, val1 i4, val1, base4

5 i1, val1 i1, val1, base5

6 i1, i4, i7, val1, val7,
base4, base5

i1, i4, i7, val1, val7,
base4, base5

7 i1, i4, i7, val1, val7,
base4, base5

i7, val7, base4, base5

8 i1, i4, i7, val1, val7,
base4, base5

i1, i4, i7, val1, val7,
base4, base5

 We get 14 DU pairs

 DU pairs for i:

(1,2), (1,4), (1,6), (1,7), (4,6), (4,7), 
(7,6), (7,7)

 DU pairs for val:

(1,7), (1,8), (7,7), (7,8)

 DU pairs for base:

(4,7), (5,7)



DU-pairs coverage – Discussion 

 Consider the inputs

a = {}

a = {‘x’}

a = {‘1’}

a = {‘1’,‘2’}

 The bug is missed

 Branch and loop coverage: 100%

 DU pairs missed: (4,7) for i, base (coverage 86%)
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static int Convert(char[] a) {
  int base; int i = 0; int val = 0;
  if (a.length == 0) return 0;
  if (a[i] == 'x') { base = 12; i = i + 1; }
  else { base = 10; }
  while (i < a.length) {
    val = val * base + Character.digit(a[i], base);
    i = i + 1;
  }
  return val;
}



DU-pairs coverage – Discussion 

 DU pairs for i and val include (7,7)

 Complete DU-pairs coverage requires more than one loop iteration
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static int Convert(char[] a) {
  int base; int i = 0; int val = 0;
  if (a.length == 0) return 0;
  if (a[i] == 'x') { base = 12; i = i + 1; }
  else { base = 10; }
  while (i < a.length) {
    val = val * base + Character.digit(a[i], base);
    i = i + 1;
  }
  return val;
}



Determining all DU pairs

 A static analysis would need arithmetic and aliasing information to determine 
whether a definition and use refer to the same heap location

 Static analysis has to over-approximate
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static void Repeat(int[] from, int[] to) {
  int i = 0;
  if (from.length == 0) return;
  while (i < to.length) {
    to[i] = to[i] + from[i % from.length];
    i = i + 1;
  }
}



Measuring DU-pairs coverage

 Keep track of currently active definitions

 defCover: Variable → Block

 Keep track of executed DU pairs

 useCover: Variable ✖ Blockdef ✖ Blockuse → ℕ

 Maps can be encoded as arrays, indexed by identifiers for variables and basic 
blocks

36



Measuring DU-pairs coverage
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int Foo(boolean a, boolean b) {
  int x = 1; defCover[“x”] = 1;
  int y = 1; defCover[“y”] = 1;
  if (a)
    x = 0; defCover[“x”] = 3;
  else
    y = 0; defCover[“y”] = 4;
  if (b)
    useCover[“x”, defCover[“x”], 6]++;
    return 5 / x;
  else
    useCover[“y”, defCover[“y”], 7]++;
    return 5 / y;
} 

Current variable
definition for x is

basic block 1

Current variable
definition for x is

basic block 3

DU pair for variable x
with current definition

and use-block 6 has
been executed



Data flow coverage – Discussion 

 Data flow coverage complements control flow coverage

 For example, choose tests that maximize branch and DU-pairs coverage

 Not all DU pairs are always feasible

 Static analysis over-approximates data flow

 DU-pair “anomalies” may point to errors

 Double definition without use, or termination after definition without use, etc.
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Test coverage – Discussion 

 High coverage does not mean that code is well tested

 But low coverage means that code is not well tested

 How well tested the code is depends on the coverage criterion

 Full coverage for stronger criteria implies larger test suites
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Testing

• Structural testing

• Data flow coverage

• Property-based testing

• Test doubles and mocks



Effective and systematic testing
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Example- vs property-based testing

 Example-based testing is picking one concrete example from all the possible 
ones and writing a test case

 E.g., specification-based testing is example-based testing

 Property-based testing is defining a property (or set of properties) that the 
program should satisfy and letting the test framework choose several examples

 The goal of the test framework is to find a counterexample that causes the program 
to violate the properties
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Example: The passing grade program

A student passes an exam if they get a grade ≥ 5. Grades below that are a fail. 
Grades fall in the range [1.0, 10.0].
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Jqwik: A property-based testing framework 

 Pronounce it “jay quick”

 Check it out here: https://jqwik.net/ 
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https://jqwik.net/


Property-based testing: Pros and cons

Explores the input domain much better

 Is more complex than example-based testing

 Requires more creativity and practice to automate
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Common issues in property-based tests

1. Generating data may be expensive or impossible

 E.g., generating an array of 100 elements in which the numbers must be unique and 
multiples of 2, 3, 5, and 15

 Or generating an array of 10 unique elements, from a range of 2 to 8
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Common issues in property-based tests

2. Failing to express the boundaries of a property

 Property testing frameworks mix edge cases with random data points, only if 
properties are expressed correctly

 E.g., Arbitraries.floats().lessThan(1f)
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Common issues in property-based tests

3. Ensuring the input data passed to the method under test is fairly distributed 
among all the possible options

 Property testing frameworks do their best to generate well distributed inputs, e.g., 
when asking for an integer between 0 and 10, all the numbers have the same 
probability of being generated

 But tests that manipulate the generated data can harm this property
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Common issues in property-based tests

3. Ensuring the input data passed to the method under test is fairly distributed 
among all the possible options

 Property testing frameworks do their best to generate well distributed inputs, e.g., 
when asking for an integer between 0 and 10, all the numbers have the same 
probability of being generated

 But tests that manipulate the generated data can harm this property
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@Property
void gradesBadTest(@ForAll @FloatRange(max = 100f) float grade) {
  // ... test here ...
}



Testing

• Property-based testing

• Test doubles and mocks



Effective and systematic testing
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Test doubles: Motivation
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 Testing class A together with its dependencies might be too slow, too hard, or 
too much work

 E.g., when testing the Invoice Generation Service, maybe we do not want to test 
whether the SQL query in the Issued Invoices is correct

 We only want to ensure the invoice is generated correctly

 Testing the SQL queries is the responsibility of the Issued Invoices test suite



Test doubles: Definition

 A test double is an object that mimics the behavior of a software component for 
testing purposes

 Within a test, we have full control over what the double does, and thus cut the 
dependency on the real object

 E.g., we can implement a fake Issued Invoices class that returns a hard-coded list of 
values rather than retrieving them from an external database
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Test doubles: Pros

 We have more control

 We can easily tell these doubles what to do, e.g., to throw an exception or return a 
fake date

 Simulations are faster

 Imagine dependencies with a web service or a database, where each query may take 
a few seconds to process

 Doubles enable developers to think about how classes should interact
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Test doubles: 5 types

 Dummy objects

 Fake objects

 Stubs

 Mocks

 Spies
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Dummy objects

 Dummy objects are passed to the class under test but never used

 Common when you need to fill a long list of parameters, but the test exercises only a 
few of them

 E.g., think of a Customer class that depends on Address, Email, and so on: 

When exercising a behavior that does not care about a customer’s address, we can set 
up a dummy Address object and pass it to the Customer class
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Fake objects

 Fake objects are real working implementations of the class they simulate, but 
they usually do the same task in a much simpler way

 E.g., think of a fake database class that uses an array list instead of a real database
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Stubs

 Stubs provide hard-coded answers to the calls performed during the test

 Unlike fake objects, stubs do not have a working implementation:

If the code calls a stubbed method to get all invoices, the stub will return a hard-coded 
list of invoices, e.g., we could create a stub that returns an empty list, one that returns 
a list with one invoice, and another that returns a list with many invoices

 Stubs are the most popular type of simulation
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Mocks

 Mocks act like stubs and also save all interactions with the mocked object

 E.g., imagine that we want to check the calls to a method that gets all invoices:

Mocks allow asserting that the method is only called once, that it is never called with a 
specific parameter, or that it is called twice with parameter A and once with B

 Mocks are also very popular
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Spies

 Spies do not simulate the underlying object but only record all the interactions 
with it

 Spies wrap themselves around the real object

 They are used in very specific contexts, e.g., when it is much easier to use the real 
implementation than a mock, but we still want to check the interactions with the 
underlying object
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Example: The invoice filter program

The program must return all the issued invoices with values smaller than 100. The 
collection of invoices can be found in the database. The class IssuedInvoices 
already contains a method that retrieves all the invoices.

We will stub IssuedInvoices.
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Mockito

 Check it out here: https://site.mockito.org/ 
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https://site.mockito.org/


Stub demo: Observations

 The test was easier to write

 The test class is less likely to change if something other than InvoiceFilter 
changes

 We are not testing IssuedInvoices

 If the contracts of IssuedInvoices change, then we may have to propagate the 
changes to our stub

 The test can only fail because of a bug in InvoiceFilter
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Example: The SAP invoice sender program

Our current system has an additional requirement:

All low-valued invoices should be sent to our SAP system (a software that 
manages business operations). SAP offers a send web service for invoices.

We will stub InvoiceFilter and mock SAP.

69



Disadvantages of stubs/mocks

 They make the code less realistic: in production, the code uses the concrete 
implementation of the stubbed/mocked class

 E.g., when changing the implementation of issuedInvoices.all() or sap.send(), 
the developer will update the tests of the IssuedInvoices or SAP class

 But it is easy to forget to update the tests of InvoiceFilter or SAPInvoiceSender 
especially in large-scale software

 For stubs/mocks to work well on a large scale, developers must design stable 
contracts

 When contracts do change, it is part of the developer’s job to find all dependencies
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Disadvantages of stubs/mocks

 The tests are more coupled with the code they test

 Tests without stubs/mocks typically call a method and assert the output – they don’t 
know anything about the method’s implementation

 The test we wrote for SAPInvoiceSender knows about both 
filter.lowValueInvoices() and sap.send()

 When tests know so much, they are harder to change

 So, although stubs/mocks simplify tests, they increase coupling between test and 
production code, which may force us to change them whenever we change the 
production code
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Kippi
Key point: You need to keep them up to date



What to stub/mock

 Dependencies that are too slow, e.g., web services or databases

 We don’t want slow test suites

 Dependencies that depend on external infrastructure

 External infrastructure might be too slow or too complex to set up, e.g., think of the 
IssuedInvoices class

 Cases that are hard to simulate

 E.g., when we would like the dependency to throw an exception

 Dependencies that have non-deterministic behavior

 We don’t want flaky tests suites – a flaky test yields both passing and failing results 
without any changes to the code
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Suggested reading

From Book: "Effective Software Testing A Developer's Guide" by M. Aniche

• Introduction of Chapter 5

• Sections 5.1, 5.6

• Introduction of Chapter 6

• Sections 6.1, 6.2, 6.2.1, 6.2.2, 6.3.1, 6.3.2




