
Software Engineering VU
[194.020]

Maria Christakis

TU Wien

https://mariachris.github.io

https://mariachris.github.io/

Summary

Informal modeling

3

Design

• Informal models

• Formal models

• Design by contract

Formal modeling

 Notations and tools are based on math and are precise

 Typically used to describe some aspect of a system

 Formal models enable automatic analysis

 Finding ill-formed examples

 Checking properties

5

Alloy

 Alloy is a formal modeling language based on set theory

 An Alloy model specifies a collection of constraints describing a set of structures

 The Alloy analyzer reasons about the constraints of a model

 Generates sample structures

 Generates counterexamples for invalid properties

 Visualizes structures

6

Alloy documentation and download

 https://alloytools.org

 The documentation includes

 Tutorials

 Book by Daniel Jackson

7

https://alloytools.org/

Design

• Informal models

• Formal models

• Static models

• Analyzing models

• Design by contract

Signatures

 A signature declares a set of atoms

 Think of signatures as classes

 Think of atoms as immutable objects

 Different signatures declare disjoint sets

 Extends-clauses declare subset relations

 File and Dir are disjoint subsets of FSObject

9

sig FSObject {}

sig File extends FSObject {}
sig Dir extends FSObject {}

Operations on sets

 Standard set operators

 + (union)

 & (intersection)

 - (difference)

 in (subset)

 = (equality)

 # (cardinality)

 none (empty set)

 univ (universal set)

10

sig File extends FSObject {}
sig Dir extends FSObject {}

#{f: FSObject | f in File + Dir} >= #Dir

#(File + Dir) >= #Dir

More on signatures

 Signatures can be abstract

 Like abstract classes

 Closed-world assumption: the declared set

contains exactly the elements of the declared subsets

 Signatures may constrain the cardinalities of the declared sets

 one: singleton set

 lone: singleton or empty

 some: non-empty set

11

abstract sig FSObject {}
sig File extends FSObject {}
sig Dir extends FSObject {}

FSObject = File + Dir

one sig Root extends Dir {}

Fields

 A field declares a relation on atoms

 f is a binary relation with domain A and range given by expression e

 Think of fields as associations

 Range expressions may denote multiplicities

 one: singleton set (default)

 lone: singleton or empty set

 some: non-empty set

 set: any set

12

sig A {
 f: e
}

abstract sig FSObject {
 parent: lone Dir
}

sig Dir extends FSObject {
 contents: set FSObject
}

Operations on relations

 Standard relation operators

 -> (cross product)

 . (relational join)

 ~ (transposition)

 ^ (transitive closure)

 * (reflexive transitive closure)

 <: (domain restriction)

 >: (range restriction)

 ++ (override)

 iden (identity relation)

 [] (box join: e1[e2] = e2.e1)

13

abstract sig FSObject {
 parent: lone Dir
}

sig Dir extends FSObject {
 contents: set FSObject
}

one sig Root extends Dir {}

FSObject in Root.*contents

Relational join: Example

 Consider a structure with four FSObject atoms

 r: Root, d1,d2: Dir, f: File

 And contents relation

 (r,d1) (d1,d2) (d2,f)

 The reflexive transitive closure *contents is

 (r,d1) (d1,d2) (d2,f)

(d1,f) (r,d2) (r,f)

(r,r) (d1,d1) (d2,d2) (f,f)

14

More on fields

 Fields may range over relations

 Relation declarations may include multiplicities on both sides

 one, lone, some, set (default)

 Range expressions may depend on other fields

15

sig University {
 enrollment: Student set -> one Program
}

sig University {
 students: set Student,
 enrollment: students set -> one Program
}

Constraints

 Quantified expressions

 some e

e has at least one tuple

 no e

e has no tuples

 lone e

e has at most one tuple

 one e

e has exactly one tuple

16

 Boolean operators

 ! or not (negation)

 && or and (conjunction)

 || or or (disjunction)

 => or implies (implication)

 else (alternative)

 <=> or iff (equivalence)

 Four equivalent constraints

F => G else H
F implies G else H
(F && G) || ((!F) && H)
(F and G) or ((not F) and H) no Root.parent

Quantification

 Alloy supports five quantifiers

 all x: e | F

F holds for every x in e

 some x: e | F

F holds for at least one x in e

 no x: e | F

F holds for no x in e

 lone x: e | F

F holds for at most one x in e

 one x: e | F

F holds for exactly one x in e

17

 Quantifiers may have the following
forms:

 all x: e | F

 all x: e1, y: e2 | F

 all x, y: e | F

 all disj x, y: e | F

 E.g., the contents relation is acyclic

no d: Dir | d in d.^contents

Predicates and functions

 Predicates are named, parameterized formulas

 Functions are named, parameterized expressions

18

pred p[x1:e1,…,xn:en]{F}

pred isLeaf[f:FSObject] {
 f in File || no f.contents
}

fun f[x1:e1,…,xn:en]: e {E}

fun leaves[f:FSObject]: set FSObject {
 {x: f.*contents | isLeaf[x]}
}

Kippi
returns bool

Kippi
returns e

Kippi

Exploring the model

 The Alloy analyzer can search for structures that satisfy the constraints M in a
model

 Find instance of a predicate

 A solution to M && some x1:e1,…,xn:en | F

 Find instance of a function

 A solution to M && some x1:e1,…,xn:en, res:e | res = E

19

pred p[x1:e1,…,xn:en]{F}

run p

fun f[x1:e1,…,xn:en]: e {E}

run f

Exploring the model: Scopes

 The existence of a structure that satisfies the constraints in a model is in general
undecidable

 The Alloy analyzer searches exhaustively for structures up to a given size

 The problem becomes finite, and thus, decidable

20

run isLeaf
run isLeaf for 5
run isLeaf for 5 Dir, 2 File
run isLeaf for exactly 5 Dir
run isLeaf for 5 but 3 Dir
run isLeaf for 5 but exactly 3 Dir

Exploring the model: Example

21

abstract sig FSObject {
 parent: lone Dir
}

sig File extends FSObject {}

sig Dir extends FSObject {
 contents: set FSObject
}

one sig Root extends Dir {}

Adding constraints

 Facts add constraints that always hold

 run searches for solutions that satisfy all constraints

 Facts express value and structural invariants of the model

22

fact { F }
fact f { F }
sig S {...}{F}

Adding constraints: Example

23

// Root is the root
fact { no Root.parent }

// A directory is the parent of its contents
fact { all d: Dir, o: d.contents | o.parent = d }

// The contents path is acyclic
fact { no d: Dir | d in d.^contents }

Checking the model

 Exploring models by manually inspecting instances is cumbersome

 The Alloy analyzer can search for structures that violate a given property

 It can find counterexamples to an assertion

 The search is complete for a given scope

 For a model with constraints M, find a solution to M && !F

24

assert a { F }

check a scope

Checking the model: Example

 Finding a counterexample

 Proving a property

25

pred isLeaf[f: FSObject] {
 f in File || no f.contents
}

assert nonEmptyRoot { !isLeaf[Root] }
check nonEmptyRoot for 3

assert acyclic { no d: Dir | d in d.^contents }
check acyclic for 5

Under and over-constrained models

 Missing or weak facts under-constrain the model

 They permit undesired structures

 Under-constrained models are typically easy to detect during model exploration
(using run) and assertion checking (using check)

 Unnecessary facts over-constrain the model

 They exclude desired structures

 Inconsistencies are an extreme case of over-constraining

 They preclude the existence of any structure

 All assertion checks will succeed!

26

// The contents path is acyclic
fact acyclic { no d: Dir | d in d.*contents }

assert nonsense { 0 = 1}
check nonsense

Guidelines to avoid over-constraining

 Simulate model to check consistency

 Use run to ensure that structures exist

 Prefer assertions over facts

 When in doubt, check whether the current model already ensures a desired property
before adding it as a fact

27

// The contents path is acyclic
fact acyclic { no d: Dir | d in d.*contents }

pred show {}
run show

Design

• Informal models

• Formal models

• Static models

• Analyzing models

• Design by contract

Consistency and validity

 An Alloy model specifies a collection of constraints C that describe a set of
structures

 Consistency:

A formula F is consistent (satisfiable) if it evaluates to true in at least one of these
structures

 Validity:

A formula F is valid if it evaluates to true in all these structures

29

Analyzing models within a scope

 Validity and consistency checking for Alloy is undecidable

 The Alloy analyzer sidesteps this problem by checking validity and consistency
within a given scope

 A scope gives a finite bound on the sizes of the sets in the model (which makes
everything else in the model also finite)

 Naïve algorithm: enumerate all structures of a model within the bounds and check
the formula for each of them

30

Consistency checking

31

Translation into Boolean formula

 Internally, Alloy represents all data types as relations

 A relation is a set of tuples

 Constraints and formulas in the model are represented as formulas over
relations

32

sig Node {
 next: lone Node
}

fact {
 all n: Node | n != n.next
}

Translation into Boolean formula

 A relation is translated into Boolean variables

 Introduce one Boolean variable for each tuple that is potentially contained in the
relation

 Constraints and formulas are translated into Boolean formulas over these
variables

33

sig Node {
 next: lone Node
}
pred show {}
run show for 3

fact {
 all n: Node | n != n.next
}

Check for satisfying assignments

 Satisfiability of formulas over Boolean variables is a well understood problem

 Find a satisfying assignment if one exists and return UNSAT otherwise

 The problem is NP-complete

 In practice, SAT solvers are extremely efficient

34

Translation back to model

 A satisfying assignment can be translated back to relations

and then visualized

35

Interpretation of UNSAT

 If a Boolean formula has no satisfying assignment, the SAT solver returns UNSAT

 The Boolean formula encodes an Alloy model within a given scope

 There are no structures within this scope, but larger structures may exist

 The model may be, but is not necessarily inconsistent

36

sig Node {
 next: lone Node
}
fact { #Node = 4 }
pred show {}
run show for 3

Validity and invalidity checking

 A formula F is valid if it evaluates to true in all structures that satisfy the
constraints C of the model

 Enumerating all structures within a given scope is possible but too slow

 Instead of checking validity, the Alloy analyzer checks for invalidity, that is, it
looks for counterexamples

37

Validity checking

38

Interpretation of UNSAT

 Validity checking searches for a counterexample within a given scope

 There are no structures within this scope, but larger structures may exist

 The model may be, but is not necessarily valid

39

sig Node { next: Node }

assert demo { all n: Node | some m: Node | m.next = n }

check demo for 1 check demo for 2

Analyzing models: Summary

 Consistency checking

 Performed by run command within a scope

 Positive answers are definite (structures)

 Validity checking

 Performed by check command within a scope

 Negative answers are definite (counterexamples)

 Small model hypothesis

Most interesting errors are found by looking at small instances

40

Design

• Informal models

• Formal models

• Static models

• Analyzing models

• Design by contract

Design by contract

 Pioneered by Bertrand Meyer in the Eiffel language

 Defining formal, precise, and verifiable interface specifications for software
components, with preconditions, postconditions, and invariants

 Three key questions that the designer must repeatedly ask:

 What does this code expect?

 What does it guarantee?

 What does in maintain?

42

Preconditions

 Preconditions express requirements on the input state (parameters, heap) of a
method

 Semantics

 Condition must be true at the entry of the method

43

// requires 0 <= index < size
public int getElemAtIndex(int index) {
 return elems[index];
}

Checking preconditions

 Approach 1: Return error value

44

// requires 0 <= index < size
public int getElemAtIndex(int index) {
 if (index < 0 || index >= size) {
 return -1;
 } else {
 return elems[index];
 }
}

Checking preconditions

 Approach 2: Throw exception

45

// requires 0 <= index < size
public int getElemAtIndex(int index) {
 if (index < 0 || index >= size) {
 throw new IndexOutOfBoundsException(index);
 } else {
 return elems[index];
 }
}

Checking preconditions

 Approach 3: Use assertions

 An assertion is a logical statement that can be made at a particular program point
and is expected to be true

 In Java, assertions can be enabled (they are off by default)

46

// requires 0 <= index < size
public int getElemAtIndex(int index) {
 assert (0 <= index && index < size) : “index must be within bounds”;
 return elems[index];
}

Postconditions

 Postconditions express guarantees about the result and output state (out-
parameters, heap) of a method

 Semantics

 Condition must be true at the normal exit of the method

47

// requires 0 <= capacity
// ensures capacity <= elems.length
public int ensureCapacity(int capacity) {
 while (capacity > elems.length) {
 elems = Arrays.copyOf(elems, 2*elems.length);
 }
}

Checking postconditions

 Use assertions

48

// requires 0 <= capacity
// ensures capacity <= elems.length
public int ensureCapacity(int capacity) {
 while (capacity > elems.length) {
 elems = Arrays.copyOf(elems, 2*elems.length);
 }
 assert (capacity <= elems.length) : “elems does not have enough capacity”;
}

Pre- and postconditions: Methods and callers

49

Dafny

 There are many languages that natively support design by contact

 Dafny is a such a programming language that comes with a program verifier for
automatically checking the specifications

 Dafny compiles to mainstream languages, such as Java, C#, Go, etc.

 Check it out: https://dafny.org/

 Tutorials, examples, documentation, …

50

https://dafny.org/

Dafny

51

Inheritance and contracts: Example

52

Inheritance and contracts: Example

 Suppose the client class receives a TaxCalculator in its constructor and uses it in
its methods

 Due to polymorphism, any of the child classes can also be passed to the client

 Since the client does not know which tax calculator was given to it, it can only
assume that whatever class it received will respect the pre- and post-conditions
of the base class (the only class the client knows)

53

Inheritance and contracts: Example

54

Inheritance and contracts: Example

55

Inheritance and contracts: Example

56

Inheritance and contracts: Rules

Whenever a subclass S (e.g., TaxCalculatorBrazil) inherits from a base class B (e.g.,
TaxCalculator):

1. The pre-conditions of subclass S should be the same as or weaker (accept
more values) than the pre-conditions of base class B

2. The post-conditions of subclass S should be the same as or stronger (return
fewer values) than the post-conditions of base class B

Liskov substitution principle (LSP): The idea that a subclass may be used as a
substitution for a base class without breaking the system’s expected behavior

57

Weak or strong pre-conditions?

 An important design decision when modeling contracts is whether to use strong
or weak contracts: it’s a trade-off!

 Weak pre-condition

 E.g., the method accepts any input value, including null

 It’s easy to use for clients: any call to it will work and the method will never throw an
exception related to a pre-condition being violated

 This puts an extra burden on the method, as it must handle any invalid inputs

58

Weak or strong pre-conditions?

 An important design decision when modeling contracts is whether to use strong
or weak contracts: it’s a trade-off!

 Strong pre-condition

 E.g., the method only accepts positive numbers and does not accept null

 This puts an extra burden on the client, as it must make sure it does not violate the
pre-conditions of the method

 The method implementation is easier, as it may assume that inputs are always valid

59

Suggested reading

From Book: "Effective Software Testing A Developer's Guide" by M. Aniche

• Section 4.3.1

• Section 4.5.1

	Slide 1: Software Engineering VU [194.020]
	Slide 2: Summary
	Slide 3: Informal modeling
	Slide 4: Design
	Slide 5: Formal modeling
	Slide 6: Alloy
	Slide 7: Alloy documentation and download
	Slide 8: Design
	Slide 9: Signatures
	Slide 10: Operations on sets
	Slide 11: More on signatures
	Slide 12: Fields
	Slide 13: Operations on relations
	Slide 14: Relational join: Example
	Slide 15: More on fields
	Slide 16: Constraints
	Slide 17: Quantification
	Slide 18: Predicates and functions
	Slide 19: Exploring the model
	Slide 20: Exploring the model: Scopes
	Slide 21: Exploring the model: Example
	Slide 22: Adding constraints
	Slide 23: Adding constraints: Example
	Slide 24: Checking the model
	Slide 25: Checking the model: Example
	Slide 26: Under and over-constrained models
	Slide 27: Guidelines to avoid over-constraining
	Slide 28: Design
	Slide 29: Consistency and validity
	Slide 30: Analyzing models within a scope
	Slide 31: Consistency checking
	Slide 32: Translation into Boolean formula
	Slide 33: Translation into Boolean formula
	Slide 34: Check for satisfying assignments
	Slide 35: Translation back to model
	Slide 36: Interpretation of UNSAT
	Slide 37: Validity and invalidity checking
	Slide 38: Validity checking
	Slide 39: Interpretation of UNSAT
	Slide 40: Analyzing models: Summary
	Slide 41: Design
	Slide 42: Design by contract
	Slide 43: Preconditions
	Slide 44: Checking preconditions
	Slide 45: Checking preconditions
	Slide 46: Checking preconditions
	Slide 47: Postconditions
	Slide 48: Checking postconditions
	Slide 49: Pre- and postconditions: Methods and callers
	Slide 50: Dafny
	Slide 51: Dafny
	Slide 52: Inheritance and contracts: Example
	Slide 53: Inheritance and contracts: Example
	Slide 54: Inheritance and contracts: Example
	Slide 55: Inheritance and contracts: Example
	Slide 56: Inheritance and contracts: Example
	Slide 57: Inheritance and contracts: Rules
	Slide 58: Weak or strong pre-conditions?
	Slide 59: Weak or strong pre-conditions?
	Slide 60: Suggested reading

