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About my research



Software has bugs

Software is everywhere

but it is not reliable
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Program analyzers find software bugs

A program analyzer is software that analyzes other software to find bugs
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Program analyzers find software bugs

A program analyzer is software that analyzes other software to find bugs

Analyzers can prevent catastrophic defects in safety-critical software
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I work on program analysis
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How to build more reliable software while increasing developer productivity



Software development models



The software development life cycle (SDLC)

Definition:

The SDLC is the process of producing software through a series of stages

 It spans from conception to end-of-life

 Its duration varies from months to years
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Life-cycle stages

All SDLC models have these stages

 How to combine the stages?

 How quickly to go through the stages?
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Main SDLC models

 Traditional models

 Waterfall model

 Spiral model

 …
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 Agile models

 XP (Extreme Programming)

 Scrum

 …



Waterfall model

 Top-down approach

 Sequential, non-overlapping stages

 Each stage is finished and frozen

 No backsteps to correct mistakes
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Waterfall model: Pros and cons

Easy-to-follow, sequential model

 

 Works well for well-defined projects (requirements are clear)

 Hard to do all the planning upfront

 Final product may not match the client’s needs
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https://twitter.com/0xDesigner/status/1662468891052847104?t=-y3OvivKGQvzmS6TetlA8Q&s=19


Agile models

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

While there is value in the items on the right,

items on the left are valued more

From the Agile Manifesto

https://agilemanifesto.org 
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https://agilemanifesto.org/


XP
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 Stages happen simultaneously

 Adaptation and re-prioritization of requirements

 Roles are frequently changed



XP: Pros and cons

Flexibility (changes are expected)

 Focus on quality (continuous testing)

 Focus on communication (continuous customer involvement)

 Requires experienced managers and highly skilled engineers

 Prioritizing requirements can be difficult with multiple stakeholders

 Best for small to medium projects
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SDLC models: Summary

 All models have the same goals

 Manage risks and produce high quality software

 All models basically involve the same stages

 E.g., requirements elicitation, design, implementation, and validation

 All models have advantages and disadvantages
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Requirements elicitation

• Requirements

• Activities



Life-cycle stages

All SDLC models have these stages
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Requirements

Definition:

Features that the system must have or constraints that the system must satisfy to 
be accepted by the client

Requirements engineering defines the requirements of the system under 
construction
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Requirements

 Describe the user’s view of the system

 Identify the what of the system, not the how
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Types of requirements 
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Types of requirements 
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Types of requirements 
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Functional requirements: Functionality

 Relationship of outputs to inputs

 Response to abnormal situations

 Exact sequence of operations

 Validity checks on the inputs

 Effect of parameters
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Functional requirements: External interfaces

 Detailed description of all inputs and outputs

 Description of purpose

 Source of input, destination of output

 Valid range, accuracy, tolerance

 Units of measure

 Relationships to other inputs and outputs

 Screen and window formats

 Data and command formats

29



Types of requirements 
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Non-functional requirements: Performance

 Static numerical requirements

 Number of terminals supported

 Number of simultaneous users supported

 Amount of information handled

 Dynamic numerical requirements

 Number of requests processed within certain time periods

(average and peak workload)

Example: 95% of the requests shall be processed in less than 1 second
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Non-functional requirements: Design constraints

 Standard compliance

 Report format, etc.

 Implementation requirements

 Tools, programming languages, etc.

 Development technology and methodology should not be constrained by the client

 Operation requirements

 Administration and management of the system

 Legal requirements

 Licensing, regulation, certification
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Non-functional requirements: Quality criteria
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Non-functional requirements: Quality criteria

34



Quality criteria: Examples

 “The system shall be usable by elderly people”

 QUIZ
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Quality criteria: Examples

 “The system shall be usable by elderly people”

 Not verifiable, unclear

 Solution: “Text shall appear in letters at least 1cm high”
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Quality criteria: Examples

 “The system shall be usable by elderly people”

 Not verifiable, unclear

 Solution: “Text shall appear in letters at least 1cm high”

 “The product shall be error-free”

 Not verifiable, not realistic

 Solution: Specify test criteria
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Quality criteria: Examples

 “The system shall be usable by elderly people”

 Not verifiable, unclear

 Solution: “Text shall appear in letters at least 1cm high”

 “The product shall be error-free”

 Not verifiable, not realistic

 Solution: Specify test criteria

 “The system shall provide real-time response”

 QUIZ
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Quality criteria: Examples

 “The system shall be usable by elderly people”

 Not verifiable, unclear

 Solution: “Text shall appear in letters at least 1cm high”

 “The product shall be error-free”

 Not verifiable, not realistic

 Solution: Specify test criteria

 “The system shall provide real-time response”

 Unclear

 Solution: “The system shall respond in less than 2s”

39



Requirements validation

 A quality assurance step, usually after requirements are gathered

 Reviews by clients and developers

 Check all quality criteria

 Discuss future validation (testing)

 Prototyping

 Produce throw-away or evolutionary prototypes

 Study feasibility

 Give clients an impression of the future system (e.g., user interfaces)
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Requirements elicitation

• Requirements

• Activities



Requirements-elicitation activities
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Identifying actors

 Actors represent roles

 Kind of user

 External system

 Physical environment

 Questions to ask

 Which user groups are supported by the system?

 Which user groups execute the system’s main functions?

 Which user groups perform secondary functions (e.g., maintenance, administration)?

 With what external hardware and software will the system interact?
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Scenarios and use cases

 Document the behavior of the system from the user’s point of view

 Can be understood by client and users
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Scenario

Definition:

A description of what people do and experience as they use the system

Example:

When Alice wants to borrow a book, she takes it to the checkout station. There, 
she first scans her library card. Then, she scans the barcode of the book. If she has 
no borrowed books that are overdue and the book is not reserved for another 
person, the system registers the book as being borrowed by Alice and…
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Identifying scenarios: Questions to ask

 What are the tasks the actor wants the system to perform?

 What information does the actor access?

 Which external changes does the actor need to inform the system about?

 Which events does the system need to inform the actor about?
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Sources of information

47



Use case

Definition:

A list of steps describing the interaction between an actor and the system,

to achieve a goal

Example:

48



Identifying non-functional requirements

 Non-functional requirements are defined together with functional requirements 
because of dependencies

 Example: Support for novice users requires help functionality

 Elicitation is typically done with check lists

 Resulting set of non-functional requirements typically contains conflicts

 Real-time requirement suggests C implementation

 Maintainability suggests OO implementation
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Design

• UML models (next lecture) 

• Formal models (in November)

• Design by contract (in November)



Life-cycle stages

All SDLC models have these stages
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Design specifications

 Source code provides limited support for leaving design choices unspecified

 Often because code is executable

 Some relevant design information is not represented in the program, or it is 
difficult to extract

 Tools can extract some information like control or data flow graphs

 Source code and documentation are too verbose

 Design specifications are models of the system providing suitable abstractions
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What is modeling?

 Building an abstraction of reality

 Abstractions from things, people, and processes

 Relationships between these abstractions

 Abstractions are simplifications

 They ignore irrelevant details

 What is relevant depends on the purpose of the model

 Modeling is a means for dealing with complexity

 They help to draw complicated conclusions in reality with simple steps in the model
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