Software Engineering VU

[194.020]

Maria Christakis

TU Wien
https://mariachris.github.io

https://mariachris.github.io/

| am from Crete, Greece

| am from Crete, Greece

Black Sea
Italy
®Rome g
Tirana® '\ s Istanbul
Albania |~
Bu(;sa Ankara
@
Greece
Athens Izmir Turkey
Aegva o
Antalya Adana
o o :
Malta g
Cyprus
Mediterranean Sea e 2
Lebanon
Tripoli Damascusg
b (sus>

Map data ©2018 GeoBasis-DE/BKG (©2009), Google, Inst. Geogr. Nacional, Mapa GISrael, ORION-ME

Where | have been until now

2015 - 2016
Post-doctoral researcher
MSR, Redmond, WA, U.S.A.

®

2016 — 2017

Lecturer (Assistant professor)
University of Kent, England

2003 — 2009 2017 - 2022
Dipl. in Electrical and (1 year of maternity leave)
Computer Engineering Tenure-track faculty (W2)
N.T.U.A., Greece MPI-SWS, Germany
! ! S
. : -
2011 — 2015 Since September 2022
Ph.D in Computer Science Professor of Software Engineering
ETH Zurich, Switzerland Head of Software Engineering Research Unit

TU Wien, Austria

About my research

Software has bugs

Software is everywhere

but it is not reliable

Program analyzers find software bugs

A program analyzer is software that analyzes other software to find bugs

e n
o 5=

Program analyzers find software bugs

A program analyzer is software that analyzes other software to find bugs

Analyzers can prevent catastrophic defects in safety-critical software

| work on program analysis

v
g

How to build more reliable software while increasing developer productivity

10

Software development models

The software development life cycle (SDLC)

Definition:

The SDLC is the process of producing software through a series of stages
* |t spans from conception to end-of-life

e Its duration varies from months to years

12

Life-cycle stages

Qeo\w\re_m ents
elicitotron

lon P\ ementanon
(____________\

\IQU&O\:HQI\

All SDLC models have these stages

e How to combine the stages?
* How quickly to go through the stages?

13

Main SDLC models

e Traditional models
e Waterfall model

e Spiral model

e Agile models

e XP (Extreme Programming)

e Scrum

14

Waterfall model

3-4
MonThs

1\ Qe.o\u;\re_m ents
elicitotron

e Top-down approach
e Sequential, non-overlapping stages
e Each stage is finished and frozen

e No backsteps to correct mistakes

$ - POPQ(\’\'\"OJ. reensSe

15

Waterfall model: Pros and cons
+ Easy-to-follow, sequential model

+ Works well for well-defined projects (requirements are clear)

== Hard to do all the planning upfront

em» [inal product may not match the client’s needs

16

https://twitter.com/0xDesigner/status/1662468891052847104?t=-y3OvivKGQvzmS6TetlA8Q&s=19

Agile models

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

While there is value in the items on the right,
items on the left are valued more

From the Agile Manifesto
https://agilemanifesto.org

17

https://agilemanifesto.org/

X
U

—

50 - +P"’0f°+"
DO~ PP

1
b 3

re

i

$- Potentiol relense

e Stages happen simultaneously

e Adaptation and re-prioritization of requirements

e Roles are frequently changed

— -
—_—

Qe.o\w'\re.m ents
elicitotron

18

XP: Pros and cons

+ Flexibility (changes are expected)
+ Focus on guality (continuous testing)

+ Focus on communication (continuous customer involvement)

- Requires experienced managers and highly skilled engineers
== Prioritizing requirements can be difficult with multiple stakeholders

-== Best for small to medium projects

19

SDLC models: Summary

e All models have the same goals
* Manage risks and produce high quality software

* All models basically involve the same stages
e E.g., requirements elicitation, design, implementation, and validation

e All models have advantages and disadvantages

20

Requirements elicitation

« Requirements
« Activities

Life-cycle stages

Reawirements
elicitotron

len Pl ementaiion

\loJ.ic\ocHor\

All SDLC models have these stages

22

Requirements

Definition:
Features that the system must have or constraints that the system must satisfy to
be accepted by the client

Requirements engineering defines the requirements of the system under
construction

23

Requirements

e Describe the user’s view of the system
e |dentify the what of the system, not the how

PART OF REQWIRCUENTS ||NOT PART OF REQUAREMENTS]
- Funchienality - System design

- Lser interachon - \me\e.menm«ﬁon
- E(‘(‘O(‘ hond L~ ﬁj +echnolo ay
- Exrecnadl wnrecfoces - DQNQAOPMQI\‘V

methodology

Types of requirements

I CUNCTIONAL REQUIREMENTS

® Cunchono.h\'j
— Whok s The sohtuwore SuPPQSeA o Ao?

e txternol nterfoces

- lnterocton wih\ PQQP\Q_ \hOsfduANQ\

chhes Softwose

Types of requirements

NON - CUNCT IONAL REQUIREMENTS

® Pex?or MNMo.Nce
~ Speed, o oulobi (LH\J ,fesponse fime fecovery Hme
TS De,s;sn consStrounts

— Qequuire,d 5+0mc§o~:o\s‘ oPeIOJ\rS envitonment ek.
. C;,u,oghhj critesial
- Por&-o_bih'rj , cofreckness , Mauntodnobi Uy,
Sewci\j

Types of requirements

I CUNCTIONAL REQUIREMENTS

® Cunchono.h\'j
— Whok s The sohtuwore SuPPQSeA o Ao?

e txternol nterfoces

- lnterocton wih\ PQQP\Q_ \hOsfduANQ\

chhes Softwose

Functional requirements: Functionality

Relationship of outputs to inputs

Response to abnormal situations

Exact sequence of operations

Validity checks on the inputs

Effect of parameters

28

Functional requirements: External interfaces

e Detailed description of all inputs and outputs /\XSQIS

e Description of purpose
* Source of input, destination of output

Softwore
e Units of measure Sﬂ Stemn

e Relationships to other inputs and outputs \/ Othecr

e Screen and window formats

e Data and command formats Ne:\'u)orKS 50t\‘®0~f2.

e Valid range, accuracy, tolerance

Hocdwore

29

Types of requirements

NON - CUNCT IONAL REQUIREMENTS

® Pex?or MNMo.Nce
~ Speed, o oulobi (LH\J ,fesponse fime fecovery Hme
TS De,s;sn consStrounts

— Qequuire,d 5+0mc§o~:o\s‘ oPeIOJ\rS envitonment ek.
. C;,u,oghhj critesial
- Por&-o_bih'rj , cofreckness , Mauntodnobi Uy,
Sewci\j

Non-functional requirements: Performance

e Static numerical requirements
e Number of terminals supported
* Number of simultaneous users supported
e Amount of information handled

e Dynamic numerical requirements
e Number of requests processed within certain time periods
(average and peak workload)

Example: 95% of the requests shall be processed in less than 1 second

31

Non-functional requirements: Design constraints

e Standard compliance
* Report format, etc.

e Implementation requirements

* Tools, programming languages, etc.
e Development technology and methodology should not be constrained by the client

e Operation requirements
e Administration and management of the system

e Legal requirements
* Licensing, regulation, certification

32

Non-functional requirements: Quality criteria

e

Correctness C.om‘:\e,’cene.ss

Reqwre,mex\ts rePresent
The cdlient's view

A\l Possxb\e_ ScenolioS
ore desceibed

kﬁc\ua:ns e-xce.P\‘ionoJ
behow. o
Closity (un-o;mbcaui{tp
Qe,quiremen{-s LN be

\nter preted in onlj one
0 Ou

ConSistenc.\l
Qeq@reme.n{-s do not
Controdick eovch other

Non-functional requirements: Quality criteria

Reolismn

Requurements con be

\m?\emer\&ed ond
deliveced

\ler'~91abihbj
Qe.Peo.’c oble teskts con be
éesisned Yo Show Thak The

sas\-em LuLflls e
te,o\\,d cecnents

Troceob. L\\d

Cocn fTeature con be
Novced o o Sed o®

PuncRonod requatements

Quality criteria: Examples

e “The system shall be usable by elderly people”
e QUIZ

35

Quality criteria: Examples

e “The system shall be usable by elderly people”
e Not verifiable, unclear
e Solution: “Text shall appear in letters at least 1cm high”

36

Quality criteria: Examples

e “The system shall be usable by elderly people”
e Not verifiable, unclear
e Solution: “Text shall appear in letters at least 1cm high”

e “The product shall be error-free”
e Not verifiable, not realistic
e Solution: Specify test criteria

37

Quality criteria: Examples

e “The system shall be usable by elderly people”
e Not verifiable, unclear
e Solution: “Text shall appear in letters at least 1cm high”

e “The product shall be error-free”
e Not verifiable, not realistic
e Solution: Specify test criteria

e “The system shall provide real-time response”
e QUIZ

38

Quality criteria: Examples

e “The system shall be usable by elderly people”
e Not verifiable, unclear
e Solution: “Text shall appear in letters at least 1cm high”

e “The product shall be error-free”
e Not verifiable, not realistic
e Solution: Specify test criteria

e “The system shall provide real-time response”
e Unclear
e Solution: “The system shall respond in less than 2s”

39

Requirements validation

* A quality assurance step, usually after requirements are gathered

* Reviews by clients and developers

* Check all quality criteria
* Discuss future validation (testing)

e Prototyping
* Produce throw-away or evolutionary prototypes
e Study feasibility
e Give clients an impression of the future system (e.g., user interfaces)

40

Requirements elicitation

- Requirements
« Activities

Requirements-elicitation activities
\cle.n’ﬁfdlr\j octors
ldenh’fj\ﬁj sceno-ciol
\c\en\\f:)lnj use woSes

\ denh’ ft)\ hj Nnon - Ewﬁc.ﬁono.L

cequire,menhs

ldentifying actors

* Actors represent roles
e Kind of user
e External system
e Physical environment

e Questions to ask
e Which user groups are supported by the system?
e Which user groups execute the system’s main functions?
* Which user groups perform secondary functions (e.g., maintenance, administration)?
e With what external hardware and software will the system interact?

43

Scenarios and use cases

e Document the behavior of the system from the user’s point of view

e Can be understood by client and users

e GeneroJuzes scenorfios

to descrcibe odl
Posskb\e co.s5esS

e Descripes coomtmon
cosSesS

e Fouus on
wndessto.Nndolo \A'Jj

o Ffocus oNn
com P\ ekeness

Scenario

Definition:

A description of what people do and experience as they use the system

Example:

When Alice wants to borrow a book, she takes it to the checkout station. There,
she first scans her library card. Then, she scans the barcode of the book. If she has
no borrowed books that are overdue and the book is not reserved for another
person, the system registers the book as being borrowed by Alice and...

45

ldentifying scenarios: Questions to ask

* What are the tasks the actor wants the system to perform?
e What information does the actor access?
* Which external changes does the actor need to inform the system about?

* Which events does the system need to inform the actor about?

46

Sources of information

cL e,r\t' &LSe,qs
Exisnng e -\
documnentaton Toskw observaron

(e.g.,uSe: Monuods |
Procaduk(e. mc.nquJS\
coOMPOony %\:o.ndo»(ds\e\-c.)

Use case

Definition:
A list of steps describing the interaction between an actor and the system,

to achieve a goal

Example: Actor S’\’QP.S S\,s+e,m St QP.S
L. Scans M\orws.l cpd'cl A. V&L’«Aq):es card)(e,wns
COJ‘A‘,A;SP‘(L S USes doJ‘OL;
éist:\mxls ‘Select Bundron
dim\os
3. Selecks ‘Boccowd H. DiSP\W{S (BO(‘('OUD‘ 610403

K. Dwons barcode of @. |dentkies boo\n; rtecords
ook to be borcowed book 05 bactowned ...

48

ldentifying non-functional requirements

e Non-functional requirements are defined together with functional requirements
because of dependencies
e Example: Support for novice users requires help functionality

e Elicitation is typically done with check lists

* Resulting set of non-functional requirements typically contains conflicts
e Real-time requirement suggests C implementation
e Maintainability suggests OO implementation

49

- UML models (next lecture)

- Formal models (in November)
- Design by contract (in November)

Life-cycle stages

Reawirements
elicitotron

len Pl ementaiion

\loJ.ic\ocHor\

All SDLC models have these stages

51

Design specifications

e Source code provides limited support for leaving design choices unspecified
e Often because code is executable

e Some relevant design information is not represented in the program, or it is
difficult to extract
* Tools can extract some information like control or data flow graphs
e Source code and documentation are too verbose

* Design specifications are models of the system providing suitable abstractions

52

What is modeling?

e Building an abstraction of reality
* Abstractions from things, people, and processes
» Relationships between these abstractions

e Abstractions are simplifications
e They ignore irrelevant details
e What is relevant depends on the purpose of the model

* Modeling is a means for dealing with complexity
e They help to draw complicated conclusions in reality with simple steps in the model

53

	Slide 1: Software Engineering VU [194.020]
	Slide 2: About me
	Slide 3: I am from Crete, Greece
	Slide 4: I am from Crete, Greece
	Slide 5: Where I have been until now
	Slide 6: About my research
	Slide 7: Software has bugs
	Slide 8: Program analyzers find software bugs
	Slide 9: Program analyzers find software bugs
	Slide 10: I work on program analysis
	Slide 11: Software development models
	Slide 12: The software development life cycle (SDLC)
	Slide 13: Life-cycle stages
	Slide 14: Main SDLC models
	Slide 15: Waterfall model
	Slide 16: Waterfall model: Pros and cons
	Slide 17: Agile models
	Slide 18: XP
	Slide 19: XP: Pros and cons
	Slide 20: SDLC models: Summary
	Slide 21: Requirements elicitation
	Slide 22: Life-cycle stages
	Slide 23: Requirements
	Slide 24: Requirements
	Slide 25: Types of requirements
	Slide 26: Types of requirements
	Slide 27: Types of requirements
	Slide 28: Functional requirements: Functionality
	Slide 29: Functional requirements: External interfaces
	Slide 30: Types of requirements
	Slide 31: Non-functional requirements: Performance
	Slide 32: Non-functional requirements: Design constraints
	Slide 33: Non-functional requirements: Quality criteria
	Slide 34: Non-functional requirements: Quality criteria
	Slide 35: Quality criteria: Examples
	Slide 36: Quality criteria: Examples
	Slide 37: Quality criteria: Examples
	Slide 38: Quality criteria: Examples
	Slide 39: Quality criteria: Examples
	Slide 40: Requirements validation
	Slide 41: Requirements elicitation
	Slide 42: Requirements-elicitation activities
	Slide 43: Identifying actors
	Slide 44: Scenarios and use cases
	Slide 45: Scenario
	Slide 46: Identifying scenarios: Questions to ask
	Slide 47: Sources of information
	Slide 48: Use case
	Slide 49: Identifying non-functional requirements
	Slide 50: Design
	Slide 51: Life-cycle stages
	Slide 52: Design specifications
	Slide 53: What is modeling?

