
Software Engineering VU
[194.020]

Maria Christakis

TU Wien

https://mariachris.github.io

https://mariachris.github.io/


About me



I am from Crete, Greece

3



I am from Crete, Greece

4



Where I have been until now

5

2003 – 2009
Dipl. in Electrical and 
Computer Engineering
N.T.U.A., Greece

2011 – 2015
Ph.D in Computer Science
ETH Zurich, Switzerland

2015 – 2016
Post-doctoral researcher
MSR, Redmond, WA, U.S.A.

2016 – 2017
Lecturer (Assistant professor)
University of Kent, England

2017 – 2022
(1 year of maternity leave)
Tenure-track faculty (W2)
MPI-SWS, Germany

Since September 2022
Professor of Software Engineering
Head of Software Engineering Research Unit
TU Wien, Austria



About my research



Software has bugs

Software is everywhere

but it is not reliable

7



Program analyzers find software bugs

A program analyzer is software that analyzes other software to find bugs

8



Program analyzers find software bugs

A program analyzer is software that analyzes other software to find bugs

Analyzers can prevent catastrophic defects in safety-critical software

9



I work on program analysis

10

How to build more reliable software while increasing developer productivity



Software development models



The software development life cycle (SDLC)

Definition:

The SDLC is the process of producing software through a series of stages

 It spans from conception to end-of-life

 Its duration varies from months to years

12



Life-cycle stages

All SDLC models have these stages

 How to combine the stages?

 How quickly to go through the stages?

13



Main SDLC models

 Traditional models

 Waterfall model

 Spiral model

 …

14

 Agile models

 XP (Extreme Programming)

 Scrum

 …



Waterfall model

 Top-down approach

 Sequential, non-overlapping stages

 Each stage is finished and frozen

 No backsteps to correct mistakes

15



Waterfall model: Pros and cons

Easy-to-follow, sequential model

 

 Works well for well-defined projects (requirements are clear)

 Hard to do all the planning upfront

 Final product may not match the client’s needs

16

https://twitter.com/0xDesigner/status/1662468891052847104?t=-y3OvivKGQvzmS6TetlA8Q&s=19


Agile models

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

While there is value in the items on the right,

items on the left are valued more

From the Agile Manifesto

https://agilemanifesto.org 

17

https://agilemanifesto.org/


XP

18

 Stages happen simultaneously

 Adaptation and re-prioritization of requirements

 Roles are frequently changed



XP: Pros and cons

Flexibility (changes are expected)

 Focus on quality (continuous testing)

 Focus on communication (continuous customer involvement)

 Requires experienced managers and highly skilled engineers

 Prioritizing requirements can be difficult with multiple stakeholders

 Best for small to medium projects

19



SDLC models: Summary

 All models have the same goals

 Manage risks and produce high quality software

 All models basically involve the same stages

 E.g., requirements elicitation, design, implementation, and validation

 All models have advantages and disadvantages

20



Requirements elicitation

• Requirements

• Activities



Life-cycle stages

All SDLC models have these stages

22



Requirements

Definition:

Features that the system must have or constraints that the system must satisfy to 
be accepted by the client

Requirements engineering defines the requirements of the system under 
construction

23



Requirements

 Describe the user’s view of the system

 Identify the what of the system, not the how

24



Types of requirements 

25



Types of requirements 

26



Types of requirements 

27



Functional requirements: Functionality

 Relationship of outputs to inputs

 Response to abnormal situations

 Exact sequence of operations

 Validity checks on the inputs

 Effect of parameters

28



Functional requirements: External interfaces

 Detailed description of all inputs and outputs

 Description of purpose

 Source of input, destination of output

 Valid range, accuracy, tolerance

 Units of measure

 Relationships to other inputs and outputs

 Screen and window formats

 Data and command formats

29



Types of requirements 

30



Non-functional requirements: Performance

 Static numerical requirements

 Number of terminals supported

 Number of simultaneous users supported

 Amount of information handled

 Dynamic numerical requirements

 Number of requests processed within certain time periods

(average and peak workload)

Example: 95% of the requests shall be processed in less than 1 second

31



Non-functional requirements: Design constraints

 Standard compliance

 Report format, etc.

 Implementation requirements

 Tools, programming languages, etc.

 Development technology and methodology should not be constrained by the client

 Operation requirements

 Administration and management of the system

 Legal requirements

 Licensing, regulation, certification

32



Non-functional requirements: Quality criteria

33



Non-functional requirements: Quality criteria

34



Quality criteria: Examples

 “The system shall be usable by elderly people”

 QUIZ

35



Quality criteria: Examples

 “The system shall be usable by elderly people”

 Not verifiable, unclear

 Solution: “Text shall appear in letters at least 1cm high”

36



Quality criteria: Examples

 “The system shall be usable by elderly people”

 Not verifiable, unclear

 Solution: “Text shall appear in letters at least 1cm high”

 “The product shall be error-free”

 Not verifiable, not realistic

 Solution: Specify test criteria

37



Quality criteria: Examples

 “The system shall be usable by elderly people”

 Not verifiable, unclear

 Solution: “Text shall appear in letters at least 1cm high”

 “The product shall be error-free”

 Not verifiable, not realistic

 Solution: Specify test criteria

 “The system shall provide real-time response”

 QUIZ

38



Quality criteria: Examples

 “The system shall be usable by elderly people”

 Not verifiable, unclear

 Solution: “Text shall appear in letters at least 1cm high”

 “The product shall be error-free”

 Not verifiable, not realistic

 Solution: Specify test criteria

 “The system shall provide real-time response”

 Unclear

 Solution: “The system shall respond in less than 2s”

39



Requirements validation

 A quality assurance step, usually after requirements are gathered

 Reviews by clients and developers

 Check all quality criteria

 Discuss future validation (testing)

 Prototyping

 Produce throw-away or evolutionary prototypes

 Study feasibility

 Give clients an impression of the future system (e.g., user interfaces)

40



Requirements elicitation

• Requirements

• Activities



Requirements-elicitation activities

42



Identifying actors

 Actors represent roles

 Kind of user

 External system

 Physical environment

 Questions to ask

 Which user groups are supported by the system?

 Which user groups execute the system’s main functions?

 Which user groups perform secondary functions (e.g., maintenance, administration)?

 With what external hardware and software will the system interact?

43



Scenarios and use cases

 Document the behavior of the system from the user’s point of view

 Can be understood by client and users

44



Scenario

Definition:

A description of what people do and experience as they use the system

Example:

When Alice wants to borrow a book, she takes it to the checkout station. There, 
she first scans her library card. Then, she scans the barcode of the book. If she has 
no borrowed books that are overdue and the book is not reserved for another 
person, the system registers the book as being borrowed by Alice and…

45



Identifying scenarios: Questions to ask

 What are the tasks the actor wants the system to perform?

 What information does the actor access?

 Which external changes does the actor need to inform the system about?

 Which events does the system need to inform the actor about?

46



Sources of information

47



Use case

Definition:

A list of steps describing the interaction between an actor and the system,

to achieve a goal

Example:

48



Identifying non-functional requirements

 Non-functional requirements are defined together with functional requirements 
because of dependencies

 Example: Support for novice users requires help functionality

 Elicitation is typically done with check lists

 Resulting set of non-functional requirements typically contains conflicts

 Real-time requirement suggests C implementation

 Maintainability suggests OO implementation

49



Design

• UML models (next lecture) 

• Formal models (in November)

• Design by contract (in November)



Life-cycle stages

All SDLC models have these stages

51



Design specifications

 Source code provides limited support for leaving design choices unspecified

 Often because code is executable

 Some relevant design information is not represented in the program, or it is 
difficult to extract

 Tools can extract some information like control or data flow graphs

 Source code and documentation are too verbose

 Design specifications are models of the system providing suitable abstractions

52



What is modeling?

 Building an abstraction of reality

 Abstractions from things, people, and processes

 Relationships between these abstractions

 Abstractions are simplifications

 They ignore irrelevant details

 What is relevant depends on the purpose of the model

 Modeling is a means for dealing with complexity

 They help to draw complicated conclusions in reality with simple steps in the model

53


	Slide 1: Software Engineering VU [194.020]
	Slide 2: About me
	Slide 3: I am from Crete, Greece
	Slide 4: I am from Crete, Greece
	Slide 5: Where I have been until now
	Slide 6: About my research
	Slide 7: Software has bugs
	Slide 8: Program analyzers find software bugs
	Slide 9: Program analyzers find software bugs
	Slide 10: I work on program analysis
	Slide 11: Software development models
	Slide 12: The software development life cycle (SDLC)
	Slide 13: Life-cycle stages
	Slide 14: Main SDLC models
	Slide 15: Waterfall model
	Slide 16: Waterfall model: Pros and cons
	Slide 17: Agile models
	Slide 18: XP
	Slide 19: XP: Pros and cons
	Slide 20: SDLC models: Summary
	Slide 21: Requirements elicitation
	Slide 22: Life-cycle stages
	Slide 23: Requirements
	Slide 24: Requirements
	Slide 25: Types of requirements 
	Slide 26: Types of requirements 
	Slide 27: Types of requirements 
	Slide 28: Functional requirements: Functionality
	Slide 29: Functional requirements: External interfaces
	Slide 30: Types of requirements 
	Slide 31: Non-functional requirements: Performance
	Slide 32: Non-functional requirements: Design constraints
	Slide 33: Non-functional requirements: Quality criteria
	Slide 34: Non-functional requirements: Quality criteria
	Slide 35: Quality criteria: Examples
	Slide 36: Quality criteria: Examples
	Slide 37: Quality criteria: Examples
	Slide 38: Quality criteria: Examples
	Slide 39: Quality criteria: Examples
	Slide 40: Requirements validation
	Slide 41: Requirements elicitation
	Slide 42: Requirements-elicitation activities
	Slide 43: Identifying actors
	Slide 44: Scenarios and use cases
	Slide 45: Scenario
	Slide 46: Identifying scenarios: Questions to ask
	Slide 47: Sources of information
	Slide 48: Use case
	Slide 49: Identifying non-functional requirements
	Slide 50: Design
	Slide 51: Life-cycle stages
	Slide 52: Design specifications
	Slide 53: What is modeling?

