Quantifying Uncertainty

Chapter 13



Acting Under Uncertainty

Partial sensor info is badly handled in logic because

has to be accounted for

« No matter how unlikely the explanation is
* Which leads to very large and complex belief-states (BS) where
« BS are a representation of the set of all possible word states

must have a contingency action

* No matter how unlikely the contingency is
* Hence correct contingency plans can grow arbitrarily large

guaranteed to achieve the goal

* Yet the agent must act and therefore it
« Must have a way of comparing the merits of alternative plans



Acting Under Uncertainty

Taxi driver: Deliver a passenger on time at the airport

meaning that it
» Leaves home 90 minutes before the flight departs and
« Driving at a reasonable speed to not get a ticket
a logical TD agent

* Will not be able to conclude that plan A90 is true. Instead is says
* A90 is true as long as: car doesn’t break, run out of gas, meteorite ...

can be deduced for sure, so

 The plan’s success cannot be inferred
* This is called the qualification problem!



Acting Under Uncertainty

Taxi driver: Statistical approach

does in some sense the right thing as
» |tis expected to maximize the agent’s performance measure (PM)

« PM: arriving on time, avoiding tickets, and long wait at airport

cannot guarantee with certainty A90

« But it can provide some degree of belief that it can be achieved
* A120 will increase certainty, but also the likelihood of a long wait

depends on the relative importance

« Of the various goals such as arriving on time, no speeding, wait time
« And the degree to which they will be achieved



Summarizing Uncertainty

Diagnosing a dental patient’s toothache (uncertainty)

Toothache — Cavity
Problem: this rule is wrong!

Not all patients with toothaches have cavities.

Toothache — Cavity v Abscess v GumDisease v ...

Problem: to make rule true, one has to add an unlimited list

Cavity — Toothache

Problem: this rule is wrong!
Not all cavities cause pain



Summarizing Uncertainty

Logic fails in medicine for three main reasons:

= | aziness: It is too much work to

» List the complete set of antecedents or consequents
» Such rules are too hard to use if these lists are complete

= |gnorance 1: Medicine has no complete theory

 Hence, there is no way to write complete antecedents or consequents

= |gnorance 2: Even if we know all the rules

 We may be uncertain about a particular patient because
* Not all necessary tests have been or can be run

Other similar domains: law, business, repair, dating,...



Summarizing Uncertainty

Agent’'s knowledge can only provide a degree of belief
= Probability theory: The main tool for handling such degrees

Ontological commitments of logic and probability theory
= The same: The word consists of facts that hold or do not hold

Epistemological commitments of logic and probability theory
= Logic: believes such facts to be 0, 1, or no opinion
= Probability theory: has a numerical degree of belief between 0 and 1

Probability theory allows to summarize uncertainty
= With source: being laziness and ignorance
= PT statements: reflect a knowledge state, and not a word state



Uncertainty and Rational Decisions

Is A180 better than A120 or A90?

= Preferences: Allow a rational agent to decide which one is better
= OQOutcome: A completely specified state, including preference values

Utility theory allows to represent and reason with preferences

= Utility: Every state has a degree of usefulness or utility to the agent
= Preference: The agent will prefer states with higher utility

Decision theory combines probabilities with utilities
= Decision Theory = Probability Theory + Utility Theory
= Rational = Chose actions that maximize the expected utility (MEU)



Decision-Theoretic Agent

a Sensors « A\ ' |
} Percepts
state, action What the world is like now
> < : I'=I1
|_How the world evolves 7% \what it will be if | do action A <.
e ] v 3
! Ty e G How happy | am in this state 3
Y o
| What is my utility What action should | do now =3
¥
Agent
\ 9 Actuators Actons >
function Decision-Theoretic-Agent ( ) returns

persistent state, action, model, rules
= Update-State(state, action, percept, model)
probabilities = compute outcome probabilities for all actions given state and model
= select action with highest expected utility given probabilities and utility info
return action



Probabilistic Reasoning

= Probabillity



Probabilistic Reasoning

= Distributions over LARGE Numbers of
Random Variables



Probabilistic Reasoning

» Representation



Probabilistic Reasoning

* [Independence



Probabilistic Reasoning

s |[nference
= \Variable Elimination
= Sampling



Probabilistic Reasoning

» Hidden Markov Models



Random Variables

= A random variable is some aspect of the world about
which we (may) have uncertainty

= R=Isitraining?
= D =How long will it take to drive to work?
» L =Wheream |?



Random Variables

= \We denote random variables with capital letters



Random Variables

= | ke variables in a CSP, random variables have domains
» Rin {true, false} (sometimes write as {+r, —r})
= Din [0, «)
= L in possible locations, maybe {(0,0), (0,1), ...}



Probability Distributions

= Random variables have distributions

P(T) P(W)
T P W P
warm | 0.5 sun 0.6
cold | 0.5 rain 0.1
fog 0.3
meteor 0.0




Probability Distributions

= A distribution is a TABLE of probabillities of values



Probability Distributions

= A probability (lower case value) is a single number

P(W = rain) = 0.1 P(rain) = 0.1



Probability Distributions

= Must have: Vz P(z) >0 Y P(z)=1
€Z



Joint Distributions

= A joint distribution over a set of random variables: X1, Xo,...Xp
specifies a real number for each assignment (or outcome):

P(X1{=z1,X0=xp,...Xn = Tpn)

P(x1,2o,...2n)



Joint Distributions

= A joint distribution over a set of random variables: X1, Xo,..
specifies a real number for each assignment (or outcome):

P(X1{=z1,X0=xp,...Xn = Tpn)

P(x1,2o,...2n)

. Xn
P(T, W)

T W P
hot | sun | 0.4
hot | rain | 0.1

cold | sun | 0.2
cold | rain | 0.3




Joint Distributions

=  Size of distribution if n variables with domain sizes d?



Joint Distributions

= Must obey:

P(xy1,x2,...2n) >0

Z P(ml,mQ,....’I}n)z 1
(331 9'7/'2,....’137-,)



Joint Distributions

= For all but the smallest distributions, impractical to write out



Probabilistic Models

= A probabilistic model is a joint distribution
over a set of random variables




Probabilistic Models

Distribution over TW

Probabilistic models:

Random) variables with domains
ssignments are called outcomes

T W P
hot sun 04
hot rain 0.1

cold sun 0.2
cold rain 0.3




Probabilistic Models

Distribution over TW

Probabilistic models:

= Joint distributions: say whether
assignments (outcomes) are likely

T W P
hot sun 04
hot rain 0.1

cold sun 0.2
cold rain 0.3




Probabilistic Models

Distribution over TW

Probabilistic models:

= Normalized: sumto 1.0

T W P
hot sun 04
hot rain 0.1

cold sun 0.2
cold rain 0.3




Probabilistic Models

Distribution over TW

Probabilistic models:

= |deally: only certain variables directly
Interact

T W P
hot sun 04
hot rain 0.1

cold sun 0.2
cold rain 0.3




Probabilistic Models

= Constraint satisfaction probs:
= Variables with domains

Constraint over TW

T W P
hot sun T
hot rain F

cold sun F
cold rain T




Probabilistic Models

= Constraint satisfaction probs:

= Constraints: state whether assignments
are possible

Constraint over TW

T W P
hot sun T
hot rain F

cold sun F
cold rain T




Probabilistic Models

= Constraint satisfaction probs:

= |deally: only certain variables directly
iInteract

Constraint over TW

T W P
hot sun T
hot rain F

cold sun F
cold rain T




Events

= An eventis a set E of outcomes

P(F) = Z P(x1...xn)



Events

From a joint distribution, we can calculate
the probability of any event

* Probability that it’ s hot AND sunny?

hot

sun




Events

From a joint distribution, we can calculate
the probability of any event

* Probability that it’ s hot?

T W P
hot sun 04
hot rain 0.1




Events

From a joint distribution, we can calculate
the probability of any event

* Probability that it’ s hot OR sunny?

T W P
hot sun 04
hot rain 0.1

cold sun 0.2




Events

T W P
P(E) = L P(x1...2n) hot sun 0.4
' . YeE hot rain 0.1
(_.l 1---d ,,) — I
cold sun 0.2
= From a joint distribution, we can calculate .
the probability of any event cold | rain 0.3

* Probability that it' s hot AND sunny?
* Probability that it’ s hot?

= Probability that it’ s hot OR sunny?

= Typically, the events we care about are
partial assignments, like P(T=hot)




Marginal Distributions

= Marginal distributions are sub-tables which eliminate variables



Marginal Distributions

= Marginalization (summing out): Combine collapsed rows by adding

P(T)
P(T,W) ! X
= W 5 > hot 0.5
cold 0.5

hot | sun 04| P(t) =Y P(t,s)

hot rain 0.1 S
cold sun 0.2
cold rain 0.3




Marginal Distributions

= Marginalization (summing out): Combine collapsed rows by adding

P(T, W)
T W P
hot sun 0.4
hot | rain 0.1 P(W)
cold sun 0.2 > W P

cold | rain 03] P(s) => P(t,s) sun 0.6
¢ rain 0.4




Marginal Distributions

= Marginalization (summing out): Combine collapsed rows by adding

P(T, W)

T W P
hot sun 04
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(X1=z1) =) P(X1=uz1,Xo=u1)p)
T



Conditional Probabilities

= A simple relation between joint and conditional probabllities
= |n fact, this is taken as the definition of a conditional probability



Conditional Probabilities

= A simple relation between joint and conditional probabllities
= |n fact, this is taken as the definition of a conditional probability

(b<=a)ra



Conditional Probabilities

= A simple relation between joint and conditional probabllities
= |n fact, this is taken as the definition of a conditional probability

anb=(b<<a)ra



Conditional Probabilities

= A simple relation between joint and conditional probabllities
= |n fact, this is taken as the definition of a conditional probability

anb=(b<=a)ra

P(a,b)=P(b|a)P(a)



Conditional Probabilities

= A simple relation between joint and conditional probabillities
= |n fact, this is taken as the definition of a conditional probability

~P(a,b)

anb=(b<a)ra

P(a,b)=P(b|a)P(a)

P(a)  P(b)



Conditional Probabilities

= A simple relation between joint and conditional probabillities
= |n fact, this is taken as the definition of a conditional probability

P(a,b)

anb=b—a)ra=(a &= b)Ab

P(a,b)=F(bl|a)Pla)=P(a|b)P(b)

P(a) P(b)



Conditional Probabilities

= A simple relation between joint and conditional probabllities
= |n fact, this is taken as the definition of a conditional probability

arnb=(b<a)ra=(a & b)Ab

/ '(-H, /J)

P(a,b)=P(b|a)P(a)=P(a|b)P(b)

P(T,W)

T W P
hot sun 04
hot rain 0.1

cold sun 0.2
cold rain 0.3




= Conditional distributions are probability distributions over

Conditional Distributions

some variables given fixed values of others

P(WIT)

Conditional Distributions

Joint Distribution

P(T, W)

T W P
hot sun 04
hot rain 0.1
cold sun 0.2
cold rain 0.3

- P(W|T = hot)
W P
sun 0.8
rain 0.2
P(W|T = cold)
W P
sun 04
rain 0.6




Normalization Trick

= A trick to get a whole conditional distribution at once:
= Select the joint probabilities matching the evidence
= Normalize the selection (make it sum to one)

P(T, W)

T W P P(T, 7“) P(T|T)
hot sun 04 T R F T P
hot rain 0.1 ) hot | rain | 0.1 hot 0.25

Select ) Normalize
cold sun 0.2 cold| rain | 0.3 cold 0.75
cold rain 0.3




Normalization Trick

= Why does this work? Sum of selection is P(evidence)! (P(r), here)
P(zy,22) _  P(z1,22)

P(x1|zp) = P(x5) Zm P(x1,x2)




Probabilistic Inference

= Probabilistic inference: compute a desired probability from
other known probabilities (e.g. conditional from joint)



Probabilistic Inference

= \We generally compute conditional probabllities
= P(on time | no reported accidents) = 0.90
= These represent the agent’ s beliefs given the evidence



Probabilistic Inference

= Probabilities change with new evidence:
= P(on time | no accidents, 5 a.m.) = 0.95
= P(on time | no accidents, 5 a.m._, raining) = 0.80
= Observing new evidence causes beliefs to be updated



Inference by Enumeration

= P(sun)?
S T W P
summer hot sun 0.30
summer hot rain 0.05
= P(sun | winter)? summer | cold | sun | 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
+ Plaun winer, ey | oo O




Inference by Enumeration

= (General case:
= Evidence variables: £1---Ep =e€1...¢€; X1,Xp,...Xn
= Query* variable: Q

= Hidden variables: F,...H, All variables



Inference by Enumeration

= Wewant: P(Qley...ep)



Inference by Enumeration

= First, select the entries consistent with the evidence
= Second, sum out H to get joint of Query and evidence:

P(Q,hy...hpeq...e1)

X1, Xo,... Xn




Inference by Enumeration

= Finally, normalize the remaining entries to conditionalize



Inference by Enumeration

= Obvious problems: . _
= Worst-case time complexity O(d") m‘:};gg,‘: ZZZ,;” th
= Space complexity O(d") to store the joint distribution variables, too



The Product Rule

= Sometimes have conditional distributions but want the joint

Plaly) = DY) 4 P(a,y) = P(aly)P(y)



The Product Rule

= Example:
P(D|W) P(D,W)
P(W) D W P D W P
= B wet sun | 0.1 wet sun | 0.08
cun | 08 dry | sun | 0.9 <:> dry | sun | 0.72
: wet rain | 0.7 wet rain | 0.14
rain 0.2
dry rain | 0.3 dry rain | 0.06




The Chain Rule

= More generally, can always write any joint distribution as
an incremental product of conditional distributions

P(x1,x0,23) = P(x1)P(z2|r1)P(23|r1,22)



The Chain Rule

P(z1,x2,...zn) = || P(zilzy ... 2-1)
()



The Chain Rule

= Why is this always true?



The Chain Rule

= Can now build a joint distributions only specifying
conditionals!

» Bayesian networks essentially apply the chain rule plus make
conditional independence assumptions.



Bayes' Rule

= Two ways to factor a joint distribution over two variables:

P(z,y) = P(z|ly)P(y) = P(y|z)P(z)



Bayes' Rule

= Two ways to factor a joint distribution over two variables:

P(z,y) = P(z|ly)P(y) = P(y|z) P(x) %’ts my rulel |

= Dividing, we get: =




Bayes' Rule

= Why is this at all helpful?
» |ets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
» Foundation of many systems we’ |l see later (e.g. ASR, MT)



Bayes' Rule

= Two ways to factor a joint distribution over two variables:

P(z,y) = P(zly) P(y) = P(ylx)P(z) | That's my rule!

= Dividing, we get: \ v

P(aly) = S0 p(a)

= Why Is this at all helpful?
» | ets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
= Foundation of many systems we’ |l see later (e.g. ASR, MT)

= |n the running for most important Al equation!



Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:
P(Effect|Cause) P(Cause)

P(Cause|Effect) = P(Effect)




Inference with Bayes' Rule

= Example:
= m is meningitis, s is stiff neck P(slm) = 0.8
T _ Example
P(m) = 0.0001 givens
P(s) =0.1




Inference with Bayes' Rule

P(sim)P(m) 0.8 x 0.0001

= 0.0008
P(s) 0.1

P(m|s) =




Inference with Bayes' Rule

= Note: posterior probability of meningitis still very small



Inference with Bayes' Rule

= Note: you should still get stiff necks checked out! Why?



Independence

= Two variables are independent if:

Vz,y : P(z,y) = P(z)P(y)



Independence

= Says their joint distribution factors into a product two simpler ones.



Independence

= Usually variables are not independent!



Independence

= Equivalent definition of independence:

va,y : P(zly) = P(x)



Independence

= Wewrite: X || YV



Independence

» |ndependence is a simplifying modeling assumption



Independence

» Empirical joint distributions: at best “close” to independent



Independence

* What could we assume for {Weather, Traffic, Cavity, Toothache}?



Independence

Vz,y : P(x,y) = P(z)P(y)

= Says their joint distribution factors into a product two simpler ones.
= Usually variables are not independent!
= Equivalent definition of independence:

Ve,y . P(z|ly) = P(x)

= Wewrite: X [| YV

» Empirical joint distributions: at best “close” to independent
* What could we assume for {Weather, Traffic, Cavity, Toothache}?

* |ndependence is like something from CSPs, what?



Example: Independence?

P(T)

T P

warm | 0.5

Pl(T,W) cold | 0.5
T W P
warm | sun | 04
warm | rain | 0.1
cold sun | 0.2

cold rain | 0.3 P(W>

W P

sun 0.6

rain 04




Example:

Independence?

P>(T, W)

T W P
warm | sun | 0.3
warm | rain | 0.2
cold sun | 0.3
cold rain | 0.2

P(T)
T P
warm | 0.5
cold | 0.5
P(W)
W P
sun 0.6

rain

0.4




Example: Independence

= N fair, independent coin flips:

P(X71) P(X>2) P(Xn)

H | 05 H | 05 o H | 05

T |05 T |05 T |05
. e,




Conditional Independence

= P(Toothache, Cavity, Catch)



Conditional Independence

= [f | have a cavity, the ﬁrobability that the probe catches in it doesn't
depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)



Conditional Independence

= The same independence holds if | don’ t have a cavity:
= P(+catch | +toothache, —cavity) = P(+catch| —cavity)



Conditional Independence

= Catch is conditionally independent of Toothache given Cavity:
= P(Catch | Toothache, Cavity) = P(Catch | Cavity)



Conditional Independence

= Equivalent statements:
» P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
» P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)

= One can be derived from the other easily



Conditional Independence

= Unconditional (absolute) independence very rare (why?)



Conditional Independence

= Conditional independence is our most basic and robust
form of knowledge about uncertain environments:

Va,y,z : P(x,ylz) = P(z[z)P(y|z)

Va,y, 2 P(alzy) = P(a]2) X ALYz




Conditional Independence

= \What about this domain:

= Traffic
= Umbrella
= Raining



Conditional Independence

= \What about fire, smoke, alarm?



The Chain Rule Revisited

P(X1,Xp,...Xpn) = P(X1)P(X2|X1)P(X3|X1,X2)...



The Chain Rule Revisited

* Trivial decomposition:

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain, Traffic)



The Chain Rule Revisited

=  With assumption of conditional independence:
P(Traffic, Rain,Umbrella) =

P(Rain)P(Traffic|lRain) P(Umbrella|Rain)



The Chain Rule Revisited

= Representation size: 1+2 +4 versus 1+2+2



The Chain Rule Revisited

= Bayes’ nets / graphical models are concerned with distributions with
conditional independences



