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Temporal-Models Problems  

   i Filtering     P(Xt | e0: t ) :      Current-state estimation

Inference from HMM and observations : 

   i Prediction  P(Xt+k | e0: t ) :   Future-state estimation

   i Smoothing P(Xk | e0: t ) :     Past-state estimation

   
i MLE argmaxx0: t

P(x0: t | e0: t ) :   Most-likely explanation

Learning best HMM from observations: 

  i EM P(X0), P(X' | X), P(E | X) :  Expectation Maximisation



Most likely explanation 

 Most likely path (MLP) to each xt+1   

 = MLP to some xt  plus one more step   

 Most likely sequence ≠ sequence of  most likely states!   

  

max
x1...xt

 P(x1,...,xt,Xt+1 | e1:t+1)

=  
P(et+1 | Xt+1) max

xt

 P(Xt+1 | xt )max
x1...xt−1

 P(x1,...,xt−1,xt | e1:t )

    
  Identical to filtering, except f1:t  replaced by:

  

m1:t = max
x1...xt−1

 P(x1,...,xt−1,Xt | e1:t )

    
 m1:t (i) gives the probability of the most likely path to state i.   

 Update has sum replaced by max, giving the Viterbi algorithm:

  

m1:t+1 = P(et+1 | Xt+1)  max
xt

(P(x1,...,xt−1,Xt | e1:t ) m1:t )

    



Viterbi example 



Dynamic Bayesian Networks 

 Xt, Et  contain arbitrarily many variables in a replicated Bayes net



DBNs versus HMMs 
 Every HMM is a single-variable DBN

 Every discrete DBN is an HMM

 Sparse dependencies imply exponentially fewer parameters

 Consider 20 state variables, three parents each:

      i  DBN has 20 × 23 = 160 parameters

      i  The HMM has 220 × 220 ≈1012  parameters



Exact inference in DBNs 

 Naive method: unroll the network and run any exact algorithm

 Problem: inference cost for each update grows with t

      i  Add slicet+1, sum out slicet, using variable elimination

      i  The HMM has update cost O(d2n)

 Improvement with rollup filtering: 

 Largest factor is O(dn+1), update cost O(dn+2)



Likelihood weighting for DBNs 
 Set of weighted samples approximates the belief state

 
LW samples pay no attention 
to the evidence!

  

    i  Fraction agreeing falls
        exponentially with t

  

    i  #samples required grows 
        exponentially with t



Particle Filtering 

 Basic idea: ensure that the population of samples (particles)

 Widely used for tracking nonlinear systems, e.g. in vision

      i  105 − dimensional state space 

      i  Tracks the high-likelihood regions of the state-space

 Replicate particles proportional to likelihood for et

 Also used for SLAM and mapping in mobile robots



Particle Filtering 

 Assume consistent at time t: N(xt | e1:t ) / N =  P(xt | e1:t )

 Propagate forward: populations of xt+1 are

 
    N(xt+1 | e1:t ) = P(xt+1 | xt ) N(xt | e1:t )xt

∑  

 Weight samples by their likelihood for et+1:

     W(xt+1 | e1:t+1) = P(et+1 | xt+1) N(xt+1 | e1:t ) 

 Resample to obtain populations proportional to W:

     N(xt+1 | e1:t+1) / N = αW(xt+1 | e1:t+1)  

     N(xt+1 | e1:t+1) / N = αP(et+1 | xt+1) N(xt+1 | e1:t ) 

 
    N(xt+1 | e1:t+1) / N = αP(et+1 | xt+1) P(xt+1 | xt )xt

∑  N(xt | e1:t ) 

 
    N(xt+1 | e1:t+1) / N = α 'P(et+1 | xt+1) P(xt+1 | xt )xt

∑  P(xt | e1:t ) 

     N(xt+1 | e1:t+1) / N = P(xt+1 | e1:t+1) 



Particle Filtering Performance 

 Approximation error of PF remains bounded over time

      i  At least empirically: theoretical analysis is dicult



Kalman Filters 

 For systems described by a set of continuous variables

       i  A flying bird's state: Xt =(X,Y,Z, !X, !Y, !Z)

      i  Also: airplanes, robots, ecosystems, economies, chemical plants...

 Gaussian prior, linear Gaussian transition model and sensor model



Updating Gaussian Distributions 

 Prediction is Gaussian if P(Xt | e1:t ) is Gaussian 

 
    P(Xt+1 | e1:t ) = P(Xt+1 | xt ) P(xt | e1:t ) dxtxt

∫

 Updated distribution is Gaussian if P(Xt+1 | e1:t ) is Gaussian 

     P(Xt+1 | e1:t+1) = αP(et+1 | Xt+1) P(Xt+1 | e1:t )

 Hence P(Xt | e1:t ) is multivariate Gaussian N(µ t ,Σ t ) for all t 

 In general:  Systems are nonlinear, non-Gaussian

      i  Deascription of posterior: Grows unboundedly as t →∞



Simple 1-D example 

 Gaussian random walk on X-axis: variances σx, sensor σe

 P(x0) = αe
−1

2
(
(x0−µ0 )2

σ0
2

)

 P(xt+1 | xt ) = αe
−1

2
(
(xt+1−xt )

2

σx
2

)

 P(et | xt ) = αe
−1

2
(
(et−xt )

2

σe
2

)

 
P(x1 | x0) = P(x1 | x0)dx0−∞

∞

∫

 
P(x1 | x0) = α e

−1
2

(
(x1−x0 )2

σx
2

)

e
−1

2
(
(x0−µ0 )2

σ0
2

)

dx0−∞

∞

∫

 
P(x1 | x0) = α e

−1
2

(
σ0

2(x1−x0 )2+σx
2 (x0−µ0 )2

σ0
2σx

2
)

dx0−∞

∞

∫



Simple 1-D example 

 Gaussian random walk on X-axis: variances σx, sensor σz
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General Kalman update 
 Transition and sensor models:

      P(x t+1 | x t ) = N(Ax t | Σ x )(x t+1)

      P(et | x t ) = N(Cx t | Σe)(et )

      Transition matrix A,    Transition noise covariance Σ x    

      Output matrix C,          Sensor noise covariance Σe    

 Filter computes the following update:

      Mean:            µ t+1 = Aµ t +K t+1(et+1 −CAµ t )

      Covariance:   Σ t+1 = (I−K t+1)(AΣ tC
t + Σ x )

      Kalman gain: K t+1 = (AΣ tA
t + Σ x )Ct (C(AΣ tA

t + Σ x )Ct + Σe)−1

      Σ tand K t :  Independent of sequence, computed offline



2-D tracking example: Filtering 



2-D tracking example: Smoothing 



Where it Breaks 

 Cannot be applied if the transition model is nonlinear

 Extended Kalman Filter:

      Models transition as locally linear around xt = µ t    

      Fails if the system is locally unsmooth  



DBNs versus Kalman Filters 

 Every Kalman filter model is a DBN, but few DBNs are KFs;

     Real world requires non-Gaussian posteriors

     Example: What's the battery charge?



Summary 

 Markov assumptions and stationarity assumption, so we need

     Transition Model: P(Xt+1 | Xt )      Sensor model:     P(Et | Xt )

 Temporal models use state & sensor variables replicated over time

 Tasks are filtering, prediction, smoothing, most likely sequence
     All done recursively with constant cost per time step

 Hidden Markov models have a single discrete state variable
     Used e.g. for speech recognition

 Kalman filters allow n state variables, linear Gaussian

     Complexity of update is O(n3)

 Dynamic Bayes nets subsume HMMs & KFs 
     Exact update intractable

 Particle filtering is a good approximate filtering alg for DBNs 


