Making Complex Decisions
Chapter 17

Filter " BA OptCtrl

actuators Sensors

Rational Plant

Agent Planner

Outline

Sequential decision problems
Value iteration

Policy iteration

Partially Observable MDPs

Sequential Decision Problems

Search

explicit actions uncertainty
and subgoals and utility

Markov decision

Plannin
9 i problems (MDPs) =~
. explicit actons . .
gggeﬁﬁlgg/ty an[c)l subgoals gggg%zm /\ (belief states)
/
Decision-theoretic Partially observable -

planning MDPs (POMDPs)

Example Markov Decision Process

0.8
3 | |
0.1 0.1
2
1 P((i,j+1) | (i,j), Up)=0.8
To =P(S=(11))=1
1 2 3 4

States (i,j) €{1..4}x{1..4}\(2,2), Actions a €{Up,Down,Left,Right}
Model T(s,a,s')=P(s'|s,a)=Probability that ainsleadstos'
Reward R(s) (or R(s,a), R(s,a,s"))

:{ —0.04 (small penalty) for nonterminal states
+1 for terminal states

Markov Decision Process (Regulator)

States s, Actions a
Model T(s,a,s')=P(s’|s,a), T =P(s)
Reward R(s) (or R(s,a), R(s,a,s"))

Compute optimal policy (controller) 7(s)

Solving MDPs

" |n search problems, aim is to find an optimal sequence

" |n MDPs, aim is to find an optimal policy (controller) ri(s)

= Best action for every possible state s
(because can’t predict where one will end up)

= Optimal policy maximizes the expected sum of rewards

*= Optimal policy when state penalty R(s) is —0.04:

What can you observe
about this policy ?

Risk and Reward

R €[-0.42,—-0.08]

R & (—o0,—1.62]
— —_— e
} — | =
—_— — —{ 1
R €[—0.04,-0.02]
— — —_—
} b | =

e

e
f b =3
b=t | =
R €(~0.02, 0.00]

- | = | =
f]

#

Utility of State Sequences

Need to understand preferences between sequences of states

Typically consider stationary preferences on reward sequences:

lnr,r,r, .. 0=l r,r, . . 1Jsl,r,r, ... 1=1r,r,r,,...]

Theorem: there are only two ways to combine rewards over time.
1) Additive utility function:
U(ls,,s,,s,, ...1) = R(s,) + R(s,) + R(s,) + -
2) Discounted utility function:
U(ls,,s,,s,, ...1) = R(s,) + YR(s,) + Y’ R(s,) + ---

where y €(0,1) is the discount factor

Utility of States

Utility of a state (a.k.a. its value) is defined to be
U(s) = expected (discounted) sum of rewards
(until termination) assuming optimal actions

Given the utilities of the states, choosing the best action is just MEU:
Maximize the expected utility of the immediate successors

3 0.812 0.868 0.912 +1 3 — —_— —_— +1

2 0.762

0.660 -1 2 1

1 0.705 0.655 0.611 0.388 1 1 - - -

Utility of State Sequences

Problem: infinite lifetimes = additive utilities are infinite

1) Finite horizon: termination at a fixed time T
= nonstationary policy: 7r(s) depends on time left

2) Absorbing state(s): w/ prob. 1, agent eventually “dies” for any 7«
= expected utility of every state is finite

4

3) Discounting: assumingy <1, R(s) < R

max

U([sO,...,sw])=Z°°O’th(st) < Rmax/(l —v) smallery = shorter horizon

t=

4) Maximize system gain = average reward per time step

Theorem: optimal policy has constant gain after initial transient
Example: taxi driver’s daily scheme cruising for passengers

Dynamic programming: Bellman Equation

Definition of utility of states leads to a simple relationship
among utilities of neighboring states:

expected sum of rewards
= current reward
+ vy X expected sum of rewards after taking best action
Bellman equation (1957):

U(s) =R(s) + v maxzs,U(s’)T(s, a,s')

Example:
U(1,1) = —0.04
+ v max{ 0.8xU(1,2)+0.1xU(2,1)+0.1xU(1,1), Up
0.9xU(1,1)+0.1xU(1,2), Left
0.9%xU(1,1)+0.1xU(2,1), Down

0.8xU(2,1)+0.1xU(1,2)+0.1xU(1,1) } Right

One equation per state = n nonlinear equations in n unknowns

Value Iteration Algorithm (V1)

Main idea:
Start with arbitrary utility values

Update to make them locally consistent with Bellman egn.
Everywhere locally consistent = global optimality
Repeat for every s simultaneously until “no change”

U, (s) « R(s) +y max), U(s')T(s,as") foralls

T

1 43
e (33)
s 23)
P e 3.1
05t -
, | SCEY
8
<
k= i
Z 0f i
= o
E
05 F
O O) N
| | | | | |
0 5 10 15 20 25 30

Number of iterations

Convergence

Define the max-norm ||U]| =max_ [U(s)], so
|| U-V|| =maximum difference between U and V

Let U' and U™ be successive approximations to the true utility U
Theorem: For any two approximations U* and V"
U™ =V <yx]|UT =V

l.e., any distinct approximations must get closer to each other
in particular any approximation must get closer to the true U
and value iteration converges to a unique, stable, optimal solution

Theorem: if |JU™ =U"|| <€ then |JU™ =U|| <2¢ey/(1-7)

|.e., once the change in U becomes small, we are almost done.
MEU policy using U may be optimal long before convergence of values

Policy Iteration (PI)

|dea: Search for optimal policy and utility values simultaneously

Algorithm:

7T < an arbitrary initial policy
repeat until no changein

compute U(s) given i (here 1 is kept fix)
update 7 given U (here U is kept fix, local MEU)

To compute utilities U given a fixed 7t (value determination):
U(s) < R(s) + v D U(s")T(s, m(s),s") Vs

®
n simultaneous linear equations in n unknowns, solve in O(n’)

To update the policy & perform local MEU:
7(s) —(maxZU(S)T(s,a,s") > ZU(s)T(s, 7t(s),s"))? argmax > U(s")T(s,a,s"): 7t(s) Vs

acA(s) aeA(s) s’

Modified Policy Iteration

Pl: often converges in few iterations, but each is expensive

|dea:

Use a few steps: of value iteration but with m fixed
Starting from: the value function produced last time
To produce: an approximate value determination step

Often converges much faster: than pure VI or Pl

Leads to much more general algorithms where:
Bellman value updates and Howard policy updates
Can be performed locally in any order

Reinforcement learning algorithms operate by:

Performing such updates based on the observed transitions
Made in an initially unknown environment.

Partial Observability (POMDP)

Partially observable MDPs extend MDPs by having:

An observation model: O(s,e)=P(e|s), defining
The probability: that the agent obtains evidence evidence e in state s

Agent does not know which stateitisin
— Makes no sense: to talk about policy 7(s)!

Partial Observability (POMDP)

Theorem (Astrom): The optimal policy in a POMDP is a

Function 7z(b) where b is a
Belief state, ie. a probability distribution over states

Can convert a POMDP into an MDP in belief-state space, where

T(b,a,b")=P(b"|b,a) is the probability that
New BSis b' given that current BS is b and the agent does a.
Filtering: one performs filtering before applying control.

Partial Observability (Contd.)

Controller Filter

Solutions automatically incude information- gathering behavior

If there are n states, b is an n-dimensional real-valued vector
— Solving POMIDP is very hard, actually PSPACE hard!

The real world is a POMDP (with initially unknown T and O)

