Probabilistic Reasoning
Chapter 14 (Inference)

Filter ERSOptCtrl K

actuators sSensors

Rational Plant

Agent Planner

Bayes' Nets

&/ Representation
&/ Conditional Independences

Bayes' Nets

= Probabilistic Inference

Bayes' Nets

* Enumeration (exact, exponential complexity)

Bayes' Nets

* Variable elimination (exact, worst-case
exponential complexity, often better)

Bayes' Nets

* Probabilistic inference is NP-complete

Bayes' Nets

& Representation
o/ Conditional Independences

= Probabilistic Inference

* Enumeration (exact, exponential complexity)

= Variable elimination (exact, worst-case
exponential complexity, often better)

* Probabilistic inference is NP-complete
= Sampling (approximate)

Bayes’ Nets

& Representation
& Conditional Independences

= Probabilistic Inference

* Enumeration (exact, exponential complexity)

= Variable elimination (exact, worst-case
exponential complexity, often better)

* Probabilistic inference is NP-complete
= Sampling (approximate)

= | earning Bayes’ Nets from Data

Inference
Exact Algorithms

Filter

Rational

Agent

Planner

actuators sSensors

Plant

Inference

» [Inference: calculating some
useful quantity from a joint
probability distribution

Inference

= Examples:
= Posterior probability: e

Inference

- Exampleé:

= Most likely explanation:

argmax, P(Q =q|E1 =ez...)

Inference by Enumeration

= Given unlimited time, inference in BNs is easy

Inference by Enumeration

* Recipe:
= State the marginal probabilities you need
= Figure out ALL the atomic probabilities you need
= Calculate and combine them

Inference by Enumeration

P(X|e)=aP(X,e)=a) P(Xe,y)

o X-query-, Y hidden-,E evidence - RVs, respectively

Example: Enumeration

= BN: complete description of the JPD ° G
= Sums of products of conditional probabilities °

P(B|+j,+m)=o P(B,+j+m)=0 Y Y P(B+j,+m,e,a) 0 a
= For simplicity, take B = +
P(+b|+j,+m)=ca P(B,+j+m)=a Y Y P(+b,+j,+m,e,a)

=a Y Y P(+b) P(e) P(a|+b,e) P(+j|a) P(+m|a)

= Compute by adding the 4 terms, each with 5 factors

—Worst case: Sum out n-1 (boolean) vars O(n2")

Example: Enumeration

= |n this simple method, we only need the BN to ° e
synthesize the joint entries °

P(+b, 45, +m) = (4) (m)
POFD) P(+€) P(+al-+b,) POEIEER PO i)
P(+0)P(4e)P(—a|+b,+e)P(+jl—a)P(+m|—a)+
P(+0)P(—e)P(+a|+b, —e) P(HjlFa) P(+m|+a)+
P(+0b)P(—e)P(—a|+b, —e) P(Fjl=a)P(+m|=a)

Enumeration Complexity

P(B,+j,+m)=Y > P(+b)P(e) P(a|+b,e) P(+j|a) P(+m|a) o

——
+, 16%, 3 + +,
X X X X
— — — —
P(+b) /X\ P(+b) /X\ P(+b) /X\ P(+b) /X\
P(—e) /X\ P(-e) X P(+e) X P(+e) X
P(-a|+b,~e) X P(+a|+be) x P(-a|+bie) X P(+a|+bie) x
P(+jl-a)\ P(+j|+a)\ P(+jl-a)\ P(+jl+a)\
P(+m|—a) P(+m|+a) P(+m|—a) P(+m|+a)

Evaluated by DFS traversal of the syntax tree O(n2")

Enumeration Improvement

P(+b,+j,+m) = P(+b) zP)Y, P(al+b,e)P(+j|a) P(+m|a) o

a
x ORO

/\
P(+b) + e
X 11x, 3+ X
/\ ___———"/—__—____\
P(—e) + P(+e) +.
1 A
X X X X
P(+jm /\ /\X N
- +j|+a P(+j|—-a) P(+j|+a) X
P(+m|Za)\ Pemiia)\ PEmlZaN\ Pm|TaN
P(-a|+b,—e) P(+a | +b,—€) P(-a|+b,+e) P(+a|+b,+e)

Evaluated by DFS traversal of the syntax tree O(2")

Enumeration Algorithm

function Enumeration-Ask (X,e,bn) returns IS(X|e)

local Q=& // distribution over X initially empty
foreach (x, e domain(X))

Q(x.) = Enumerate-All(bn.vars, exi) Ile, = e:(X=Xx)
return Normalize(Q)

function Enumerate-All (vars, e) returns R
if (vars =) return 1.0
Y = First(vars)
if ((y=Val(Y))ee)
then return P(y | parents(Y)) x Enumerate-All (Rest(vars), e)
else return ZyP(y | parents(Y)) x Enumerate-All (Rest(vars), e)

Evaluated by DFS traversal of the syntax tree O(2")

Inference by Enumeration?

Variable-Elimination Algorithm

= Eliminate repeated computation of sub-expressions
» |dea is very simple: Save intermediate results

» This is a form of dynamic programming (bottom up, save IR)
= Various approaches: Variable Elimination (simplest)

» Query/hidden variables not instantiated. Factor (matrix) Zoo

» EXxpressions evaluated right-to-left, that is, bottom-up
» |[ntermediate results are stored

= Summations only over expressions depending on a variable

P(B | +j+m) = ocP(BZ 2Pa|B+e) (+j|a) (+m|+a)

f1(B) © f(E) @ {(ABE) f,(A) £.(A)

PB|[+j+m)=a f(B)x 2 f,(E)x Z f.(AB,E)xf,(A)xf (A)

Variable-Elimination Algorithm

PB | +j,+m)= ZP 2Pa|B+e) (+J|a) P(+m|+a)
(E) @ f(ABE) f,(A) £.(A)
f.(A)=] (+m|—a).O.70, P(+m|+a):0.01]
f (A)=[P(+j |-a):0.90, P(+j |+a):0.05]
f (E)=[P(-e):0.998, P(+e):0.002]
f (B) =[P(~b):0.999, P(+b):0.001]

f.(BE)=) f(ABE)xf,(A)xf(A)
=f,(+a,B,E) xf,(+a)x f.(+a)+ f.(—a,B,E) x f,(—a) x f.(-a)

P(B|+j+m)=o f (B fo E)x f.(B,E)
Zf E)x f.(B,E)=f,(+e)x f (B, +e)+f,(-e)x f (B,~€)

PB|+)+m)=oa f(B)xf(B)

Factor Zoo |

= Joint distribution: P(X,Y)
= Entries P(x,y) for all x, y
= Sums to 1

P(T,W)

T W P
hot sun | 0.4
hot rain | 0.1
cold sun | 0.2
cold rain | 0.3

Factor Zoo |

= Selected joint: P(x,Y)

= A slice of the joint distribution

= Entries P(x,y) for fixed x, all y

= Sums to P(x)

P(cold, W)

T W P
cold sun 0.2
cold rain 0.3

Factor Zoo |

P(T, W)

Entries P(x,y) for all x, y

Sums to 1

P(cold, W)

A slice of the joint distribution

Entries P(x,y) for fixed x, all y

Sums to P(x)

= Number of capitals = dimensionality of the table

Factor Zoo |l

Family of conditionals: P(X |Y)

= Multiple conditionals
» Entries P(x|y)forallx,y
= Sums to |Y]

P(W|T)
T W P
hot sun | 0.8
hot rain | 0.2
cold sun | 0.4
cold rain | 0.6

- P(W|hot)

- P(W|cold)

Factor Zoo |l

Single conditional: P(Y | x)
= Entries P(y | x) for fixed
X, all y
= Sumsto 1

P(W |cold)
T W P
cold sun 04

cold

rain

0.6

Factor Zoo |l|

Specified family: P(y | X)
= Entries P(y | x) for fixed v,
but for all x
= Sums to ... who knows!

P(rain|T)

T W P
hot rain 0.2
cold rain 0.6

|

P(rain|hot)
P(rain|cold)

Factor Zoo |l|

= [n general, when we write P(Y, ... Y| X; ... Xy)
= |tis a “factor,” a multi-dimensional array
= |ts values are all P(y, ... yn | X4 --- Xp)
* Any assigned X or Y is a dimension missing (selected) from the array

Example: Traffic Domain

= Random Variables
* R: Raining
= T: Traffic
= L: Late for class!

P(R)

+r

0.1

-r

0.9

P(T|R)

+r

+t

0.8

+r

-t

0.2

-r

+t

0.1

-

-t

0.9

P(L|T)

+t

+|

0.3

+t

0.7

+|

0.1

0.9

Variable Elimination Outline

= Track objects called factors

Variable Elimination Outline

= |nitial factors are local CPTs (one per node)

P(R)

+r

0.1

P(T|R)

-

0.9

+r

+t

0.8

0.2

0.1

+r
-r
-r

-t
+t
-t

0.9

P(L|T)
+t +| 0.3
+t -| 0.7
-t +| 0.1
-t -| 0.9

Variable Elimination Outline

= Any known values are selected
= E.g.if we know L = +/£ , the initial factors are

P(R) P(T|R) P(+4T)
+r 0.1 +r | +t [0.8 +t | 0.3
-r 0.9 +r -t |1 0.2 -t - 0.1

-r +t | 0.1
-r t | 0.9

Variable Elimination Outline

= VE: Alternately join factors and eliminate variables

Operation 1: Join Factors

= First basic operation: joining factors

Operation 1: Join Factors

= Combining factors:
= Just like a database join
» Get all factors over the joining variable
» Build a new factor over the union of the variables involved

Operation 1: Join Factors

= Example: Joinon R

@ P(R) X P(T|R)

+r 0.1 +r | +t [0.8
-r 0.9 +r | -t |0.2

a r|+t]0.1
-r| -t |0.9

Operation 1: Join Factors

——> P(R,T)

+r 0.1 +r | +t |0.8 +r | +t | 0.08

+rl -t 102 +r | -t | 0.02

-r [+t] 0.09

-r| -t | 0.81

Example: Multiple Joins

P(R)

+r | 0.1
-r 1 0.9
P(T|R)
+r | +t |0.8
+r| -t (0.2
-r | +t 0.1
-r| -t |0.9
P(LIT)
+t | +1 [0.3
+t | -1 10.7
-t | +| [0.1
-t | -1 1]0.9

Example: Multiple Joins

|+r|O.1

P(R,T)

Join R
+r | +t | 0.08 @

|:> +r | -t 1 0.02

+r | +t (0.8 -r | +t | 0.09

+r | -t |0.2 r | -t]0.81 e

P(L|T)

+t | +| |0.3
+t | -1 [0.7
-t | +1 [0.1
-t] -1]0.9

Example: Multiple Joins

+r|+t|0.08| P(R,T,L)
JOin T +r +t +l | 0.024
+r +t -1] 0.056

0.002

+r -t +|
'l: +r -t -l | 0.018

+t + | 0.027

-r
+t | + 0.3 -r +t -l | 0.063
+t | -1 107 -r -t +| [0.081
-r -t -1 10.729

Operation 2: Eliminate

= Second basic operation: marginalization

Operation 2: Eliminate

= Take a factor and sum out a variable
= Shrinks a factor to a smaller one
= A projection operation

Operation 2: Eliminate

= Example:

P(R,T)
+r | +t | 0.08 sum R P(T)

+r | -t | 0.02 > +t | 0.17

-r | +t | 0.09 -t | 0.83
-r | -t | 0.81

Multiple Elimination

P(R,T,L)

+r

+t

+|

0.024

+r

+t

0.056

+r

+|

0.002

+r

0.018

+t

+|

0.027

+t

0.063

+|

0.081

LI LA N R
o T e T e B

0.729

Sum
out R

>

P(T,L)

+t

+|

0.051

+t

0.119

+|

0.083

0.747

Multiple Elimination

> 0

Sum
+r +t + | 0.024
P(T’ L) out T P(L)
s t + | 0.002 +t | +1 | 0.051
#t] - |o119| =) [#10.134
o | + | + | 0.027 -t | +1 | 0.083 -l [0.886
-1 | 0.747
r | t | + |0.081

P(L) : Marginalizing Early!

P(R)

+r | 0.1
-r 0.9

P(T|R)

+r | +t [0.8
+r| -t [0.2
-r | +t (0.1
-r| -t [0.9

P(L|T)
+ 10.3

+
(s

-t | +1 |10.1

P(L) : Marginalizing Early!

+r | 0.1

Join R P(R.T)

|:> +r | +t | 0.08

+r | +t |0.8 +r | -t | 0.02

+r| -t (0.2 -r | +t | 0.09

@ -r | -t [0.81

P(L|T)

-t | +]0.1

P(L) : Marginalizing Early!

+r

0.1

+r

0.8

+r

0.2

Sum out R
P(T)
+r | +t | 0.08 |—:>
. +t | 0.17
r [+t]0.09 t | 0.8

P(L|T)

+t | +l (0.3

+t | -l 10.7

-t | 4 10.1

-t | -1 [0.9

Marginalizing Early (aka VE™)
CL>

Join T

P(T, L)

+t

+|

0.051

] -

0.119

+]

0.083

+t | 0.17
+t | +l |10.3
+t| -l |0.7

0.747

*VE is variable elimination

Marginalizing Early (aka VE™)

+t

+|

0.051

+|

0.083

:'; + [0.134

0,

Sumout T

P(L)

0.886

*VE is variable elimination

Evidence

= |f evidence, start with factors that select that evidence

Evidence

= No evidence uses these initial factors:

P(R) P(T|R) P(L|T)
+r 0.1 +r +t | 0.8 +t +| 0.3
-r 0.9 +r -t 1 0.2 +t -| 0.7

-r +t | 0.1 -t +| 0.1
-r -t] 0.9 -t -| 0.9

Evidence

= Computing P(L| ~+ 7) , the initial factors become:

P(+r) P(T|+r) PIT)

0.8 +t +| 0.3
+r -t | 0.2 +t -1 0.7
-t +| 0.1

-t -| 0.9

Evidence

= |f evidence, start with factors that select that evidence
= No evidence uses these initial factors:

P(R) P(T|R) P(L|T)
+r 0.1 +r +t | 0.8 +t +| 0.3
-r 0.9 +r -t 0.2 +t -1 0.7

-r +t | 0.1 -t +| 0.1
-r -t |1 0.9 -t -| 0.9

= Computing P(L] -+ r) , the initial factors become:

P(+r) P(T|+7r) P(IT)

0.8 +t + 0.3

+r -t | 0.2 +t -| 0.7
-t +| 0.1

-t -| 0.9

= We eliminate all vars other than query + evidence

Evidence |l

= Result will be a selected joint of query and evidence
= E.g.for P(L|+r), we’d end up with:

P(+T7 L) Normalize P(L ‘|‘7“)

+r | +1 | 0.026 :D +l | 0.26
-| -

+r 0.074 0.74

Evidence |l

= To get our answer, just normalize this!

= That’ s it!

General Variable Elimination

= Query: P(Q|E1=e€1,... B, = e1)

General Variable Elimination

= Start with initial factors:

= Local CPTs (but instantiated by evidence)

General Variable Elimination

= \While there are still hidden variables (not Q or evidence):
= Pick a hidden variable H
= Join all factors mentioning H
= Eliminate (sum out) H

General Variable Elimination

= Join all remaining factors and normalize

Example ORO.
Xxamp o

P(B|j,m) o P(B, j,m) () (0

Example o
P(B) P(E) P(AB,E) P(jlA) P(m|A)

Example

Choose A
P(A|B, E)

P(j]A) X > P(j,m,AlB,E) [¥) P(j,m|B,E)
P(m|A)

Example o
P(Bj,m) o P(B, j,m) () (w)
P(B) P(E) P(AB,E) P(|A) P(m|A)
Choose A
P(A|B, E)
iﬁiﬁ) @ P(j,m, A|B, E) :> P(j,m|B, E)

P(B)

P(E) P(j,m|B,E)

(e) (&
Example o

Choose E
P(E) :x> P(j,m, E|B) :z> P(j,m|B)
P(j,m|B, E)

Example

P(B)

P(j,m|B)

Finish with B
P(B)
P(j,m|B)

) P(i.m,B)

Normalize

P(B|j,m)

(2
P(Blj,m) o P(B, j,m) olo

Same Example in Equations

P(B) P(E) P(A|B, E) pP(jlA) P(m|A)

P(B|j,m) o P(B,j,m)

= Z P(B,j,m,e,a) marginal can be obtained from joint by summing out
e,a

— Z P(B)P(e)P(a|B, e)P(j|a)P(m|a) use Bayes’ net joint distribution expression
e,a

= Y P(B)P(e)Y_ P(a|B,e)P(jla)P(mla) UseX(2)=xy+xz

= Z P(B)P(e)f1(B,e,j,m) joining on a, and then summing out gives f_1
€
= P(B))_ P(e)f1(B,e,j,m) X*(y+z) =xy +xz
e
= P(B)f2(B,j,m) joining on e, and then summing out gives f 2

All we are doing is exploiting xy + xz = x(y+z) to improve computational efficiency!

Variable-Elimination Algorithm

fzj(\B)

PB | +j,+m) XEP xEP(a|B,+e)><P(+j|a)><P(+m|+a5

'

f(BE)

f(B,E)=P(+a|B,E)xP(+j|+a)xP(+m|+a)+P(-a|B,E)xP(+j| —a)x P(+m|-a) =

P(+a | BE) P(wa) (+EL+3) P(-a |BE) P(+j| -a) P(+m|—a)
[0.95,0.94,0.29,0.01]x 0.9 x 0.7 +[0.05,0.06,0.71,0.99]x 0.05 X O 01 =
+b+e +b-e -b+e -b-e +b+e +b e —b+e —b e
f.(BE)

=[0.598525,0.59223,0.183055,0.0011295]

+b+e +b-e —b+e —-b-e

Variable-Elimination Algorithm

fzj(\B)

PB | +j,+m) XEP xZP(a|B,+e)><P(+j|a)><P(+m|+a5

f.(BE) h(BE)

f(B,E)=10.598525,0.59223,0.183055,0.0011293]

+b+e +b—e —b+e —b—e

f,(B)=P(+e)xf(B,+e)+P(-e)xf(B,—e)=
P(+e) f,(B,+e) P(-e) f,(B,—e)

= 0.002 % [0.598525,0.183055] + 0.998 x [0.59223,0.0011295]
+b+e —b+e +b—e —b—e

=[0.59224259, 0.001493351]

PB|[+j+m)=a P(B)xf,(B)
= [0.001, 0.999]x[0.59224259, 0.001493351]
= [0.00059224, 0.00149185] =[0.2843, 0.7158]

Variable-Elimination Algorithm

P(B,+j,+m)=P(B) Y P(e)Y, P(a|B,E)P(+j|a)P(+m]a) °

x ORO

_

P(B) e +, 1 L(B) L,
—

X 7%, 2+ X
/\ _——"/’—’—\
P(-e) f(B,—e) f(B,+e) P(+e)
\/
+_: f(B,E)

X X
P(+j|—a)X P(+j|_|_a)x

P(rm =a)\ AN
P(-a|B,E) P(+a|B,E)

Variable-Elimination Algorithm

function Elimination-Ask (X,e,bn) returns P(X|e)

local factors =& // ordered set of factors
foreach (Y ebn.vars)

factors U = Make-Factor(Y, e, bn) // add factor at the end
if (Y # X) then factors = Sum - Out(X, factors)

return Normalize(Pointwise - Product(factors))

Another (bit more abstractly worked
out) Variable Elimination Example

Qller}’: P(X-B‘Yl = yl’YZ — quYé — y3) @
H O &
B B &

Another (bit more abstractly worked
out) Variable Elimination Example

2]

Start by inserting evidence, which gives the following initial factors: a @ e

p(2)p(X1|Z2)p(X2| Z)p(X3| Z)p(y1| X1)p(y2| X2)p(ys]| X3)

» B

Another (bit more abstractly worked
out) Variable Elimination Example

2]

H ©

Eliminate X1, this introduces the factor f1(Z,y1) = >_, p(z1|Z)p(y1|r1), and: @ @ @

p(Z) f1(Z,y1)p(X2| Z)p(X5|Z)p(y2| X2)p(ys]| X3)

Another (bit more abstractly worked
out) Variable Elimination Example

2]
H ©
» B

Eliminate X, this introduces the factor fo(Z,y2) = >, p(z2|Z)p(y2|z2), and:

p(2) fi(Z, y1) f2(Z, y2)p(X3|Z)p(y3| X3)

Another (bit more abstractly worked
out) Variable Elimination Example

2]

H ©
» B

Eliminate Z, this introduces the factor
fa(ui, v, 3, X3) = D, p(2) [1(z,u1) f2(z, y2) p(Xa| 2)p(y3| X3), and:

f3(yl-. Y2,Ys3, *X—3)

Another (bit more abstractly worked
out) Variable Elimination Example

2]

H ©
» B

lormalizing over X3 gives P(X3|y1,y2,Y3).

Another (bit more abstractly worked
out) Variable Elimination Example

2]

H ©
» B

Computational complexity critically depends on the largest factor being
generated in this process. Size of factor = number of entries in table. In
example above (assuming binary) all factors generated are of size 2 --- as
they all only have one variable (Z, Z, and X3 respectively).

Variable Elimination Ordering

= Forthe query P(X,|y4,...,Y,) work through the following two different
orderings as done in previous slide:

= What is the size of the maximum factor generated for each of the orderings?

Variable Elimination Ordering

= Answer: 2" versus 2 (assuming binary)

Variable Elimination Ordering

= |n general: the ordering can greatly affect efficiency.

Computational and Space
Complexity of Variable Elimination

= The computational and space complexity of variable
elimination is determined by the largest factor

Computational and Space
Complexity of Variable Elimination

= The elimination ordering can greatly affect the size of the
largest factor.

= E.g., previous slide’s example 2" vs. 2

Computational and Space
Complexity of Variable Elimination

= Does there always exist an ordering that only results in
small factors?

Computational and Space
Complexity of Variable Elimination

= No!

Worst Case Complexity?

Consider the 3-SAT clause:
(z1 Vo V-z3)A(—x1VesVzg) A(xeV-xo Ve A(mx3V-xgVoxs) ANz Vs Ve) A (xgVesVae) AN(—xsVeeV-xy)A(—xsV-oxeVar)

Worst Case Complexity?

which can be encoded by the following Bayes’ net:

Worst Case Complexity?

If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

Worst Case Complexity?

Subtlety: why the cascaded version of the AND rather than feeding all OR clauses into a single
AND?

Worst Case Complexity?

Answer: a single AND would have an exponentially large CPT, whereas with representation
above the Bayes’ net has small CPTs only.

Worst Case Complexity?

Hence inference in Bayes’ nets is NP-hard. No known efficient probabilistic inference in general.

Polytrees

= A polytree is a directed graph with no
undirected cycles

Polytrees

= For poly-trees you can always find an
ordering that is efficient

. Try itl!

Polytrees

= Cut-set conditioning for Bayes’ net
inference

Polytrees

= Choose set of variables such that if removed
only a polytree remains

Polytrees

* Think about how the specifics would work out

Bayes' Nets

&/ Representation
o Conditional Independences

= Probabilistic Inference
JEnumeration (exact, exponential complexity)

Wariable elimination (exact, worst-case
exponential complexity, often better)

JProbabiIistic inference is NP-complete
= Sampling (approximate)

= | earning Bayes’ Nets from Data

Inference
Approximation Algorithms

Filter ERSOptCtrl K

actuators sSensors

Rational Plant

Agent HETE

Sampling

= Simulation has a name: sampling (e.g., predicting the
weather, basketball games, ...)

Sampling

= Basic idea:
= Draw N samples from a sampling distribution S
= Compute an approximate posterior probability
= Show this converges to the true probability P

Sampling

= Why sample?
= |earning: get samples from a distribution you don’ t know

= |nference: getting a sample is faster than computing the right
answer (e.g. with variable elimination)

Sampling

= How do you sample?

Sampling

» Simplest way is to use a random number
generator to get a continuous value uniformly
distributed between 0 and 1 (e.g. random() In
Python)

Sampling

* Assign each value in the domain of your
random variable a sub-interval of [0,1] with a
size equal to its probability

Sampling

= How do you sample?

= Simplest way is to use a random number
generator to get a continuous value uniformly
distributed between 0 and 1 (e.g. random() in
Python)

= Assign each value in the domain of your
random variable a sub-interval of [0,1] with a
size equal to its probability

= The sub-intervals cannot overlap

Sampling Example

= Each value in the domain of W has a sub-
iInterval of [0,1] with a size equal to its
probability

Sampling Example

W P(W) u is a uniform random value in [0, 1]
Sun 0.6 if 00<u<06,w = sun

Rai 0.1
el if 06<wu<07w = rain
Fog 0.3

Meteor 0.0 it 0.7<u<10,w = fog

Sampling Example

e.g. if random() returns w = 0.83, then our sample is w = fog

Sampling in Bayes’ Nets

= Prior Sampling

Sampling in Bayes’ Nets

= Rejection Sampling

Sampling in Bayes’ Nets

= Likelihood Weighting

Sampling in Bayes’ Nets

= Gibbs Sampling

Prior Sampling

Simplest kind of random-sampling process
Generates events from a BN with no evidence
ldea: Sample variables in a topological order

PD of current table conditioned on parents sample

Prior-Sampling Algorithm

To generate one sample (OS) in a BN with n RVs

= Assume RVs X,,...,X are topologically ordered (TO)
= Any topological order consistent with the BN dag

function Prior-Sample (1O bn) returns OS x
X = tuple with n elements
foreach X in bn
x[i] = randomSampleFrom(P(X: | Parents(X,) in x))
return X

Example: Wet-Grass BN

P(C)

+C

0.5

=C

0.5

P(S|C)
+c | +s [0.1
-s 1 0.9
-c | +s [0.5
-s [0.5
P(W|S, R)

+s +r +w | 0.99

-W 0.01

-r +w | 0.90

-W 0.10

-s +r +w | 0.90

-W 0.10

-r +w | 0.01

-W 0.99

P(R|C)
+c | +r | 0.8
-r 0.2
-c | +r | 0.2
-r 10.8
Samples:

Example: Wet-Grass BN

P(C)
+C 0.5
-C 0.5

P(S|C)
+c | +s [0.1
-s 1 0.9
-c | +s [0.5
-s [0.5
P(W|S, R)

+s +r +w | 0.99

-W 0.01

-r +w | 0.90

-W 0.10

-s +r +w | 0.90

-W 0.10

-r +w | 0.01

-W 0.99

+C

P(R|C)
+c | +r | 0.8
-r 0.2
-c | +r | 0.2
-r 10.8
Samples:
+C,

Example: Wet-Grass BN

P(C)

+C

0.5

=C

0.5

P(S]+c)
+c | +s [0.1
-s 1 0.9
P(W|S, R)
+s +r +w | 0.99
-W 0.01
-r +w | 0.90
-W 0.10
-s +r +w | 0.90
-W 0.10
-r +w | 0.01
-W 0.99

+C

P(R| +c)
+c | +r [0.8
-r 10.2
Samples:
+C,

Example: Wet-Grass BN

P(C)
+C 0.5
-C 0.5

P(5]+e)

+c | +s | 0.1

P(W|S, R)

+s +r +w | 0.99
-W 0.01

-r +w | 0.90

-W 0.10

-s +r +w | 0.90
-w | 0.10

-r +w | 0.01

-W 0.99

+C

P(R| +c)

+C

+r

0.8

0.2

Samples:

+C, -8, +I,

+r

Example: Wet-Grass BN

P(C)
+C 0.5
-C 0.5
P(S|+c)
+c | +s [0.1

P(W|-s+r)

+W -S +r +w | 0.90

-w__ [0.10

+C

P(R)| +c)

+c | +r | 0.8 *r

Samples:

+C, -S, +I, +W

+S

+w

Example: Wet-Grass BN

P(C)

+S

+C

0.5

=C

0.5

P(S|-c)
+s | 0.5
s [0.5
P(W|+sr)
r +w | 0.90
-w | 0.10

P(R|-c)
c| +r [0.2
r 10.8

Samples:

+C, -S, +I, +W
-C, +8, -I, +W

+S

+w

Example: Wet-Grass BN

P(C)

+S

+C

0.5

=C

0.5

P(S|-c)
+s | 0.5
s [0.5
P(W|+sr)
r +w | 0.90
-w | 0.10

P(R|-c)
c| +r [0.2
r 10.8

Samples:

+C, -S, +I, +W
-C, +8, -I, +W

Prior Sampling

= This process generates samples with probability:

n
Sps(z1...zn) = || P(xs|Parents(X;)) = P(z1...zn)
1=1

...i.e. the BN’ s joint probability

Prior Sampling

= et the number of samples of an event be Npg(z1...zn)

Prior Sampling

« Then Jim P(er,....za) = Jim Nps(er,....e)/N

P(xq1...zn)

Prior Sampling

= |.e., the sampling procedure is consistent

Example

We will get a bunch of samples from the BN

Cc | s | R W
+C -S +r +w

+C +s +r +Ww
-C +S +r -W
+C -S +r +W
-C -S -r +w

Estimate P(W)by counting how often w occurs
C={+w: 4, -w: 1}
P(W) = Normalize(C) =[0.8,0.2]

Estimate improves as number of samples increases

Example

We will get a bunch of samples from the BN

_Cc s R _|_W_
+C -S +r +W

+C +S +r +W
-C +s +r -W
+C -S +r +W
-C -S -r +W

Can estimate anything else, too? What about:
P(C|+w), P(C|+r,+w), P(C|-r,—w)

Rejection Sampling

* |n its general form it is a method for:

= Producing samples from a hard-to-sample distribution
= Given an easy-to-sample distribution

* |n its simplest form it is a method for:

= Computing conditional probabilities given evidence
= Determine P(X | e)

= The main idea is as follows:

= Generate samples by using prior sampling
" Reject samples which do not match the evidence
= Estimate P(X = x| e) by counting how often x occurs

Rejection-Sampling Algorithm

function Rejection-Sampling (X,e,bn,N) returns I5(X|e)
local C =0 // vector of counts for each value of X
fori=1:N{
x = Prior-Sample(bn) // let x be value of X in x
If (x is consistent with e) C[x]++ }
return Normalize(C)

Example: Compute P(C|+s)

Generate samples by using prior sampling

Cc | s | R W_
+C -S +r +w

+C +s +r +W
-C +s +r -W
+C -S +r +w

-C -S -r +w

Example: Compute P(C|+s)

Generate samples by using prior sampling
Reject samples which do not match the evidence

Cc | s | R W_
+C -S +r +wW

+C +s +r +W
-C +s +r -W
+C -S +r +wW

-C =S -I +w

Example: Compute P(C|+s)

Generate samples by using prior sampling
Reject samples which do not match the evidence

c | s R | W
+C -S +r +W

+C +S +r +W
-C +S +r -W
+C -S +r +W
-C -S -r +W

Estimate P(C|+s) by counting how often x occurs
C={+c:1, c:1}
P(C | +s) = Normalize(C) =[0.5,0.5]

Example: Compute P(C|+s)

Generate samples by using prior sampling
Reject samples which do not match the evidence

c | s R | W
+C -S +r +W

+C +s +r +W
-C +S +r -W
+C -S +r +wW
-C -S -r +W

Estimate P(C|+s) by counting how often x occurs
It is also consistent for CPDs (that is, correct in the limit)

Rejection-Sampling: Consistency

Let IS(X | @) be the estimated distribution. From definition:

N_.(X,e)
Nes(€)

Assuming that P(x.,...,x)=N

P(X|e)=oN_,(X,e)=

o5 (XX)/ N we get:

PX &)= o =P(X)

RS produces a consistent estimate of the true probability.

Standard deviation of error in each probability ¢ o 1/\/N

Problems with Rejection Sampling

* |t rejects too many samples:

= No of samples consistent with evidence e
= Drops exponentially with the no of evidence variables

= |t is therefore unusable for complex problems

» |t is however, similar to estimation in real world

= Jo estimate P(Rain | RedNightSky = true):
= Count how many times it rained
= |gnoring the times the sky was not red

= This could take a lot of time

Likelihood Weighting

= Avoids the inefficiency of rejection sampling by:
= Only generating events consistent with evidence e

= An instance of importance sampling technique
= Tailored to Bayesian networks

= The main idea of LW is as follows:

= Fix evidence variables E and sample others only
= Not all events are equal however, so LW needs to
= \Weight events by how much they accord to evidence

~As measured by [[P(e, |Parents(e.))

ei €e

Likelihood-Weighting Algorithm

function Likelihood-Weighting (X,e,bn,N) returns P(X|e)
local W =0 // vector of weighted counts for each value of X
fori=1:N{
(x,w) = Weighted-Sample(bn,e)
WI[x] + =w } // where x is value of X in x
return Normalize(W)

function Weighted-Sample (bn,e) returns (x,w)
x = Initialize-From(e); w =1
foreach (X ebn) { // bn is the topological order X, ... X_
if (Evidence(X) A x. = Value(X e)) wx= P(X =x.|parents(X))
else X[i]=Random-Sample-From P(X = x. | parents(X)) }
return (X,w)

Likelihood Weighting: P(Rain | +s,+w)

P(C
+C 0.5 +C
-C 0.5
P(S|C) P(R|C)
+s | +c | +s [0.1 +c | +r [0.8 +r
r 10.2
w=1x0.1 @
P(W|S, k) Samples:
+s | +r | +w | 0.99 '

+C, +S, +r, +W

-r w=0.1x0.99

-S +r

+r with weight w =0.099

-r

Likelihood Weighting: P(Rain | +c,+w)

P(C
+C 0.5 +C
w=1x0.5
P(S|0) P(R|C)
+c [+s | 0.1 +c [+r |08 | +r
S s 109 r (0.2
P(W|S, k) Samples:

+C, -S, +r, +W
w=1x05x0.9=0.45

< | + | +w | 0.90 +r with weight w =0.45

Can generate -r, -s in spite of +w !

Likelihood Weighting

= Sampling distribution if z sampled and e fixed evidence

[

Sws(z,e) = || P(z|Parents(Z;))
i=1

Likelihood Weighting

= Now, samples have weights

m
w(z,e) = || P(e;|Parents(E;))
i=1

Likelihood Weighting

= Together, weighted sampling distribution is consistent

l m
Sws(z,€) -w(z,e) = H P(z;|Parents(z;)) H P(e;|Parents(e;))

1=1 1=1

Likelihood Weighting

= P(z,e)

Likelihood-Weighting: Consistency

P(x|e)= oczy ws(X.y,€) W(x,y,e) // from Likelihood Weighting
~ 0L Zy S,.<(X.y,e) w(x,y,e) // for Large N
~ oc'ZyP(x,y,e) /| from Previous Slide

~o'P(x,e) /[sum Out y

~P(x|e) /I normalize

Likelihood Weighting

= Likelihood weighting is good

= \Ve have taken evidence into account as we
generate the sample

= E.g. here, W’ s value will get picked based on
the evidence values of S, R

= More of our samples will reflect the state of
the world suggested by the evidence

Likelihood Weighting

= Likelihood weighting doesn’ t solve all our
problems

= Evidence influences the choice of

downstream variables, but not upstream ones
(Cisn’ t more likely to get a value matching
the evidence)

Likelihood Weighting

= \We have taken evidence into account as we
generate the sample

= E.g. here, W’ s value will get picked based on
the evidence values of S, R

= More of our samples will reflect the state of
the world suggested by the evidence

= Evidence influences the choice of
downstream variables, but not upstream ones
(C isn’ t more likely to get a value matching
the evidence)

= \We would like to consider evidence when we
sample every variable

- Gibbs sampling

Gibbs Sampling and MCMC

= An instance of Markov chain Monte-Carlo (MCMC)
= Generate sample as a random change to previous one

= An MCMC is always in a particular, current state:
= Specifying the value of all variables (X,E)

= An MCMC generates a next state:
= By making random changes to the current state

Markov Blanket

Topological Semantics Markov Blanket (MB)
X conditionally independent of its X conditionally independent of all
non-descendants given its parents other nodes given its MB

P(x' |mb(X))=oP(x" |Parents(X))x [] P(y, |Parents(Y))

YjeChiIdren(Xi)

Gibbs Sampling

= Starts with an arbitrary initial state with:
= Evidence variables fixed at their observed values

Wl

Gibbs Sampling

= Starts with an arbitrary initial state with:
= Evidence variables fixed at their observed values

P(X;=x1; | MB(X;)) E i

P(X;=x,; | MB(X;))

= Generates a next state by randomly:
= Sampling a value for one of the non-evidence RVs X
= Conditioned on current values of RVs in the MB of X,

Gibbs Sampling: P(Rain | +s,+w)

P(S|C)

+s | +¢c | +s | 0.1

P(W|S, R)

+w | +s

P(C

+C

0.5

=C

0.5

0.90

+C

P(R|C)

+c [+r 108 | -r

Initial: +c, +s, -r, +w

N/

random values

Gibbs Sampling: P(Rain | +s,+w)

*+S

+w

P(S|C)

+C

+S

0.1

+S

P(W|S, R)

P(C

+C

0.5

=C

0.5

+W

0.90

P(C|mb(C)) =
P(C|+s,+wW) —» —cC
P(R|C)
+c | +r [0.8 -r
-r 10.2

Initial: +c, +s, -r, +w :I
Next: -c, +s, -r, +w

Gibbs Sampling: P(Rain | +s,+w)

P(C
+C 0.5
-c_ | 05 -C
P(S|C) P(R|C)
+s | +¢ | +s | 0.1
-c | +r 1 0.2
-r 0.8
P(RImb(R)) =
P(W|S, R) P(R|-c,+w,+s) > +r
+w | +s

Next: -c, +s, -r, +w

Initial: +c, +s, -r, +w
-r +w | 0.90 %

Next: -c, +s, +r, +w

Gibbs Sampling: P(Rain | +s,+w)

+S

+w

P(S|C)

+C

+S

0.1

+S

P(W|S, R)

P(C
+C 0.5
-C 0.5

+W

0.90

P(R[C)
+r

c | +r | 0.2

r 0.8

Initial: +c, +s, -r, +w
Next: -c, +s, -r, +w %

Next: -c, +s, +r, +w

80 states : [+r:20,-r:60] +— [+r:0.25,-r:0.75]

Gibbs Sampling: Initial state

= Evidence random Variables
* Fixed to observed values Sprinkler = +s, WetGrass = +w

= Non-evidence random Variables
= Chosen randomly, eg. Cloudy =+c, R=-r

i)

Gibbs Sampling: Next state

= Non-evidence RVs are sampled repeatedly
= In arbitrary order For example pick first Cloudy

E) P(Cloudy=-c|+s,-r) E }

Gibbs Sampling: Next state

= Non-evidence RVs are sampled repeatedly
= In arbitrary order For example pick next Rain

E) P(Cloudy=-c|+s,-r) E i
P(Rain=+r|+c,+s,+W)

G

Gibbs Sampling: Next state

= Non-evidence RVs are sampled repeatedly

= Suppose 20 times +r, and 60 times -r
= Then P(Rain | +s,+w) = Normalize([20,60]) = [0.25,0.75]

E N P(Cloudy =-c|+s,-r)
P(Rain=+r|+c,+s,+W)
P(Rain=-r|+c,+s,+w)

Gibbs Sampling: Next state

= Only a finite number of instances of (C,S,R,W)
= From each state sum of outgoing probabilities = 1
= Markov chain M = (states S, initial-distribution |, matrix A)

E) P(Cloudy =-c|+s,-r)

P(Rain=+r|+c,+s,+W)

o ' |< (l
P(Rain=-r|+c,+s,+w)

= In the limit converges to the right (limit) distribution

Gibbs-Sampling: Why it Works?

Markov chain: P(x"|x) transition probability
States: 7t (x) probability of being in state x at time t

T, (X)=D, PX'[X) T (X) VX
Stationary distribution: . (X)=m (X)=n(X) Vx
n(x') =), P(x'|x)m(x) VX'

Markov chain is called ergodic if:

- There is a number N such that
- Every state is reachable from every other in exactly N steps
— There is a unique stationary distribution

Gibbs-Sampling: Why it Works?

Stationary distribution: (X)) =1 (X)=7w(Xx) Vx
n(x')=) PX'[x)m(x) VX

Expected outflow from x = expected inflow to x

Sufficient condition: Above is satisfied for any pair x, x°

P(x'| x) m(x) = P(x | ") (x") Vx,x' (detailed balance)
Detailed balance satisfies stationarity:

D, PO x)m(x)= D, P(x|x)n(x')=

n(x")), Px|x)=m(x") vx

Gibbs-Sampling: Why it Works?

Sampling one variable conditioned on all other: Same as MB
P(x',x,e[x,x,e)=P(x'|x,e)=P(X |[MB(X)) VX

Each transition is in detailed balance with nt(x) =P(x | e):

P(x.'|x,e)P(x|e)= (expand xint2)
P(x.'|x,e)P(x.,x |e) (chainrule in t2)
P(x.'|x,e)P(x. | x,e) P(x [e) (chainrule bwd int1,t3)
P(x. |x,e)P(x 'x |e) (compact x.’, X.'=X)
P(x. |x',e) P(x'|e) (detailed balance)

Unless MC contains 0,1 (can get disconnected) MC is ergodic

Gibbs-Sampling Algorithm

function Gibbs-Ask (X,e,bn,N) returns P(X|e)

local
Z — bn // the nonevidence variables in bn
x = Initialize(Z,e) // random in Z, fixed in e
W =0 // vector of counts for each value of X

foreach j=1:N{ // take Nx|Z| samples

foreach Z € Z{ // one sample for each Z
X[Z.]=Sample(P(Z | mb(Z,,bn))) // get sample
Wix] +=11}} // where x is value of X in x

return Normalize(W)

Gibbs Sampling

» Procedure: keep track of a full instantiation x4, x,, ..., X,. Start with
an arbitrary instantation consistent with the evidence. Sample one
variable at a time, conditioned on all the rest, but keep evidence
fixed. Keep repeating this for a long time.

Gibbs Sampling

= Property: in the limit of repeating this infinitely many times the
resulting sample is coming from the correct distribution

Gibbs Sampling

= What's the point. both upstream and downstream variables
condition on evidence.

Gibbs Sampling

In contrast: likelihood weighting only conditions on upstream
evidence, and hence weights obtained in likelihood weighting can
sometimes be very small. Sum of weights over all samples is indicative
of how many “effective” samples were obtained, so want high weight.

Gibbs Sampling .<:>.
= Say we want to sample P(S | R = +r)

Gibbs Sampling

= Step 1: Initialize
= Set evidence (R = +r)

= Set all other variables (S, C, W) to random values (e.g. by prior
sampling or just uniformly sampling; say S =s, W = +w, C = -¢)

Gibbs Sampling

= Set evidence (R = +r)
= Set all other variables (S, C, W) to random values (e.g. by prior
sampling or just uniformly sampling; say S =s, W = +w, C = -C)
= Steps 2+: Repeat the following for some number of
iterations
= Choose a non-evidence variable (S, W, or C in this case)

= Sample this variable conditioned on nothing else changing
= The first time through, if we pick S, we sample from P(S | R = +r, W = +w, C =-¢)

= The new sample can only be different in a single variable

Gibbs Sampling Example

= \Want to sample from P(R | +s,-C,-w)

P(R|+ s,—c, —w) {: :}

Gibbs Sampling Example

~ P(R,+s,—c,—w)
- P(+s,—c,—w)

Gibbs Sampling Example

B P(R,+s,—c, —w) i ;
o .. P(R=r+s,—c,—w)

Gibbs Sampling Example

<=

P(—¢)P(4s| — ¢)P(R| — ¢)P(—w]| + 5, R)

B >..P(=c)P(+s| —c)P(R=7r|—c)P(—w|+s,R=T)

Gibbs Sampling Example

P(R| — ¢)P(—w| + s, R)

~ Y. P(R=r[—¢)P(—w|+s,R=r)

Gibbs Sampling Example

<=

= Many things cancel out -- just a join on R

Further Reading®

= Gibbs sampling is a special case of more
general methods called Markov chain
Monte Carlo (MCMC) methods

Further Reading”

* Metropolis-Hastings is one of the more
famous MCMC methods (in fact, Gibbs
sampling is a special case of Metropolis-
Hastings)

Further Reading®

* Metropolis-Hastings is one of the more
famous MCMC methods (in fact, Gibbs
sampling is a special case of Metropolis-
Hastings)

= You may read about Monte Carlo methods
— they're just sampling

