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Beliefs/Desires under Uncertainty 

  i Rational decisions:  Based on what it believes and what it wants
Decision-theoretic agent: 

  i Decides: In contexts with uncertainty and conflicting goals

  i Choose action based on desirability of immediate outcomes
   i Environment: Stochastic, partially obs. P(Result(a) = s' | a,e)

  EU(a | e) = P(Result(a) = s'
s'∑ | a,e) U(s') 

Decision theory: 

Utility function U(s): No. expressing desirability of s 
Expected utility of an action given evidence EU(a | e): 

  action = argmaxa EU(a | e) 
Principle of maximum expected utility MEU(a | e): 

  i MEU priciple can be seen as defining all of AI

  i Operationalization: perception, learning, inference, planing 



Preferences 

  i Prizes (states):  A, B, C, etc. 
An agent chooses among: 

  i Lotteries:  Set of outcomes for each action

Notation: 
  i A ≻B    Lottery A is preferred to lottery B

 L = [p,A; (1− p), B]  L
 p

 1− p  B

 A

  i A ∼B     indiference between A and B

  i A !
≻B    B is not preferred to A



Utility-Theory Axioms 

  i Rational preferences:  Maximization of expected utility
Preferences of a rational agent must obey constraints: 

Constraints on lotteries: 
  i Orderability: (A ≻ B)∨ (B ≻ A)∨ (A ∼ B)

  i Transitivity: (A ≻ B)∧ (B ≻ C) ⇒ (A ≻ C)

  i Continuity: A ≻ B ≻ C ⇒

  i Substitutivity: A ∼ B ⇒

  i Monotonicity: A ≻ B ⇒ (p ≥ q ⇔ [p,A; (1− p),B] ≻ [q,A; (1− q),B]

  i Decomposability: [p,A; (1− p),[q,B; (1− q)C]] ∼  

  i Decomposability: [p,A; (1− p)q,B; (1− p)(1− q)C]

  i Continuity: ∃p. [p,A; (1− p),C] ∼ B

  i Substitutivity: [p,A; (1− p),C] ∼ [p,B; (1− p),C]

 L
 p

 1− p

 A
 q

 1− q  C

 B

 L'
 p

 (1− p)q  B
 A

 (1− p)(1− q)  C



Rational Preferences Continued  

Violating the constraints leads to self evident irrationality 
Example: An agent with intransitive preferences 

  

i If B ≻ C then: An agent that has 
  C would pay, say 1 cent, to get B

  i Can be induced to: give away all its money 

  

i If A ≻ B then: An agent that has 
  B would pay, say 1 cent, to get A

  

i If C ≻ A then: An agent that has 
  A would pay, say 1 cent, to get C



Maximizing Expected Utility  

Theorem (Ramsey’31, von Neumann/Morgenstern’44): 
Given preferences satisfying the constraints 
there exists a real-valued function U such that: 

  i  U(A) >U(B) ⇔  A ≻ B,    U(A) = U(B) ⇔  A ∼ B

  
i  U([p1,S1;  …;  pn,Sn ]) =  pi  U(Si)i∑

MEU principle: 
  i  Choose the action that maximizes the expected utility

  i  Note: An agent can be entirely rational (consistent with MEU)

  i  Without representing/manipulating utilities and probabilities

  i  Example: A lookup table for perfect tic-tac-toe



Utilities and Preference Elicitation 

  
i Compare a given state A to a standard lottery Lp  that has

Utilities map states to real numbers. Which numbers? 

  i Best possible prize uT  with probabilty p

  pay $30    ∼  L
 0.999999

 0.000001  u⊥: instant death
 uT : continue as before

Standard approach to assessment of human utilities: 

  i Worst possible catastrophe u⊥  with probabilty (1− p)

  
i Adjust lotery probability p until A ∼ Lp = [p,uT; (1-p),u⊥ ]



Utility Scales 

 Normalized utilities: uT = 1.0, u⊥ = 0.0

  i Useful for Russian roulette

  i Useful for medical decisions involving substantial risk

 Micromorts: one-millionth chance of death

  i Driving a car for 230 miles: a risk of one micromort

 QALY: quality-adjusted life years

  i  U'(x) = k1 U(x)+ k2  where k1 > 0
 Behavior is invariant wrt. positive linear transformations:

  i  Ordinal utility can be determined, i.e., total order on prizes
 With deterministic prizes only (no lottery choices), only:



Money: Obvious Utility Candidate 

 Money does not behave as a utility function

  i Usually for U(L) <U(EMV(L)) i.e., people are risk averse

  i Between prize x and lottery [p,$M; (1-p),$0] for large M?

 Given a lottery L with expected monetary value EMV(L)

 Utility curve: For what probability p am I indifferent

 Typical empirical data, extrapolated with risk-prone behavior:



Student-Group Utility 

 ∀x, adjust p, until half the class votes for lottery (M = 10K):



Multi-Attribute Utility 

 How can we handle utility functions of vars X1,...,Xn ?
  i Example: What is U(Deaths, Noise, Cost)?

  i Be assessed from preference behaviour?
 How can complex utility functions: 

  i  Without complete identification of  U(x1,...,xn)
  i Identify conditions under which decisions can be made:

  i  Derive consequent canonical forms for  U(x1,...,xn)
  i Identify various types of independence in preferences, and:



Strict Dominance 

 Typically define attributes such that U is monotonic in each

  i ∀i. Xi(B) ≥ Xi(A) and hence U(B) ≥U(A)
 Strict dominance: choice B strictly dominates choice A iff

 Strict dominance: seldom in practice 

 deterministic attributes  uncertain attributes



Stochastic Dominance 

  
i ∀t. p1(x)

−∞

t

∫  dx ≤ p2(x)
−∞

t

∫  dx
 Distribution p1 stochastically dominates distribution p2  iff:  

 If U is monotonic in x:  A1 with pdf p1 SD A2  with pdf p2

  
i p1(x)

−∞

+∞

∫  U(x) dx ≤ p2(x)
−∞

+∞

∫  U(x) dx

 Multi-attribute case: SD on all attributes ⇒ optimality



Stochastic Dominance 

  i Exact distributions using qualitative reasoning
 Stochastic dominance can often be determined without:  

 Example: construction cost increases with distance from city

  i S1 is closer to the city than S2  implies

  i S1 stochastically dominates S2  on cost

 Example: injury cost increases with collision speed

 Can annotate belief networks with SD information:

  i X
+⎯ →⎯ Y (X positively influence Y) means that

  

∀z ∈(Y's other parents Z). ∀x1,x2.
x1 ≥ x2 ⇒P(Y | x1,z) SD P(Y | x2,z)
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Preference Structure: Deterministic 

  
i Preference between 

〈x1,x2,x3 〉
〈x1

, ,x2
, ,x3 〉

⎫
⎬
⎪

⎭⎪

⎧
⎨
⎪

⎩⎪
 does not depend on x3

 X1 and X2  are preferentially independent of X3  iff:

 Example, 〈Noise, Cost, Deaths〉: 
  i 〈20,000 suffer, $4.6 billion, 0.06 deaths/mpm〉 vs

  i 〈70,000 suffer, $4.2 billion, 0.06 deaths/mpm〉

 Theorem (Leontief '47): Mutual P.I.
  i If every pair of attributes is P.I. of its complement

  i Then every subset of attributes is P.I. of its complement

 Theorem (Debreu '60): Mutual P.I. 

  
i ∃ additive-value-function  V(x1,...,xn) = Vi(xi)i∑
  i Vi  value function for att Xi. V(n,c,d) = −n×104 − c − d×1012



Preference Structure: Stochastic 

  i X is utility-independent of Y iff 
 Need to consider preferences over lotteries:

 Mutual U.I.: each subset is U.I. of its complement 

  i Implies the existance of a utility function U where Ui = Ui(xi)

 Routine procedures/software for generating preference

  i Tests identifying various canonical utility-functions families

  i Preferences over lotteries in X do not depend on y 

  i U = k1U1 + k2U2 + k3U3 +

  i U+ k1k2U1U2 + k2k3U2U3 + k3k1U3U1

  i U+ k1k2k3U1U2U3



Decision Networks 

 Add action nodes and utility nodes to belief networks

  i To enable rational decision making

 foreach value(action-node)
 Algorithm:

 

compute expected 
value of utility node 
given action, evidence

 return MEU action 



Simplified Decision Networks 

 Action-utility function: Chance outcome states omitted

  i Q-function expected utility associated with each action



DN For Aortic Co-Arctation 



The Value of Information 

  i All relevant information is available to make a decision 
 So far we have assumed that

  i Most important is knowing what questions to ask
  i In practice this is hardly ever the case

 Example: A doctor cannot expect all investigations
  i When the patient enters the consulting room

  i Investigations are expensive and sometimes hazardous

  i Importance: Lead to better treatment, how likely results are

 Information theory
  i Allows an agent to choose what information to acquire

  i Prior to selecting an action agent acquires the value of it

  i A simplified form of sequential decision making

  i Observation actions afect only agent's belief state (not env)



Value of Information 

  i Each possible piece of evidence 
 Idea :  Compute the value of acquiring

 Example: Buying oil-drilling rights 
  i Two blocks A and B exactly one has oil, worth k

  i Can be done directly from decision network

  i Prior probablilities 0.5 each, mutually exclusive

  i Current price of each block is k/2 each

  i Consultant offers accurate survey of A. Fair price?

 Solution: Compute expected value of information, that is 

  i Expected value of best action given the information

  i Minus expected value of best action without information

  i Survey may say oil in A with probability 0.5
 [0.5 × (value of buy A given oil in A) + 0.5 × (value of buy B given no oil in A)]− 0

 [0.5 × k / 2 + 0.5 × k / 2]− 0 = k / 2



General Formula  

  i Current evidence E, Current best action α 
 Given :  

  
i Possible action outcomes Si, Potential new evidence Ej

 
EU(α |E) = maxa U(Si) P(Si |E,a)

i∑

  
i Ej = ejk, then we would choos αejk

such that 
 Suppose we knew:

 
EU(α jk |E, Ej = ejk ) = maxa U(Si) P(Si |E, a, Ej = ejk )

i∑
  
i Ej  is a random variable whose value is currently unknown

  i Must compute expected gain over all possible values

 
VPIE(Ej) = P(Ej = ejk |E)

k∑  EU(αejk
|E,Ej = ejk )−EU(α |E)

 VPI =  Value of perfect information



Qualitative Behaviors 

 (a) Choice is obvious: information is worth little

 (b) Choice is non-obvious: information is worth a lot

 (c) Choice is non-obvious: information is worth little

 Information has value: may cause the choice of better plan



Properties of VPI   

 
∀j,E. VPIE(Ej) ≥ 0

 Non-negative: In expectation, not post hoc

 
Non-additive: consider for example, obtaining Ej  twice

 
VPIE(Ej, Ek ) ≠ VPIE(Ej)+ VPIE(Ek )

 Order-independent:

 
VPIE(Ej, Ek ) = VPIE(Ej)+ VPIE,Ej

(Ek ) = VPIE(Ek )+ VPIE,Ek
(Ej)

 When more than one piece of evidence can be gathered

  i Maximizing VPI for each to select one is not always optimal

  i Evidence gathering becomes a sequential decision problem



Information-Gathering Agent 

 

if (VPI(Ej) > Cost(Ej))
   return Request(Ej)
 return the best action from D

 persistent D  // decision network
 function Information-Gathering-Agent(pecept) return action 

 integrate percept into D  

 j = argmaxkVPI(Ek ) / Cost(Ek )

 Myopic (greedy) :  Calculate VPI with only one evidence variable
 
Request(Ej) :  The next percept provides the value of Ej


