Probabilistic Reasoning
Chapter 14 (Models)
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Probabilistic Models

= Models describe how (a portion of) the world works



Probabilistic Models

= Models are always simplifications
= May not account for every variable
= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
— George E. P. Box



Probabilistic Models

= What do we do with probabilistic models?

= We (or our agents) need to reason about unknown variables,
given evidence

= Example: explanation (diagnostic reasoning)
= Example: prediction (causal reasoning)
= Example: value of information



Bayes' Nets: Big Picture

= Two problems with using full joint distribution tables as
our probabilistic models:
= Unless there are only a few variables, the joint is WAY too big to

represent explicitly. For n variables with domain size d, joint
table has d" entries --- exponential in n.



Bayes' Nets: Big Picture

» Hard to learn (estimate) anything empirically about more than a
few variables at a time



Bayes' Nets: Big Picture

= Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local distributions
(conditional probabilities)
= More properly called graphical models
= We describe how variables locally interact

» |ocal interactions chain together to give global, indirect
iInteractions



Bayes' Nets

» Representation

» Informal first introduction of Bayes’ nets
through causality “intuition”

= More formal introduction of Bayes’ nets



Bayes' Nets

= |nformal first introduction of Bayes’ nets
through causality “intuition”

= More formal introduction of Bayes’ nets

= Conditional Independences



Bayes' Nets

= |nformal first introduction of Bayes’ nets
through causality “intuition”

= More formal introduction of Bayes’ nets

= Probabilistic Inference



Bayes' Nets

= |nformal first introduction of Bayes’ nets
through causality “intuition”

= More formal introduction of Bayes’ nets

» Learning Bayes’ Nets from Data



Graphical Model Notation

= Nodes: variables (with domains)

= Can be assigned (observed) or
unassigned (unobserved)



Graphical Model Notation

= Arcs: interactions
= Similar to CSP constraints

= Indicate “direct influence” between
variables

= Formally: encode conditional
Toothache @

Independence (more later)



Graphical Model Notation

= For now: imagine that arrows
mean direct causation (in
general, they don’ t!)



Example: Coin Flips

= N independent coin flips



Example: Coin Flips

= No Interactions between variables:
absolute independence



Example: Traffic

= Variables:
= R: [t rains
= T: There is traffic



Example: Traffic

= Model 1: independence



Example: Traffic

= Model 2: rain causes traffic



Example: Traffic

= Why is an agent using model 2 better?



Example: Traffic Il

= | et s build a causal graphical model

= Variables
= T: Traffic
= R:Itrains
= |: Low pressure
= D: Roof drips
= B: Ballgame
= C: Cavity




Example: Alarm Network

= Variables
= B: Burglary
= A: Alarm goes off
= M: Mary calls
= J: John calls
» E: Earthquake!



Bayes' Net Semantics

= Let’ s formalize the semantics of a

Bayes’ net



Bayes' Net Semantics

= A set of nodes, one per variable X



= A directed, acyclic graph

Bayes' Net Semantics




Bayes' Net Semantics

= A conditional distribution for each node

= A collection of distributions over X, one for
each combination of parents’ values

P(Xl|ai...an)




Bayes' Net Semantics

= CPT: conditional probability table
= Description of a noisy “causal” process



Probabilities in BNs

= Bayes’' nets implicitly encode joint distributions
= As a product of local conditional distributions




Probabilities in BNs

= To see what probability a BN gives to a full assignment, multiply
all the relevant conditionals together:

n
P(z1,20,...2n) = || P(zs|parents(X;))
1=1



Probabilities in BNs

= Example:

P(+-cavity, H+catch, —toothache)



Probabilities in BNs

= This lets us reconstruct any entry of the full joint



Probabilities in BNs

= Not every BN can represent every joint distribution
» The topology enforces certain conditional independencies



Example: Coin Flips

P(X1) P(X>) P(Xn)
h | 05 h |05 h |05
t | 05 t | 05 t | o5
P(h,h,t,h) =

Only distributions whose variables are absolutely independent
can be represented by a Bayes’ net with no arcs.



Example: Traffic

P(R)

+r

1/4

~r

3/4




Example: Traffic

P(T|R)
| +t | 3/4
e -t | 1/4




Example: Traffic

—~r— +t 1/2
-t 1/2




Example: Traffic

e P(+r,—t) =



Example: Alarm Network

3 P@) SN FEN
+b | 0.001 Burglary @ +e |[0.002

~b | 0.999 ~€ | 0.998

@ B E A P(AB,E)

+b |+e | +a [0.95
+b |+e | —a [0.05

+b | -e | +a [0.94

Ao run [ w e ISR

+a [+ [0.9 +a [+m | 0.7 -b |+e | +a [0.29
+a |—-j |01 +a |-m | 0.3 -b |+e [ -a [0.71
-a |+ [0.05 -a |+m |0.01 -b [-e | +a [0.001
-a |-)] [0.95 -a [-m [0.99 -b | -e [ -a [0.999




Example Bayes' Net: Insurance




Example Bayes' Net: Car

alternator fanbelt
e

by
battery batte fuel line starter
meter fIat blocked broke
G o) o) QD Corno




Build your own Bayes nets!

= http://www.aispace.org/bayes/index.shtml



Size of a Bayes' Net

= How big is a joint distribution over N Boolean variables?



Size of a Bayes' Net

= How big is a joint distribution over N Boolean variables?

2N



Size of a Bayes' Net

= How big is an N-node net if nodes have up to k parents?



Size of a Bayes' Net

= How big is an N-node net if nodes have up to k parents?

O(N * 2k+1)



Size of a Bayes' Net

= Both give you the power to calculate P(X1, Xo,...Xn)



Size of a Bayes' Net

= BNs: Huge space savings!



Size of a Bayes' Net

= Also easier to elicit local CPTs



Size of a Bayes' Net

= Also turns out to be faster to answer queries (coming)



Bayes' Nets

= Representation

Jlnformal first introduction of Bayes’ nets
through causality “intuition”

= More formal introduction of Bayes’ nets



Representing Joint Probabillity
Distributions

= Table representation:

number of parameters: dn-1



Representing Joint Probabillity
Distributions

= Chain rule representation:
n
P(z1,x2,...xn) = |] P(zilz1 ... xi—1)
1=1
number of parameters: (d-1) + d(d-1) + d?(d-1)+...+d"(d-1) = d"-1

Size of CPT = (hnumber of different joint instantiations of the preceding variables)
times (number of values current variable can take on minus 1)



Representing Joint Probabillity
Distributions

= Both can represent any distribution over the n random variables.

Makes sense same number of parameters needs to be stored.



Representing Joint Probabillity
Distributions

= Chain rule applies to all orderings of the variables, so for a given

distribution we can represent it in n! = n factorial = n(n-1)(n-2)...2.1
different ways with the chain rule



Chain Rule - Bayes’ net

= Chain rule representation: applies to ALL distributions
= Pick any ordering of variables, rename accordingly as x,, X,, ..., X,

P(z1,22,...2n) = [[ P(zilr1 ... 2i_1) Exp?:intlal

; .
number of parameters: (d-1) + d(d-1) + d?(d-1)+...+d"(d-1) = d"-1




Chain Rule - Bayes’ net

= Bayes’ net representation: makes assumptions

= Pick any ordering of variables, rename accordingly as x4, X,, ..., X,
= Pick any directed acyclic graph consistent with the ordering
= Assume following conditional independencies:

P(xi|lx1---xi_1) = P(x;|parents(X;))

n
int: P L LD, ... — P(x;|parents(X; _
- Joint (x1, 2o Tn) il;[1 (z;|p (X)) e

number of parameters: (maximum number of parents = K) . Inn
Zd|parcnts(){,~)|(d o 1) _ ()(ndh’(d o 1)) _ O(ndK-l-l)
=1

Note: no causality assumption made anywhere.




Causality?

= \When Bayes’ nets reflect the true causal patterns:

= Often simpler (nodes have fewer parents)
» Often easier to think about
= Often easier to elicit from experts



Causality?

= BNs need not actually be causal
= Sometimes no causal net exists over the domain
» E.g. consider the variables Traffic and Drips
= End up with arrows that reflect correlation, not causation



Causality?

= QOften simpler (nodes have fewer parents)
= QOften easier to think about
= QOften easier to elicit from experts

= Sometimes no causal net exists over the domain
= E.g. consider the variables Traffic and Drips
= End up with arrows that reflect correlation, not causation

= \What do the arrows really mean?
= Topology may happen to encode causal structure
= Topology only guaranteed to encode conditional independence



Example: Traffic

= Basic traffic net
= | et’ s multiply out the joint
P(R)

r 1/4
=r 3/4

r t 3/4
e -t 1/4
—r t 1/2
-t 1/2




Example: Traffic

= Basic traffic net
= | et’ s multiply out the joint

P(R) P(T, R)
r | 1A ' t | 3/16
or | S r | -t | 1/16
P(T|R) = r t 6/16
r | -t |66
' t | 34

1/4

1/2

1/2




Example: Reverse Traffic

* Reverse causality?

P(T)
t | o6
-t | 7116

P(R|T)

t r 1/3
e =r 2/3
-t r 177
—r 6/7




Example: Reverse Traffic

* Reverse causality?

P(T) P(T, R)
t [ 916 r t | 3/16
t 17716 r | -t | 1/16
P(RlT) —r t 6/16
-r -t | 6/16

t r 1/3
@ =r 2/3
-t r 177
—r 6/7




Example: Coins

= Extra arcs don’ t prevent representing
iIndependence, just allow non-independence

OO

P(X7) P(X3)
h |05 h | o5
t |05 t |05




Example: Coins

= Extra arcs don’ t prevent representing
iIndependence, just allow non-independence

P(Xy)  P(Xo|X1)

h |05 hih | 05
t |05 t|h | 05
h|t | 05
t|t | 0.5




Example: Coins

= Extra arcs don’ t prevent representing
Independence, just allow non-independence

& @& O—®

P(X7) P(X2) P(X1)  P(X2[X7)

= Adding unneeded arcs isn’ t
wrong, it s just inefficient




Bayes' Nets

#Informal first introduction of Bayes’ nets
through causality “intuition”
¥ More formal introduction of Bayes’' nets
= Conditional Independences

= Probabilistic Inference

» Learning Bayes’ Nets from Data



Bayes Nets: Assumptions

= To go from chain rule to Bayes’ net representation, we
made the following assumption about the distribution:

P(x;|lx1---x;_1) = P(x;|parents(X;))



Bayes Nets: Assumptions

= Turns out that probability distributions that satisfy the above
(“chain-rule->Bayes net”) conditional independence
assumptions

= often can be guaranteed to have many more conditional
iIndependences

» These guaranteed additional conditional independences can be
read off directly from the graph



Bayes Nets: Assumptions

= Important for modeling: understand assumptions made
when choosing a Bayes net graph



Example

= Conditional independence assumptions directly from
simplifications in chain rule:




Example

= Additional implied conditional independence
assumptions?



Independence in a BN

= (Given a Bayes net graph
* |[mportant question:

Are two nodes guaranteed to be independent given
certain evidence?



Independence in a BN

Equivalent question:

Are two nodes independent given the evidence in all
distributions that can be encoded with the Bayes
net graph?



Independence in a BN

= |[mportant question:

Are two nodes guaranteed to be independent given
certain evidence?

Equivalent question:

Are two nodes independent given the evidence in all
distributions that can be encoded with the Bayes
net graph?

= Before proceeding: How about opposite question: Are
two nodes guaranteed to be dependent given certain
evidence?



Independence in a BN

= No! For any BN graph you can choose all CPT’s such that all
variables are independent by having P(X | Pa(X) = paX) not

depend on the value of the parents. Simple way of doing so: pick
all entries in all CPTs eaual to 0.5 (assumina binarv variables)



D-separation: Outline

= Study independence properties for triples



D-separation: Outline

= Any complex example can be analyzed by
considering relevant triples



Causal Chains

= This configuration is a “causal chain”
X: Low pressure

Z: Traffic
P(z,y,z) = P(z)P(y|lz)P(z|y)



Causal Chains

* |s it guaranteed that X is independent of Z ?



Causal Chains

* |s it guaranteed that X is independentof Z? No!



Causal Chains

= One example set of CPTs for which X is not independent of Z is
sufficient to show this independence is not guaranteed.



Causal Chains

= Example: P(y|x) = 1 if y=x, 0 otherwise
P(zly) =1 if z=y, 0 otherwise
Then we have P(z|x) = 1 if z=x, 0 otherwise
hence X and Z are not independent in this example



Causal Chains

* |s it guaranteed that X is independent of Z given Y?

P(z,y,2) _ P(z)P(ylz)P(z]y)
P(x,y) P(z)P(y|x)

P(z|lz,y) =



Causal Chains

= P(zly) Yes!



Causal Chains

X: Low pressure

Z: Traffic
P(x,y,z) = P(x)P(y|lx)P(z|y)

* |s it guaranteed that X is independent of Z given Y?

P(x,y, z) _ P(x)P(y|lx)P(z|y)
P(x,y) P(x)P(y|x)

= P(z|y)

= Evidence along the chain “blocks” the influence

P(z|lz,y) =




Common Cause

= Another basic configuration: two
effects of the same cause

» |s it guaranteed that X and Z are
Independent?

Y: Project due
X: Piazza busy

Z: Lab full



Common Cause

= No!

= Counterexample:
Choose P(X|Y)=1 if x=y, 0 otherwise,
Choose P(zly) = 1 if z=y, 0 otherwise.



Common Cause

Then P(x|z)=1 if x=z and 0 otherwise, hence X
and Z are not independent in this example and
hence it is not guaranteed that if a distribution can
be encoded with the Bayes’ net structure on the

right that X and Z are independent in that
distribution



Common Cause

P(z,y,z) _ P(y)P(z|ly)P(z]y)
P(x,y) P(y)P(z|y)

= P(z|ly) Yes!

P(z|lz,y) =

» Observing the cause blocks influence
between effects.



Common Effect

= |Last configuration: two causes of
one effect (v-structures)

= Are X and Z independent?

X: Raining
Z: Ballgame
Y: Traffic



Common Effect

= |Last configuration: two causes of
one effect (v-structures)
= Are X and Z independent?

= Yes: the ballgame and the rain cause traffic,
but they are not correlated

X: Raining
Z: Ballgame
Y: Traffic



Common Effect

= Still need to prove they must be (try it!)



Common Effect

= Are X and Z independent given Y?



Common Effect

= Are X and Z independent given Y?

= No: seeing traffic puts the rain and the
ballgame in competition as explanation?



Common Effect

= Are X and Z independent?

. the ballgame and the rain cause traffic,
but they are not correlated

Still need to prove they must be (try it!)
= Are X and Z independent given Y?

: - : X: Raini
. seeing traffic puts the rain and the 2ihing
ballgame in competition as explanation? Z: Ballgame
= This is backwards from the other cases Y- Traffic

= Observing an effect activates influence
between possible causes.



Reachabillity (D-Separation)

= Question: Are XandY
conditionally independent
aiven evidence vars {Z}?




Reachabillity (D-Separation)

= Question: Are XandY
conditionally independent
aiven evidence vars {Z}?

= Consider all (undirected) paths
from XtoY

* No active paths = independence!

Active Triples

O-0O—-0

ohe

Inactive Triples

O-0-0

oo




Reachabillity (D-Separation)

= A path is active if each triple

IS active:
= Causal chain A— B — C where B
Is unobserved (either direction)

= Commoncause A< B—C
where B is unobserved




= Common effect (aka v-structure)

Reachabillity (D-Separation)

A — B < C where B or one of its
descendents is observed




D-Separation

= Glven query XZ ﬂ XJ|{X]C17 7an}



D-Separation

» Shade all evidence nodes



D-Separation

» For all (undirected!) paths between and

= Check whether path is active
= |f active return:

not guaranteed that X, 1| le{Xkl, ey X }



D-Separation

= (If reaching this point all paths have been
checked and shown inactive)
* Return: guaranteed tat X; Ll X;|{ Xk, , ..., Xk, }



Example



Example

Yes



Example

LILT'|T
L1B

L1 B|T
L1 B|T'
L1 B|T, R



Example

LILT'|T Yes
L1 B Yes
L1 B|T
L1 B|T'
LI B|T,R Yes



Example

= Variables:
» R: Raining
= T: Traffic
= D: Roof drips
= S: |I"'m sad e
= Questions:
T 1 D




Example

T 1LD|R



Example

T1 D|R Yes



Example

T D|R, S



All Conditional Independences

= Given a Bayes net structure, can run d-
separation to build a complete list of
conditional independences that are
guaranteed to be true, all of the form

Xi L Xi{ Xy eons Xk, }



Topology Limits Distributions

= Given some graph

topology G, only certain
joint distributions can
be encoded



Topology Limits Distributions

= The graph structure

® @

OB "

guarantees certain
(conditional)
Independences

P



Topology Limits Distributions

® @

P PoF

= (There might be more

iIndependence)



Topology Limits Distributions

€y

o

5> S-S
3 o B

P PF



Topology Limits Distributions




Bayes Nets Representation Summary

= Bayes nets compactly encode joint distributions



Bayes Nets Representation Summary

» Guaranteed independencies of distributions can
be deduced from BN graph structure



Bayes Nets Representation Summary

= D-separation gives precise conditional
Independence guarantees from graph alone



Bayes Nets Representation Summary

= A Bayes' net’ s joint distribution may have
further (conditional) independence that is not
detectable until you inspect its specific
distribution



Bayes' Nets

&’ Representation
&/ Conditional Independences

= Probabilistic Inference

» Enumeration (exact, exponential complexity)

= Variable elimination (exact, worst-case
exponential complexity, often better)

= Probabilistic inference is NP-complete
= Sampling (approximate)

= Learning Bayes’ Nets from Data



Possible to have same full list of conditional
Independencies for different BN graphs?

= Yes!
= Examples:

= |f two Bayes’ Net graphs have the same full list
of conditional independencies then they are able
to encode the same set of distributions.



