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Example Markov Decision Process
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States (i,j) €{1..4}x{1..4}\(2,2), Actions a €{Up,Down,Left,Right}
Model T(s,a,s')=P(s'|s,a)=Probability that ainsleadstos'
Reward R(s) (or R(s,a), R(s,a,s"))

:{ —0.04 (small penalty) for nonterminal states
+1  for terminal states



Markov Decision Process (Regulator)

States s, Actions a
Model T(s,a,s')=P(s’|s,a), T =P(s)
Reward R(s) (or R(s,a), R(s,a,s"))

Compute optimal policy (controller) 7(s)



Solving MDPs

" |n search problems, aim is to find an optimal sequence

" |n MDPs, aim is to find an optimal policy (controller) ri(s)

= Best action for every possible state s
(because can’t predict where one will end up)

= Optimal policy maximizes the expected sum of rewards

*= Optimal policy when state penalty R(s) is —0.04:

What can you observe
about this policy ?



Risk and Reward
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Utility of State Sequences

Need to understand preferences between sequences of states

Typically consider stationary preferences on reward sequences:

lnr,r,r, .. 0=l r,r, . . 1Jsl,r,r, ... 1=1r,r,r,,...]

Theorem: there are only two ways to combine rewards over time.
1) Additive utility function:
U(ls,,s,,s,, ...1) = R(s,) + R(s,) + R(s,) + -
2) Discounted utility function:
U(ls,,s,,s,, ...1) = R(s,) + YR(s,) + Y’ R(s,) + ---

where y €(0,1) is the discount factor



Utility of States

Utility of a state (a.k.a. its value) is defined to be
U(s) = expected (discounted) sum of rewards
(until termination) assuming optimal actions

Given the utilities of the states, choosing the best action is just MEU:
Maximize the expected utility of the immediate successors
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Utility of State Sequences

Problem: infinite lifetimes = additive utilities are infinite

1) Finite horizon: termination at a fixed time T
= nonstationary policy: 7r(s) depends on time left

2) Absorbing state(s): w/ prob. 1, agent eventually “dies” for any 7«
= expected utility of every state is finite

4

3) Discounting: assumingy <1, R(s) < R

max

U([sO,...,sw])=Z°°O’th(st) < Rmax/(l —v) smallery = shorter horizon

t=

4) Maximize system gain = average reward per time step

Theorem: optimal policy has constant gain after initial transient
Example: taxi driver’s daily scheme cruising for passengers



Dynamic programming: Bellman Equation

Definition of utility of states leads to a simple relationship
among utilities of neighboring states:

expected sum of rewards
= current reward
+ vy X expected sum of rewards after taking best action
Bellman equation (1957):

U(s) =R(s) + v maxzs,U(s’)T(s, a,s')

Example:
U(1,1) = —0.04
+ v max{ 0.8xU(1,2)+0.1xU(2,1)+0.1xU(1,1), Up
0.9xU(1,1)+0.1xU(1,2), Left
0.9%xU(1,1)+0.1xU(2,1), Down

0.8xU(2,1)+0.1xU(1,2)+0.1xU(1,1) }  Right

One equation per state = n nonlinear equations in n unknowns



Value Iteration Algorithm (V1)

Main idea:
Start with arbitrary utility values

Update to make them locally consistent with Bellman egn.
Everywhere locally consistent = global optimality
Repeat for every s simultaneously until “no change”

U, (s) « R(s) +y max ), U(s')T(s,as") foralls
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Convergence

Define the max-norm ||U]| =max_ [U(s)], so
|| U-V|| =maximum difference between U and V

Let U' and U™ be successive approximations to the true utility U
Theorem: For any two approximations U* and V"
U™ =V <yx]|UT =V

l.e., any distinct approximations must get closer to each other
in particular any approximation must get closer to the true U
and value iteration converges to a unique, stable, optimal solution

Theorem: if |JU™ =U"|| <€ then |JU™ =U|| <2¢ey/(1-7)

|.e., once the change in U becomes small, we are almost done.
MEU policy using U may be optimal long before convergence of values



Policy Iteration (PI)

|dea: Search for optimal policy and utility values simultaneously

Algorithm:

7T < an arbitrary initial policy
repeat until no changein

compute U(s) given i (here 1 is kept fix)
update 7 given U (here U is kept fix, local MEU)

To compute utilities U given a fixed 7t (value determination):
U(s) < R(s) + v D U(s")T(s, m(s),s") Vs

®
n simultaneous linear equations in n unknowns, solve in O(n’)

To update the policy & perform local MEU:
7(s) —(maxZU(S )T(s,a,s") > ZU(s )T(s, 7t(s),s"))? argmax > U(s")T(s,a,s"): 7t(s) Vs

acA(s) aeA(s) s’



Modified Policy Iteration

Pl: often converges in few iterations, but each is expensive

|dea:

Use a few steps: of value iteration but with m fixed
Starting from: the value function produced last time
To produce: an approximate value determination step

Often converges much faster: than pure VI or Pl

Leads to much more general algorithms where:
Bellman value updates and Howard policy updates
Can be performed locally in any order

Reinforcement learning algorithms operate by:

Performing such updates based on the observed transitions
Made in an initially unknown environment.



Partial Observability (POMDP)

Partially observable MDPs extend MDPs by having:

An observation model: O(s,e)=P(e|s), defining
The probability: that the agent obtains evidence evidence e in state s

Agent does not know which stateitisin
— Makes no sense: to talk about policy 7(s)!



Partial Observability (POMDP)

Theorem (Astrom): The optimal policy in a POMDP is a

Function 7z(b) where b is a
Belief state, ie. a probability distribution over states

Can convert a POMDP into an MDP in belief-state space, where

T(b,a,b")=P(b"|b,a) is the probability that
New BSis b' given that current BS is b and the agent does a.
Filtering: one performs filtering before applying control.



Partial Observability (Contd.)

Controller Filter

Solutions automatically incude information- gathering behavior

If there are n states, b is an n-dimensional real-valued vector
— Solving POMIDP is very hard, actually PSPACE hard!

The real world is a POMDP (with initially unknown T and O)



