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Learning of Probabilistic Models

= The Baum Welch Algorithm
® Teacher provides examples (a trace)
o Supervised learning: This kind of learning technique
= What if such labeled examples are not available?

o Feedback: Teacher provides rewards (win/loss)
o Reward or reinforcement: This kind of feedback
o Reinforcement learning: This kind of learning technique

= Reinforcement examples

o Chess: Reward only at the end (win or loss)
o Ping-pong: Reward after every point win or loss



RL Framework

= Reward is part of the input percept

o Agent: Hardwired to recognize this part as a reward
o Animals: Recognize pain & hunger as negative R
o Animals: Recognize pleasure & food as positive R

= Mathematical model

o MDP: Markov Chain + Inputs + Rewards
o RL: Use observed rewards to learn optimal policy
o No prior knowledge: Of the MDP

= RL example

o Chess: After N moves, you are told: you loose/win
o Ping-pong: Ball goes out, you are told: loose/win point



Outline

Utility-based agents: Learn utility function
O-Learning agents: Learn action-utility (Q) function
Reflex agents: Learn policy

Passive learning: Policy fixed. Learn utility (model)
Active learning: Also learn policy (use exploration)



Passive Reinforcement Learning

Given: Policy m (opt for R=-0.04) Goal: Learn utility U"
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Transition model P(s'|s,a) Not known
Reward function R(s) Not known

States (i, j) €{1..4} x{1..4}\(2,2) Fully observable
Observations (i,j), Reward-indexed states
Actions a € {Up,Down,Left,Right} Known, used by




Passive Reinforcement Learning

Given: Policy m (opt for R=-0.04) Goal: Learn utility U"

3| = | == | = 3 | 0.812 | 0.868 | 0.918
f 2 | 0.762 0.660

1 f - | - | - 1 | 0.705 | 0.655 | 0.655 | 0.388

1 2 3 4 1 2 3 4
Trials: executed intheenvironment using policy 7

Trial: Sequence of transitions from (1,1) until terminal state
Percepts: supply both current state and associated reward
(1,1)_,+—(12)_ ,—(,3) ,—(12) ,—(1,3) ,—(23) ,—0B3)_,—(43),
(1,1)_,—(1,2) ,—(3) ,—(23)_,—33) ,—0B2)_,—(42)

Objective: Compute U™(s)=E[Y _ y*R(S )] withRVS andS =s




Direct Utility Estimation

U(s): expected total reward from that state onward (reward-to-go)
One trial: Provides a sample U(s) for each state s visited
(1,1)_,+—(,2) ,—(1,3) ,+—(,2) ,—(1,3) ,—(23)_,—(033)_,—(43),

(1,1) one sample: Of total reward 0.72
(1,2) two samples: Of total rewards 0.76 and 0.84

After each trial: Update U(s) by keeping a running average for Vs
In the limit: Sample average will converge (very slow) to U"(s) Vs
Miss: States are not independent but related by Bellman equations

U(s)=R(s)+7_P(s'ls,m(s) U"(s')

lgnoring Bellman: Misses opportunities for learning
Search space for U: Too large, it includes Us violating Bellman



Adaptive Dynamic Programming (ADP)

ADP: Applies Bellman by learning P(s'|s,a) and using observed R(s)

Given 1t: Bellman equations are linear (no maximization involved)

Model learning: Easy since the environment is fully observable

— Input: (State,action) pair. Output: resulting state
— Simplest representation: Table of probabilities

— Keep track of: How often each a occurs and estimate P(s'|s,a)

Example of model learning:
— Right: 3 times in (1,3); 2 times to (2,3). P((2,3)|(1,3),Right)=2/3

— Model estimation: Maximum-likelyhood technique

Problem: Acts as if the model was correct



Passive ADP Algorithm

function Passive-ADP-Agent ( Percept (s', r') ) returns Action

persistent Policy m // a fixed policy
persistent MDP M // an MDP M= (P,R,y)
persistent Table U= // a table of utilities
persistent Table N_ = // (state,action) frequencies table
persistent Table Ns'|sa = [/ s' frequency for (s,a)
persistent State s = Null, Action a=Null // previous s and a
if (s'gdom(U) ) U[s']=r"; R[s']=T
If (s#Null){

N_ [s,a]++; Ns.lsa[s',s,a]++

foreach ( t st. Ns.lsa[t,s,a] #0) P(t]s,a)= Ns.lsa[t,s,a]/ N_[s,a] }
U = Policy-Evaluation(r,U,M)
if (Terminal(s')) then (s,a) = Null else (s,a) = (s',w[s])

return a



Passive ADP Learning Curves
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(a) Utility estimates for a seleted subset of states
— Large change at trial 78: 1st time agent falls into -1 terminal state

(b) Root-mean-square (RMS) error in the estimate of U(1,1)
— Averaged: over 20 runs of 100 trials each

100



Temporal-Difference Learning

ldea: Use observed transitions to adjust utilities of observed states
Such that: They agree with the Bellman constraint equations
(1,1)_,—(12)_ ,—(13) ,—(L2) ,—(13) ,—>(23) ,—0B3)_,—(43),

(1,1)_,—(1,2) ,—>(1,3) ,—(23) ,—G3) ,—062)_,—(42)
U™(1,3)=0.84, U"(2,3)=0.92, U(1,3)=-0.04+U"(2,3)=0.88

Temporal-difference (TD): Use utilities difference. Learning rate o
U™ (s)=U"(s)+c(R(s)+yU"(s")—U"(s))

ldea: Adust U:+1 towards ideal equilibrium that holds locally

Subtleties: Notice that

—Update involves successor s' only whereas Bellman involves all successors s'
—Average U" still converges even for low transition probabilities to s'

—Taking function a/(v_) then U”(s) will converge itself to correct value



Passive TD Algorithm

function Passive-TD-Agent ( Percept (s', r') ) returns Action

persistent Policy m // fixed policy

persistent Table U= // utilities table
persistent Table N =& // state-frequency table
persistent (State s, Action a, Reward r) =Null // previous s,a,r

if (s'gdom(U) ) U[s']=r"
if (s#Null){
Ns[s]++
Uls] = U[s]+ oUN,[s]) (r +vU[s"]-Uls]) }
if (Terminal(s')) then (s,a,r)=Null else (s,a,r) = (s',x[s'],r')
return a



Passive TD Learning Curves
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(a) Utility estimates for a seleted subset of states

(b) Root-mean-square error in the estimate of U(1,1)
—Averaged: over 20 runs of 100 trials each
Does not learn so fast: But it does not need a transition model!
— 1D is a crude: But efficient first approximation of ADP
—ADP adjustments: Result of simulated (pseudoexpereience) TD adjustments
—Prioritized sweeping: Adjust only s whose likely s' undergo large adjustments



Active Reinforcement Learning

Goal: Learn policy & Goal: Learn utility U

3| = | == | = 3 | 0.812 | 0.868 | 0.918
f 2 | 0.762 0.660

1 f - | - | - 1 | 0.705 | 0.655 | 0.655 | 0.388

1 2 3 4 1 2 3 4
Transition model P(s'|s,a) Not known (learn as before)
Policy function  m(s) Not known (learn using exploration)
Reward function R(s) Not known (use observations)

U(s)=R(s)+y max_ ZS,P(S' |s,a) U(s')

States (i, j) €{1..4} x{1..4}\(2,2) Fully observable
Observations (i,j), Reward-indexed states



Exploration

Greedy ADP agent: Uses learned model to compute utilities

—Problem: Model is different from the true environment
—Problem: The agent does not know the true environment

—Fix: Actions also contribute to learning the true model by affecting percepts

Agent must therefore: Balance between

—Exploitation: Of the model to maximize its reward (utility estimate)
—Exploration: Of various actions to maximize its long-term well being
—Pure exploration: Of no use if one never puts knowledge into practice

Bandit problems: Study if there is an optimal exploration policy

—1-armed bandit: One slot machine. Gambler inserts coin, pulls lever, collects win
—n-armed bandit: n levers. Gambler must choose first the lever

Optimal behavior: What is exactly meant by that?

—Most definitions: Maximize the expected total reward over agent's lifetime
—Assumption: Expectation taken over all possible worlds P(s'|s,a)
—n-independent SMs: Possible to compute a Gittins index for each machine



Greedy in the Limit of Infinite Exploration

Optimal exploration: Difficult to solve. Greedy approximation (GLIE)
—Must try each action: In each state an unbounded number of times
—ADP agent using this scheme: Will eventually learn the true environment
—Must also eventually become greedy: So that agent's model is used

Several possible GLIE schemes:
—Simplest : Choose randomly an action a fraction 1/t of the time; otherwise greedy
—Alternative: Give weight to actions not often tried, avoiding low utility actions
—Amounts to: Optimistic prior over the possible environments.

Bellman with optimistic estimate
U*(s)=R(s)+y max_f( > P(s'|s,a)U"(s"), N(s,a))

—U"(s): Optimistic estimate of the utility (expected reward to go)
—N(s,a): The number of times action a has been tried in state s

—f(u,n): The exploration function. Tradeoff between greed and curiosity

f(u,n)=(n<N_)? R": u where R" =best reward, N_=fixed parameter

—Use of U" in the RHS: Benefits of exploration propagated back



Active ADP Algorithm

function Active-ADP-Agent ( Percept (s', r') ) returns Action

persistent MDP M // an MDP M= (P,R,y)
persistent Table U= // a table of utilities
persistent Table N_ = // (state,action) frequencies table
persistent Table Ns'|sa = /| s' frequency for (s,a)
persistent State s = Null, Action a =Null // previous s and a
if (s'gdom(U) ) U[s']=r"; R[s']=Tr
If (s=Null){

N_[s,a]++; Ns.lsa[s',s,a]++

foreach ('t st. Ns.lsa[t,s,a] #0) P(t|s,a)= Ns,lsa[t,s,a]/ N_[s,a] }
U™ = Exploratory-Value-lteration(P(t|s,a),U",f)
if (Terminal(s')) then (s,a)=Null else (s,a) = (s',rn[s'])
return a



Performance of Exploratory ADP
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(a) Utility estimates for a seleted subset of states

— Near optimal policy: Found after just 18 trials! Fast convergence
— Utility estimates: Converge somewhat slower (stops exploring)

(b) Root-mean-square error and policy loss in the estimate of U(1,1)
— Averaged: over 20 runs of 100 trials each



Learning an Action-Utility Q-Function

Active TD agent: Has no fixed policy. Hence, it needs a model
—Model-acquisition problem: ldentical to that for ADP
—Update rule: Remains unchanged. It converges to same value as ADP

Q-Learning: Alternative to active TD method

—Learns action-utility representation: Instead of learning utilities
—Q(s,a): Value of doing action a in state s: U(s)=max_Q(s,a)
—Property: TD agent using Q doesn't need a model for learning/action-selection

Q(s,a)= R(s)+yzslP(s'|s,a) max_Q(s',a’)
—Direct use of this inductive rule: Needs a model P(s'|s,a)

TD approach however: Requires no model P(s'|s,a)
—The TD update rule: Simplifies to the following recursive equation

Q(s,a)=0Q(s,a)+o(R(s)+y max_Q(s',a’)—Qfs,a))



Exploratory Q-Learning Algorithm

function Q-Learning-Agent ( Percept (s', r') ) returns Action

persistent Function f // given exploration function (as in ADP)
persistent Table Q=9 // Q-values table indexed by (s,a)

persistent Table N_ = // (state,action) frequencies table
persistent (State s, Action a, Reward r)=Null // previous s,a,r

if (Terminal(s)) then Q(s,None)=r"
if (s=Null){

N_[s,a]++

Q[s,a] = Q[s,a]+a(N_[s,a]) (r+ymax_Q[s',al-Q[s,a]) }
(s,a,r)=(s', argmax_. f(Q[s',a'], N_[s'a']), r)

return a



Q-Learning and SARSA

SARSA (State-Action-Reward-State-Action) : Close relative
—Update-rule: Backs-up the Q-value of the actually taken action

Q(s,a)=Q(s,a)+a(R(s)+vyQ(s',a')—Qls,a)) versus
Q(s,a)=Q(s,a)+o(R(s)+vy max_Q(s',a')—Qfs,a))
—Without exploration: Q-learning and SARSA are identical

—With exploration: Q-learning (takes best value) is off- while SARSA on-policy
—Q-Learning: Performs well even guided by an adversarial exploration policy

—SARSA: More realistic. Learns what actually happens
Both Q-L and SARSA learn optimal policy: For the 4x3 world

—Do so: At much slower rate than the ADP agent
—Reason: Local updates do not enforce consitency among all Q-values

Learning model/utility versus action-utility: Which is better?

—Al knowledge-based approach: Implicitly assumes learning agent's model
—Model-free approach: Simple but may be less effective for complex models



Generalized Reinforcement Learning

Utility- and Q-functions were tables: Not scalable for realistic worlds

—Backgammon and chess: Tiny subsets of realistic worlds, but 10*° states
—Absurd to assume: one must visit these states many times in order to play

Function approximation: One way of handling such problems

—|ldea: Represent U and Q in a particular basis
—Basis or features: A set of functions fl,...,fn such that Q or U is represented as

Ue(s):61f1(5)+62f2(5)+...+0nfn(s) A
—RL algorithm: Learns the values for the parameters 91,...,6n. u,=U
—Enormous compression: From 10* to say 20 parameters Oi
—More importantly: Enables induct. generalization from visited to —wvisited states



GRL with Direct Utility Estimation

Features of 4x3 world: their x and y coordinates, so we have
LAJe(x,y):90 +0 x+0)y where f (s)=xandf (s)=y are linear
—Thusif (6,6 ,6,)=(0.5,0.2,0.1): U,(1,1)=0.8
—Given a collection of trials: We obtain a set of samples for Ue(x,y)

—Then find: Best fit of © minimizing the squared error by linear regression
—For RL: More sense to use online algorithm to update param for each trial

Minimization: Use an error function and compute its gradient wrt 0
—Let uj(s): Observed total reward from state s onward in jth trial

E (s)=(u (s)-U,(s))* /2
—Rate of change in 0 is 8E /89 To movein decreasmg direction update
0 <0 - OCaE /86 0 +oc(u (s)—U ,(s) ou ,(s)/ 06, Widrow-Hoff or A rule

—For the Ilnear functlon approx of U o(s): We get three simple update rules
0,0, +0c(u (s)—U o(8)) 6 <0 +0c(u( )=U,(s))x 6,0, +oc(u (s)—U o(S))y
—Example: Ue(l,l)—0.8, uj(1,1)—0.4, then 60,91,62 are all decreased by 0.4x
—Changing 6 after an observed transition: Also changes U, for the next state



GRL with Direct Utility Estimation

Linear approx: In 6. Features f (s) can be nonlinear functions
—One caninclude 0,f (x,y)= 03\/(x—xy )" +(y—y,)* measuring distance to goal
Applies also to TD learners: Adjust O to reduce the TD
—New version of TD- and Q-learning: Equations given by
0, <6 +a (R(s)+y U, (s)—U,(s)) 9U,(s) /8. for utilities
0, <0 +o (R(s)+y max, de(s',a')—fle(s,a)) BCA)\e(s,a)/aei for Q-values
—Passive TD-L: Can be shown go converge to closest approximation
—Active TD-L and nonlinear features: All bets are off. RL still a delicate art

Function approximation: Can be very helpful to learn a model
—For observable environment: Is a supervised learning problem
—Next percept: Gives the outcome state
—For partially obs environment: Learning problem much more difficult
—Inventing hidden variables and model structure: Still open problems



Policy Search

Simplest: Keep twiddling policy as long as it improves. Then stop.
~One caninclude 0f,(x,y)=0,,/(x—x )? +(y—yy)2 measuring distance to goal
Represent m: As a collection of parameterized Q-functions
m(s)=argmax_ ﬁe(s,a)
—Each O-function: Can be a linear function of parameters 6

—Policy search: Adjusts parameters 0 to improve the policy
—Q-learning with function approximation: Finds 6 such that Q, = Q (optimal)

—The values of the two: May differ significantly
—Q-function: Q(s,a)= Q’(s,a)/ 10 optimal performance but not close to Q"

Problem with above policy representation: It is discontinous in 0
—Infinitesimal change in 0: Switch from one action to another
—Gradient search: A nightmare
—Fix Softmax Stochastic Policy: Specifying a probability of action selection

~ ~

_Qy(s.) Q,(s,a’)
M=t/ 3 e .
—Becomes nearly deterministic: If one action is much better than all other



Improving-Policy Methods

Deterministic policy and deterministic environment: Simplest
—Policy value p(6): Expected reward-to-go when 7, is executed
—Closed form: Policy improvement reduces to standard optimization
—Follow policy gradient vector Vep(e): Provided p(0) is differentiable

—Not closed form: Evaluate T, by executing it and observing accumulated reward
—Follow empirical gradient: Evaluate change in policy value for small A©

Stochastic environment: Things get more difficult
—Try hill climbing: Requires comparing p(0) and p(0+ AB) for small A6
—Problem: Total reward on each trial may vary widely => number of trials

Stochastic policy 1t (s,a): Things get also more difficult

—Possible to obtain unbiased estimate of Vp(0): Directly from trials executed at 0
—Non-sequential environment: R(a) obtained immediately after doingain's_
—Policy value: Expected value of the reward, so we have

V,p(0)=V > m(s,,aR(@)=) (V,m,(s,a)R(a)



Improving-Policy Methods

Stochastic policy 7 (s,a): Things get also more difficult
—Possible to obtain unbiased estimate of Vp(0): Directly from trials executed at 0

V. p()=V,> m,s,,aR@)=), (V,m,ls,,a)R(a)
—Trick: Approximate tue gradient by a sum of action-selection-probability gradient

~ (Vomy(s,,a)R@) 1o (Vomy(s,,a))R(a)
Vop(O)=2.,m,(5,.2) mylsa)  NSH msa)

—Sequential env: Vstate s Vtrial j. a is executed inj and Rj(s) is reward-to-go

1on (Vmg(s,a))R(s)

V,p(0)= szzl

resulting alg called REINFORCE
ne(s,aj)

—REINFORCE: Much more effective than hill clibing using lots of trials at each 6

—Correlated sampling: Compare policies on hands generated in advance (bridge)
—PEGASUS: Uses policy search with correlated samples



Applications of RL: Inverted Pendulum

Problem:

Control the position of x
so that the pole stays at

0 =1/2 (roughly upright)
within the track limits

State is continuous:
x:(xl e) ).(I 9)

0 Actions are discrete:
A = {jerk-left, jerk-right}

- U ) bang-bang control

Boxes Algorithm: Discretized state space into boxes
—Negative reinforcement: Applied when poll fell or car outside track range

—Discretization: Problems. Adaptive partitioning according to reward variation
—Continuous state: Nonlinear function approximation with neural networks



Applications of RL: Helicopter Flight

Superimposed

time lapses:
A difficult
nose-in-circle
maneuver
|- . ’
Ga ‘ : \ ' ) .
- h : " - at“ ' Controller:

Far exceeded
Human expert
pilot using
remote control

Policy search: As well as Pegasus algorithm with correlated samples

—Simulator: Developed to observe effects of control manipulation in real helicopter
—Policy search: Simulator run overnight and policies were compared



