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Beliefs/Desires under Uncertainty

Decision-theoretic agent:
- Rational decisions: Based on what it believes and what it wants
- Decides: In contexts with uncertainty and conflicting goals

Decision theory:
- Choose action based on desirability of immediate outcomes
- Environment: Stochastic, partially obs. P(Result(a)=s'|a,e)

Utility function U(s): No. expressing desirability of s
Expected utility of an action given evidence EU(a|e):
EU(ale)= ) _P(Result(a)=s'|a,e)U(s')

Principle of maximum expected utility MEU(a|e):
action =argmax_EU(a | e)
- MEU priciple can be seen as defining all of Al
- Operationalization: perception, learning, inference, planing



Preferences

An agent chooses among:
- Prizes (states): A, B, C, etc.
- Lotteries: Set of outcomes for each action
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Notation:
- A =B Lottery A is preferred to lottery B
- A~B indiference between A and B
- A>~B B is not preferred to A



Utility- Theory Axioms

Preferences of a rational agent must obey constraints:
- Rational preferences: Maximization of expected utility

Constraints on lotteries: ] i '2\ B
» Orderability: (A=B)v (B = A)v (A ~B) 1-p — C

o Transitivity: (A=B)A(B>=C)= (A > C)
. Continuity: A~B>~C = D A
3p. [0.A; (1-p),C] ~ B L e —>* B
. Substitutivity: A~B = (d-p)1-9 C

[P.A; (1-p),.C] ~ [p.B; (1-p),C]
- Monotonicity: A-B = (p=>q < [p,A; (1-p),B] > [9,A; (1-q),B]
- Decomposabllity: [p,A; (1-p),[q,B; (1-q)C]] ~
[P.A; (1-p)a,B; (1-p)(1-a)C]



Rational Preferences Continued

Violating the constraints leads to self evident irrationality
Example: An agent with intransitive preferences

« Can be induced to: give away all its money
- |[f B~ C then: An agent that has

= A
C would pay, say 1 cent, toget B ) .
C C
- [T A - B then: An agent that has
B would pay, say 1cent, to get A y
B\ C
N

o If C = A then: An agent that has
A would pay, say 1 cent, to get C Ic



Maximizing Expected Ulility

Theorem (Ramsey’'31, von Neumann/Morgenstern'44):

Given preferences satisfying the constraints
there exists a real-valued function U such that:

- UA)>UB) & A=B, UA)=UB) < A~B
+ U(lp,.S;;..5p,,S, =D p,US)

MEU principle:
- Choose the action that maximizes the expected utility

- Note: An agent can be entirely rational (consistent with MEU)

- Without representing/manipulating utilities and probabilities
- Example: A lookup table for perfect tic-tac-toe



Utilities and Preference Elicitation

Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities:
- Compare a given state A to a standard lottery LIo that has
- Best possible prize u_ with probabilty p
- Worst possible catastrophe u ~with probabilty (1-p)
- Adjust lotery probability p until A ~ Lp =[p,u;; (1-p),u,]

0.999999 u. :continue as before
pay $30 ~  Le—_
0.000001 u, : instant death



Utility Scales

Normalized utilities: u. =1.0, u, =0.0

Micromorts: one-millionth chance of death
- Useful for Russian roulette
- Driving a car for 230 miles: a risk of one micromort

QALY quality-adjusted life years
- Useful for medical decisions involving substantial risk

Behavior is invariant wrt. positive linear transformations:
- U'(x)=k, U(x)+k, where k, >0

With deterministic prizes only (no lottery choices), only:
« Ordinal utility can be determined, i.e., total order on prizes



Money: Obvious Utility Candidate

Money does not behave as a utility function

Given a lottery L with expected monetary value EMV(L)
« Usually for U(L) < UEMV(L)) i.e., people are risk averse

Utility curve: For what probability p am | indifferent
« Between prize x and lottery [p,$M; (1-p),$0] for large M?

Typical empirical data, extrapolated with risk-prone behavior:
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Student-Group Utility

VX, adjust p, until half the class votes for lottery (M= 10K):
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Multi-Attribute Utility

How can we handle utility functions of vars X,...,X 7
- Example: What is U(Deaths, Noise, Cost)?

How can complex utility functions:
- Be assessed from preference behaviour?

- ldentify conditions under which decisions can be made:
- Without complete identification of U(x.,...,X )

- ldentify various types of independence in preferences, and:
- Derive consequent canonical forms for U(x.,...,X )



Strict Dominance

Typically define attributes such that U is monotonic in each

Strict dominance: choice B strictly dominates choice A iff
- Vi. X(B) = X (A) and hence U(B) 2U(A)

X, This region X,

A i dominates A A |
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|
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X 2.¢
deterministic attributes uncertain attributes

Strict dominance: seldom in practice



Stochastic Dominance

]..2 T T T T T T T T 1
Lr 08 |
08 r
z £ 06
S 06 E
2 2
£ £ 04
04 r
0.2 02
0 L == | 1 1 i L 0 L | S | 1 1
-6 55 -5 45 4 35 -3 -25 -2 -6 55 -5 45 4 35 -3 -25
Negative cost Negative cost

Distribution p, stochastically dominates distribution p,, iff:

t t
. Vt. Lo p,(x)dx < Lopz(x) dx
If U is monotonic in x: A, with pdf p, SD A, with pdf p,

- [Ty (x) U(x) dx < [ p, (x) U(x) dx

Multi-attribute case: SD on all attributes = optimality



Stochastic Dominance

Stochastic dominance can often be determined without:
- Exact distributions using qualitative reasoning

Example: construction cost increases with distance from city
- S, Is closer to the city than S, implies

- S, stochastically dominates S, on cost

Example: injury cost increases with collision speed

Can annotate belief networks with SD information:
« X——Y (X positively influence Y) means that

Vz e (Y's other parents Z). Vx_,x

177727

X, 2x,=P(Y|x,z) SD P(Y|Xx,,z)



Label the Arcs + or -

SocioEcon

Age

T A
o

SeniorTrain
MakeModel y'

Cushionin ’
OtherCost @
(LiabilityCost ‘



Label the Arcs + or -

SocioEcon

Mil -@

Age

GoodStudent

RiskAversion

—

SeniorTrain 7
=T /
DrivingSKkill MakeModel
~

0‘

DrivingHist \
DrivQuality A‘ Airbag ¢ CarValuel HomeBasel_AntiTheft

S
?5
L=</
== <

OtherCost
edicalCost (LiabilityCost PropertyCost



Label the Arcs + or -

SocioEcon
Age
GoodStudent /A
‘ ]
ehicleYear
rain 7

SR Gt i i
[ > \
€

Ruggedness

'IA\

L=<\
A T
Ve CotherCos>

(LiabilityCost LropertyCost




Label the Arcs + or -

SocioEcon

Age

GoodStudent /A

—
D rivingSkill

N )
@ >

2 A‘ Airbag (_CarValuel HomeBascl_ AntiTheft
'
—~\
AN C_Thett_
</
Cushion [ =

OtherCost @
(LiabilityCost LropertyCost



Label the Arcs + or -

SocioEcon
Age
GoodStuden A
Catnasd
o
ehicleYear
=/ :
,
rivingSk MakeModel y
~ DrivingHist \\’\’ ‘
N

f =
Ruggedness "
_—A— C_Thet >
L—></
Cushionin
- (Gtmerco> Comnco>

edicalCost (LiabilityCost PropertyCost




Label the Arcs + or -

SocioEcon

Age
GoodStuden /A
Mileage
o>
ehicleYear
</ _ ‘.
SeniorTrain I / ‘
@ @ ‘ MakeModel "~‘
< » \ .
~ DrivingHist ' -~
- 3
= A‘ @ HomeBase{_AntiTheft

/
/

edicalCost (LiabilityCost ‘



Preference Structure: Deterministic

X, and X, are preferentially independent of X, iff:
(X,,X,,X
(X, X5, X
Example, (Noise, Cost, Deaths):
« (20,000 suffer, $4.6 billion, 0.06 deaths/mpm) vs

« (70,000 suffer, $4.2 billion, 0.06 deaths/mpm)

Theorem (Leontief '47): Mutual P.I.
- It every pair of attributes is P.l. of its complement

- Then every subset of attributes is P.l. of its complement

Theorem (Debreu '60): Mutual P.I.
+ 3 additive-value-function V(x,,...,x)= Y Vi(x))
- \/ value function for att X.. V(n,c,d)=-nx10* —c-dx10"

« Preference between { } does not depend on x,



Preference Structure: Stochastic

Need to consider preferences over lotteries:

X is utility-independent of Y iff
- Preferences over lotteries in X do not depend on y

Mutual U.l.: each subset is U.l. of its complement
- Implies the existance of a utility function U where U =U (x)

U=k1U1+k2U2+k3U3+
+k k. UU. +k k. UU. +k kU.U

17727172 237273 317371

+k k. k UUU

172371723

Routine procedures/software for generating preference
- Tests identifying various canonical utility-functions families



Decision Networks

Add action nodes and utility nodes to belief networks
- o enable rational decision making

Airport Site
Algorithm:
@ foreach value(action-node)
‘ compute expected
@ value of utility node

given action, evidence

return MEU action



Simplified Decision Networks

Action-utility function: Chance outcome states omitted
- Q-function expected utility associated with each action

Airport Site
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The Value of Information

So far we have assumed that

- All relevant information is available to make a decision
- In practice this is hardly ever the case

- Most important is knowing what questions to ask

Example: A doctor cannot expect all investigations

- When the patient enters the consulting room
- Investigations are expensive and sometimes hazardous
- Importance: Lead to better treatment, how likely results are

Information theory
- Allows an agent to choose what information to acquire

- Prior to selecting an action agent acquires the value of it
- A simplified form of sequential decision making

- Observation actions afect only agent's belief state (not env)



Value of Information

ldea : Compute the value of acquiring

- Each possible piece of evidence

- Can be done directly from decision network
Example: Buying oil-drilling rights

- Two blocks A and B exactly one has olil, worth k

- Prior probablilities 0.5 each, mutually exclusive

- Current price of each block is k/2 each

- Consultant offers accurate survey of A. Fair price?

Solution: Compute expected value of information, that is

- Expected value of best action given the information

- Minus expected value of best action without information

- Survey may say oil in A with probability 0.5
[0.5 x (value of buy A given oil in A) + 0.5 x (value of buy B given no oil in A)]-0
[0.5xk/2 +0.5xk/2]-0=k/2



General Formula

Given:
- Current evidence E, Current best action o

- Possible action outcomes S, Potential new evidence Ej
EU(c |E)=max, ) U(S)) P(S,|E,a)

Suppose we knew:
: E =€, , then we would choos o such that
EU(oc |E,E =e,)=max ZU(S)P(S |E,a,E =e,)

o Ej Is a random variable whose value is currently unknown
- Must compute expected gain over all possible values

VPL(E )= PE =e,|E) EU(e, |EE =e,)-EU(c|E)

VPI| = Value of perfect information



Qualitative Behaviors

(a) Choice is obvious: information is worth little
(b) Choice is non-obvious: information is worth a lot

(c) Choice is non-obvious: information is worth little
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(a) (b) ()

Information has value: may cause the choice of better plan




Properties of VPI

Non-negative: In expectation, not post hoc
Vj,E. VPI(E )20

Non-additive: consider for example, obtaining EJ. twice
VPI(E, E,)= VPL(E )+ VPL(E,)

Order-independent:
VPL(E, E,)=VPL(E)+ VPl (E,)=VPL(E,)+VPL_ (E)

When more than one piece of evidence can be gathered

- Maximizing VPI for each to select one is not always optimal
- Evidence gathering becomes a sequential decision problem



Information-Gathering Agent

function Information-Gathering-Agent(pecept) return action
persistent D // decision network
integrate percept into D
j=argmax VPI(E, )/ Cost(E, )
it (VPI(E,) > Cost(E)))
return Request(Ej)
return the best action from D

Request(Ej) . The next percept provides the value of Ej
Myopic (greedy): Calculate VPI with only one evidence variable



