
State Estimation in Structured
and Continuous Models

Chapters 15.4-5

OptCtrl		
R(b),	π(b)	

Filter	
P(b|e,a)	

a	 e	b	e	

Planner		
Map	

Ref	
path	

sensors	actuators	

Ra5onal	
	Agent	

	
Plant	

P(s’|s,a),	P(e|s)	

Temporal-Models Problems

 i Filtering P(Xt | e0: t) : Current-state estimation

Inference from HMM and observations :

 i Prediction P(Xt+k | e0: t) : Future-state estimation

 i Smoothing P(Xk | e0: t) : Past-state estimation

i MLE argmaxx0: t

P(x0: t | e0: t) : Most-likely explanation

Learning best HMM from observations:

 i EM P(X0), P(X' | X), P(E | X) : Expectation Maximisation

Most likely explanation

 Most likely path (MLP) to each xt+1

 = MLP to some xt plus one more step

 Most likely sequence ≠ sequence of most likely states!

max
x1...xt

 P(x1,...,xt,Xt+1 | e1:t+1)

=
P(et+1 | Xt+1) max

xt

 P(Xt+1 | xt)max
x1...xt−1

 P(x1,...,xt−1,xt | e1:t)

 Identical to filtering, except f1:t replaced by:

m1:t = max
x1...xt−1

 P(x1,...,xt−1,Xt | e1:t)

 m1:t (i) gives the probability of the most likely path to state i.

 Update has sum replaced by max, giving the Viterbi algorithm:

m1:t+1 = P(et+1 | Xt+1) max
xt

(P(x1,...,xt−1,Xt | e1:t) m1:t)

Viterbi example

Dynamic Bayesian Networks

 Xt, Et contain arbitrarily many variables in a replicated Bayes net

DBNs versus HMMs
 Every HMM is a single-variable DBN

 Every discrete DBN is an HMM

 Sparse dependencies imply exponentially fewer parameters

 Consider 20 state variables, three parents each:

 i DBN has 20 × 23 = 160 parameters

 i The HMM has 220 × 220 ≈1012 parameters

Exact inference in DBNs

 Naive method: unroll the network and run any exact algorithm

 Problem: inference cost for each update grows with t

 i Add slicet+1, sum out slicet, using variable elimination

 i The HMM has update cost O(d2n)

 Improvement with rollup filtering:

 Largest factor is O(dn+1), update cost O(dn+2)

Likelihood weighting for DBNs
 Set of weighted samples approximates the belief state

LW samples pay no attention
to the evidence!

 i Fraction agreeing falls
 exponentially with t

 i #samples required grows
 exponentially with t

Particle Filtering

 Basic idea: ensure that the population of samples (particles)

 Widely used for tracking nonlinear systems, e.g. in vision

 i 105 − dimensional state space

 i Tracks the high-likelihood regions of the state-space

 Replicate particles proportional to likelihood for et

 Also used for SLAM and mapping in mobile robots

Particle Filtering

 Assume consistent at time t: N(xt | e1:t) / N = P(xt | e1:t)

 Propagate forward: populations of xt+1 are

 N(xt+1 | e1:t) = P(xt+1 | xt) N(xt | e1:t)xt

∑

 Weight samples by their likelihood for et+1:

 W(xt+1 | e1:t+1) = P(et+1 | xt+1) N(xt+1 | e1:t)

 Resample to obtain populations proportional to W:

 N(xt+1 | e1:t+1) / N = αW(xt+1 | e1:t+1)

 N(xt+1 | e1:t+1) / N = αP(et+1 | xt+1) N(xt+1 | e1:t)

 N(xt+1 | e1:t+1) / N = αP(et+1 | xt+1) P(xt+1 | xt)xt

∑ N(xt | e1:t)

 N(xt+1 | e1:t+1) / N = α 'P(et+1 | xt+1) P(xt+1 | xt)xt

∑ P(xt | e1:t)

 N(xt+1 | e1:t+1) / N = P(xt+1 | e1:t+1)

Particle Filtering Performance

 Approximation error of PF remains bounded over time

 i At least empirically: theoretical analysis is dicult

Kalman Filters

 For systems described by a set of continuous variables

 i A flying bird's state: Xt =(X,Y,Z, !X, !Y, !Z)

 i Also: airplanes, robots, ecosystems, economies, chemical plants...

 Gaussian prior, linear Gaussian transition model and sensor model

Updating Gaussian Distributions

 Prediction is Gaussian if P(Xt | e1:t) is Gaussian

 P(Xt+1 | e1:t) = P(Xt+1 | xt) P(xt | e1:t) dxtxt

∫

 Updated distribution is Gaussian if P(Xt+1 | e1:t) is Gaussian

 P(Xt+1 | e1:t+1) = αP(et+1 | Xt+1) P(Xt+1 | e1:t)

 Hence P(Xt | e1:t) is multivariate Gaussian N(µ t ,Σ t) for all t

 In general: Systems are nonlinear, non-Gaussian

 i Deascription of posterior: Grows unboundedly as t →∞

Simple 1-D example

 Gaussian random walk on X-axis: variances σx, sensor σe

 P(x0) = αe
−1

2
(
(x0−µ0)2

σ0
2

)

 P(xt+1 | xt) = αe
−1

2
(
(xt+1−xt)

2

σx
2

)

 P(et | xt) = αe
−1

2
(
(et−xt)

2

σe
2

)

P(x1 | x0) = P(x1 | x0)dx0−∞

∞

∫

P(x1 | x0) = α e

−1
2

(
(x1−x0)2

σx
2

)

e
−1

2
(
(x0−µ0)2

σ0
2

)

dx0−∞

∞

∫

P(x1 | x0) = α e

−1
2

(
σ0

2(x1−x0)2+σx
2 (x0−µ0)2

σ0
2σx

2
)

dx0−∞

∞

∫

Simple 1-D example

 Gaussian random walk on X-axis: variances σx, sensor σz

µ t+1 =

(σ t
2 + σx

2)et+1 + σe
2µ t

σ t
2 + σx

2 + σe
2

σ t+1

2 =
(σ t

2 + σx
2)σe

2

σ t
2 + σx

2 + σe
2

 P(x0) = αe
−1

2
(
(x0−µ0)2

σ0
2

)

 P(xt+1 | xt) = αe
−1

2
(
(xt+1−xt)

2

σx
2

)

 P(et | xt) = αe
−1

2
(
(et−xt)

2

σe
2

)

General Kalman update
 Transition and sensor models:

 P(x t+1 | x t) = N(Ax t | Σ x)(x t+1)

 P(et | x t) = N(Cx t | Σe)(et)

 Transition matrix A, Transition noise covariance Σ x

 Output matrix C, Sensor noise covariance Σe

 Filter computes the following update:

 Mean: µ t+1 = Aµ t +K t+1(et+1 −CAµ t)

 Covariance: Σ t+1 = (I−K t+1)(AΣ tC
t + Σ x)

 Kalman gain: K t+1 = (AΣ tA
t + Σ x)Ct (C(AΣ tA

t + Σ x)Ct + Σe)−1

 Σ tand K t : Independent of sequence, computed offline

2-D tracking example: Filtering

2-D tracking example: Smoothing

Where it Breaks

 Cannot be applied if the transition model is nonlinear

 Extended Kalman Filter:

 Models transition as locally linear around xt = µ t

 Fails if the system is locally unsmooth

DBNs versus Kalman Filters

 Every Kalman filter model is a DBN, but few DBNs are KFs;

 Real world requires non-Gaussian posteriors

 Example: What's the battery charge?

Summary

 Markov assumptions and stationarity assumption, so we need

 Transition Model: P(Xt+1 | Xt) Sensor model: P(Et | Xt)

 Temporal models use state & sensor variables replicated over time

 Tasks are filtering, prediction, smoothing, most likely sequence
 All done recursively with constant cost per time step

 Hidden Markov models have a single discrete state variable
 Used e.g. for speech recognition

 Kalman filters allow n state variables, linear Gaussian

 Complexity of update is O(n3)

 Dynamic Bayes nets subsume HMMs & KFs
 Exact update intractable

 Particle filtering is a good approximate filtering alg for DBNs

