
Reinforcement Learning
Chapter 21

OptCtrl		
R(b),	π(b)	

Filter	
P(b|e,a)	

e	b	e	

Planner		
Map	

Ref	
path	

sensors	actuators	

Ra3onal	
	Agent	

	
Plant	

P(s’|s,a),	P(e|s)	

Learning	of	Probabilis3c	Models	

§  The Baum Welch Algorithm
o  Feedback: Teacher provides examples (a trace)
o  Supervised learning: This kind of learning technique

§  What if such labeled examples are not available?
o  Feedback: Teacher provides rewards (win/loss)
o  Reward or reinforcement: This kind of feedback
o  Reinforcement learning: This kind of learning technique

§  Reinforcement examples
o  Chess: Reward only at the end (win or loss)
o  Ping-pong: Reward after every point win or loss

RL	Framework	

§  Reward is part of the input percept
o  Agent: Hardwired to recognize this part as a reward
o  Animals: Recognize pain & hunger as negative R

§  Mathematical model
o  MDP: Markov Chain + Inputs + Rewards
o  RL: Use observed rewards to learn optimal policy
o  No prior knowledge: Of the MDP

§  RL example
o  Chess: After N moves, you are told: you loose/win
o  Ping-pong: Ball goes out, you are told: loose/win point

o  Animals: Recognize pleasure & food as positive R

Outline	

§  U3lity-based	agents:	Learn	u3lity	func3on	
§  Q-Learning	agents:	Learn	ac3on-u3lity	(Q)	func3on	
§  Reflex	agents:	Learn	policy	

§  Passive	learning:	Policy	fixed.	Learn	u3lity	(model)	
§  Ac3ve	learning:	Also	learn	policy	(use	explora3on)	

Passive	Reinforcement	Learning		

		Reward	function					R(s)													Not	known

		States	(i, j)∈{1..4}× {1..4} \ (2,2)					Fully	observable

		Transition	model		P(s'|s,a)		Not	known

		Actions	a∈{Up,Down,Left,Right}		Known,	used	by	π
		Observations		(i, j)R 					Reward-indexed	states

	Given:	Policy	π	(opt	for	R=-0.04)

+1	

-1	

0.388	0.655	0.655	

0.918	

0.660	0.762	

0.812	 0.868	

-1	

+1	

	Goal:	Learn	utility	U
π

0.705	

Passive	Reinforcement	Learning		

	Trial:		Sequence	of	transitions	from	(1,1)	until	terminal	state

	Percepts:	supply	both	current	state	and	associated	reward

	Trials:		executed		in	the	environment	using	policy	π

	Given:	Policy	π	(opt	for	R=-0.04)

+1	

-1	

0.388	0.655	0.655	

0.918	

0.660	0.762	

0.812	 0.868	

-1	

+1	

	Goal:	Learn	utility	U
π

0.705	

 	(1,1)−.04! (1,2)−.04! (1,3)−.04! (1,2)−.04! (1,3)−.04! (2,3)−.04! (3,3)−.04! (4,3)+1

 	(1,1)−.04! (1,2)−.04! (1,3)−.04! (2,3)−.04! (3,3)−.04! (3,2)−.04! (4,2)−1

	
Objective:	Compute	Uπ(s)=E[γ t

	R
t=0

∞∑ (St)]	with	RV	St 	and	S0 = s

Direct	U3lity	Es3ma3on		

	One	trial:	Provides	a	sample	U(s)	for	each	state	s	visited
	U(s):	expected	total	reward	from	that	state	onward	(reward-to-go)

 	(1,1)−.04! (1,2)−.04! (1,3)−.04! (1,2)−.04! (1,3)−.04! (2,3)−.04! (3,3)−.04! (4,3)+1
	(1,1)	one	sample:	Of	total	reward	0.72

	After	each	trial:	Update	U(s)	by	keeping	a	running	average	for	∀s
	(1,2)	two	samples:	Of	total	rewards	0.76	and	0.84

	In	the	limit:	Sample	average	will	converge	(very	slow)	to	Uπ(s)	∀s

	Miss:	States	are	not	independent	but	related	by	Bellman	equations

	
Uπ(s)=R(s)+ γ P(s'|s,π(s))	Uπ(s')

s'∑
	Ignoring	Bellman:	Misses	opportunities	for	learning

	Search	space	for	U:	Too	large,	it	includes	Us	violating	Bellman

Adap3ve	Dynamic	Programming	(ADP)		

	Given	π:	Bellman		equations	are	linear	(no	maximization	involved)
	ADP:	Applies	Bellman	by	learning	P(s'|s,a)	and	using	observed	R(s)

	Model	learning:	Easy	since	the	environment	is	fully	observable

	− 	Input:	(State,action)	pair.	Output:	resulting	state

	− 	Simplest	representation:	Table	of	probabilities

	− 	Keep	track	of:	How	often	each	a	occurs	and	estimate	P(s'|s,a)

	Example	of	model	learning:
	− 	Right:	3	times	in	(1,3);	2	times	to	(2,3).	P((2,3)|(1,3),Right)= 2/3

	− 	Model	estimation:	Maximum-likelyhood	technique

	Problem:	Acts	as	if	the	model	was	correct

Passive ADP Algorithm
 function Passive-ADP-Agent (Percept (s', r')) returns Action

foreach (t st. Ns'|sa[t,s,a] ≠ 0) P(t | s,a) = Ns'|sa[t,s,a] / Nsa[s,a] }

 persistent Policy π // a fixed policy

 persistent MDP M // an MDP M = (P,R,γ)

 persistent Table U =∅ // a table of utilities

 persistent Table Nsa =∅ // (state,action) frequencies table

persistent Table Ns'|sa =∅ // s' frequency for (s,a)

 persistent State s = Null, Action a = Null // previous s and a

 if (s'∉dom(U)) U[s'] = r '; R[s'] = r'

 if (s ≠ Null) {

Nsa[s,a]++; Ns'|sa[s ',s,a]++

 U = Policy-Evaluation(π,U,M)

 if (Terminal(s')) then (s,a) = Null else (s,a) = (s',π[s'])

 return a

Passive ADP Learning Curves

 (a) Utility estimates for a seleted subset of states

 − Large change at trial 78: 1st time agent falls into -1 terminal state

 (b) Root-mean-square (RMS) error in the estimate of U(1,1)

 − Averaged: over 20 runs of 100 trials each

 (a) (b)

Temporal-Difference	Learning		

	Such	that:	They	agree	with	the	Bellman	constraint	equations
	Idea:	Use	observed	transitions	to	adjust	utilities	of	observed	states

 	(1,1)−.04! (1,2)−.04! (1,3)−.04! (1,2)−.04! (1,3)−.04! (2,3)−.04! (3,3)−.04! (4,3)+1

	
U1

π(1,3)= 0.84,		U1
π(2,3)= 0.92,		Uπ(1,3)= −0.04+Uπ(2,3)= 0.88

	Temporal-difference	(TD):	Use	utilities	difference.	Learning	rate	α

	Idea:	Adust	Un+1
π 	towards	ideal	equilibrium	that	holds	locally

	Subtleties:	Notice	that

 	(1,1)−.04! (1,2)−.04! (1,3)−.04! (2,3)−.04! (3,3)−.04! (3,2)−.04! (4,2)−1

	Un+1
π (s)=Un

π(s)+α(R(s)+ γ 	Un
π(s')−Un

π(s))

	−Update	involves	successor	s'	only	whereas	Bellman	involves	all	successors	s'	

	−Average	U
π 	still	converges	even	for	low	transition	probabilities	to	s'

	−Taking	function	α(νs)	then	U
π(s)	will	converge	itself	to	correct	value

Passive TD Algorithm

 function Passive-TD-Agent (Percept (s', r')) returns Action

 U[s] = U[s]+α(Ns[s]) (r + γ U[s']−U[s]) }

 persistent Policy π // fixed policy

 persistent Table U =∅ // utilities table
 persistent Table Ns =∅ // state-frequency table
 persistent (State s, Action a, Reward r) = Null // previous s,a,r

 if (s'∉dom(U)) U[s'] = r '

 if (s ≠ Null) {

 Ns[s]++

 if (Terminal(s')) then (s,a,r) = Null else (s,a,r) = (s',π[s'],r')

 return a

Passive TD Learning Curves

 (b) Root-mean-square error in the estimate of U(1,1)
 −Averaged: over 20 runs of 100 trials each

 Does not learn so fast: But it does not need a transition model!
 −TD is a crude: But efficient first approximation of ADP

 −ADP adjustments: Result of simulated (pseudoexpereience) TD adjustments

 −Prioritized sweeping: Adjust only s whose likely s' undergo large adjustments

 (a) (b)

 (a) Utility estimates for a seleted subset of states

Ac3ve	Reinforcement	Learning		

		Policy	function							π(s)												Not	known	(learn	using	exploration)

		States	(i, j)∈{1..4}× {1..4} \ (2,2)					Fully	observable

		Transition	model			P(s'|s,a)		Not	known	(learn	as	before)

		Observations		(i, j)R 					Reward-indexed	states

	Goal:	Learn	policy	π

+1	

-1	

0.388	0.655	0.655	

0.918	

0.660	0.762	

0.812	 0.868	

-1	

+1	

	Goal:	Learn	utility	U

0.705	

		Reward	function				R(s)												Not	known	(use	observations)

	
U(s)=R(s)+ γ 	maxa 	 P(s'|s,a)	U(s')

s'∑

Explora3on	
	Greedy	ADP	agent:	Uses	learned	model	to	compute	utilities

	Agent	must	therefore:	Balance	between

	−Problem:	Model	is	different	from	the	true	environment

	Bandit	problems:	Study	if	there	is	an	optimal	exploration	policy

	−Problem:	The	agent	does	not	know	the	true	environment
	−Fix:	Actions	also	contribute	to	learning	the	true	model	by	affecting	percepts

	−Exploitation:	Of	the	model	to	maximize	its	reward	(utility	estimate)
	−Exploration:	Of	various	actions	to	maximize	its	long-term	well	being
	−Pure	exploration:	Of	no	use	if	one	never	puts	knowledge	into	practice

	−1-armed	bandit:	One	slot	machine.	Gambler	inserts	coin,	pulls	lever,	collects	win
	−n-armed	bandit:	n	levers.	Gambler	must	choose	first	the	lever

	Optimal	behavior:	What	is	exactly	meant	by	that?
	−Most	definitions:	Maximize	the	expected	total	reward	over	agent's	lifetime
	−Assumption:	Expectation	taken	over	all	possible	worlds	P(s'|s,a)
	−n-independent	SMs:	Possible	to	compute	a	Gittins	index	for	each	machine

Greedy	in	the	Limit	of	Infinite	Explora3on	

	Optimal	exploration:	Difficult	to	solve.	Greedy	approximation	(GLIE)

	Several	possible	GLIE	schemes:	

	−Must	try	each	action:	ln	each	state	an	unbounded	number	of	times

	Bellman	with	optimistic	estimate

	−ADP	agent	using	this	scheme:	Will	eventually	learn	the	true	environment
	−Must	also	eventually	become	greedy:	So	that	agent's	model	is	used

	−Simplest :Choose	randomly	an	action	a	fraction	1/t	of	the	time;	otherwise	greedy
	−Alternative:	Give	weight	to	actions	not	often	tried,	avoiding	low	utility	actions
	−Amounts	to:	Optimistic	prior	over	the	possible	environments.	

	
U+(s)=R(s)+ γ 	maxa f(P(s'|s,a)	U+(s')

s'∑ ,	N(s,a))

	−U
+(s):	Optimistic	estimate	of	the	utility	(expected	reward	to	go)

	−N(s,a):	The	number	of	times	action	a	has	been	tried	in	state	s
	−f(u,n):	The	exploration	function.	Tradeoff	between	greed	and	curiosity

	f(u,n)= (n<Ne)?	R
+ : 	u		where		R+ =best	reward,	Ne = fixed	parameter

	−Use	of	U
+ 	in	the	RHS:	Benefits	of	exploration	propagated	back

Active ADP Algorithm
 function Active-ADP-Agent (Percept (s', r')) returns Action

foreach (t st. Ns'|sa[t,s,a] ≠ 0) P(t | s,a) = Ns'|sa[t,s,a] / Nsa[s,a] }

 persistent MDP M // an MDP M = (P,R,γ)

 persistent Table U =∅ // a table of utilities

 persistent Table Nsa =∅ // (state,action) frequencies table

persistent Table Ns'|sa =∅ // s' frequency for (s,a)

 persistent State s = Null, Action a = Null // previous s and a

 if (s'∉dom(U)) U[s'] = r '; R[s'] = r'

 if (s ≠ Null) {

Nsa[s,a]++; Ns'|sa[s ',s,a]++

 U
+ = Exploratory-Value-Iteration(P(t|s,a),U+,f)

 if (Terminal(s')) then (s,a) = Null else (s,a) = (s',π[s'])
 return a

Performance of Exploratory ADP

 − Near optimal policy: Found after just 18 trials! Fast convergence

 (b) Root-mean-square error and policy loss in the estimate of U(1,1)

 − Averaged: over 20 runs of 100 trials each

 (a) Utility estimates for a seleted subset of states

 (a) (b)

 R
+ = 2, Ne = 5

 − Utility estimates: Converge somewhat slower (stops exploring)

Learning	an	Ac3on-U3lity	Q-Func3on	

	Active	TD	agent:	Has	no	fixed	policy.	Hence,	it	needs	a	model

	Q-Learning:	Alternative	to	active	TD	method

	−Model-acquisition	problem:	ldentical	to	that	for	ADP
	−Update	rule:	Remains	unchanged.	It	converges	to	same	value	as	ADP

	−Learns	action-utility	representation:	Instead	of	learning	utilities

	−Q(s,a):	Value	of	doing	action	a	in	state	s:	U(s)=maxaQ(s,a)
	−Property:	TD	agent	using	Q	doesn't	need	a	model	for	learning/action-selection	

	
Q(s,a)=R(s)+ γ 	 P(s'|s,a)	maxa'Q(s',a')s'∑

	−Direct	use	of	this	inductive	rule:	Needs	a	model	P(s'|s,a)

	−The	TD	update	rule:	Simplifies	to	the	following	recursive	equation
	TD	approach	however:	Requires	no	model	P(s'|s,a)

	Q(s,a)=Q(s,a)+α(R(s)+ γ 	maxa'Q(s',a')−Q(s,a))

Exploratory Q-Learning Algorithm

 function Q-Learning-Agent (Percept (s', r')) returns Action

 Q[s,a] = Q[s,a]+α(Nsa[s,a]) (r + γ maxa'Q[s',a']−Q[s,a]) }

 persistent Table Q =∅ // Q-values table indexed by (s,a)

 persistent Table Nsa =∅ // (state,action) frequencies table
 persistent (State s, Action a, Reward r) = Null // previous s,a,r

 if (s ≠ Null) {

 Nsa[s,a]++

 (s, a, r) = (s', argmaxa' f(Q[s',a'], Nsa[s',a']), r')

 return a

 if (Terminal(s)) then Q(s,None) = r '

 persistent Function f // given exploration function (as in ADP)

Q-Learning	and	SARSA	

	SARSA	(State-Action-Reward-State-Action)	:	Close	relative
	−Update-rule:	Backs-up	the	Q-value	of	the	actually	taken	action

	−Without	exploration:	Q-learning	and	SARSA	are	identical
	−With	exploration:	Q-learning	(takes	best	value)	is	off-	while	SARSA	on-policy	
	−Q-Learning:	Performs	well	even	guided	by	an	adversarial	exploration	policy

	−Do	so:	At	much	slower	rate	than	the	ADP	agent
	Both	Q-L	and	SARSA	learn	optimal	policy:	For	the	4x3	world	

	Q(s,a)=Q(s,a)+α(R(s)+ γ 	Q(s',a')−Q(s,a)) 	versus

	Q(s,a)=Q(s,a)+α(R(s)+ γ 	maxa'Q(s',a')−Q(s,a))

	−SARSA:	More	realistic.	Learns	what	actually	happens

	−Reason:	Local	updates	do	not	enforce	consitency	among	all	Q-values

	−AI	knowledge-based	approach:	Implicitly	assumes	learning	agent's	model
	Learning	model/utility	versus	action-utility:	Which	is	better?

	−Model-free	approach:	Simple	but	may	be	less	effective	for	complex	models

Generalized	Reinforcement	Learning	

	Utility-	and	Q-functions	were	tables:	Not	scalable	for	realistic	worlds
	−Backgammon	and	chess:	Tiny	subsets	of	realistic	worlds,	but	1040 	states
	−Absurd	to	assume:	one	must	visit	these	states	many	times	in	order	to	play

	−Idea:	Represent	U	and	Q	in	a	particular	basis
	Function	approximation:	One	way	of	handling	such	problems	

	−Basis	or	features:	A	set	of	functions	f1 ,...,fn 	such	that	Q	or	U	is	represented	as

	Ûθ(s)= θ1f1(s)+θ2f2(s)+ ...+θnfn(s)

 	−RL	algorithm:	Learns	the	values	for	the	parameters	θ1 ,...,θn.	Ûθ !U

	−Enormous	compression:	From	1040 	to	say	20	parameters	θi

	−More	importantly:	Enables	induct.	generalization	from	visited	to	¬visited	states

GRL	with	Direct	U3lity	Es3ma3on	

	Features	of	4x3	world:		their	x	and	y	coordinates,	so	we	have	

	Ûθ(x,y)= θ0 +θ1x+θ2y		where		f1(s)= x	and	f2(s)= y	are	linear

	−Thus	if	(θ0 ,θ1 ,θ2)= (0.5,0.2,0.1): 	Ûθ(1,1)= 0.8

	−Given	a	collection	of	trials:	We	obtain	a	set	of	samples	for	Ûθ(x,y)

	−For	RL:	More	sense	to	use	online	algorithm	to	update	param	for	each	trial
	−Then	find:	Best	fit	of	θ	minimizing	the	squared	error	by	linear	regression

	Minimization:	Use	an	error	function	and	compute	its	gradient	wrt	θ

	
−Let	uj(s): 	Observed	total	reward	from	state	s	onward	in	jth	trial

	
Ej(s)= (uj(s)−Ûθ(s))

2 /2

	
−Rate	of	change	in	θi 	is	∂Ej / ∂θi : 	To	move	in	decreasing	direction	update

	
θi ←θi −α∂Ej / ∂θi

	−For	the	linear	function	approx	of	Ûθ(s): 	We	get	three	simple	update	rules

	
θ0 ←θ0 +α(uj(s)−Ûθ(s)) 	

θ1 ←θ1 +α(uj(s)−Ûθ(s))x 	
θ2 ←θ2 +α(uj(s)−Ûθ(s))y

	
−Example: 	Ûθ(1,1)= 0.8,	uj(1,1)= 0.4,	then	θ0 ,θ1 ,θ2 	are	all	decreased	by	0.4α

	−Changing	θ	after	an	observed	transition: 	Also	changes	Ûθ 	for	the	next	state

	
= θi +α 	(uj(s)−Ûθ(s))	∂Ûθ(s) / ∂θi 		Widrow-Hoff	or	Δ 	rule

GRL	with	Direct	U3lity	Es3ma3on	

	Linear	approx:		In	θ.	Features	fi(s)	can	be	nonlinear	functions

	
−One	can	include		θ3f3(x,y)= θ3 (x− xy)

2 + (y− yy)
2 	measuring	distance	to	goal

	Applies	also	to	TD	learners:	Adjust	θ	to	reduce	the	TD
	−New	version	of	TD-	and	Q-learning: 	Equations	given	by

	θi ←θi +α 	(R(s)+ γ 	Ûθ(s')−Ûθ(s))	∂Ûθ(s) / ∂θi 	for	utilities

	θi ←θi +α 	(R(s)+ γ 	maxa' Q̂θ(s',a')− Q̂θ(s,a))	∂Q̂θ(s,a)/ ∂θi 	for	Q-values

	−Passive	TD-L:	Can	be	shown	go	converge	to	closest	approximation
	−Active	TD-L	and	nonlinear	features:	All	bets	are	off.	RL	still	a	delicate	art

	Function	approximation:	Can	be	very	helpful	to	learn	a	model
	−For	observable	environment : 	Is	a	supervised	learning	problem
	−Next	percept:	Gives	the	outcome	state
	−For	partially	obs	environment:	Learning	problem	much	more	difficult
	−Inventing	hidden	variables	and	model	structure:	Still	open	problems	

Policy	Search	

	Simplest:		Keep	twiddling	policy	as	long	as	it	improves.	Then	stop.

	
−One	can	include		θ3f3(x,y)= θ3 (x− xy)

2 + (y− yy)
2 	measuring	distance	to	goal

	Represent	π:	As	a	collection	of	parameterized	Q-functions

	π(s)= argmaxa Q̂θ(s,a)

	−Each	Q-function:	Can	be	a	linear	function	of	parameters	θ
	−Policy	search:	Adjusts	parameters	θ	to	improve	the	policy

 	−Q-learning	with	function	approximation:	Finds	θ	such	that	Q̂θ !Q
*(optimal)

	−The	values	of	the	two:	May	differ	significantly

	−Q-function:	Q̂θ(s,a)=Q
(s,a)/10	optimal	performance	but	not	close	to	Q

	Problem	with	above	policy	representation:	It	is	discontinous	in	θ
	−Infinitesimal	change	in	θ:	Switch	from	one	action	to	another
	−Gradient	search:	A	nightmare
	−Fix	Softmax	Stochastic	Policy:	Specifying	a	probability	of	action	selection

	
πθ(s)= e

Q̂θ (s,a) / eQ̂θ (s,a')

a'∑
	−Becomes	nearly	deterministic:	If	one	action	is	much	better	than	all	other

Improving-Policy	Methods	

	Deterministic	policy	and	deterministic	environment:	Simplest

	−Policy	value	ρ(θ):		Expected	reward-to-go	when	πθ 	is	executed
	−Closed	form:	Policy	improvement	reduces	to	standard	optimization

	−Not	closed	form:	Evaluate	πθ 	by	executing	it	and	observing	accumulated	reward
	−Follow	empirical	gradient:	Evaluate	change	in	policy	value	for	small	Δθ

	Stochastic	environment:	Things	get	more	difficult
	−Try	hill	climbing:	Requires	comparing	ρ(θ)	and	ρ(θ+Δθ)	for	small	Δθ
 	−Problem:	Total	reward	on	each	trial	may	vary	widely	⇒≫ 	number	of	trials

	−Follow	policy	gradient	vector	∇θρ(θ):	Provided	ρ(θ)	is	differentiable

	Stochastic	policy	πθ(s,a):	Things	get	also	more	difficult

	−Possible	to	obtain	unbiased	estimate	of	∇ρ(θ):	Directly	from	trials	executed	at	θ

	−Non-sequential	environment:	R(a)	obtained	immediately	after	doing	a	in	s0
	−Policy	value:	Expected	value	of	the	reward,	so	we	have

	
∇θ 	ρ(θ)=∇θ πθ(s0 ,a)	R(a)a∑ = (∇θπθ(s0 ,a))	R(a)a∑

Improving-Policy	Methods	

	Stochastic	policy	πθ(s,a):	Things	get	also	more	difficult
	−Possible	to	obtain	unbiased	estimate	of	∇ρ(θ):	Directly	from	trials	executed	at	θ

	
∇θ 	ρ(θ)=∇θ πθ(s0 ,a)	R(a)a∑ = (∇θπθ(s0 ,a))	R(a)a∑

	−Trick:	Approximate	tue	gradient	by	a	sum	of	action-selection-probability	gradient

 	
∇θ 	ρ(θ)= πθ(s0 ,a)	

(∇θπθ(s0 ,a))	R(a)
πθ(s0 ,a)

a∑ !
1
N

(∇θπθ(s0 ,aj))	R(aj)

πθ(s0 ,aj)
j=1

N∑

	
−Sequential	env:	∀state	s	∀trial	j.	aj 	is	executed	in	j		and		Rj(s)	is	reward-to-go

 	
∇θ 	ρ(θ)! 1

N

(∇θπθ(s,aj))	Rj(s)

πθ(s,aj)
j=1

N∑ 					resulting	alg	called	REINFORCE

	−REINFORCE:	Much	more	effective	than	hill	clibing	using	lots	of	trials	at	each	θ

	−Correlated	sampling:	Compare	policies	on	hands	generated	in	advance	(bridge)
	−PEGASUS:	Uses	policy	search	with	correlated	samples

Applica3ons	of	RL:	Inverted	Pendulum	

	Problem:

 	

Control	the	position	of	x
so	that	the	pole	stays	at	
θ! π/2	(roughly	upright)
within	the	track	limits

	State	is	continuous:
 		x = (x,	θ,	!x,	!θ)

	Actions	are	discrete:
	A = {jerk-left,	jerk-right}

	bang-bang	control

	Boxes	Algorithm: 	Discretized	state	space	into	boxes
	−Negative	reinforcement:		Applied	when	poll	fell	or	car	outside	track	range
	−Discretization:		Problems.	Adaptive	partitioning	according	to	reward	variation
	−Continuous	state:		Nonlinear	function	approximation	with	neural	networks

Applica3ons	of	RL:	Helicopter	Flight	

	Policy	search: 	As	well	as	Pegasus	algorithm	with	correlated	samples
	−Simulator:		Developed	to	observe	effects	of	control	manipulation	in	real	helicopter
	−Policy	search:		Simulator	run	overnight	and	policies	were	compared

	

Controller:
Far	exceeded	
Human	expert
pilot	using	
remote	control

	

Superimposed	
time	lapses:		
A	difficult	
nose-in-circle	
maneuver

