Probabilistic Reasoning Over Time
Chapter 15 (Models, Filters)
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Reasoning over Time or Space

= Often, we want to reason about a sequence of
observations



Reasoning over Time or Space

= Often, we want to reason about a sequence of
observations
= Speech recognition
= Robot localization
= User attention
= Medical monitoring



Reasoning over Time or Space

* Need to introduce time (or space) into our
models



Outline

= Markov Models
( = a particular Bayes net)



Outline

= Hidden Markov Models (HMMs)

= Representation
( = another particular Bayes net)



Outline

» [nference
= Forward algorithm ( = variable elimination)
= Particle filtering ( = likelihood weighting with some tweaks)
= Viterbi (= variable elimination, but replace sum by max
= graph search)



Qutline

( = a particular Bayes net)

= Representation
( = another particular Bayes net)

* [nference
Forward algorithm ( = variable elimination)

Particle filtering ( = likelihood weighting with some tweaks)
Viterbi (= variable elimination, but replace sum by max
= graph search)

= Dynamic Bayes’ Nets
= Representation
= (= yet another particular Bayes’ net)



Qutline

( = a particular Bayes net)

Representation
( = another particular Bayes net)
Inference
Forward algorithm ( = variable elimination)

Particle filtering ( = likelihood weighting with some tweaks)
Viterbi (= variable elimination, but replace sum by max
= graph search)

Representation
(= yet another particular Bayes’ net)
Inference: forward algorithm and particle filtering
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Markov Models

= A Markov model is a chain-structured BN
= Each node is identically distributed (stationarity)
= Value of X at a given time is called the state



Markov Models

= As a BN:

o)) --»
P(X1)  P(XX¢—1)

= Parameters: called transition probabilities or dynamics,

specify how the state evolves over time (also, initial state
probabilities)



Markov Models

Each node is identically distributed (stationarity)
Value of X at a given time is called the
As a BN:

D@~

P(X1) P(X¢| X¢—1)

Parameters: called or dynamics,
specify how the state evolves over time (also, initial state
probabilities)

Same as MDP transition model, but no choice of action



Conditional Independence

@)+

= Basic conditional independence:
= Past and future independent of the present
= Each time step only depends on the previous
= This is called the (first order) Markov property




Conditional Independence

* Note that the chain is just a (growing) BN

= \We can always use generic BN reasoning on it if we
truncate the chain at a fixed length



Markov Chain

1, Ty | X | Xy | X5 | Xy | Xs

x| 1 X, | 0.6 | 0.4 I, T
X2 Xy 1 >
Xy | P(xy)| | X 0.9 |01 |P(xslx;)

X, X, 1

Xs Xs 0.2 0.8

X e{x,,X,),X5,%X,,Xs }

oG-

P(X

t+1

1X)="T,

P(X,)=T,
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)
Query: P(X,)

= Slow answer: inference by enumeration
= Enumerate all sequences of length t whichend in s
= Add up their probabilities
P(X4) — Z P(QZ‘]_, L2, L3, X4)

xl 7‘/1:2 7‘/'1:3




)~
Query: P(X,)

= P(X1 = +21)P(X2 = 22| X1 = +21) P(X3 = +23| X2 = +22) P(X4]| X3 = +23)



(%)
Query: P(X,)

= P(X1 = 421)P(Xo = +22|X1 = +21)P(X3 = +23| X2 = +22) P(X4| X3 = +23)
+P(X1 = +21)P(X2 = 42| X1 = +21) P(X3 = —3| X2 = +22) P(X4| X3 = —23)
+P (X1 = +21)P(X2 = —22|X1 = +a1) P(X3 = 3| X2 = —22) P(X4| X3 = +23)
+P (X1 = +21)P(Xo = —23[ X1 = F21)P(X3 = —23| X3 = —22) P(X4/X3 = —23)
+P(X1 = —21)P(Xo = 22| X1 = —21) P(X3 = +23| X2 = +22) P(X4| X3 = +x3)
+P(X1 = —21)P(X2 = +a2| X1 = —21) P(X3 = —23|Xo = +22) P(X4| X3 = —x3)
+P(X1 = —x21)P(Xo = —25|X1 = —21)P(X3 = —23|Xo = —20) P(X4| X3 = —x3)
+P(X1 = —21) P(X2 = —w2|X1 = —21) P(X3 = —x3[ X2 = —22) P(X4|X3 = —3)

= =join on X,, X,, X,, then sum over x,, X,, X,



Query: P(X,)

= Fast answer: variable elimination
= Order: X;, X,, X,

P(X4) — Z P(x1,$2,333,X4)

L1,22,23



Query: P(X,)

= > Y ) P(X4lzz)P(z3]zs)P(xo|x1)P(21)

L3 T2 T1




Query: P(X,)

= Y Y P(Xylx3)P(z3]|z2) Z P(xs|z1)P(x1)

I3 T2



Query: P(X,)

= ) 2 P(Xalz3)P(z3lz2)P(x2)

L3 T2



Query: P(X,)

= Y P(X4|z3) Y P(x3]|z2)P(x2)



Query: P(X,)

= Y P(Xy|z3)P(z3)

L3

P(X4)



Query P(X t)
()% --»

P(X1)  P(X#Xi—1)
= Variable elimination in order X,, X, ..., X,
computes fork =2, 3, ..., t

P(zp) = Y P(zp|lzg_1)P(zr_1) Forward simulation
Th—1



Query P(X t)

O-O-@-@

P(X1)  P(X3[X¢-1)

= ) P(xplep_1)

.1‘/],71
= “mini-forward algorithm”

Note: common thread in this lecture: special cases of algorithms we
already know, and they have a special name in the context of HMMs for
historical reasons.



Example Markov Chain: Weather

= States: X = {rain, sun} - P(X[Xt.1)
= CPT P(X; | X..):

_____’ rain [ sun | 0.3
rain|rain | 0.7

P(X¢| X¢—1)




Example Markov Chain: Weather

= States: X = {rain, sun} - P (Xl X¢-1)
= CPT P(X, | X.4):

_____» rain [ sun [ 0.3
rain|{rain | 0.7

P(X¢| X¢—1)

Two new ways of
representing the same
CPT, that are often
used for Markov models
(These are not BNs!)




Example Run of Mini-Forward Algorithm

= From initial observation of sun

(o0,

P(X))

rain




Example Run of Mini-Forward Algorithm

= From initial observation of sun

(01

P(X,)

rain




Example Run of Mini-Forward Algorithm

= From initial observation of sun

(o6

P(X3)

rain




Example Run of Mini-Forward Algorithm

= From initial observation of sun

(0156

P(X,)
0.9
P(X,)=P(X_,) P(X_|X_,)
Fain _ rain _
(0.84 016] | 02 01 |°¢
0.3 0.7 |rain




Example Run of Mini-Forward Algorithm

= From initial observation of sun

(o156 ) =={ 03 )

P(Xy) P(X,,)

rain

0.3 0.7 |rain




Example Run of Mini-Forward Algorithm

At

= From initial observation of rain

ain T rain _
(0.0 1.0] 0.9 0.1 |
0.3 0.7 |ramn




Example Run of Mini-Forward Algorithm

At

= From initial observation of rain

ain T rain _
(0.0 1.0] 0.9 0.1 |
0.3 0.7 |ramn




Example Run of Mini-Forward Algorithm

At

= From initial observation of rain

(052 ) {oaro ) == 025

P(X,) P(X,) P(X..)

0.9
@ @‘ ain T g I;)ailn )
’ [0.588 0.412] | 99 O1 |
0.3 0.7 [rain
S 0.1 i )




Example Run of Mini-Forward Algorithm

* From yet another initial distribution P(X,):

) = {22

P(X)) P(X)



Stationary Distributions

* For most chains:
= influence of initial distribution gets less and less over
time.
= the distribution we end up in is independent of the initial
distribution



Stationary Distributions

= Stationary distribution:

= Distribution we end up with is called the stationary
distribution P__ of the chain

= |t satisfies

Poo(X) = Pocy1(X) =Y  Prp1p(X|z) Poo ()



Application of Markov Chain Stationary
Distribution: Gibbs Sampling*

* Each joint instantiation over all hidden and query
variables is a state. Let X=H U Q

= Transitions:

= With probability 1/n resample variable X; according to
POX; [ X4, Xo5 o5 Xiq Xjwqy -0 X €4 -0 €p)



Application of Markov Chain Stationary
Distribution: Gibbs Sampling*

= Stationary distribution:
= = conditional distribution P(X;, X, , ..., X/ |, ... €,)

—->When running Gibbs sampling long enough we get a
sample from the desired distribution!

We did not prove this, all we did is stating this result.



Application of Markov Chain Stationary
Distribution: Web Link Analysis

= PageRank over a web graph
= Each web page is a state
= [nitial distribution: uniform over pages
= Transitions:
= With prob. c, uniform jump to a
random page (dotted lines, not all shown)

= With prob. 1-c, follow a random
outlink (solid lines)




Application of Markov Chain Stationary
Distribution: Web Link Analysis

= Stationary distribution

Will spend more time on highly reachable pages

E.g. many ways to get to the Acrobat Reader download page
Somewhat robust to link spam

Google 1.0 returned the set of pages containing all your
keywords in decreasing rank, now all search engines use link
analysis along with many other factors (rank actually getting
less important over time



Outline

%Markov Models
( = a particular Bayes net)



Outline

= Hidden Markov Models (HMMs)

» Representation
( = another particular Bayes net)
* Inference
= Forward algorithm ( = variable elimination)
= Particle filtering ( = likelihood weighting with some tweaks)
= Viterbi (= variable elimination, but replace sum by max
= graph search)



Outline

= Dynamic Bayes’ Nets
» Representation
= (= yet another particular Bayes’ net)
» Inference: forward algorithm and particle filtering
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Hidden Markov Models

= Markov chains not so useful for most agents
= Need observations to update your beliefs



Hidden Markov Models

= Hidden Markov models (HMMs)

= Underlying Markov chain over states S
= You observe outputs (effects) at each time step
= As a Bayes’ net:

() ()---->



Hidden Markov Model

Ty | x| X, | X5 X, | Xs O, | proT |UNPROT | LOCK [UNLOCK

X, | 06|04 X, 0.2 0.8

X 1 Xy 1

X, 0.9 [ 0.1 |P(xslx;) X, 0.6 0.4 P(uNLock | x;)
X, 1 X, 1

A5 0.2 0.8 Xs 10° | 1-10°

P(PROT) = 0.2
P(UNPROT)=0.8
Xy

P(PROT) = 0.6
P(UNPROT)=0.4
X3

P(PROT) = 10
P(UNPROT)=1-10°
Xs

P(UNLOCK) = 1.0
Xy

X e{x,,X,),X5,%X,,Xs }

Y € {PROT,UNPROT,LOCK,UNLOCK }




Hidden Markov Model

P(X .  1X)=T,

PY 1X)=0,

P(PROT) = 0.2
P(UNPROT)=0.8
X

P(UNLOCK) = 1.0
Xy

X e{x,,X,,X;5,X,,Xs }

P(PROT) = 10
P(UNPROT)=1-10
Xs

Y € {PROT,UNPROT,LOCK,UNLOCK }



Example

R, | PR,

P(U,)

t 0.9
0.2

J
Umbrellaa @brel @ UmbrellaD




Raznf_l Ram,

e

P(U,)

0.9

f.
0O
Umbre/ch @zbl'el la,

= An HMM is defined by:
= |nitial distribution: P(X1)

* Transitions: P(X|X_1)

= Emissions: P(E|X)

(,/mbre//cE




Ghostbusters HMM

= P(X,) = uniform

1/9

1/9

1/9

1/9

1/9

1/9




Ghostbusters HMM

= P(X|X") = usually move clockwise, but
sometimes move in a random direction or

stay in place
1/6 1@_,1/2
O OO
O 0|0

P(X|X" =<1,2>)



Ghostbusters HMM

= P(R;|X) = sensor model:
red means close, green means far away.

bbbs

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/6

'®

1/2

1/6




Conditional Independence

= HMMs have two important independence properties:



Conditional Independence

= Markov hidden procéss future depends on | ;t via the present



Conditional Independence

= Current observation independent ' 'given current state



Conditional Independence

= Markov hidden process future depends on past via the present
= Current observation independent of all else given current state

Ty
© OO O

= Quiz: does this mean that evidence variables are
guaranteed to be independent?



Conditional Independence

= [No, they tend to correlated by the hidden state]



Real HMM Examples

= Speech recognition HMMs:
= (QObservations are acoustic signals (continuous valued)

= States are specific positions in specific words (so, tens of
thousands)



Real HMM Examples

= Machine translation HMMs:

= (Qbservations are words (tens of thousands)
= States are translation options



Real HMM Examples

= Robot tracking:

= QObservations are range readings (continuous)
= States are positions on a map (continuous)



Filtering (State Estimation)
Exact Algorithm

Filter KN OptCtrl I
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Filtering / Monitoring

= Filtering, or monitoring, is the task of tracking the
distribution By(X) = P(X; | €4, ..., &) (the belief state) over
time



Filtering / Monitoring

= We start with B4(X) in an initial setting, usually uniform



Filtering / Monitoring

= As time passes, or we get observations, we update B(X)



Filtering / Monitoring

= The Kalman filter was invented in the 60" s and first
Implemented as a method of trajectory estimation for the
Apollo program



Example: Robot Localization

Example from
Michael Pfeiffer

B 0
Prob 0 1

t=0

Sensor model: can read in which directions there is a
wall, never more than 1 mistake

Motion model: may not execute action with small prob.




Example: Robot Localization

T
I
t=1

Lighter grey: was possible to get the reading,
but less likely b/c required 1 mistake

Prob 0



Example: Robot Localization

Prob 0



Example: Robot Localization

Prob 0

=3



Example: Robot Localization

Prob 0

t=4



Example: Robot Localization

|

Prob 0

t=5



Query: P(X,le;,e,,e3,8,) — () (()
Variable Elimination, X, X,, X, B @ 6 6

P(Xylex, ez, €3,e4) X P(Xy, €1,€3,€3,€4) = Z P(zy, 32,23, X4, €1, €2, €3, €4)

r1,T2,T3




Query: P(X,le;,e,,e3,8,) — () (()
Variable Elimination, X, X,, X, B @ 6 6

— D ) Pes|Xa) P(Xa|ws) P(es|as) P(xs|wa) Pea|wa) P(ws|x1 ) Ples|w1) Plas)

x T x



Query: P(X,le;,e,,e3,8,) — () (()
Variable Elimination, X, X,, X, B @ 6 6

- ZZZP(e4|X4)P(X4|$3)P(e3|5’33)P($3|x2)P(62|$2)P($2|$1)P($1,61)




Query: P(X,|e,65,€5,€4) — ()
Variable Elimination, X, X,, X, B @ 6 6

= Z Z P(e4|X4)P(X4|z3)P(es|zs)P(zs|re)Pes|xs) Z P(zo|x1)P(x1,€1)




Query: P(X,|e,65,€5,€4) — ()
Variable Elimination, X, X,, X, B @ 6 6

= ZZP(€4|X4)P(X4|TL'3)P(€3|ZIS3)P(ZIS3|$2)P(€2|$2)P($27el)



Query: P(X,|e,65,€5,€4) — ()
Variable Elimination, X, X,, X, B @ 6 6

= > ) Plea|Xa) P(Xa|z3) P(es|rs) P(slaws) P(ws, €1, e2)



Query: P(X,|e,65,€5,€4) — ()
Variable Elimination, X, X,, X, B @ 6 6

= ZP(64|X4)P(X4|-T3)P(63|333)ZP($3|$2)P(x2a61762)



Query: P(X,|e,65,€5,€4) — ()
Variable Elimination, X, X,, X, B @ 6 6

= ZP(e4|X4)P(X4|:v3)P(63|333)P($3, e1,es)

xr3



Query: P(X,|e,65,€5,€4) — ()
Variable Elimination, X, X,, X, B @ 6 6

- ZP(64|X4)P(X4|J:3)P(:C3161162163)

T3



Query: P(X,|e,65,€5,€4) — ()
Variable Elimination, X, X,, X, B @ 6 6

= P(64|X4) ZP(X4|:L‘3)P(:L'3, €1, €2, 63)
3



Query: P(X,|e,65,€5,€4) — ()
Variable Elimination, X, X,, X, B @ 6 6

= P(64|X4)P(X4,61,62,63)



Query: P(X,|e,65,€5,€4) — ()
Variable Elimination, X, X,, X, B @ 6 6




Query: P(X,le;,e,,e3,8,) — () (()
Variable Elimination, X, X,, X, B @ 6 6

Re-occurring computation:

Plx¢,e1,e0,...,€4)
= Pley|xy) Z P(xy|lzi_1)P(xi—1,€1.€2. ..., €_1)
Lp -1




The Forward Algorithm

= We are given evidence at each time and want to know

By(X) = P(Xile1:t)



The Forward Algorithm

We can normalize

: : as we go if we want
= \We can derive the following updates to haﬁe P(x|e) at

each time step, or

P(x¢le1:t) ocx P(xy, 61:t)< just once at the
end...




The Forward Algorithm

= Y P(x—1,xt,€1:¢)

Lt—1



The Forward Algorithm

= N P(a;_1,e1:1)P(atlay_1) P(et]w)

Lt—1



The Forward Algorithm

= Petlxt) Y, Pwt|lw—1)P(2i—1,e1:4-1)

Lt—1



The Forward Algorithm

= = exactly variable elimination in order X;, X,, ...



Belief Updating = the forward algorithm broken
down into two steps and with normalization

= Forward algorithm: P(zi,e1:1) = P(etlwe) Y P(ailwy_1)P(xi—1,e1:4-1)

Lt—1



Belief Updating = the forward algorithm broken
down into two steps and with normalization

= Can break this down into:



Belief Updating = the forward algorithm broken
down into two steps and with normalization

* Time update: P(xt,e1:4-1) = 2y, | Pwtlze 1) P(z-1,€1:4-1)



Belief Updating = the forward algorithm broken
down into two steps and with normalization

» Observation update:  P(x¢,e1:1) = P(et|xy)P(xt, e1:4-1)



Belief Updating = the forward algorithm broken
down into two steps and with normalization

= Normalizing in the observation update gives:



Belief Updating = the forward algorithm broken
down into two steps and with normalization

= Time update: P(wzfe1:4—1) = X, | P(@|lzi—1)P(xi_1le1:4—1)



Belief Updating = the forward algorithm broken
down into two steps and with normalization

= Observation update: P(x¢|leq.t) o< P(et|xs)P(zt|leq:i—1)



Belief Updating = the forward algorithm broken
down into two steps and with normalization

= Notation: Bi(x) = P(xilerr),  Bi(xt) = P(ziler-s—1)



Belief Updating = the forward algorithm broken
down into two steps and with normalization

= Time update: Bi(x) = Xy, , P(x|os_1)Bi_1(x4—1)



Belief Updating = the forward algorithm broken
down into two steps and with normalization

= Observation update: By (x;) = P(et|xs) Bj(x4)



Belief updates can also easily be derived
from basic probability

= Passage of Time = Observation
= Given: P(X,), P(Xiq | X,) = Given: P(Xi,q), P(€1 | Xi41)
= Query: P(Xisq1) ¥V Xi4q = Query: P(Xyq | €41) V X4

&

Plargr) =2 P(ae2et) P(ziqalery1) = P(@ig1,er1)/Plersn)

= P(xt)P(z441|zt) o< P(z441,€i41)
Tt

= P(xi41)P(esg1]zi41)



Example: Passage of Time

= As time passes, uncertainty “accumulates”

M

TETTTTT TTTTZE
TTTTIT TTDTTE
2 O
DETEXE

EERRDE

T=2 T=5

—]
I

B'(X") = > P(X'|x)B(x)

Transition model: ghosts usually go clockwise



Example: Observation

= As we get observations, beliefs get
reweighted, uncertainty “decreases”

Pelel oo ofe

Before observation After observation

B(X) x P(e|X)B'(X)



Example HMM

0.500 0.627
0.500 0.373
True 0.500 O.g18 0.2;83
False 0.500 0.182 0.117

CD s G e &
Clntretta 2 COnbretia



Qutline

= Particle filtering ( = likelihood weighting with some tweaks)
= Viterbi (= variable elimination, but replace sum by max
= graph search)



Qutline

= Dynamic Bayes’ Nets
» Representation
= (= yet another particular Bayes’ net)
» Inference: forward algorithm and particle filtering



Filtering (State Estimation)
Approximate Algorithm

Filter ERSOptCtrl K
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Particle Filtering

= Filtering: approximate solution



Particle Filtering

= Sometimes |X| is too big to use exact
Inference

= |X| may be too big to even store B(X)
= E.g. Xis continuous

00| 01 | 00
00 | 0.0 | 0.2
00 | 0.2 | 0.5




Particle Filtering

= Solution: approximate inference
= Track samples of X, not all values
= Samples are called particles




Particle Filtering

= Time per step is linear in the number of
samples

= But: number needed may be large
= |n memory: list of particles, not states



Particle Filtering

|X| may be too big to even store B(X)
E.g. X is continuous

Track samples of X, not all values
Samples are called particles

Time per step is linear in the number of
samples

But: number needed may be large
In memory: list of particles, not states

This is how robot localization works in
practice

Particle is just new name for sample

0.0 | 0.1 | 00

0.0 | 0.0 | 0.2

0.0 | 02 | 05
O

®e®

o0 | o%




Representation: Particles

Our representation of P(X) is now

a list of N particles (samples) ® Jeg
= Generally, N << [X]

O

= Storing map from X to counts ® O

would defeat the point




Representation: Particles

= P(x) approximated by number of T—)
particles with value x Particles:

* S0, many x will have P(x) = 0!

= More particles, more accuracy



Representation: Particles

= For now, all particles have a

weight of 1



Particle Filtering: Elapse Time

= Each particle is moved by
sampling its next position from
the transition model

' = sample(P(X'|x))

Particles:
(3,3)

N
w

NS woN

LOONNONOW

Particles:
(3,2)

N
w

NON=ToowoN

DMhowwbhw-=2NM©

S
o |3°




Particle Filtering: Elapse Time

= This is like prior sampling —
samples’ frequencies reflect the
transition probs

= Here, most samples move Particl
clockwise, but some move in

another direction or stay in place



Particle Filtering: Elapse Time

= This captures the passage of
time
= |[f enough samples, close to exact
values before and after (consistent)



Particle Filtering: Observe

= Slightly trickier:
= Don’ t sample observation, fix it

= Similar to likelihood weighting,
downweight samples based on
the evidence

w(z) = P(e|x)

B(X) < P(e|X)B'(X)

Particles:
(3,2)

N
w

AN TN TN N TN TN N N SN
NOWON—_,LWOWW LW
DPRLPO2DE

Particles:
(3,2) w=.9
w=.2

N
w

2222252%

PO, ORPO

N AN AN TN AN AN AN N N
NWON—_LLOWW LW
NDNWWOWNW =N

./.:




Particle Filtering: Observe

= As before, the probabilities
don’ t sum to one, since most
have been downweighted (in
fact they sum to an
approximation of P(e))

Particles:
(3,2)

N
w

PN N N N N N N N N
NOWON—_,LWOWW LW
DPRLPO2DE

Particles:

PN N N N N N N N N
NWON—_LLOWW LW
NDNWWOWNW =N

[ [ [ | B | B ||

£ 5%

@ .\‘ 0

PO OR




Particle Filtering: Resample

Particles:

= Rather than tracking (3,2) w=.9

weighted samples, (2,3) w=2 o | o
(3,2) w=.9 ° )

we resample (3.1) w=4
(3,3) w=.4 . )
(3,2) w=.9
(1,3) w=A1 .‘
(2,3) w=.2 \
(3,2) w=.9 A (6]
(2,2) w=.4 -




Particle Filtering: Resample

Particles:
(3,2) w=.9
(2,3) w=.2 ° ®
(3,2) w=.9 ° e )
(3,1) w=.4
(3,3) w=4 @
_ (3,2) w=.9 > l.\
= N times, we choose (1,3) w=.1 \
from our weighted ggg e N ®
sample distribution (2.2) w=4 ~
(i.e. draw with

replacement)

@)
o:*—c
\—




Particle Filtering: Resample

* | %
\

LIIh)

= This is equivalent to (N%VV%)F’artiC'eSZ
renormalizing the (2.2)

e , O
distribution (3.2) ©
(2.3)

(3,3) J..
(3.2) ® o
(1,3)

(2.3) o
(3,2)

(32) L)




Particle Filtering: Resample
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LIIh)

(New) Particles:

(3.2)
(2,2)
(3.2) 1P
(2,3) d
| G o | %%
= Now the update is (3.2) ®
.. (1,3)
complete for this time (2.3) O
step, continue with (3,2) ‘|‘ °
the next one (3.2)




Recap: Particle Filtering

Particles: track samples of states rather than an explicit distribution

Weight

Resample

(3.3)

N
w

PBBIBHVOD
LLLPHLUNLY

Elapse
® (@)
@ C.Q
0 o
Particles:

Particles:

(3.2)

N
w

NONTOWWoN

DMhooebhbw-=2bw

T_,

Particles:

£ s

hioi\)'—n'colhbcoi\)co

(New) Particles:

(3,2)
2,2)

2)
3)

3)

2)
3)
3)
2)
2

(
(3,
(
3,
(3,
(
(
3,
(3.2)

2
1
2
3




Particle-Filtering Algorithm

function Particle-Filtering (e,dbn,N) returns P(X|e)
local § = GenerateFrom(P(X,)) // vector of samples of size N

W=0 // vector of weights of size N
fori=1:N{
S[i] = Sample(P(X, | X, = S][i])) I/ Step 1
W[il=P(e| X, =S][i]) } I/ Step 2

S = Weighted-Sample-With-Replacement(N,S,W) // Step 3
return S



Particle Filter Example

map of particle 2



Hidden Markov Model

Ty | x| X, | X5 X, | Xs O, | proT |UNPROT | LOCK [UNLOCK

X, | 06|04 X, 0.2 0.8

X 1 Xy 1

X, 0.9 [ 0.1 |P(xslx;) X, 0.6 0.4 P(uNLock | x;)
X, 1 X, 1

A5 0.2 0.8 Xs 10° | 1-10°

P(PROT) = 0.2
P(UNPROT)=0.8
Xy

P(PROT) = 0.6
P(UNPROT)=0.4
X3

P(PROT) = 10
P(UNPROT)=1-10°
Xs

P(UNLOCK) = 1.0
Xy

X e{x,,X,),X5,%X,,Xs }

Y € {PROT,UNPROT,LOCK,UNLOCK }




Hidden Markov Model

P(X .  1X)=T,

PY 1X)=0,

P(PROT) = 0.2
P(UNPROT)=0.8
X

P(UNLOCK) = 1.0
Xy

X e{x,,X,,X;5,X,,Xs }

P(PROT) = 10
P(UNPROT)=1-10
Xs

Y € {PROT,UNPROT,LOCK,UNLOCK }



Initial Distribution of Particles

P(PROT) = 0.2
P(UNPROT)=0.8
Xy

0000
0000
0.4 0000

OXONOXO)
5(PROT) = 0.6
P(UNPROT)=0.4 O
OO




Take Next Step

0.6

P(PROT) = 0.2
P(UNPROT)=0.8
Xy

0.4

5(PROT) = 0.6
P(UNPROT)=0.4
X3

0.1

P(UNLOCK) = 1.0
Xy

P(UNPROT) =1-104

0000
o028 ;%%%3
oooo\
N
0000
0000 (%
N\
N
0000
o — 55
00
\\
N\
O —b 0O 00




New Configuration of Particles

P(PROT) = 0.2 0000
P(UNP)I?IOT)=0.8 0.4 000
000
O
5(PROT) = 0.6 0000
P(UNPROT)=0.4 o

o OO




Observe LOCK and Resample

P(PROT) = 0.2
P(UNPROT)=0.8
X

0.4

O000O0
OO0O00O0
O0O0OO0
Q0000

B(PROT) = 0.6
P(UNPROT)=0.4
X3

0.1

P(UNLOCK) = 1.0
Xy

P(PROT) = 10
P(UNPROT)=1-10%




Further readings

= We are done with Probabilistic Reasoning

= To learn more:

= Koller and Friedman, Probabilistic Graphical
Models

= Thrun, Burgard and Fox, Probabilistic
Robotics



