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Outline 

- Speech as probabilistic inference 
- Speech sounds 
- Word pronunciation 
- Word sequences 



Challenges in Speech Recognition 

      i  Segmentation: written words have spaces between them

Speech signals are noisy, variable, ambiguous 

Issues making speech problematic  

      i  Example: "recognize speech" and "wreck a nice beach"

      i  Not in fast speach: "wreck a nice" and "recognize"

      i  Coarticulation: sounds of successive words merge

      i  Sound "s" from "nice" merges "b" from "beach" ≈  "sp"

      i  Homophones: words with different meaning sound the same
      i  Words "to", "too", and "two" differ in meaning but sound the same



Speech as Probabilistic Inference 

      i  Choose Words to maximize P(Words | signal)

Since mid 1970s 

Most likely word sequence,	given the speech signal? 

      i  P(Words | signal) =  α  P(signal | Words) P(Words)
Approach: Use Bayes' rule 

      i  Decompose into: Acoustic model + Language model

      i  Words: Are the hidden state sequence

      i  Signal: Is the observation sequence

      i  Formulated as a probabilistic inference problem 

  
    i  argmax

word1:t

 P(word1:t | sound1:t ) =  argmax
word1:t

 P(sound | word1:t ) P(word1:t )

acous5c	model	 language	model	

Noisy channel model: By Claude Shannon (1948) 
      i  Original msg: words, corrupted msg: sounds, noisy cnl: telephone line

      i  Applied to: Speech recogn, machine transl, spelling correction, etc



Speech Sounds 

      i  Processed into overlapping 30ms frames
Raw signal: Microphone displacement over time 

      i  Each described by features

Frame features: here three acoustic features per frame 

 mp3 :  44.1 kHz
 MFCC for each ν



Speech Sounds 
Raw signal: Microphone displacement over time 

 mp3 :  44.1 kHz
 MFCC for each ν

Frame features formants: peaks in the power spectrum 
      i  MFCC: mel frequency cepstral coefficient for each υ + total energy (13)

      i  Diff between: this and previous frame, diff between diff (39 features)



Phones 

      i  Determined by conguration of articulators
All human speech is composed from 40-50 phones 

      i  Acoustic model = pronunciation model + phone model
Form intermediate level of HS between words and signal 

      i  Articulators: Lips, teeth, tongue, vocal cords, air flow

ARPAbet designed for American English 

      i  Example: "ceiling" is [s iy l ih ng] / [s iy l ix ng] / [s iy l en]



Phones Models 

      i  Vector quantization: an integer in [0 : 255]
Frame features in P(features | phone) summarized by: 

      i  Example: [t] has silent Onset, explosive Mid, hissing End
3-state phones having three phases (Onset, Mid, End) 

      i  Mixture of Gaussians: associated parameters 

      i  P(features |phone, phase)

      i  Depending on the phones to its left and right
Triphone context: each phone becomes n2 distinct phones 

      i  Example: [t] in "star" is written [t(s,aa)] (different from "tar"!)

      i  Inertia: articulators cannot switch instantaneously
Triphones useful for handling coarticulation effects 

      i  Example: [t] in "eighth" has tongue against front teeth



Phone Model Example 
Phone HMM for [m]: 

Output probabilities for the phone HMM (MFCC features): 
      i  C1 −C7: Some arbitrary combination of feature values

      i  Duration: normal speech 5-100 ms, 5-10 frames (self loops)



Word-Pronunciation Models 

 Distribution represented as an HMM transition model
 Words described as distributions over phone sequences

 P([towmeytow] | "tomato") = P([towmaatow] | "tomato") = 0.1

 P([tahmeytow] | "tomato") = P([tahmaatow] | "tomato") = 0.4

 Structure created manually, transition probabilities learned from data

      i  With coarticulation: [t] tong at the top of the mouth and [ow] at bottom

      i  With dialect variation: [t] followed by [ow] or [ah], [m] by [ey] or [aa]



Isolated Words 

      i  Fix likelihood P(e1:t | word) for isolated word   
 Phone models + word models 

 Prior probability P(word) obtained by counting word frequencies

      i  P(word | e1:t ) =  α  P(e1:t | word) P(word)

 P(e1:t | word) can be computed recursively

  
    i  Finally: P(e1:t | word) = l1:t (xt )xt

∑    

      i  Define: l1:t = P(Xt,e1:t )

      i  Use the recursive update: l1:t+1 = Forward(l1:t,et+1)

 Trained isolated-word dictation systems 95-99% accuracy



Continuous Speech Systems (CSS) 

      i  Adjacent words highly correlated   
 Not just a sequence of isolated-word recognitions!

 CSS manage 60-80% accuracy on a good day

      i  Sequence of most likely words ≠  most likely sequence of words

      i  Segmentation: there are few gaps in speech

      i  Cross-word coarticulation: for example "next thing"



Language Model 

  
    i  P(w1,...,wn) = P(wi | w1,...,wi-1) 

i=1

n

∏  
 Prior probability of a word sequence is given by chain rule:

 Bigram model:

      i  P(wi | w1,...,wi−1) ≈P(wi | wi−1)

 Train by counting all word pairs in a large text corpus

 More sophisticated models (3grams, grammars,...) help a bit



Combined HMM 

  

    i  State labels:   the word we're in + 
                              the phone in that word + 
                              the phone state in that phone   

 Combined language+word+phone model 

 The most likely phone-state sequence
      i  Found by using the Viterbi algorithm

 Does segmentation by
      i  Considering all possible word sequences and boundaries

 Doesn't always give the most likely word sequence because
      i  Each word sequence is the sum over many state sequences

 Jelinek invented A* in '69 to find most likely word sequence

      i  Here "step cost" is log P(wi | wi−1)



DBNs and Speech Recognition 

 Speech model = acoustic model+ pronunciation model, too
      i  Acoustic model includes articulatory-context variables

      i  Capture the sate of the articulatory apparatus of the speaker

      i  Depend on current phonetic state and previous articulatory context

     Hidden = Phones∪ Articulation

     P(Sound,Hidden | Words) = P(Sound,Phones,Articulation | Words)

 Bayesian structure consists of two layers
      i  One that models P(Phones | Words)
      i  One that models P(Sound,Articulation |Phones)

     =  P(Phones | Words) P(Sound,Articulation |Phones)



DBN: Pronunciation Model 

 Assumptions

      i  Each word liear sequence of phonetic units "cat" [k ae t]

  
    i  Average duration of phones given by tqq

:  q1 → q2

      i  Depend on current phonetic state and previous articulatory context

 Index nodes
      i  Keeps track of the position in the phonetic transcription

      i  All words go through same sequence 1,2,...,k

      i  Assignment of values specifies a time alignment

      i  Deterministic map from index to actual phonetic value

      i  Value 1 index value is increased by one

     P(EOW = 1| index = last,transition = 1) = 1



DBN: Acoustic Model 

 A DBN allows the hidden state to be factored
      i  Augment phonetic state vars with articulatory context vars

 Context variable serves two purposes 
      i  Long-term correlations among observations accross time frames
      i  Short-term correlations among observations within one time frame



DBNs for Speech Recognition 

 Zweig,Russell (1998) show up to 40% error reduction over HMMs
 Also easy to add variables for, e.g., gender, accent, speed



Summary 

      i  Has been formulated as probabilistic inference  
 Speech recognition (since mid 1970) 

 Evidence:
      i  Speech signal, hidden variables = word and phone sequences

 Context effects (coarticulation etc.)
      i   Handled by augmenting state

 Variability in human speech
      i  Speed, timbre, etc., and background noise

      i  Make continuous speech recognition in real settings an open problem

 Want to know more?
      i  L. Rabiner and B.-H. Juang. Fundamentals of Speech Recognition


