
Digital Design LU

Lab Exercise 1

Jakob Lechner, Thomas Polzer
{lechner, tpolzer}@ecs.tuwien.ac.at

Department of Computer Engineering
University of Technology Vienna

Vienna, October 4, 2011



1 Overview

1 Overview

The first lab exercise will make you acquainted with the tools used in this lab
course for implementing FPGA designs. A basic FPGA design flow consists
of a simulator and a synthesis tool. The simulator is used for verifying and
debugging the functionality and the timing of the circuit implemented in a
high-level hardware description language (VHDL in our case). The synthesis
tools translates the behavioral and/or structural description into a gate-level
netlist. This netlist can then be mapped to the FPGA’s logic cells. Finally the
produced bitstream file is used to configure the FPGA.

2 Required Reading

• Digital Design LU – Design Flow Tutorial

• Digital Design VO – Der Logikanalysator

3 Task Description

In this exercise you will have to simulate and synthesize the VHDL description
of a memory controller, which performs a series of write accesses for storing
data into an SRAM chip. After the first half of the write accesses is completed
the controller is idle for approximately 2 seconds. Then the second half is
transmitted. Once all write operations have been finished, the SRAM controller
waits another 2 seconds and then starts over again with the first character.

In the source directory for this exercise you can find two subdirectories
named asram and ssram. Both directories contain a working VHDL description
of the mentioned memory controller. The controller in the asram-directory
is able to perfom write accesses on asynchronous SRAM chips, whereas the
controller in the ssram-directory is able to perfom write accesses on synchronous
SRAM chips. Table 1 shows the output signals of both memory interfaces.

Table 1: SRAM memory signals.
Signal Name Asynchronous Synchronous
Clk x
Address x x
Data x x
Chip Select (CS) x x
Write Enable (WE) x x

1



3 Task Description

Before the SRAM chip can store new data, obviously the desired address
and data value need to be applied to the address and data bus, respectively.
The write access can then be triggered by forcing the CS and WE signals low1

for a certain period of time. The semantics of the four control signals (address,
data, CS, WE) are basically the same for both synchronous and asynchronous
SRAMs. However, the timing requirements are a litte bit different, as can be
seen in the waveforms in Figure 1 and Figure 2.

Figure 1: Timing diagram of an asynchronous write access.

Figure 2: Timing diagram of a synchronous write access.

1CS and WE are low-active

2



3 Task Description

In case of the asynchronous SRAM there is no clock signal for coordinating
the timing of the control signals. Therefore the datasheet of an asynchronous
SRAM chip specifies a range of timing requirements between the control signals,
as can be seen in Figure 1. In comparison, the timing in case of the synchronous
SRAM interface is rather simple. All control signals need to be set a certain
time before the rising clock edge (setup time) and remain stable for a certain
time after the clock edge (hold time). In Figure 2 this setup/hold window is
shown as a gray box around the rising clock edge.

Task 1: ASRAM – Behavioral Simulation Perform a behavioral sim-
ulation of the asynchronous SRAM controller. An appropriate testbench is
provided in the simulation directory. Add all signals of the top-level entity to
the waveform window and run the simulation long enough for tracing all write
accesses before the mentioned idle interval. Take screenshots showing a trace
of all characters of the transmitted string in readable form and include these
screenshots in your lab protocol.

Furthermore zoom in to one of the write accesses and measure all timing
intervals marked in Figure 1 with the help of markers. Take a screenshot
showing the marker pair for one of the timing parameters. Compare the mea-
sured timings to the minimum/maximum requirements for write accesses in the
datasheet of the K6RK6R4016V1D-10 SRAM chip (the datasheet can be found
on the course website). Does the SRAM controller comply to all requirements?
If not, which timings are violated?

Task 2: ASRAM – Synthesis, Place&Route Create a new Quartus
project for a Cyclone IV E EP4CE115F29C7 FPGA and add the VHDL files
of the asynchronous memory controller (except the testbench file of course).
Assign the pins of the input and output ports accordingly. The FPGA pin
names for clock and reset inputs can be found in the pinout description on the
course website. To be able to measure the SRAM signals assign the output pins
of the SRAM interface (address, data, cs, we) to the GPIO extension connector
of the FPGA board.

Task 3: ASRAM – Post-layout Simulation Use the netlist file (.vho)
and the timing file (.sdo), which were generated during the previous task, for
performing a post-layout simulation2. The testbench file used in the behavioral
simulation can also be employed for post-layout simulation.

2Depending on the settings, the Quartus timing analyzer might produce two sets of vho
and sdo files: one with fast and one with slow timings. For this exercise use the conservative
(slow) timing estimates.

3



3 Task Description

The timing file provides information on the real physical signal delays.
Therefore, signals do not switch instantaneously after the clock edge, in con-
strast to a behavioral simulation. Every single bit of a signal vector switches
individually depending on the propagation and routing delays of the corre-
sponding circuitry. Run the simulation long enough in order to take a screen-
shot of some transition on the address bus of the memory interface. Zoom into
the waveform until you can see the diffenrent delays of the address signal and
use two markers to measure the duration between the first and the last bit
toggling.

Task 4: ASRAM – Logic Analyzer Measurments Configure the
FPGA by downloading the bitstream file (.sof) generated during compilation.
Attach the logic analyzer probes to the extension connector of FPGA board
accordingly to the used pin mappings. Do not forget to attach the ground con-
nector of the probes to a ground pin on the FPGA board. Configure the logic
analyzer appropriately for tracing all signals of the SRAM interface. Devise a
trigger condition which starts the measurement exactly after the idle interval
in order to record the second part of the write accesses. Make screenshots
where the transferred ASCII characters can be seen and include them in your
lab protocol. Which operation mode of the logic analyzer do you need to use
for tracing the signals of the asynchronous memory controller – state mode or
timing mode?

Furthermore sample the trace of a single write access with the highest res-
olution possible and use markers to determine the timing parameters that can
be seen in Figure 1. Verifiy if the values are equal to the ones you measured
during the behavioral simulation.

Finally, try to capture a waveform for measuring the length of the idle
timeout between the first and the second part of the write accesses. Take a
screenshot and insert the measured value into your protocol.

Task 5: SSRAM – Logic Analyzer Measurments Create a new Quar-
tus project for the synchronous memory controller. You can use the settings
from the Quartus project of the asynchronous memory controller (just copy
the existing tcl script and create the Quartus project in the ssram directory).
Map the additional clock output signal to an approriate pin on the FPGA
board’s extension connector and compile the design. Download the sof-file on
the FPGA and connect the clock signal to a probe of the logic analyzer. Now
trace the whole string written to the SRAM and take screenshots where the
individual characters can be seen. Which operation mode of the logic analyzer
do you need to use for tracing the signals of the synchronous memory controller
– state mode or timing mode?

4



4 Submission

4 Submission

Deadline: October 19th, 2011, 23:59

Upload a zip archive containing:

• PDF file of the lab protocol

5


