
Digital Design LU

Design Flow Tutorial

Jakob Lechner, Thomas Polzer
{lechner, tpolzer}@ecs.tuwien.ac.at

Department of Computer Engineering
University of Technology Vienna

Vienna, October 4, 2011

Contents 1

Contents

1 Design Flow 2

1.1 Directory Structure . 3

2 Behavioral Simulation 4

2.1 Creating a new Project . 4

2.2 Compiling the VHDL Files . 5

2.3 Performing the Simulation . 6

2.3.1 Automating Simulation Runs 8

3 Synthesis and Place&Route 9

3.1 Creating a new Project . 9

3.2 Timinig Analyzer . 11

3.3 Pin Mappings . 12

3.4 Adding a PLL (optional) . 13

3.5 Full Compilation . 16

3.6 Export a Project Tcl Script - Optional 16

4 Postlayout Simulation 18

4.1 Automating Simulation Runs . 19

5 Download 20

6 Logic Analyzer 21

1 Design Flow 2

1 Design Flow

In Figure 1.1 the FPGA1 design flow, which we will use in this lab course, is outlined.
Table 1.1 summarizes the tools required for each of these steps. A tool can either
be a software tool like a simulator or a hardware analyzer like a logic analyzer or an
oscilloscope.

Figure 1.1: The design flow.

Table 1.1: Used tools.

Design Flow Step Tool

Design Entry Text editor/ModelSim/Quartus
Behavioral Simulation ModelSim
Synthesis, Place&Route Quartus
Post-layout Simulation ModelSim
Download Quartus (programmer)
Test & HW Debugging Logic Analyzer

Design entry During the design entry you will describe your FPGA design with
a high-level hardware description language. In this lab course we will use VHDL2

for this purpose.

Behavioral Simulation The behavioral simulation is the most important step
in verifying the correct functionality of your circuit description. First the simula-
tor compiles your VHDL files and indicates syntax errors. If the compilation runs

1FPGA: Field Programmable Gate Array
2VHDL: Very high speed integrated circuit Hardware Description Language

1 Design Flow 3

without errors, the behavior of the circuit design can be investigated in a waveform
showing signal traces of external and internal signals.

Synthesis, Place & Route During the synthesis step your VHDL circuit descrip-
tion is analyzed by the synthesis tool and transformed into a gate-level netlist. The
netlist elements can then be placed on the FPGA’s configurable cells and connected
by suitable interconnect lines. Finally a bitstream file is generated containing the
configuration information for the FPGA.

Post-layout Simulation The post-layout simulation is performed on the netlist
generated in the synthesis step. Additionally timing information, which are prodived
by the Place&Route-tool can be used for simulating the final circuit with correct
signal timings. A post-layout simulation is useful for resolving timing problems
in your circuit. For simple FPGA designs this type of simulation is usually not
necessary.

Download The download transfers the bitstream data to the target board for
configuring the FPGA.

Test & HW Debugging Finally, the configured FPGA can be tested. In some
cases it might be necessary to attach a logic analyzer to the FPGA for verifying the
correct functionality of the HW circuit or for debugging errors, which can not be
reproduced during simulation.

1.1 Directory Structure

The source code provided for every task assignment is organized with the directory
structure described in Table 1.2. We highly recommend you to maintain this stucture
and add new files you create in the designated subdirectories.

Table 1.2: Directory structure.

Directory Path Contents

./src VHDL design files

./src/sim Source files for testbenches, ModelSim scripts

./src/quartus de2-115 Tcl script for generating Quartus project

./quartus de2-115 Quartus project for target board

./modelsim beh ModelSim project for behavioral simulation

./modelsim post ModelSim project for post-layout simulation

2 Behavioral Simulation 4

2 Behavioral Simulation

To start ModelSim Altera enter the following command in the terminal:

vsim&

2.1 Creating a new Project

A new ModelSim project can be created by clicking the menu item “File” ⇒“New”
⇒“Project...”. Subsequently the dialog which can be seen in Figure 2.1(a) opens.
Enter the project name and select the path of the behavioral simulation directory as
project location.

(a) Enter project name and location (b) Add folders/existing files

Figure 2.1: Creating a new project.

In the next dialog, ModelSim allows you the add items like source files or folders
to your project (Figure 2.1(b)). For a good structure of your project we recommend
you to add the following folders:

• Source folders: Create one folder for every module/IP core.

• Simulation folder for adding all your testbench files.

• Script folder for Tcl script files.

These folders will not be created on the filesystem. They are just used in the
ModelSim GUI for structuring the project files. Once you have created the necessary
folders, you can add VHDL source files by clicking “Add existing File”. Figure 2.2
shows the dialog for adding files. Enter the file name, select the appropriate folder

2 Behavioral Simulation 5

and make sure the option “Reference from current location” is ticked. In Figure 2.3
you can see the project view after all folders and files have been added. Of course,
you can also easily add or remove folders/files by right-clicking in the project tree.
As you can see in Figure 2.3 the script folder is still empty. We will explain the use
of ModelSim scripts later.

Figure 2.2: Adding a VHDL file.

Figure 2.3: ModelSim project with files added.

2.2 Compiling the VHDL Files

Before the the VHDL files can be analyzed and compiled it is necessary to setup
the right compilation order. In a VHDL design consisting of multiple files there
are usually some VHDL files, which depend on other VHDL files (e.g., a file con-
taining constant declarations will have to be compiled before other files using these
constants). Fortunately, ModelSim is able to resolve these build dependencies itself.

2 Behavioral Simulation 6

Simply click on the menu item “Compile” ⇒“Compile Order...”. In the next dialog
hit the button “Auto Generate” (see Figure 2.4).

Figure 2.4: Compile order.

Once the file order is fixed, you can compile selected VHDL files with a right-
click on the file name or with the “Compile” button in the toolbar. You can also
compile all source files of the project at once by clicking on the menu item “Compile”
⇒“Compile all” or the corresponding button in the toolbar.

2.3 Performing the Simulation

When all VHDL files have been compiled successfully, the behavioral simuation can
be started. Click on the menu item “Simulate” ⇒“Start Simulation...”. In the next
dialog, which can be seen in Figure 2.5, simply select the name of the testbench and
click “Ok”.

Figure 2.5: Starting the simulation.

2 Behavioral Simulation 7

Now the main window of ModelSim changes its appearance and shows a hier-
archical view of the design to be simulated. With the treeview on the left side of
the main window you can navigate through the component instances of your VHDL
design. The object inspector on the right side shows the input/output ports and the
internal signals of the currently selected component. The signals you want to be
traced can now be added to the waveform viewer by selecting them in the objects list
as illustrated in Figure 2.6.

Figure 2.6: Add signals to the waveform.

Figure 2.7: The waveform viewer.

2 Behavioral Simulation 8

Upon adding the signals, the waveform viewer should open automatically. Oth-
erwise you can open it by clicking on the menu item “View” ⇒“Wave”. You should
see the signals you just added on the left side of the waveform viewer. The last step
before running the simulation is to adjust the simulation time. This can be be done
with the small input field in the toolbar of the waveform viewer (see Figure 2.7).
The button to the right of this input field then runs the simulation for the specified
time.

Figure 2.7 shows a simulation, which has been run for 1 µs, as can be seen in the
statusbar. Two markers have been added for measuring the period of the clock signal
drawn in the first line of the waveform. The toolbar buttons for adding, removing
and positioning these markers are pictured in Figure 2.7. Another important feature
of the waveform viewer is the possiblity to change the display format of signal vectors.
The values of a signal vector can be displayed in different representations such as
binary, hexadecimal, decimal, ASCII, etc. Just right-click on the signal’s name and
choose the suitable respresentation from the “Radix” submenu.

2.3.1 Automating Simulation Runs

Often a simulation needs to run several times until the functionality of the circuit
has been verified or an error has been corrected. Therefore it is highly recommended
to automated the steps necessary for setting up the simulation. Fortunately, all the
actions described above (compiling, starting the simulation, adding signals to the
waveform viewer, running the simulation for a specified period of time, etc.) can be
scripted with Tcl scripts. These scripts files have the file extension “.do”. Listing 1
shows a short example for a Tcl script, which executes the tasks mentioned above.

1 # compile a l l source f i l e s
2 p r o j e c t c omp i l e a l l
3

4 # s t a r t s imu la t ion with t e s t b ench named ‘ ‘ t e s t t b ’ ’
5 vsim work . t e s t t b
6

7 # add s i g n a l s to waveform viewer
8 add wave −format l o g i c / t e s t t b /uut/ c l k
9 add wave −format l o g i c / t e s t t b /uut/ s y s c l k

10 add wave −format l o g i c / t e s t t b /uut/ r e s e t
11 add wave −format l i t e r a l −radix hex / t e s t t b /uut/ cout
12

13 # run s imu la t ion
14 run 1 us

Listing 1: Tcl script for running a ModelSim simulation.

We recommend to create such a Tcl script for every testcase in the simulation
directory, which also contains the corresponding testbenches. Then you can add the
do-files to your ModelSim project just like you have added your other source files.
In order to execute a script, right-click on the file in the ModelSim GUI and click on
the “Execute” item in the context menu.

3 Synthesis and Place&Route 9

3 Synthesis and Place&Route

Altera Quartus can be started in a terminal with the following command:

quartus --64bit&

3.1 Creating a new Project

In order to create a new project goto menu “File” ⇒“New Project Wizard...”. The
wizard lets you configure basic settings of your project. Figure 3.1 to Figure 3.4 show
the settings necessary for creating a project for the FPGA board and the tool-chain
of this lab course.

After you have successfully created a new project and properly added your
VHDL files, you can run a first compilation by clicking the menu entry “Process-
ing” ⇒“Start” ⇒“Start Analysis & Synthesis”. Alternatively, you can click the
corresponding icon in the toolbar.

Figure 3.1: New project wizard – Step 1.

Figure 3.2: New project wizard – Step 2.

3 Synthesis and Place&Route 10

Figure 3.3: New project wizard – Step 3.

Figure 3.4: New project wizard – Step 4.

3 Synthesis and Place&Route 11

3.2 Timinig Analyzer

For this lab course we recommend to use Altera TimeQuest for timing analysis. Goto
the menu “Assignments” ⇒“Settings...”. In the next window select the entry “Tim-
ing Analysis Settings” in the treeview on the left window side. Subsequently check
the option with the title “Use TimeQuest Timing Analyzer during compilation”, as
can be seen in Figure 3.5.

Figure 3.5: Use TimeQuest Timing Analyzer.

The Timing Analyzer needs to be parametrized with a constraints file. For this
purpose Quartus provides a simple wizard, which can be open via the menu “As-
signments” ⇒“TimeQuest Timinig Analyzer Wizard...”. The only constraint, which
needs to be specified for a simple FPGA project is the clock period of the external
oscillator (see Figure 3.6).

Figure 3.6: Setting the clock period.

The Clock Name (first column) can be chosen freely. In the second column the
name of the clock input port of your top-level entity needs to be entered. The period
of the external oscillator connected to this port can then be specified in the third
column. The duty cycle column can be left empty.

3 Synthesis and Place&Route 12

All other settings of the wizard can be ignored. They are not necessary for this
lab course. Thus, click “Next” until you arrive at the last page of the wizard. Then
click “Finish” in order to add a contraints file, which contains your clock settings,
to the project.

3.3 Pin Mappings

Finally, we need to configure the pin assignments of your design. In this task you
assign the logical input and output ports of your design’s top-level entity to the
physical pins of the FPGA. Obviously, in most cases you can not randomly choose
a pin. E.g., the reset port of your design needs to be assigned to exactly the pin,
which is connected to the reset button on the FPGA board. The same is true for
all other peripherial interfaces like VGA, RS232, key matrix, leds etc. The specific
FPGA pin numbers for all this component can be found in the manual of the FPGA
board.

In the Quartus user interface the pin assignment task is done with the so-called
Pin Planner (menu “Assignments” ⇒“Pin Planner”). In the bottom half of the Pin
Planner you can see a table listing the input and output ports of your design. The
associated pin names need to be entered in the location column of this table. Simply
select one entry and start typing the name of the pin (e.g., M1 for the clock input).

Figure 3.7: Assigning input and output pins.

Make sure all ports of your design are assigned to one FPGA pin. All other unused
FPGA pins should be configured as tri-state input pins with weak pull-up resistors.

3 Synthesis and Place&Route 13

This can be done in the device settings dialog (menu “Assignments” ⇒“Device...”)
where you need to click the button “Device and Pin Options...”. In the following
dialog, select the category “Unused Pins” and change the combo-box to “As input
tri-stated with weak pull-up”.

Caution: The default setting “As output driving ground” should only be used
if you really know what you are doing! Otherwise it might be harmful for
some FPGA boards as it can cause short-circuits in certain circumstances.

3.4 Adding a PLL (optional)

Sometimes it is necessary to run the implemented circuit design with another clock
frequency as provided by the external oscillator. Therefore Altera FPGAs include
PLLs (phase locked loop). PLLs generate a stable clock signal which can be a rational
multiple of the external reference clock.

Quartus provides a wizard, which allows you to configure a PLL component.
This wizard can be started over the menu “Tools” ⇒“MegaWizard Plug-In Man-
ager”. Open the I/O node in the treeview on the left side of the window pictured
in Figure 3.8 and select the entry ALTPLL. Futhermore you need to specify the file
path and file name of the configuration file that will be generated. Then click “Next”
to proceed.

Figure 3.9 to Figure 3.12 show how to generate a simple PLL configuration neces-
sary for this lab course. The central settings are the frequency of the input clock, i.e.,
the external oscillator and the frequency of the PLL’s output clock. As can be seen in
the symbol in Figure 3.11, the customized PLL component only has two ports (input
and output clock). The final screenshot shows the files which are generated by the
wizard: The most important file is the VHDL file containing the description of the
PLL component based on your settings. Furthermore a cmp-file is generated, which
provides the component declaration of the PLL. This declaration can be copied into
your top-level design unit to be able to instantiate the PLL.

Finally a dialog box appears asking if you want to add the IP file to the Quar-
tus project. Answer the dialog with “Yes”. The PLL’s VHDL file will then be
automatically added to your project.

3 Synthesis and Place&Route 14

Figure 3.8: Creating a PLL - Step 1.

Figure 3.9: Creating a PLL - Step 2.

3 Synthesis and Place&Route 15

Figure 3.10: Creating a PLL - Step 3.

Figure 3.11: Creating a PLL - Step 4.

Figure 3.12: Creating a PLL - Step 5.

3 Synthesis and Place&Route 16

3.5 Full Compilation

Once the project has been set up correctly, a full compilation can be performed by
clicking the menu entry “Processing” ⇒“Start Compilation”. Alternatively, you can
click on the corresponding button in the toolbar. If the compilation runs successfully,
Quartus generates the following files:

• Bitstream file for programming the FPGA (.sof)

• Netlist file for post-layout simulation (.vho)

• Timing file for post-layout simulation (.sdo)

The bitstream file can be found directly in the project directory, whereas the
simulation files are stored in the subdirectory simulation/modelsim. Detailed results
of the compilation and the synthesized circuit are shown in the compilation report
window (Figure 3.13). Carefully inspect all warnings produced during the compi-
lation. A tidy VHDL design should have no critical warnings and also non-critcal
warnings should be resolved whenever possible.

Figure 3.13: Compilation Report.

3.6 Export a Project Tcl Script - Optional

Alternatively to using the Quartus GUI, it is also possible to manage a Quartus
project with a Tcl script. Quartus can generate such a script for an existing project
and include all settings you have made so far. Simply click on the menu item
“Project” ⇒“Generate Tcl File for Project...” and store the script file in the source
directory. The Tcl script can then be executed with the following shell command:

quartus sh -t path/to/script.tcl

3 Synthesis and Place&Route 17

If you execute the above command in an empty directory, a new Quartus project
is created in this directory with all settings as specified by the script. If you execute
the command in a directory where the corresponding project already exists, the
script will simply update the project settings. E.g., if you have modified the pin
assignments in the Tcl script, you can update these settings in the existing project
by executing the script. This can even be done while the project is opened in Quartus
– the new settings will be applied immediately. Listing 2 shows a short code snippet
with some Tcl statements.

1 # use t imeques t
2 s e t g l oba l a s s i gnmen t −name USE TIMEQUEST TIMING ANALYZER ON
3

4 # add p ro j e c t f i l e s
5 s e t g l oba l a s s i gnmen t −name VHDL FILE . . / s r c / subcomp behav.vhd
6 s e t g l oba l a s s i gnmen t −name VHDL FILE . . / s r c / te s t behav .vhd
7 s e t g l oba l a s s i gnmen t −name VHDL FILE . . / s r c /subcomp.vhd
8 s e t g l oba l a s s i gnmen t −name VHDL FILE . . / s r c / t e s t . vhd
9

10 # pin assignments
11 s e t l o c a t i o n a s s i g nmen t PIN M1 −to c l k

Listing 2: Tcl script for managing a Quartus project.

4 Postlayout Simulation 18

4 Postlayout Simulation

Create a new ModelSim project in the post-layout simulation directory as described
in Section 2. But in contrast to the behavioral simulation the only design file you
need to add for a post-layout simulation is the netlist file (.vho). This file is produced
by Quartus during the full compilation and is located in the “simulation/modelsim”
subdirectory of your Quartus project. Furthermore you need to add your testbench
files and the simulation scripts to the ModelSim project. In Figure 4.1 you can see
a simple post-layout simulation project in ModelSim.

Figure 4.1: ModelSim project for a post-layout simulation.

Hit the “Compile all” button to compile the netlist and the testbenches. Then
the simulation can be started with the menu “Simulate” ⇒“Start Simulation...”.

(a) Select testbench name (b) Add timing file

Figure 4.2: Starting the simulation.

As in a behavioral simulation you have to specify the name of the testbench to be
simulated (see Figure 4.2(a)). In case of a post-layout simulation additionally a tim-
ing file (.sdo) should be added. This file is also located in the simulation subdirectory
of your Quartus project. Click the tab “SDF” as illustrated in Figure 4.2(b). and

4 Postlayout Simulation 19

add the timing file to the list of SDF files. It is important to specify the correct region
where the sdo file should be applied to. In most cases the testbench directly insta-
tiates the the top-level entity of the design. Thus the region path would simply be
the instance name of the design’s component in the testbench file. E.g., consider the
code snippet of a testbench shown in listing 3. The instance name is “uut”, therefore
the region path for the timing file needs to be “/uut” (compare Figure 4.2(b)).

1 uut : t e s t
2 port map (
3 c l k => c lk ,
4 r e s e t => r e s e t ,
5 cout => cout) ;

Listing 3: Instantiation of the design unter test.

Adding signals to the waveform viewer and running the simulation for a specified
time works exactly like when doing a behavioral simulation. The only difference is,
that internal signals may have been renamed during the synthesis with Quartus or
even removed due to optimization steps. Therefore it might be necessary to add
debug output ports to the top-level entity and connect the internal signals to these
debug ports. Then the internal signals can be traced using these debug ports.

4.1 Automating Simulation Runs

A post-layout simulation can also be automated very easily with the help of Tcl
scripts. Listing 4 shows a basic sample script.

1 # compile a l l source f i l e s
2 p r o j e c t c omp i l e a l l
3

4 # s t a r t s imu la t ion with t e s t b ench named ” t e s t t b ”
5 vsim −sdftyp / uut=. . / quartus de2−115/ s imu la t i on /modelsim/ t e s t vhd . sdo wo rk . t e s t t b
6

7 # add s i g n a l s to waveform viewer
8 add wave −format l o g i c / t e s t t b /uut/ c l k
9 add wave −format l o g i c / t e s t t b /uut/ r e s e t

10 add wave −format l i t e r a l −radix hex / t e s t t b /uut/ cout
11

12 # run s imu la t ion
13 run 1 us

Listing 4: Tcl script for running a post-layout simulation.

5 Download 20

5 Download

Programming the FPGA can be easily done with the Quartus Programmer, which
is pictured in Figure 5.1. Open the programmer over the menu entry “Tools”
⇒“Programmer” or the corresponding button in the toolbar. Typically all settings
are correct (compare with Figure 5.1) when the window opens and you can simply
start the programming routine by clicking the “Start” button. The bitstream file
(.sof) generated during the compilation is downloaded over a parallel inferface and
stored in the configuration SRAM of the FPGA. Since an SRAM is not a permanent
memory, the configuration data is lost, if the board is disconnected from power. The
FPGA then needs to be reprogrammed.

If the programmer window is not configured correctly or the programming proce-
dure fails, click the button “Auto Detect” to check if the FPGA is properly connected
to your PC. If the FPGA device appears, you can right click on the device symbol
and assign the sof file using the menu item “Change file”. Make sure “Program/-
Configure” is checked and hit “Start” to begin programming.

Figure 5.1: Programming the FPGA.

6 Logic Analyzer 21

6 Logic Analyzer

The configuration of a logic analyzers is basically done in three steps:

• Defining signals, assignment of signals to the corresponding probes of a pod

• Configuration of the sampling mode – timing or state

• Prodiving a trigger condition, which defines when data is captured

Figure 6.1 to Figure 6.3 illustrate how these steps can be accomplished with an
Agilent 16803 logic analyzer. Figure 6.4 shows the main window, which displays
captured waveforms. Simple trigger conditions can be directly entered on the left
side of this window.

Figure 6.1: Signal setup.

Figure 6.2: Sampling setup.

6 Logic Analyzer 22

Figure 6.3: Configuring the trigger condition.

Figure 6.4: Waveform viewer.

	Design Flow
	Directory Structure

	Behavioral Simulation
	Creating a new Project
	Compiling the VHDL Files
	Performing the Simulation
	Automating Simulation Runs

	Synthesis and Place&Route
	Creating a new Project
	Timinig Analyzer
	Pin Mappings
	Adding a PLL (optional)
	Full Compilation
	Export a Project Tcl Script - Optional

	Postlayout Simulation
	Automating Simulation Runs

	Download
	Logic Analyzer

