

Advanced Aspects of Hospital Information Systems

EHR- and related Standards

DI Harald Köstinger (harald.koestinger@inso.tuwien.ac.at)

INSO - Industrial Software Institut für Rechnergestützte Automation | Fakultät für Informatik | Technische Universität Wien

Agenda

- Defacto industry EHR standards and their architectures/implementations
 - HL7 and its revisions
 - v2.x
 - v3
 - CDA
 - RIM
 - CEN EN-13606
 - openEHR
 - the relationship of those standards

and its versions 2, 3, RIM and CDA

HL7 – HEALTH LEVEL 7

Health Level 7

- the standard is being developed by Health Level Seven International, a non-profit organization in the USA
- They are now focusing on providing a framework and related standards for:
 - exchanging, integrating and sharing EHR information
 - and health services for management and evaluation of such information
- Earlier, they focused on defining messaging standards and their interfaces between healthcare enterprises
- Vision: developing the best and most widely used standard in the world

HL7 – Version 2.x

- formally "Application Protocol for Electronic Data Exchange in Healthcare Environments"
- is the "most widely used protocol" for exchanging messages between different health care providers and medical systems
- was not developed systematically and is therefore lacking of consistency but allows big flexibility
- is **NOT** based on any underlying reference model
 - this leads to **inconsistent implementations**
 - → applications exchanging information have to rely on additional agreements in order to ensure interoperability

A. Begoyan. *An overview of interoperability standards for electronic health records*, Integrated Design and Process Technology, June 2007

HL7 – Version 3 and v3 RIM (i)

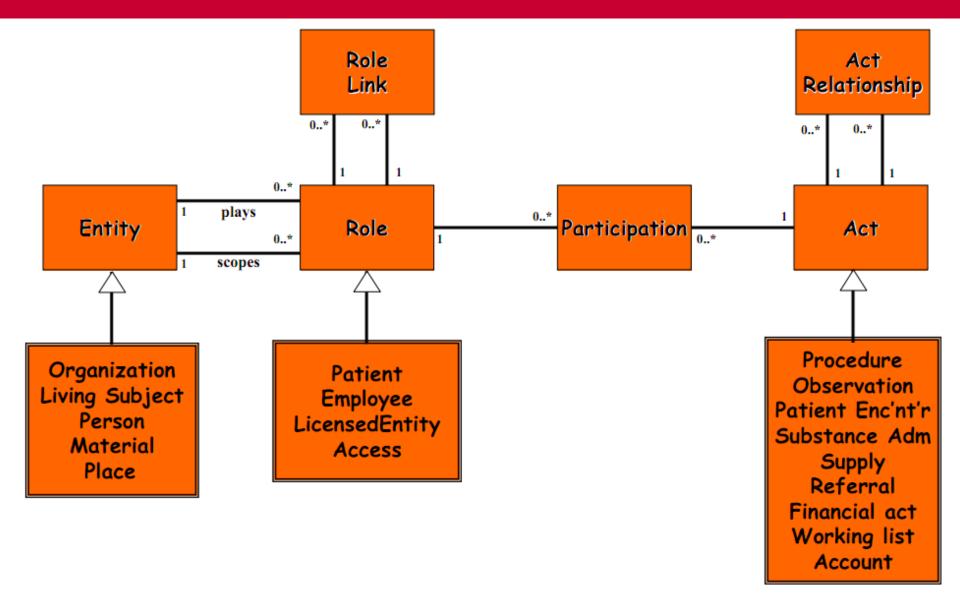
- solves most problems of v2 and comes with new features
- is based on an object-oriented modeling approach resulting in the v3 Message Development Framework
- v3 includes an interoperability specification defining communications produced and received by different computer systems

Key feature of v3 is the newly introduced

Reference Information Model (RIM)

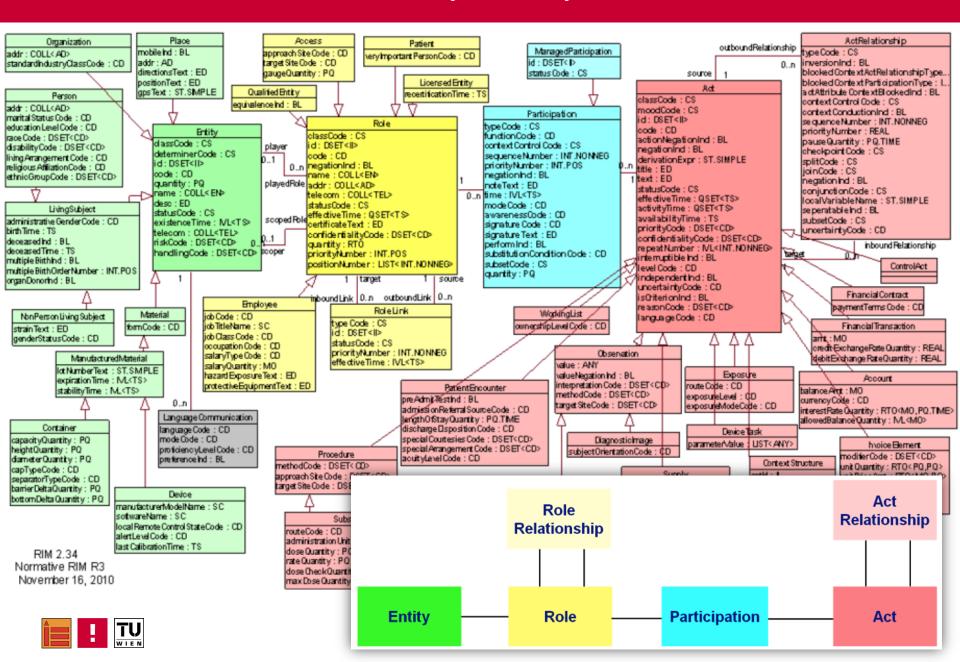
• it is NOT a full specification of an EHR system!

George W Beeler. HL7 Version 3 - An object-oriented methodology for collaborative standards development. International Journal of Medical Informatics, 48(1):151–161, February 1998.


HL7 – Version 3 and v3 RIM (ii)

- the RIM is the object-oriented core of the standard represented as classes and attributes, used by messages defined in the standard
- the RIM is a **one model approach**, meaning:
 - it is defining all classes and their attributes
 - thus not flexible if classes/attributes change over time
 - and it is hard to extend the model itself
 - thus applications are hard to maintain

S. Gaion, S. Mininel, F. Vatta, and W. Ukovich. Design of a domain model for clinical engineering within the HL7 Reference Information Model. Health Care Management (WHCM), 2010 IEEE Workshop, pages 1–6, Feb 2010.


HL7 v3 RIM Core Classes

Introduction to HL7 RIM, Presented by: George W. Beeler, Jr. Health Level Seven, Inc

HL7 v3 RIM Core Classes (Extract)

HL7 – Clinical Document Architecture (CDA) (i)

- in contrast to the aforementioned messaging standards, CDA
 provides medical documents with structure and semantics
- it defines how documents are exchanged by the use of classes from the RIM thus it ensures interoperability
- by the use of **XML schemas**, a CDA document structures as:
 - a *header*, containing information about the identity of the CDA document, the actual subject of care and the involved providers and some more information
 - a *body*, containing the actual report wrapped in sections

• it defines three compliance levels:

• Level 1:

simplest one, requires only a **valid document header** and a body containing any clinical data.

Level 2:

observations and instructions are defined in the header and it **constrains the structure of the document**. It increases interoperability.

• Level 3:

completely structured entries and full compliance to the RIM. Validation against the schemas is performed.

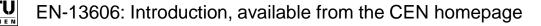
→ Advantage: the implementer can choose the "amount" of implementing the standard

HL7 CDA Sample document

```
<ClinicalDocument>
  ... CDA Header ...
 <structuredBody>
   <section>
     <text>(a.k.a. "narrative block")</text>
     <observation>...</observation>
     <substanceAdministration>
       <supply>...</supply>
     </substanceAdministration>
     <observation>
       <externalObservation>...
       </externalObservation>
     </observation>
   </section>
                      <section>
   <section>
                        <code code="8716-3" codeSystem="2.16.840.1.113883.6.1"
       <section>...</s
                         codeSystemName="LOINC"/>
   </section>
                        <title>Vital Signs</title>
  </structuredBody>
</ClinicalDocument>
                        <text>Temperature is 36.9 C</text>
                        <entry>
                          <observation classCode="OBS" moodCode="EVN">
                            <code code="386725007" codeSystem="2.16.840.1.113883.6.96"
                              codeSystemName="SNOMED CT" displayName="Body temperature"/>
                            <statusCode code="completed"/>
                            <effectiveTime value="200004071430"/>
                             <value xsi:type="PQ" value="36.9" unit="Cel"/>
                          </observation>
                        </entry>
                      </section>
```


Robert H Dolin, Liora Alschuler, Sandy Boyer, Calvin Beebe, Fred M Behlen, Paul V Biron, and Amnon Shabo. HL7 Clinical Document Architecture, Release 2. Journal of the American Medical Informatics Association, 13(1):30–39, Jan / Feb 2006.

CEN EN-13606


The European approach

CEN EN-13606 – "One standard to rule them all..."

- first official version published in 1999-2000
- the pre-standard was hard to implement → 2006 release of full standard
- " ... designed to achieve semantic interoperability in the electronic health record communication"
- → not a full standard for EHR systems: specification for EHR extracts only

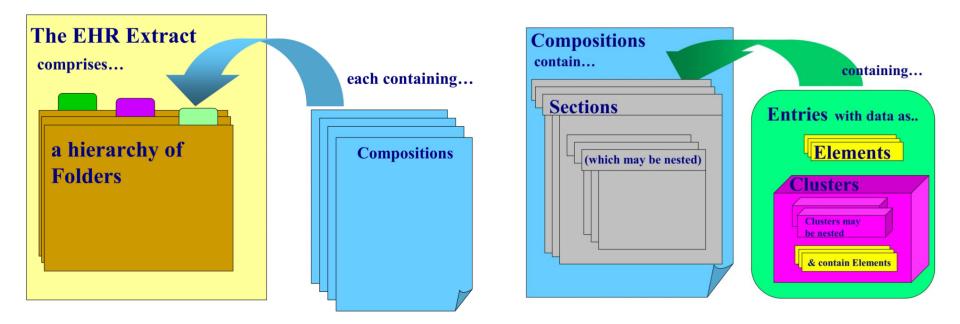
"The overall goal of this standard is to define a **rigorous and stable information architecture for communicating** part or all of the electronic health record (EHR) of a single subject of care (patient). This is to support the **interoperability** of systems and components that need to communicate (access, transfer, add or modify) EHR data via electronic messages or as distributed objects:

- preserving the original clinical meaning intended by the author,
- reflecting the confidentiality of that data as intended by the author and patient."

CEN EN-13606: Dual Model Architecture

- defines a separation between information on the one hand and knowledge on the other hand
 - Information: the actual information about a certain case which is stored in basic entities build and structured through the Reference Model (RM)
 - Knowledge: based on so called archetypes, knowledge is the formal representation of the clinical concepts. e.g. a glucose measurement, a family history, etc.. Archetypes are built by the formal and structured valid and constrained combinations of entities of the RM using the Archetype Model (AM). (somehow a semantic meaning for the RM)

(more on this at the openEHR standard)


CEN EN-13606: Parts of the standard

- Part 1: Reference Model:
 Scalable generic information model used to communicate the actual health information of any patient. (generic building blocks for EHRs)
- Part 2: Archetypes Interchange Specification: Definitions of archetypes and their language. Definitions for constraints and legal combinations of RM objects.
- Part 3: Reference Archetypes and Term Lists: Basic set of standard archetypes and terms. Data objects for describing rules for distributing EHRs.
- Part 4: Security: Suitable interaction with security components, data safety, …
- Part 5: Messages for Exchange / Exchange Models: basics for the message based communication (under development)

CEN EN-13606: EHR Extract Record Hierarchy

- mostly reflects the structure and organization of files and medical records in the original documents
- sub-elements may have simple or complex inner structure

And now: the openEHR Foundation

OPENEHR

- is being developed by
 - the openEHR Foundation: independent, non-profit organization and community founded in 2000 by OceanInformatics
 - and the University College London (UCL)
- "the most complete and validated EHR architecture worldwide"
- Aims:

"an **open**, **interoperable** health computing platform, of which a major component is a **clinically effective and interoperable** electronic health care record (EHR)"

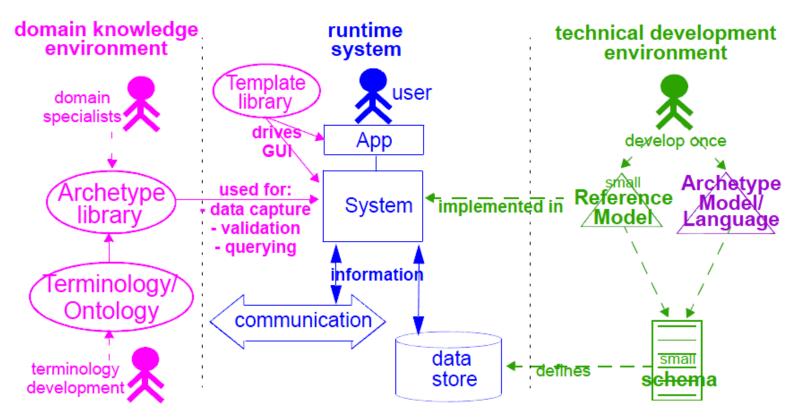
openEHR: Requirements (i)

- recording *clinical information*, workflow-based instructions, imaging data, diagnoses and many more
- archetype- and template-enabling of all clinical systems, allowing professionals to actually define and model clinical content, the semantics and user-interfaces → two model approach
- supporting terminology systems to integrate, such as the Systematized Nomenclature of Medicine – Clinical Terms (SNOMED-CT), International Classification of Diseases (ICD), Logical Observation Identifiers Names and Codes (LOINC)

P. Schloeffel, S. Heard, D. Kalra, D. Lloyd, and T. Beale. OpenEHR – Introducing openEHR, 2006.

openEHR: Requirements (ii)

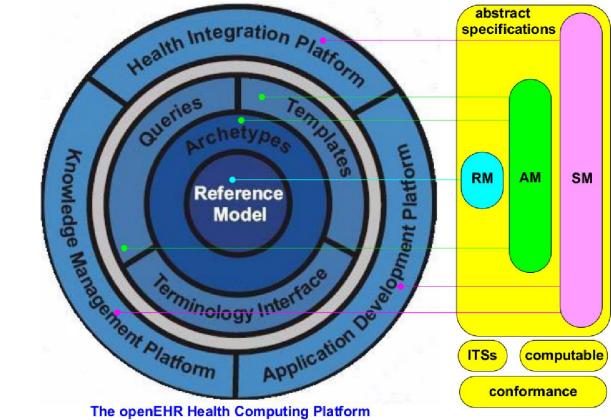
- allowing the systems to be able to communicate via messaging systems such as HL7v2 or Electronic Data Interchange For Administration, Commerce and Transport (EDIFACT) → interoperability!
- making it easier to integrate with an existing Hospital
 Information System (HIS) → open and defined interfaces
- providing an Application Programming Interface (API)
- allowing of distributed versioning of EHR data

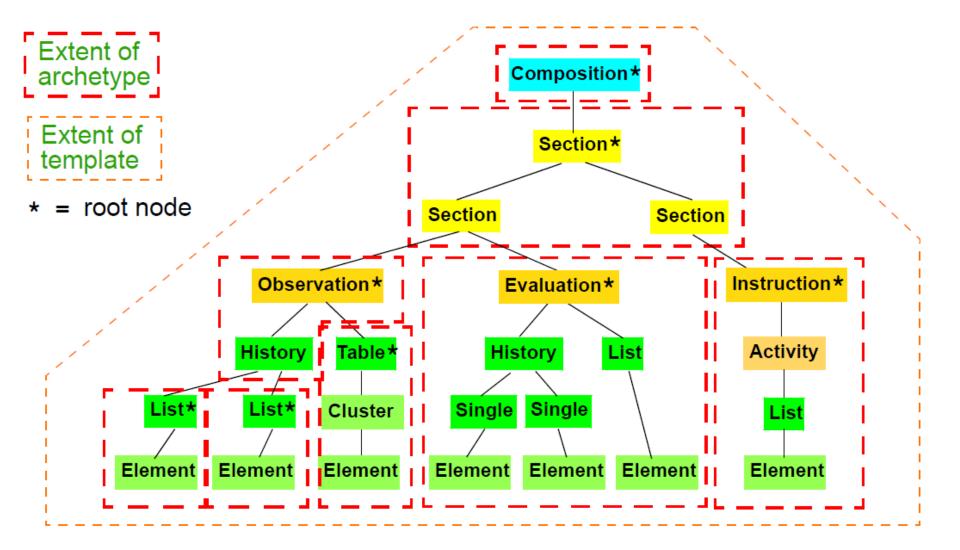


P. Schloeffel, S. Heard, D. Kalra, D. Lloyd, and T. Beale. OpenEHR – Introducing openEHR, 2006.

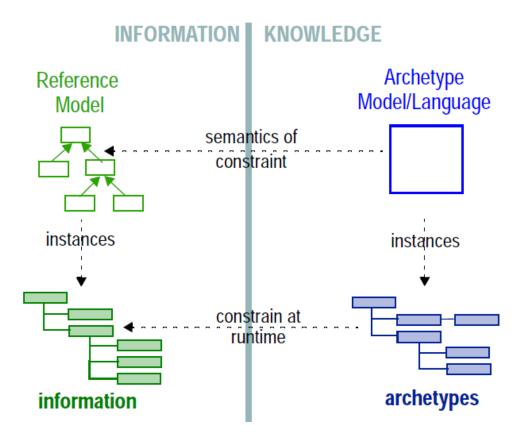
openEHR: The Approach

 same as for the EN-13606, openEHR uses a two-model approach, the "two level methodology"

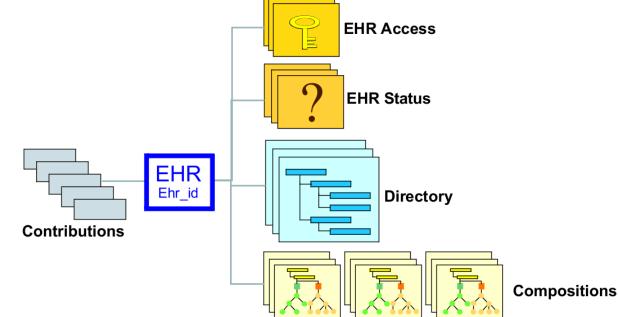

(in fact, the CEN EN-13606 is a **complete subset** of the openEHR standard)


openEHR: Architecture Overview

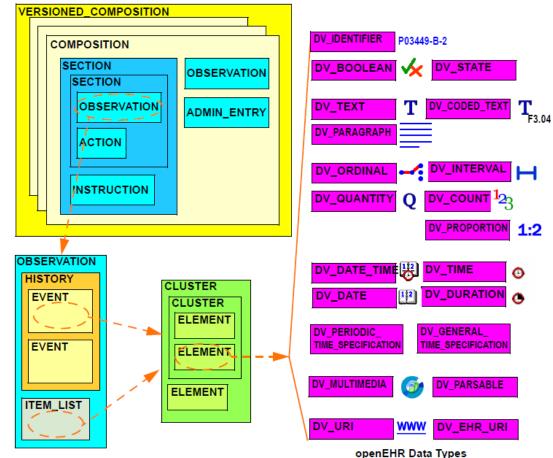
Based on the RM in the middle, openEHR is built upon archetypes constructed using the **Archetype Model (AM)**. Integration with other systems is done within the **Service Model (SM)**.


Relation of Archetypes and Templates

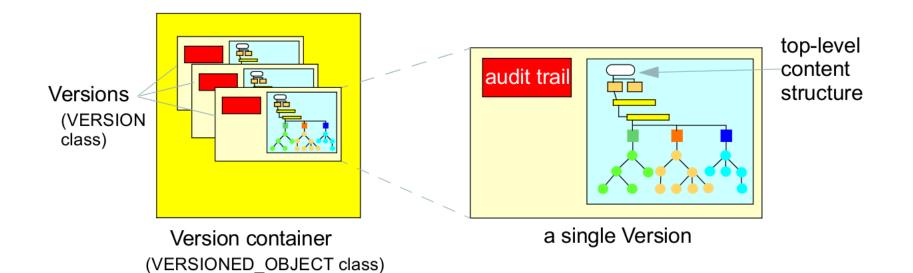
openEHR: the Software Engineering View

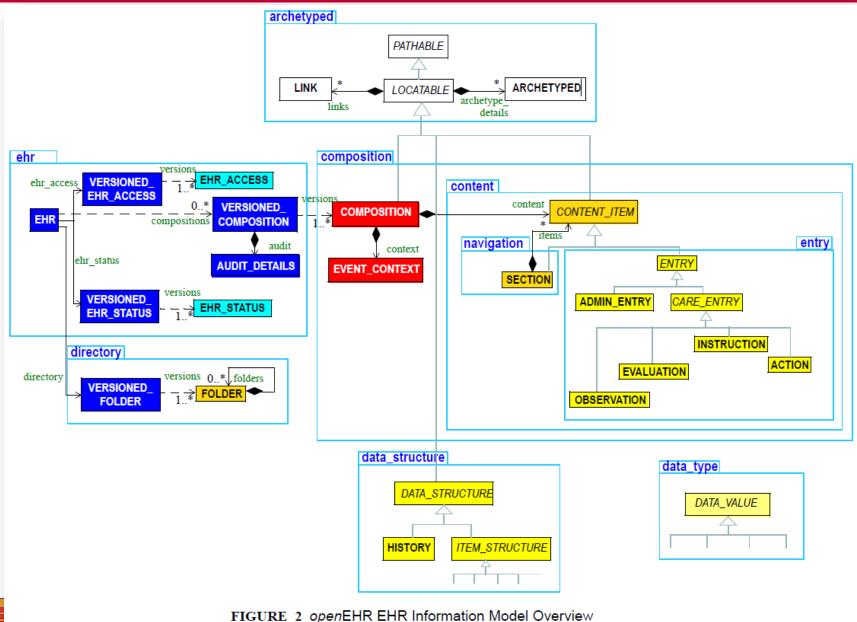

- by the use of the RM one can build instances for information
- the AM provides semantics and constraints for the RM
- the AM enables to build instances of archetypes

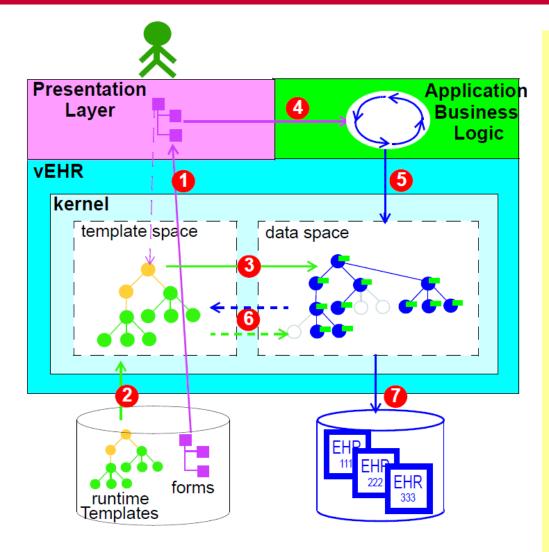
openEHR: the EHR Design (i)


- Center piece of the openEHR design is the EHR class itself, having assigned a unique EHR_ID
- openEHR as well uses Compositions to store the actual information
- other classes are stored to enable security, versioning and workflow information as well as a hierarchical arrangement of information

openEHR: the EHR Design (ii)


- information in openEHR is ALWAYS versioned!
- Compositions consist of sections which contain the actual information in form of
 - Actions
 - Evaluations
 - Observations
 - Instructions
 - and Admin entries
- they then store the inner structure and the single data items using the openEHR data types


openEHR: Versioning


- content is versioned throughout the whole life-time of a record!
- it is an integral part of the architecture
- one of the most important features of EHRs in the field of medical information documentation!

The openEHR Information Model (IM)

Legend

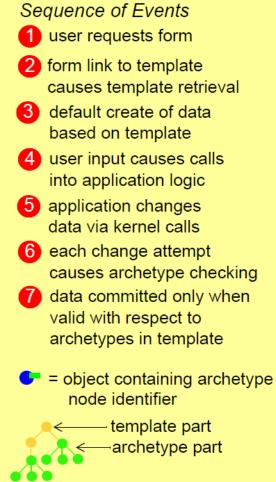
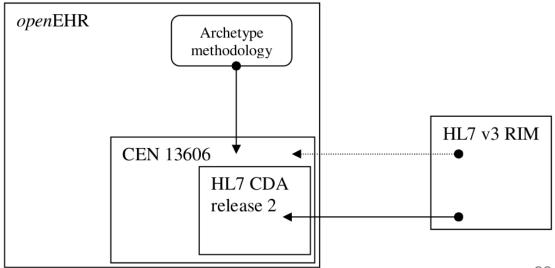


FIGURE 33 Templated Archetypes at Runtime


Demonstration

- the Clinical Knowledge Manager <u>http://www.openehr.org/knowledge/</u>
 - Entry Observation Archetype: Blood Pressure
 - what is and how does ADL look like?
 - how is an archetype defined?
 - Templates: Compositions
 - how does a template include archetypes?
 - how are constraints defined on archetypes?

The Relationships of Standards

- openEHR is the most influencing standard
- with the introduced archetype methodology, CEN and openEHR build upon a flexible two-level approach
- EHR extracts of CEN and openEHR can be transformed into CDA documents
- information being present as HL7 v3 RIM can be transformed into CEN and CDA data, but not vice-versa

Sources and References

- HL7 and related:
 - <u>http://www.hl7.org/</u> (10/2011)
 - http://www.hl7standards.com/, http://hl7book.net
- CEN EN-13606 (standard is available in the TU Library network for free)
 - <u>http://www.cen.eu</u>, <u>http://www.en13606.org/</u> (10/2011)
- openEHR: all figures about it and cites (all specifications are available online for free)
 - <u>http://www.openehr.org</u> (10/2011)

