
Quality Requirements,

Requirements and Architecture

2017-12-14

1

Requirements Engineering and Specification, WT 2017: Paul Grünbacher / Fritz Stallinger

Outline

Quality Requirements, Requirements and Architecture

 Introduction (Requirements vs. Architecture; Definitions)

 Non-functional Requirements

 Component-Bus-System-Property Approach

 Quality Requirements and Architecture: Quality Attribute

Workshop

 Optional: Quality Requirements – A New Look at an Old

Problem (Martin Glinz)

 Exercise 4: Architectural Drivers and Requirements

2

Introduction

Requirements and Architectures

3

Twin Peaks Model

Bashar Nuseibeh. "Weaving Together Requirements and Architectures," Computer, vol. 34, no. 3, pp. 115-117, Mar. 2001,

doi:10.1109/2.910904

http://doi.ieeecomputersociety.org/10.1109/2.910904

Introduction

Problem and Solution Structures

 Development process constructs:

 Problem structures (requirements)

 Solution structures (architecture)

 For large systems that develop and evolve:

 there is often a discontinuity between the two structures ...

 ... leading to poor traceability of design decisions back to

requirements, and inadequate change impact analysis

4 © Bashar Nuseibeh, The Open University, 2001

Introduction

Requirements vs. Architectures

 Requirements

 Denote stakeholder

goals and

expectations

 Expressed in the

vocabulary of the

problem world

 Can conflict and

change

 Architectures

 Denote systems’

structure

 Expressed in terms of

components and inter-

connections in the

solution world

 Should be stable and

robust

© Bashar Nuseibeh, The Open University, 2001

5

Introduction

http://prof.so, May 27, 2012 -- (c) Anthony Finkelstein

6

Introduction

Traceability Mandated by Standards

ISO/IEC 15504 Process Assessment („SPICE“)

7

Introduction

Challenge: Bridging Requirements & Architecture

 How can we refine the

requirements into an

architecture?

 How can we map new

requirements to existing

architectural elements?

 How can we deal with both

functional and non-functional

aspects?

 How can we explore and assess

architectural options to provide

feedback to requirements?

 How can we find additional

requirements?

Bashar Nuseibeh, “Weaving together requirements and architecture.”

IEEE Computer, 34(3), 2001, pages 115–119.

The Twin Peaks Model

8

Introduction

Architecture Definitions (1/2)

 "The set of structures needed to reason about the system, which

comprises software elements, relations among them, and properties of

both."
[Documenting Software Architectures: Views and Beyond (2nd Edition), Clements et al, Addison-Wesley, 2010]

 "The software architecture of a program or computing system is the

structure or structures of the system, which comprise software

elements, the externally visible properties of those elements, and the

relationships among them."
[Software Architecture in Practice (2nd edition), Bass, Clements, Kazman; Addison-Wesley, 2003]

 "... the fundamental organization of a system, embodied in its

components, their relationships to each other and the environment,

and the principles governing its design and evolution."
[ANSI/IEEE Std 1471-2000, Recommended Practice for Architectural Description of Software-Intensive Systems]

[http://www.sei.cmu.edu/architecture/start/glossary/{classicdefs | moderndefs | community}.cfm]

9

Introduction

Architecture Definitions (2/2)

 A software system architecture comprises: (1) A collection of software

and system components, connections, and constraints. (2) A collection

of system stakeholders' need statements. (3) A rationale which

demonstrates that the components, connections, and constraints

define a system that, if implemented, would satisfy the collection of

system stakeholders' need statements.
[Boehm, et al., 1995]

 "A software architecture is the assignment of specific transformations

that are applied to convert a purely logical model of a system that

satisfies all functional requirements into a model of a system that

satisfies both functional and non-functional requirements."
[Charles Martin,Senior Software Architect, Sun Professional Services, New York, NY]

 "A configurable skeleton of any kind of software beast on which you

hang implementation specific muscle to make it live."
[Adu Matthaeus, Systems Architect, Eikon, Centurion South Africa]

[http://www.sei.cmu.edu/architecture/start/glossary/{classicdefs | moderndefs | community}.cfm]

10

Introduction

Non-functional Requirements: Definitions

 "A non-functional requirement is an attribute of or a constraint on a system."

[Glinz 2007]

 "... global requirements on its development or operational cost, performance,

reliability, maintainability, portability, robustness, and the like. (...) There is not

a formal definition or a complete list of nonfunctional requirements."
[Mylopoulos et al. 1992]

 "A description of a property or characteristic that a software system must

exhibit or a constraint that it must respect, other than an observable system

behavior." [Wiegers 2003]

"Software quality is the degree to which software possesses a desired

combination of attributes (e.g., reliability, interoperability)." [IEEE 061-1992]

11

Outline

Quality Requirements, Requirements and Architecture

 Introduction (Requirements vs. Architecture; Definitions)

 Non-functional Requirements

 Component-Bus-System-Property Approach

 Quality Requirements and Architecture: Quality Attribute

Workshop

 Optional: Quality Requirements – A New Look at an Old

Problem (Martin Glinz)

 Exercise 4: Architectural Drivers and Requirements

12

Non-functional Requirements

Definitions

 "A non-functional requirement is an attribute of or a constraint on a

system."

[Glinz 2007]

 "... global requirements on its development or operational cost,

performance, reliability, maintainability, portability, robustness, and the

like. (...) There is not a formal definition or a complete list of

nonfunctional requirements."
[Mylopoulos et al. 1992]

 "A description of a property or characteristic that a software system

must exhibit or a constraint that it must respect, other than an

observable system behavior." [Wiegers 2003]

13

Non-functional Requirements

NFR-Categories according Chung

14

Non-functional Requirements

NFR-Categories according McCall

15

Non-functional Requirements

NFR-Categories according Boehm

16

Non-functional Requirements

NFR-Categories according Grady

17

Non-functional Requirements

NFR-Types according IEEE-Std 830

‘IEEE-Std 830 - 1993’ lists 13 non-functional requirements to be

included in a Software Requirements Document:

 Performance requirements

 Interface requirements

 Operational requirements

 Resource requirements

 Verification requirements

 Acceptance requirements

 Documentation requirements

 Security requirements

 Portability requirements

 Quality requirements

 Reliability requirements

 Maintainability requirements

 Safety requirements [Cremers and Alda 2006]

18

Non-functional Requirements

ISO/IEC 25010: Product Quality - Overview

19

Quality in the Product Life Cycle

[ISO/IEC 25010: Systems and software engineering – Systems and software Quality

Requirements and Evaluation (SQuaRE) – Systems and software quality models]

ISO/IEC 25010: Systems and software engineering – Systems and software

Quality Requirements and Evaluation (SQuaRE) – Systems and software

quality models

Non-functional Requirements

ISO/IEC 25010: System/Software Product Quality

20

Non-functional Requirements

ISO/IEC 25010: Product Quality – Def.s (1/4)

 Functional suitability: degree to which a product or system provides

functions that meet stated and implied needs when used under specified

conditions

 Functional completeness: degree to which the set of functions covers all the specified tasks

and user objectives

 Functional correctness: degree to which a product or system provides the correct results with

the needed degree of precision

 Functional appropriateness: degree to which the functions facilitate the accomplishment of

specified tasks and objectives

 Performance efficiency: performance relative to the amount of resources

used under stated conditions

 Time behaviour: degree to which the response and processing times and throughput rates of a

product or system, when performing its functions, meet requirements

 Resource utilization: degree to which the amounts and types of resources used by a product or

system when performing its functions, meet requirements

 Capacity: degree to which the maximum limits of a product or system parameter meet

requirements

21

Non-functional Requirements

ISO/IEC 25010: Product Quality – Def.s (2/4)

 Compatibility: degree to which a product, system or component can exchange

information with other products, systems or components, and/or perform its required

functions, while sharing the same hardware or software environment

 Co-existence: degree to which a product can perform its required functions efficiently while sharing a common

environment and resources with other products, without detrimental impact on any other product

 Interoperability: degree to which two or more systems, products or components can exchange information and

use the information that has been exchanged

 Usability: degree to which a product or system can be used by specified users to

achieve specified goals with effectiveness, efficiency and satisfaction in a specified

context of use

 Appropriateness recognizability: degree to which users can recognize whether a product or system is

appropriate for their needs

 Learnability: degree to which a product or system can be used by specified users to achieve specified goals of

learning to use the product or system with effectiveness, efficiency, freedom from risk and satisfaction in a

specified context of use

 Operability: degree to which a product or system has attributes that make it easy to operate and control

 User error protection: degree to which a system protects users against making errors

 User interface aesthetics: degree to which a user interface enables pleasing and satisfying interaction for the

user

 Accessibility: degree to which a product or system can be used by people with the widest range of

characteristics and capabilities to achieve a specified goal in a specified context of use

22

Non-functional Requirements

ISO/IEC 25010: Product Quality – Def.s (3/4)

 Reliability: degree to which a system, product or component performs specified

functions under specified conditions for a specified period of time

 Maturity: degree to which a system meets needs for reliability under normal operation

 Availability: degree to which a system, product or component is operational and accessible when required for

use

 Fault tolerance: degree to which a system, product or component operates as intended despite the presence of

hardware or software faults

 Recoverability: degree to which, in the event of an interruption or a failure, a product or system can recover the

data directly affected and re-establish the desired state of the system

 Security: degree to which a product or system protects information and data so that

persons or other products or systems have the degree of data access appropriate to

their types and levels of authorization

 Confidentiality: degree to which a product or system ensures that data are accessible only to those authorized

to have access

 Integrity: degree to which a system, product or component prevents unauthorized access to, or modification of,

computer programs or data

 Non-repudiation: degree to which actions or events can be proven to have taken place, so that the events or

actions cannot be repudiated later

 Accountability: degree to which the actions of an entity can be traced uniquely to the entity

 Authenticity: degree to which the identity of a subject or resource can be proved to be the one claimed

23

Non-functional Requirements

ISO/IEC 25010: Product Quality – Def.s (4/4)

 Maintainability: degree of effectiveness and efficiency with which a product or system

can be modified by the intended maintainers

 Modularity: degree to which a system or computer program is composed of discrete components such that a

change to one component has minimal impact on other components

 Reusability: degree to which an asset can be used in more than one system, or in building other assets

 Analysability: degree of effectiveness and efficiency with which it is possible to assess the impact on a product

or system of an intended change to one or more of its parts, or to diagnose a product for deficiencies or causes

of failures, or to identify parts to be modified

 Modifiability: degree to which a product or system can be effectively and efficiently modified without introducing

defects or degrading existing product quality

 Testability: degree of effectiveness and efficiency with which test criteria can be established for a system,

product or component and tests can be performed to determine whether those criteria have been met

 Portability: degree of effectiveness and efficiency with which a system, product or

component can be transferred from one hardware, software or other operational or

usage environment to another

 Adaptability: degree to which a product or system can effectively and efficiently be adapted for different or

evolving hardware, software or other operational or usage environments

 Installability: degree of effectiveness and efficiency with which a product or system can be successfully installed

and/or uninstalled in a specified environment

 Replaceability: degree to which a product can be replaced by another specified software product for the same

purpose in the same environment

24

ISO/IEC 25010: Systems and software engineering – Systems and software

Quality Requirements and Evaluation (SQuaRE) – Systems and software

quality models

Non-functional Requirements

ISO/IEC 25010: Quality in Use

25

Non-functional Requirements

ISO/IEC 25010: Quality in Use – Def.s (1/2)

 Effectiveness: accuracy and completeness with which users achieve

specified goals

 Efficiency: resources expended in relation to the accuracy and

completeness with which users achieve goals

 Satisfaction: degree to which user needs are satisfied when a product

or system is used in a specified context of use
 Usefulness: degree to which a user is satisfied with their perceived

achievement of pragmatic goals, including the results of use and the

consequences of use

 Trust: degree to which a user or other stakeholder has confidence that a

product or system will behave as intended

 Pleasure: degree to which a user obtains pleasure from fulfilling their

personal needs

 Comfort: degree to which the user is satisfied with physical comfort

26

Non-functional Requirements

ISO/IEC 25010: Quality in Use – Def.s (2/2)

 Freedom from risk: degree to which a product or system mitigates the

potential risk to economic status, human life, health, or the environment

 Economic risk mitigation: degree to which a product or system mitigates the

potential risk to financial status, efficient operation, commercial property, reputation

or other resources in the intended contexts of use

 Health and safety risk mitigation: degree to which a product or system mitigates

the potential risk to people in the intended contexts of use

 Environmental risk mitigation: degree to which a product or system mitigates the

potential risk to property or the environment in the intended contexts of use

 Context coverage: degree to which a product or system can be used with

effectiveness, efficiency, freedom from risk and satisfaction in both specified

contexts of use and in contexts beyond those initially explicitly identified

 Context completeness: degree to which a product or system can be used with

effectiveness, efficiency, freedom from risk and satisfaction in all the specified

contexts of use

 Flexibility degree to which a product or system can be used with effectiveness,

efficiency, freedom from risk and satisfaction in contexts beyond those initially

specified in the requirements

27

Outline

Quality Requirements, Requirements and Architecture

 Introduction (Requirements vs. Architecture; Definitions)

 Non-functional Requirements

 Component-Bus-System-Property Approach

 Quality Requirements and Architecture: Quality Attribute

Workshop

 Optional: Quality Requirements – A New Look at an Old

Problem (Martin Glinz)

 Exercise 4: Architectural Drivers and Requirements

28

Component-Bus-System-Property Approach (CBSP)

CBSP Resources

H. Vogl, K. Lehner, P. Grünbacher, A. Egyed, "Reconciling Requirements

and Architectures: Using the CBSP approach in an iPhone App Project",

In: Proc. 19th IEEE Int'l Requirements Engineering Conference (RE 2011),

IEEE Computer Society, Trento, Italy, pp. 273-278, 2011.

P. Grünbacher, A. Egyed, N. Medvidovic, "Reconciling software

requirements and architectures with intermediate models", In: Software

and Systems Modeling, vol. 3, no. 3, pp. 235-253, 2004.

29

Component-Bus-System-Property Approach (CBSP)

Example: Catalysts taskmind App Project

 Create and share todo lists with team

 Organize tasks in projects

 Schedule tasks

 Group tasks

 Chat about tasks

 History and Documentation

www.taskmind.net

〜7000 users

〜3,000 projects

〜85,000 tasks and appointments

〜230 KLOC

Develop iPhone and iPad client for existing desktop and web products

30

 iOS App and platform extensions

 〜30,000 Lines of Code

(Platform: 〜18,000, iOS/UI: 〜12,000)

 〜300 App Store downloads per week

 taskmind App available for Android and Windows Phone

Component-Bus-System-Property Approach (CBSP)

taskmind Requirements

Examples

• F1. Login with existing account

• F27. View news and daily journal in

offline mode

• …

• N7. Synchronization rate 20 seconds

• N8. App startup time maximum 2

seconds

• N15. Minimize amount of data transfer

• …

 Elicited 29 (F)unctional

and 25 (N)on-functional

requirements using

Persona Profiles [1] and

Scenario-based RE [2]

 Documented using the

Volere Template [3]

[1] M. Aoyama. Persona-and-Scenario Based Requirements Engineering for Software Embedded in Digital

 Consumer Products. IEEE Int’l Conference on Requirements Engineering, pages 85–94, 2005.

[2] N. Seyff, N. Maiden, K. Karlsen, J. Lockerbie, P. Grünbacher, F. Graf, and C. Ncube. Exploring how to use

 scenarios to discover requirements. Requir. Eng., 14:91–111, April 2009.

[3] S. Robertson and J. Robertson. Mastering the Requirements Process (2nd Edition). Addison-Wesley

 Professional, 2006.

31

Component-Bus-System-Property Approach (CBSP)

Adaption and Extension of Existing Architecture

32

Component-Bus-System-Property Approach (CBSP)

Software Architecture Foundations

 Architectural Elements
 processing elements (perform transformation on data elements)

 data elements (contain the information that is used and

transformed)

 connecting elements (the glue that holds the different pieces of

the architecture together; e.g., procedure calls, shared data,

messages)

 Form

 Weighted properties and relationships

• Properties define constraints on the elements

• Relationships constrain the “placement” of architectural elements

 Rationale

 Motivation for the various choices made

D.E. Perry and A.L. Wolf. Foundations for the Study of Software Architecture. ACM SIGSOFT Software Engineering

Notes, 17:4 (October 1992).

33

Component-Bus-System-Property Approach (CBSP)

Rationale and Overall Approach

 A simple process for relating requirements and

architectures

 Requirements explicitly or implicitly contain

architecturally relevant information

 Use simple taxonomy to bring forth this

information

 Classify and refine requirements according to

taxonomy

34

Component-Bus-System-Property Approach (CBSP)

CBSP Elements (1/2)

 C: Components (Cd: data comp., Cp: processing comp.)

 F11: Editing Tasks, F…

 Cd: Data for tasks

 F12-13: Different task states

 Cp: State transition component

 B: Buses (i.e., connectors)

 F1: Login with existing user, F…

 B: Communication protocol

 F26: Synchronize offline items when online again

 B: Connector between offline component and file system

 S: (Sub-)Systems

 F4-6: List tasks per contact, project, …

 S: Strict separation of data and visualization

35

Component-Bus-System-Property Approach (CBSP)

CBSP Elements (2/2)

 CP: Component Property

N7: Synchronization rate 20 seconds

 Cp: Data refresh component

 CP: Maximum delay of 20 seconds

 BP: Bus Property

N15: Minimize amount of data transfer

 B: communication protocol

 BP: small amount of data

 SP: System Property

N25: Secure transfer and storage

 SP: data must be securely transferred and stored

 N27: Offline task support

 Cd: Data for tasks

 CP: persistent

36

Component-Bus-System-Property Approach (CBSP)

taskmind CBSP Model

 Metrics

 12 C (6 Cd, 6 Cp)

 25 CP

 3 B

 6 BP

 3 S

 2 SP

 How can we find

adequate

architectural styles?

37

Component-Bus-System-Property Approach (CBSP)

Assessing Architectural Options

 Ad-hoc definition of pro’s and con’s of architectural

options that fit CBSP elements often too complex

What is the most adequate architectural option?

 Assess important goals and metrics

 e.g. using Goal-Question-Metric Approach (GQM)

 Example Requirements:

 Minimize amount of data transfer

 Startup within 2 seconds

 B: communication protocol,…

 BP: small amount of data, fast processing

38

Component-Bus-System-Property Approach (CBSP)

Goal-Question-Metric Approach (GQM)

Basili V.R., Caldiera G.,
Rombach H.D., Goal
Question Metric
Paradigm, In: J. J.
Marciniak (ed.),
Encyclopedia of
Software Engineering 1,
New York: John Wiley &
Sons, pp. 528-532,
1994.

39

Component-Bus-System-Property Approach (CBSP)

Goal-Question-Metric Model

Goals Questions Metric

Purpose: Compare

Issue: Amount of data

Object: Different data

formats for persisting of

data objects

Viewpoint: Software

architect

Differences with respect to

the amount of data?

Data that needs to be

transferred (in bytes).

Purpose: Compare

Issue: Performance

Object: Different data

formats for persisting of

data objects

Viewpoint: Software

architect

Differences with respect to

serialization and

deserialization time?

Time for (de-) serializing

objects (in ms).

40

Component-Bus-System-Property Approach (CBSP)

Assessing Architectural Options: CBSP and GQM

Feedback to requirements regarding feasibility

Data format Bytes
transferred

Serialize (ms)
(Run 1/2/3)

Deserialize (ms)
(Run 1/2/3)

Custom (binary) 360,504 114.8
116.4
135.9

209.5
209.5
184.2

Hessian (binary) 950,696 1171.6
1,150.1
1,158.4

4,284.4
4,280.2
4,254.9

JSON (text) 766,001 2,015.1
1,959.7
1,992.5

4,619.5
4,328.4
4,797.9

XML (text) 1,250,081 3,778.2
3,819.1
3,796.7

6,128.8
6,101.8
6,098.6

Requirement: Minimize amount of data transfer

 B: communication protocol

 BP: small amount of data

GQM suggests new

architectural component to

support custom format

N8. App startup

time maximum

2 seconds

41

Component-Bus-System-Property Approach (CBSP)

Relating the CBSP Model to the Architecture

CBSP Elements Architecture Component

M1_Cd: data for users, M4_Cd: data for tasks,
M5_Cd: data for appointments, M6_Cd: data for
lists, M9_Cd: data for projects, M10_Cd: data for
tags, M12_Cd: data for change history and notes

Data Objects

M7_Cp: management component, M8_S: strict
separation of data and visualization

Proxies

M11_Cp: task state transition component State Machine

M2_B: query service Services

M2_BP: lazy loading, M3_BP: small amount of data Input Handler, Output Handler

M3_B: communication protocol Communication Protocol

M13_Cp: Switch between offline and online mode,
M14_Cp: Offline component, M15_B: Connection
between offline component and file system

Offline Management

M16_Cp: data refresh component Auto-Update

M17_S: low power consumption, M18_S: attention
on simple portability

System wide feature affecting all
components

42

Component-Bus-System-Property Approach (CBSP)

Group Discussion

 Discuss in groups the aspects of using the CBSP approach

in practice

 Try to answer the following questions:

 Do you regard the application of the CBSP approach in practice as:

• Highly feasible

• Satisfactorily feasible

• Rather infeasible

• Not feasible at all

 What do you think are the main inhibitors and drawbacks of

applying the CBSP approach in practice?

43

Component-Bus-System-Property Approach (CBSP)

Lessons Learned

 Use of CBSP dimensions

 Lightweight methodology

 Improved traceability between requirements and architecture

 CBSP in the presence of an existing architecture

 Also suitable for evolving an existing architecture

 Identifying CBSP elements led to identify necessary changes of the original

architecture

 Understanding architectural options

 More CBSP properties than non-functional requirements

 CBSP and GQM are a good fit

 Flexibility with respect to the choice of requirements elicitation method

 Personas and scenario walkthroughs provided good input

 CBSP helps to complete the requirements

 CBSP tool support and visualization

 Lack of support for visualizing CBSP elements and relationships

 Maintaining the CBSP model is also cumbersome

44

Outline

Quality Requirements, Requirements and Architecture

 Introduction (Requirements vs. Architecture; Definitions)

 Non-functional Requirements

 Component-Bus-System-Property Approach

 Quality Requirements and Architecture: Quality

Attribute Workshop

 Optional: Quality Requirements – A New Look at an Old

Problem (Martin Glinz)

 Exercise 4: Architectural Drivers and Requirements

45

Quality Attribute Workshop

Quality Attribute Workshop (QAW) - Overview

 Quality Attribute Workshop, 3rd Edition:

 “... method that engages system stakeholders early in

the life cycle to discover the driving quality attributes of

a software-intensive system. The QAW [...] provides a

way to identify important quality attributes and clarify

system requirements before the software architecture

has been created."

 Scope:

 Creation of prioritized and refined scenarios

M. R. Barbacci, R. Ellison, A. J. Lattanze, J. A. Stafford, C. B. Weinstock, W. G. Wood, Quality Attribute Workshops

(QAWs), Third Edition, August 2003, TECHNICAL REPORT, CMU/SEI-2003-TR-016, ESC-TR-2003-016

46

Quality Attribute Workshop

Results and Use of Results

 QAW Results

 List of architectural drivers

 Prioritized list of raw scenarios

 Refined scenarios

 Results can be used to ...

 Update architectural vision

 Refine system and software requirements

 Guide the development of prototypes

 Exercise simulations

 Understand and clarify the system’s architectural drivers

 Influence the order in which the architecture is developed

 Describe the operation of a system

47

Quality Attribute Workshop

QAW Method Steps

 Step 1: QAW Presentation and Introductions

 Step 2: Business/Mission Presentation

 Step 3: Architectural Plan Presentation

 Step 4: Identification of Architectural Drivers

 Step 5: Scenario Brainstorming

 Step 6: Scenario Consolidation

 Step 7: Scenario Prioritization

 Step 8: Scenario Refinement

QAW
Architectural Plan

Business Drivers

Business Goals

Scenarios

Prioritized and refined Scenarios

Analysts‘ Team

Stakeholders

48

Quality Attribute Workshop

Step 1: QAW Presentation and Introductions

 Moderator / Moderator Team presents motivation for the workshop

 Moderator explains method steps

 Introduction of stakeholders

 Role within organization

 Relationship to system under development

 Typical stakeholders of a software systems (Examples):

• Architect

• Developer

• End user

• Maintainer

• Administrator

• Trainer

• Persons involved in installation, delivery, logistics, planning, acquisition, etc.

49

Quality Attribute Workshop

Step 1: QAW Presentation and Introductions – Template

Name Organisation Represented Role(s)

50

Quality Attribute Workshop

Step 2: Business/Mission Presentation

 A representative of the stakeholders (typically a manager

or management representative) presents the business

and/or mission drivers for the system

 the system’s business/mission context

 high-level functional requirements, constraints, and quality

attribute requirements

 During the presentation, the moderators listen carefully

and capture any relevant information that may shed light

on the quality attribute drivers

 The quality attributes that will be refined in later steps will

be derived largely from the business/mission needs

presented in this step

51

Quality Attribute Workshop

Step 2: Business/Mission Presentation - Details

 Business drivers typically describe

 Most important functional requirements

 Technical constraints (e.g. COTS, linkage with other

systems, platforms, reuse of legacy)

 Economic, inner-organizational or political constraints

 Business goals

 Business context

 Most important stakeholders

 Most important quality attributes influencing

architecture

[Kazman et al. 2000]

52

Quality Attribute Workshop

Step 2: Business/Mission Presentation – Example

 Funktionale Anforderungen
 Der Track Manager (Fahrweg-/Spur-Manager?) bietet einen Tracking-

Service für zwei Typen von Clients an:

 Update client: Diese Clients senden regelmäßig Track-Updates an

den Track-Manager

 Query client: Diese Clients fragen den Track Manager sporadisch ab

und bekommen genau eine Antwort auf eine Anfrage.

 Randbedingungen (Design Constraints)
 Kapazitätseinschränkungen: Prozessoren sollen 50% Prozessor- und Speicher-Reserven haben bei

Auslieferung. LAN soll 50% Durchsatz-Reserven haben. Es gibt 100 Update- und 25 Query-Clients und ca. 100

Updates und 5 Anfragen pro Sekunde.

 Persistenter Speicherdienst: Dienst unterhält eine Statuskopie des Track Managers, welche mindestens einmal

pro Sekunde aktualisiert wird. Sollten alle Replikas ausfallen, kann von einem vorherigen Status neu gestartet

werden.

 Zwei Replikas: Für Verfügbarkeit und Zuverlässigkeit sollen zwei Replikas des Track Managers unter

Normalbedingungen in Betrieb sein.

 Anforderungen an Qualitätsattribute (3 wichtige Szenarien schon vorher identifiziert)
 "Quick Recovery" nach Hardware- oder Software-Defekt, zweites Replika des Track-Managers übernimmt

 "Slow Recovery" nach Hardware- oder Software-Defekt; keine Replikas sofort verfügbar, neues Replika des

Track-Managers muss erstellt werden

 "Re-Start" unter normalen Betriebsbedingungen arbeitet nur ein Replika und ein Zweites wird hinzugefügt

[Wood 2007]

53

Quality Attribute Workshop

Step 3: Architectural Plan Presentation

 A technical stakeholder presents the system

architectural plans as they stand with respect to these

early documents. — Information in this presentation may

include

 plans and strategies for how key business/mission requirements

will be satisfied

 key technical requirements and constraints — such as mandated

operating systems, hardware, middleware, and standards — that

will drive architectural decisions

 existing context diagrams, high-level system diagrams, and other

written descriptions

 During this time, moderators continue to capture key

aspects of the presentation for later reference

54

Quality Attribute Workshop

Step 3: Architectural Plan Presentation - Details

 Important architectural requirements

 E.g. performance, availability, incl. corresponding measures

 Existing standards/models/approaches to fulfill requirements

 High-level views on the architecture

 Functional

 Modules/Layers/Subsystems

 Processes, threads and synchronization, dataflows, events

 Hardware: CPUs, memory, external devices or sensors, networks and

communication devices

 Architectural approaches and styles

 E.g. Client-Server, Blackboard, Pipes and Filters

 Use of COTS, e.g. for reporting, GUI

 1-3 of the most important Use Case Scenarios

 1-3 of the most important change scenarios

 Architectural risks and problems
[Kazman et al. 2000]

55

Quality Attribute Workshop

Step 3: Architectural Plan Presentation – Example

Track Manager wurde in zwei Elemente A und B geteilt

 erlaubt zwei Strategien:

 Strategie 1: A und B laufen auf einem einzelnen

Prozessor, A und B verbrauchen 50% der

Prozessorkapazität für 100 Updates und 30 Anfragen,

damit werden die Performance-Anforderungen befriedigt

 Strategie 2: A und B laufen auf jeweils einem eigenen

Prozessor, gemeinsam können sie 150 Updates und 50

Anfragen bedienen, damit werden die Performance-

Anforderungen übererfüllt.

 Kommunikationsmechanismen unterscheiden sich:

 Update Clients: asynchrone Kommunikation

 Query Clients: synchrone Kommunikation

 Elemente A und B enthalten beide Statusdaten, die im Persistenzspeicher gesichert

werden müssen.

Zeitvorgaben für Sicherung und Wiederherstellung des Status: A - 0,8 sek., B - 0,6 sek.

 ...

[Wood 2007]

56

Quality Attribute Workshop

Step 4: Identification of Architectural Drivers

 The moderators share their list of key architectural drivers and ask

the stakeholders for

 Clarifications

 Additions

 Deletions

 Corrections

 The idea is to reach a consensus on a distilled list of architectural

drivers that include high-level requirements, business drivers,

constraints, and quality attributes

 The final list of architectural drivers will help focus the stakeholders

during scenario brainstorming to ensure that these concerns are

represented by the scenarios collected

57

Quality Attribute Workshop

Step 4: Sample Architectural Drivers
S

y
s

te
m

/S
o

ft
w

a
re

 P
ro

d
u

c
t

Q
u

a
li

ty

Functional
suitability

Performance
efficiency

Compatibility

Usability

Reliability

Security

Maintainability

Portability

... degree to which a product or system provides functions that meet stated and implied needs when used

under specified conditions

... performance relative to the amount of resources used under stated conditions

... degree to which a product, system or component can exchange information with other products,

systems or components, and/or perform its required functions, while sharing the same hardware or

software environment

... degree to which a product or system can be used by specified users to achieve specified goals with

effectiveness, efficiency and satisfaction in a specified context of use

... degree to which a system, product or component performs specified functions under specified

conditions for a specified period of time

... degree to which a product or system protects information and data so that persons or other products or

systems have the degree of data access appropriate to their types and levels of authorization

... degree of effectiveness and efficiency with which a product or system can be modified by the intended

maintainers

... degree of effectiveness and efficiency with which a system, product or component can be transferred

from one hardware, software or other operational or usage environment to another

E.g. Quality Model according ISO/IEC 25010

58
... but also: functional requirements, design constraints, business/mission aspects (e.g. decision for product line

approach), other goals or combinations thereof influencing architecture

Quality Attribute Workshop

Step 5: Scenario Brainstorming (1/2)

 The moderators initiate the brainstorming process in which

stakeholders generate scenarios

 Each stakeholder expresses a scenario representing his or

her concerns with respect to the system in round-robin

fashion

 The moderators ensure that representative scenarios exist

for each architectural driver listed in Step 4

 The moderators review the parts of a good scenario

(stimulus, environment, and response) and ensure that

each scenario is well formed during the workshop

59

Quality Attribute Workshop

Step 5: Scenario Brainstorming (2/2)

 Moderators need to remember that there are three general

types of scenarios and to ensure that each type is covered

during the QAW:

 use case scenarios - involving anticipated uses of the system

 growth scenarios - involving anticipated changes to the system

 exploratory scenarios - involving unanticipated stresses to the

system that can include uses and/or changes

 Moderators should note that quality attribute names by

themselves are not enough. Rather than say “the system

shall be modifiable,” the scenario should describe what it

means to be modifiable by providing a specific example of a

modification to the system vis-à-vis a scenario

60

Quality Attribute Workshop

Step 5: Scenario Brainstorming - Scenario Format

Scenario-Format: Stimulus – Context – Response

61

Quality Attribute Workshop

Step 5: Scenario Brainstorming – Examples (1/2)

 Sample scenarios: Example: Bank ATM Quality Attribute Workshop

 Modifiability Attribute Scenario I:

• A developer wants to add a new auditing business rule at design time in 10

person-days without affecting other functionality

 Modifiability Attribute Scenario II:

• A system administrator wants to employ a new database in 18 person-months

without affecting other functionality

 Enhancement of a requirement towards a scenario:

 Requirement: “The system shall produce reports for users.”

 Scenario: “A remote user requests a database report via the

 Web during peak usage and receives the report

 within five seconds.”

 Scenario sheds more light on the performance aspect of the requirement

 Initial requirement has not been lost, but the scenario further explores the

performance aspect of this requirement

62

Quality Attribute Workshop

Step 5: Scenario Brainstorming – Examples (2/2)

 Use case scenario

 Remote user requests a database report via the Web during a

peak period and receives it within 5 seconds.

 Growth scenario

 Add a new data server to reduce latency in scenario 1 to 2.5

seconds within 1 person-week.

 Exploratory scenario

 Half of the servers go down during normal operation without

affecting overall system availability.

[Gagliardi_and_Wood 2011]

63

Quality Attribute Workshop

Step 6: Scenario Consolidation

 Similar scenarios are consolidated when reasonable. Moderators ask

stakeholders to identify those scenarios that are very similar in content

 Scenarios that are similar are merged, as long as the stakeholders who

proposed them agree and feel that their scenarios will not be diluted in the

process

 Consolidation is an important step because it helps to prevent a “dilution” of

votes during the prioritization of scenarios. Such a dilution occurs when

stakeholders split their votes between two very similar scenarios. As a result,

neither scenario rises to importance and is therefore never refined

 Moderators should make every attempt to reach a majority consensus with the

stakeholders before merging scenarios. Though stakeholders may be tempted

to merge scenarios with abandon, they should not do so

 Typically, very few scenarios are merged

64

Quality Attribute Workshop

Step 7: Scenario Prioritization

 Prioritization of the scenarios is accomplished by allocating each

stakeholder a number of votes equal to approx. 30% of the total

number of scenarios generated after consolidation

 For example, if 30 scenarios were generated, each stakeholder gets

30 x 0.3, or 9, votes rounded up to 10

 Voting is done in round-robin fashion, in two passes. During each

pass, stakeholders allocate half of their votes. Stakeholders can

allocate any number of their

votes to any scenario or

combination of scenarios.

The votes are counted, and

the scenarios are

prioritized accordingly

65

Quality Attribute Workshop

Step 7: Scenario Prioritization - Example

Enhancement to QAW:

 Ranking of scenarios according estimated

„Importance“ and „Difficulty“

[Tsakiris et al. 2011]

 Scenarios 3, 6, 8 have

highest priority

66

Quality Attribute Workshop

Step 8: Scenario Refinement

 The top four or five scenarios are refined and documented in more detail

 Further clarify the scenario by clearly describing the following:

 stimulus - the condition that affects the system

 response - the activity that results from the stimulus

+ source of stimulus - the entity that generated the stimulus

 environment - the condition under which the stimulus occurred

+ artifact stimulated - the artifact that was stimulated

+ response measure - the measure by which the system’s response will be

evaluated

 Describe the business/mission goals that are affected by the scenario

 Describe the relevant quality attributes associated with the scenario

 Allow the stakeholders to pose questions and raise any issues regarding

the scenario (-> quality attribute aspects of the scenario, concerns that

the stakeholders might have in achieving the response called for)

67

Quality Attribute Workshop

Step 8: Scenario Refinement - Template

[Barbacci et al. 2003]

68

Quality Attribute Workshop

Step 8: Scenario Refinement - Example

[Barbacci et al. 2003]

69

Quality Attribute Workshop

Real-world Example – Selected Steps’ Results

High Performance Automation Domain

Re-Engineering of Shop Floor Management System

 Step 4: Identification of Architectural Drivers

 Goal: Identify ranking of ISO/IEC 25010 quality attributes

 Three Votings per Stakeholder:

a) Simple Ranking

b) Pairwise Comparison

c) 100-Points-Method

 Ranking through discussion between stakeholders

 Step 7: Scenario Prioritization

 Goal: Scenario selection for refinement

 Three Votings pro Stakeholder

a) Simple Ranking

b) Allocation of 12 points per stakeholder (total: 33 scenarios)

c) Estimation of „Importance“ and „Difficulty“ per scenario

 Prioritization of Top-5 scenarios through discussion between stakeholders

70

Quality Attribute Workshop

Real-world Example - Architectural Drivers Ranking

 Architectural Driver

(Quality Attribute)

Ranking
(Stakeholder

Consensus)

Simple

Ranking

(Median)

Pairwise

Comparison

(Median)

100-Points-

Method

(Median)

Functional suitability + 1 (1) 1 (7) 1 (25)

Performance efficiency - 6 (6) 6 (2) 6 (8)

Compatibility + 4 (4,5) 4 (3,5) 3 (15)

Usability + 3 (3,5) 3 (4) 4 (12,5)

Reliability + 2 (2) 2 (6) 2 (20)

Security - 7 (6,5) 7 (1,5) 7 (6)

Maintainability + 4 (4,5) 5 (3) 5 (10)

Portability - 8 (7) 8 (1) 8 (3,5)

71

Quality Attribute Workshop

Real-world Example - Consensus on Architectural Drivers

Correlation coefficients between stakeholders: Pairwise Comparison

SW-Eng.-

Mgmt

Prod.

mgmt

Appl.-

Eng.

QA Sales Arch. Mean Median

SW-Eng.-

Mgmt 0,350 0,153 0,416 0,438 0,482 0,552 0,556

Prod.

mgmt 0,350 0,354 0,833 0,500 0,833 0,770 0,806

Appl.-

Eng. 0,153 0,354 0,458 0,646 0,354 0,585 0,517

QA 0,416 0,833 0,458 0,646 0,813 0,831 0,842

Sales 0,438 0,500 0,646 0,646 0,479 0,736 0,698

Arch. 0,482 0,833 0,354 0,813 0,479 0,788 0,806

72

Quality Attribute Workshop

Real-world Example - Scenario Prioritization

1 = Low

2 = Medium

3 = High

Top 6

Standard

deviation

1

2 3

4

5

6

7

8

9

10

11

12

19

14

15

16

17

18

13

20

21

22

23

24

25

26

27

28

30 29

31

32

33

1,00

2,00

3,00

1,00 2,00 3,00

D
if

fi
c

u
lt

y

Importance

Scenario Portfolio (Mean Values / Standard Deviation)

73

Quality Attribute Workshop

Real-world Example –

Scenario Prioritization vs. Architectural Drivers Ranking

Architectural Driver

(Quality Attribute)

Coverage

through

Scenarios

Total Points

Assigned (via

scenarios)

Simple

Ranking

(Median)

Pairwise

Comparison

(Median)

100-

Points-

Method

(Median)

Functional
suitability

6 7 1 1 1

Performance

efficiency
3 9 6 6 6

Compatibility 3 7 4 4 3

Usability 2 4 3 3 4

Reliability 3 9 2 2 2

Security 1 1 7 7 7

Maintainability 14 33 4 5 5

Portability 1 2 8 8 8

74

Quality Attribute Workshop

Real-world Example - Consensus on Scenario Priorities (1/2)

Correlation coefficients between stakeholders

Method: Allocation of 12 Points

SW-Eng.-

Mgmt

Prod.

mgmt

Appl.-

Eng.

QA Sales Arch. Mean Median

SW-Eng.-

Mgmt 0,037 0,037 0,449 0,477 0,220 0,716 0,743

Prod.mg

mt 0,037 -0,147 0,046 0,109 0,032 0,338 0,183

Appl.-

Eng. 0,037 -0,147 -0,026 -0,091 -0,170 0,177 0,083

QA 0,449 0,046 -0,026 0,126 0,505 0,671 0,505

Sales 0,477 0,109 -0,091 0,126 -0,020 0,491 0,629

Arch. 0,220 0,032 -0,170 0,505 -0,020 0,553 0,395

75

Quality Attribute Workshop

Real-world Example - Consensus on Scenario Priorities (2/2)

Correlation coefficients between stakeholders

Method: Allocation of 12 Points (Sub-Set: High Priority Scenarios)

SW-Eng.-

Mgmt

Prod.

mgmt

Appl.-

Eng.

QA Sales Arch. Mean Median

SW-Eng.-

Mgmt -0,066 -0,044 0,000 0,589 -0,179 0,729 0,787

Prod.mg

mt -0,066 -0,281 -0,456 0,373 -0,316 -0,132 0,050

Appl.-

Eng. -0,044 -0,281 -0,154 -0,251 -0,488 -0,267 -0,168

QA 0,000 -0,456 -0,154 0,000 0,248 0,361 0,136

Sales 0,589 0,373 -0,251 0,000 -0,404 0,589 0,668

Arch. 0,179 -0,316 -0,488 0,248 -0,404 0,000 -0,189

76

Outline

Quality Requirements, Requirements and Architecture

 Introduction (Requirements vs. Architecture; Definitions)

 Non-functional Requirements

 Component-Bus-System-Property Approach

 Quality Requirements and Architecture: Quality Attribute

Workshop

 Optional: Quality Requirements – A New Look at an Old

Problem (Martin Glinz)

 Exercise 4: Architectural Drivers and Requirements

77

Outline

Quality Requirements, Requirements and Architecture

 Introduction (Requirements vs. Architecture; Definitions)

 Non-functional Requirements

 Component-Bus-System-Property Approach

 Quality Requirements and Architecture: Quality Attribute

Workshop

 Optional: Quality Requirements – A New Look at an Old

Problem (Martin Glinz)

 Exercise 4: Architectural Drivers and Requirements

78

Exercise 4: Architectural Drivers and

Requirements

Elicit, discuss, analyze, and prioritize the driving quality attributes and important system requirements for

the example project „Web-based PISA Assessment“ as a major input for sub-sequent (fictitious) system

implementation, in particular architecture alternatives elaboration and selection.

Build on the results of Exercise 1 (WinWin Negotiation) and Excercise 2 (Use Case Analysis) and use a

role play approach to perform a Quality Attribute Workshop (QAW, 3rd edition) in order to identify

architectural drivers, identify and select architecture relevant requirements and corresponding scenarios,

and prioritize and refine scenarios.

Members of your team are expected to role-play key project and business stakeholders. Mandatory roles

comprise business management (cf. step 2), software engineering/architecture engineering (cf. step 3),

and a moderator role.

Perform the following steps:

1) QAW Presentation and Introductions 5) Scenario Brainstorming

2) Business/Mission Presentation 6) Scenario Consolidation

3) Architectural Plan Presentation 7) Scenario Prioritization

4) Identification of Architectural Drivers 8) Scenario Refinement

Document the steps, decisions and results of your role play and submit a report via TUWEL. Each group

is expected to submit a pdf document named Exercise4Team<YourTeamNumber>. Please list all team

members on the front page of your report.

79

Outline

Quality Requirements, Requirements and Architecture

 Introduction (Requirements vs. Architecture; Definitions)

 Non-functional Requirements

 Component-Bus-System-Property Approach

 Quality Requirements and Architecture: Quality Attribute

Workshop

 Optional: Quality Requirements – A New Look at an Old

Problem (Martin Glinz)

 Exercise 4: Architectural Drivers and Requirements

80

