
Requirements Specification

2016-11-17

1

Requirements Engineering and Specification, WT 2016: Paul Grünbacher / Fritz Stallinger

Outline

“Requirements Specification”:

 Introduction

 Content of Software Requirements Specifications

 IEEE Std. 830

 Volere Template

 Writing Good Requirements

 Requirements Management and Traceability

 Requirements on Requirements Management Tools

 Sample Software Requirements Specification

 Exercise 3: Requirements Inspection and SRS Evaluation

2

3

Introduction

Spiral Requirements Engineering Process

Spiral RE Process (G. Kotonya and I. Sommerville 1998)

Requirements elicitation Requirements analysis and
negotiation

Requirements documentationRequirements validation

Informal statement of
requirements

Agreed
requirements

Draft requirements
document

Requirements
document and

validation
report

Decision point:
Accept document
or re-enter spiral

START

4

Introduction

Documenting Software Requirements

Wishes, needs,

and goals of the

Customer

Product

Time

100%

0

Formality

Informal

Semi-formal

Formal

5

Introduction

Different degrees of formality

 “Oral documentation” and unstructured prose

 User Stories

 Prototypes

 Structured prose

(e.g. according IEEE Std. 830, Volere Template)

 Use cases

 UML models (e.g., state charts, activity diagrams)

 Formal approaches (e.g., Z)

 Indirectly via other artifacts (e.g., test cases, user manual)

Outline

“Requirements Specification”:

 Introduction

 Content of Software Requirements Specifications

 IEEE Std. 830

 Volere Template

 Writing Good Requirements

 Requirements Management and Traceability

 Requirements on Requirements Management Tools

 Sample Software Requirements Specification

 Exercise 3: Requirements Inspection and SRS Evaluation

6

7

IEEE Std 830-1998

IEEE Recommended Practice

for Software Requirements Specifications

A summary

Content of Software Requirements Specifications

IEEE Std. 830

8

Content of SRS: IEEE Std. 830

What is IEEE Std. 830?

 IEEE Std 830-1998: IEEE Recommended Practice for

Software Requirements Specifications
 Abstract: The content and qualities of a good software requirements

specification (SRS) are described and several sample SRS outlines are

presented. This recommended practice is aimed at specifying

requirements of software to be developed but also can be applied to

assist in the selection of in-house and commercial software products.

Guidelines for compliance with IEEE/EIA 12207.1-1997 are also provided.

 Purpose and goal

 IEEE Std. 830 describes recommended approaches for the

specification of software requirements

 It is based on a model in which the result

of the software requirements specification

process is an unambiguous and complete

specification document

9

Content of SRS: IEEE Std. 830

Aims

 Helping customers to accurately describe what they

wish to obtain

 Helping suppliers to understand exactly what the

customer wants

 Helping individuals to develop a standard software

requirements specification (SRS) outline, format and

content for their own organizations

10

Content of SRS: IEEE Std. 830

SRS - Role and Potential Benefits

 Basis for agreement between customers and suppliers

on what the software product is to do

 Basis for estimating costs and schedules

 Baseline for validation and verification

 Reduction of development effort

 Easier transfer of software product to new users or

machines

 Basis for enhancement of the software product

11

Content of SRS: IEEE Std. 830

Nature of the SRS

 Functionality. What is the software supposed to do?

 External interfaces. How does the software interact with people,

the system‘s hardware, other hardware, and other software?

 Performance. What is the speed, availability, response time,

recovery time of various software functions, etc.

 Attributes. What are the portability, correctness, maintainability,

security, etc. considerations?

 Design constraints imposed on an implementation. Are there

any required standards in effect, implementation language, policies

for database integrity, resource limits, operating environment(s)

etc.?

12

Content of SRS: IEEE Std. 830

Environment of the SRS

 The SRS writer(s) should be careful not to go beyond the

bounds of their role. This means the SRS

 Should correctly define all of the software requirements

 Should not describe any design or implementation details. These

should be described in the design stage of the project

 Should not impose additional constraints on the software. These

are properly specified in other documents such as a software

quality assurance plan

 Therefore, a properly written SRS limits the range of

valid designs, but does not specify any particular

design

13

Content of SRS: IEEE Std. 830

Characteristics of a Good SRS

 Correct. Every requirement stated is one that the software shall meet.

 Unambiguous. Every requirement stated has only one interpretation.

 Complete. All significant requirements + Definition of responses of the

software to all realizable classes of input data in all realizable classes of

situations.

 Consistent. No subset of individual requirements are in conflict.

 Ranked for importance and/or stability.

 Verifiable. There exists some finite cost-effective process with which a person

or machine can check that the software product meets a requirement.

 Modifiable. Structure and style are such that any changes to the requirements

can be made easily, completely, and consistently while retaining the structure

and style.

 Traceable. Origin of each of its requirements is clear and the referencing of

each requirement in future development or enhancement documentation is

facilitated.

Group Discussion

 Discuss in groups the “Characteristics of a Good SRS”

(cf. slide 13)

 For each of the characteristics try to answer the

following:

 Is it realistic?

 How can it be achieved?

 Under which conditions is it beneficial?

 Are there drawbacks of trying to achieve it?

 Give a short oral summary of your discussion to the

auditorium

14

15

Content of SRS: IEEE Std. 830

Joint Preparation, SRS Evolution, Change Mgmt

 The customer and the supplier should work together to

produce a well-written and completely understood SRS

 Requirements should be specified as completely and

thoroughly as known at the time, even if evolutionary

revisions can be foreseen as inevitable. The fact that

they are incomplete should be noted

 A formal change process should be initiated to identify,

control, track, and report projected changes

16

Content of SRS: IEEE Std. 830

Embedding Design in the SRS ?

The SRS should normally not specify:

 Partitioning the software into modules

 Allocating functions to the modules

 Describing the flow of information or control between

modules

 Choosing data structures

17

Content of SRS: IEEE Std. 830

Embedding Project Requirements in the SRS ?

 The SRS should address the software product, not the

process of producing the software product:

 Cost

 Delivery schedules

 Reporting procedures

 Software development methods

 Quality assurance

 Validation and verification criteria

 Acceptance procedures

18

Content of SRS: IEEE Std. 830

Prototype SRS Outline

Outline

“Requirements Specification”:

 Introduction

 Content of Software Requirements Specifications

 IEEE Std. 830

 Volere Template

 Writing Good Requirements

 Requirements Management and Traceability

 Requirements on Requirements Management Tools

 Sample Software Requirements Specification

 Exercise 3: Requirements Inspection and SRS Evaluation

19

20

SRS Example: The Volere Template

Content of Software Requirements Specifications

Volere Template

21

Content of SRS: Volere Template

Requirements Types, Structure of Specifications

PROJECT DRIVERS:
1. The Purpose of the Product
2. Client, Customer, Stakeholders
3. Users of the Product

NON-FUNCTIONAL REQUIREMENTS:
10. Look and Feel
11. Usability
12. Performance
13. Operational
14. Maintainability and Portability
15. Security
16. Cultural and Political
17. Legal

http://www.systemsguild.com

PROJECT ISSUES:
18. Open Issues
19. Off-the-shelf Solutions
20. New Problems
21. Tasks
22. Cutover
23. Risks
24. Costs
25. User Documentation
26. Waiting Room
27. Ideas for Solutions

FUNCTIONAL REQUIREMENTS:
7. The Scope of the Work
8. The Scope of the Product
9. Functional and Data Requirements

PROJECT CONSTRAINTS:
4. Mandated Constraints
5. Naming Conventions and Definitions
6. Relevant Facts and Assumptions

22

Content of SRS: Volere Template

Non-functional Requirements

10. Look and Feel Requirements

11. Usability Requirements

12. Performance Requirements

13. Operational Requirements

14. Maintainability and Portability Requirements

15. Security Requirements

16. Cultural and Political Requirements

17. Legal Requirements

23

Content of SRS: Volere Template

10. Look and Feel Requirements

 The interface

 The style of the product

24

Content of SRS: Volere Template

11. Usability Requirements

 Ease of use

 Personalization and internationalization

requirements

 Ease of learning

 Accessibility requirements

25

Content of SRS: Volere Template

12. Performance Requirements

 Speed and latency requirements

 Safety critical requirements

 Precision requirements

 Reliability and availability requirements

 Robustness requirements

 Capacity requirements

 Scalability or extensibility requirements

26

Content of SRS: Volere Template

13. Operational Requirements

 Expected physical environments

 Expected technological environment

 Partner applications

 Productization Requirements

27

Content of SRS: Volere Template

14. Maintainability and Support Rqmts

 How easy must it be to maintain this product?

 Are there special conditions that apply to the

maintenance of this product?

 Supportability

 Portability requirements

28

Content of SRS: Volere Template

15. Security Requirements

 Access requirements

 Integrity requirements

 Privacy requirements

 Audit requirements

 Immunity requirements

29

Content of SRS: Volere Template

16. Cultural and Political Requirements

 Are there any special factors about the product

that would make it unacceptable for some

political or cultural reason?

30

Content of SRS: Volere Template

17. Legal Requirements

 Does the system fall under the jurisdiction of any

law?

 Are there any standards with which we must

comply?

31

Content of SRS: Volere Template

Requirements Attributes in Volere

32

Content of SRS: Volere Template

Fit Criterion

 “… an objective measure of the requirement’s meaning;

it is the criterion for evaluating whether or not a given

solution fits the requirement” [Volere]

 Example

 Description: “The product shall make the users want to use it.”

 Fit Criterion: “[x %] of the users are regularly using the product

after [an agreed time] familiarization period.”

Outline

“Requirements Specification”:

 Introduction

 Content of Software Requirements Specifications

 IEEE Std. 830

 Volere Template

 Writing Good Requirements

 Requirements Management and Traceability

 Requirements on Requirements Management Tools

 Sample Software Requirements Specification

 Exercise 3: Requirements Inspection and SRS Evaluation

33

Writing Good Requirements

An Effective Requirement Is … (1/2)

 Necessary

 A condition or capability needed to solve a problem or achieve an

objective

 Verifiable

 A requirement must be objectively verifiable (by test, analysis,

inspection, or demonstration) to prove compliance

 The requirement should be written in a fashion such that the means of

verification is clearly understood

 A desired capability that cannot be objectively verified should be written

as a design goal (“should”), not a requirement (“shall”)

 Achievable
 If a requirement is not achievable, you cannot satisfy your contractual obligations

 To be achievable, a requirement must be technically feasible, affordable, and fit

within schedule and other constraints

34

Slides partially based on: “Writing Effective Requirements”, INCOSE, http://www.incose.org

Writing Good Requirements

An Effective Requirement Is … (2/2)

 Simple, concise & easily understood

 Vague and ambiguous requirements

• can be misinterpreted and result in a faulty design solution that fails to

satisfy the customers’ needs and your contractual obligations

• cannot form the basis for an objective verification criteria

 Each requirement must specify one and only one function

 Unique

 Verifying redundant requirements adds unnecessary cost

 Redundant requirements may result in contradictions

 Traceable

 Relationship with parent requirement(s) is defined and documented

 Relationship with child requirement(s) is defined and documented

 Rationale describing allocation is documented

35

Writing Good Requirements

Ineffective Requirements: Example (1/2)

36

Writing Good Requirements

Ineffective Requirements: Example (2/2)

 How simple is “sufficiently simple”?

 How intelligent is “intelligent”?

 How proficient is “proficient”?

 What is a “reasonable length of time”?

37

Writing Good Requirements

Common Traps And How To Avoid Them (1/4)

 Bad or missing information

 Leads to over-specifying requirements or failing to specify needed requirements

 Identify and involve the stakeholders and subject matter experts in every step of

the product lifecycle

 Develop and validate concepts-of-operations, mission scenarios, linkage and

flow, constraints (cost, schedule, and technical)

 Employ requirements analysis tools, checklists, comprehensive specification

templates

 Specifying the “how,” not the “what”

 Determine the need statement and write the requirement accordingly

 Verbosity

 Extra words mean extra chances to misunderstand!

 Be concise

 Use simple, common terms whenever possible – avoid using “buzz words” and

“project-speak”

38

Writing Good Requirements

Common Traps And How To Avoid Them (2/4)

 Using vague or ambiguous words, phrases, and statements

 Subject to multiple interpretations

 Not objectively verifiable

 Creates an opportunity for the customer to require additional work without

additional compensation, or the contractor to demand additional compensation

for in-scope work

 Example words and phrases to avoid

• “Achievable”, “adequate”, “approximately”, “complete”, “damaged”,

“degraded”, “efficient”, “effective”, “minimize”, “maximize”, “flexible”,

“modular”, “nominal”, “normally”, “optimum”, “survive”, “typically”, “usually”,

“generally”, “often”, “easy”, “to the maximum (or minimum) extent”, “as much

(or little) as possible”, “user-friendly”, “scalable”, “versatile”, “approximately”,

“and/or”, “shall be designed to”, “shall be capable of”

 Be precise

 State the real need

39

Writing Good Requirements

Common Traps And How To Avoid Them (3/4)

 Multiple requirements (“shalls”) per statement

 Increases risk that a requirement may be missed in the design

 May present problems in verification if the requirements have to be verified by

different methods, at different times, or at different levels of assembly

 Only specify a single requirement per statement

 Use of negative or passive sense

 i.e., “The system shall not perform the following maneuver when ….”

 Reword to positive statements; use active verbs

 Misuse of the terms “shall,” “will,” and “should”

 Requirements use “shall”, statements of fact use “will”, and goals use “should”

 Terms such as “are”, “is”, “was”, and “must” don’t belong in a requirement

 Stick with the government and industry standard defined above – to deviate from

it will only invite confusion

40

Writing Good Requirements

Common Traps And How To Avoid Them (4/4)

 Inconsistent use of phrases to reference, specify alternative

courses of action, or state limitations

 Can create confusion for the reader

 Pick a phrase and be consistent throughout a specification or family of specifications

• For example, use “as specified in” when referencing external documents,

use “as specified herein” or “as specified in x.x.x” when referencing within a document

 Being over-stringent on parametric requirements

 It is not possible to verify absolute values. Test instrumentation has finite

measurement accuracy

 Place acceptable tolerances on parameters, e.g., dimensions, weight, voltage

 Tolerances should be stated as values, not percentages

41

Writing Good Requirements

Cross-Referencing Requirements

 Cross-referencing within a specification is used only to

 Clarify relationship between conditional requirements

 Avoid inconsistencies and unnecessary repetition

 The proper language for cross-referencing is:

 ... “as specified herein”

• When referencing to a requirement within the spec that is obvious and

easy to find (e.g., requirement is a paragraph title)

 ... “as specified in n.n.n”

• When the requirement paragraph is not obvious or may be difficult to find

42

Writing Good Requirements

Requirements Wording Templates

 Four classes of requirements:

 Behavior/Performance

 Design Production Capability

 Design Constraint

 Process Compliance

 Use of templates as:

 guidelines for assessing necessity and sufficiency, or completeness,

of requirement statement components

 guidance for assessing requirements quality

43

Writing Good Requirements

Template for Behavior/Performance Rqmt

Examples:

 The ATM shall reject withdrawal requests if the amount requested

is not divisible by 20.

 Upon Operator Request, the system shall disable all audible

alarms.

44

Writing Good Requirements

Template for Production Capability

Examples:

 The ATM shall produce a receipt for use by bank patrons if a

transaction is completed.

 The system shall produce a launch alert message for use by the

Missile Defense Agency if a launch is detected within the

programmed target area within 2 minutes of launch detection.

45

Writing Good Requirements

Template for Design Constraints

Examples:

 The ATM shall have an ACME 12.1-inch TFT active-matrix

display.

 The Ground Segment Software shall be programmed in ADA.

46

Writing Good Requirements

Template for Process Compliance

Examples:

 The ATM shall be developed in accordance with ISO9001, Quality

System Management Guidelines.

47

Writing Good Requirements

Use of Abbreviations & Symbols

 First use of an abbreviation or symbol in a paragraph

 Spell it out in full

 Place it in parentheses after first use

 Plural abbreviations

 If referring to more than one, you can put a plain “s” at the end as long as the

meaning is clear. If the abbreviation is using periods, e.g., M.D., or the plural

meaning will not be clear, then use an “’s” or simply spell it out.

 Don’t:

 use an abbreviation or symbol in a paragraph title if at all possible

 start a sentence with an abbreviation, symbol, or digit number, e.g., “10

minutes shall elapse …”

• Can get confused with paragraph numbers or numerically ordered lists

• Instead use “The elapsed time shall be not greater than 10 minutes … .”

or “Not greater than 10 minutes shall elapse …”

48

Writing Good Requirements

Summary

 Make sure each requirement is necessary, verifiable, and

achievable

 Write clearly, simply, concisely and unambiguously

 Make sure each requirement is unique and traceable

 Use only one “shall” per statement

 Specify “what’s required," not "how to do it". Don't specify a design

constraint unless it’s necessary to do so

 Avoid buzz words and project-speak

 Keep the language active and positive vs. passive and negative

 Be consistent with your choice of phrasing throughout

 Don't assume the reader will know what you meant even if that’s

not what you wrote

49

Outline

“Requirements Specification”:

 Introduction

 Content of Software Requirements Specifications

 IEEE Std. 830

 Volere Template

Writing Good Requirements

 Requirements Management and Traceability

 Requirements on Requirements Management Tools

 Sample Software Requirements Specification

 Exercise 3: Requirements Inspection and SRS Evaluation

50

51

Requirements Management and Traceability

Requirements in Iterative Life Cycle Models

E.g.: Rational Unified Process

52

Requirements Management and Traceability

Spiral Requirements Engineering Process

Spiral RE Process (G. Kotonya and I. Sommerville 1998)

Requirements elicitation Requirements analysis and
negotiation

Requirements documentationRequirements validation

Informal statement of
requirements

Agreed
requirements

Draft requirements
document

Requirements
document and

validation
report

Decision point:
Accept document
or re-enter spiral

START

Requirements Management and Traceability

How Does Your Team Communicate?

 Is there a centralized place

for reviewing requirements

and data?

 How are changes

communicated?

 How do you manage

change?

 How do you monitor project

progress and status?

?
?

53

Requirements Management and Traceability

Requirements Management Challenges

Change
Management

Project
Management

Design and
Development

QA and
Test

Documentation

Reqt./Project
Repository

54

 Accessibility of
requirements
by whole team

 Control of
change

 Communication
of change

 Understanding
of the impact
of change

 …

Requirements Management and Traceability

Tool- / Repository-based Approaches

Requirement
Types

Attributes

Document
Types

Outlines
(templates)

RequisitePro

Project

define

have
associated

define

based on

have default

has

maintains

Revision History

Security

may be
saved as

RequisitePro
Documents

associated
with

may be used
to create

MS Word
Packages

contain

Requirements

contains

based
on

trace
to/from

 Views

55
Example IBM Rational Requisite Pro

Requirements Management and Traceability

Working in Views

56
Example IBM Rational Requisite Pro

Requirements Management and Traceability

Working in a Document

Word window

57 Example IBM Rational Requisite Pro

Requirements Management and Traceability

Requirements Management Plan and Project Structure

 Define Requirements Management Strategy

 Identify project artifacts that help plan and define the project

 Describe Requirements Engineering and Management

relevant components for Project Structure

 Requirement types

 Requirement attributes and their values

 Document types

 Traceability criteria

58

Requirements Management and Traceability

Define Requirement Types

 Example: RequisitePro Requirements

 Any tracked item: Inputs and outputs to the system; Functions of

the system; Attributes of the system and its environment;

Features; Use Cases; Supplementary requirements; Stakeholder

requests; …

? ? ?

? ?

59

 What types of project requirements do you want to

document, track, manage?

Features
Usability

Reliability

Use cases
Stakeholder

Requests

Stakeholder

Needs

Environmental

? Functional

Supplementary

?

?

?

?

?

Requirements Management and Traceability

Define Requirement Attributes

 What Is a Requirement Attribute?

 Information attached to a requirement

 Important details about the requirement

Requirement 127
Priority Status Author Location

HIGH APPROVED John D. Vision

Requirement 130
Priority Status Author Location

Medium PROPOSED Jane B. Database

Attributes

60

 Define attributes by Requirement Type

 What information do you want to track?

 Use Requirement Attributes to:

 Assign resources

 Assess status

 Calculate software metrics

 Manage project risk

 Estimate costs and time

 Manage project scope

 Prioritize requirements

Priority

Difficulty

Cost

??

Requirements Management and Traceability

Organize Document Types

 Define the types of documents you want to create:

Glossary RM Plan

Vision Supplementary Specification

Use Cases …

 Identify which Requirement Type will be captured in each

Document Type:

TERM Glossary RMP RM Plan

FEAT Vision SUPL Supplementary Specification

UC Use Cases …

61

Requirements Management and Traceability

Define Traceability Relationships

 What is Requirements Traceability?

 A relationship between

two requirements

 Use:

 Query requirements data (based on traceability links

and requirements attributes) :

• Project status (schedule, budget, progress)

• Impact analysis

• Coverage analysis

• Feature creep

 Create requirement statistics (metrics)

62

STRQ

SUPL UC

FEAT

Reminder: This is

defined and

documented in

the RM Plan.

… Stakeholder Request

Requirements Management and Traceability

Traceability Relationships

 Link two requirements to each other

 Help manage change

 Display in views:

 Traceability Matrix

 Traceability Tree

Views are

created by

Requirement

Type

63

Requirements Management and Traceability

Example: Traceability Matrix View

64 Example IBM Rational Requisite Pro

Requirements Management and Traceability

Example: Traceability Tree View

65 Example IBM Rational Requisite Pro

66

Requirements Management and Traceability

Traceability Definitions

 „… ability to describe and follow the life of a requirement

in both a forward and backward direction“
(Gotel & Finkelstein, ICRE 1994)

 „The degree to which a relationship can be established

between two or more products of the development

process“ (IEEE standard glossary)

 Numerous standards require traceability

 ISO 15504, CMMI, IEEE Std 830

 Many companies are mandated to implement traceability

67

Requirements Management and Traceability

Traceability is relevant in many domains

68

Requirements Management and Traceability

Traceabilty helps to answer questions such as

 What is the impact of changing this

requirement?

 Why is this component part of the system?

 May I delete this table from the database?

 Which requirements are not covered by test

cases?

 Are we finished already?

69

Requirements Management and Traceability

Traceability Techniques

70

Requirements Management and Traceability

Traceability Observations

 Enormous complexity, high costs

 No widespread use in (small) software companies

 Used typically if mandated by standards

 Keeping trace links up-to-date even harder than creating
them

 Tools manage manually
acquired links

 Weak tool support for

 Trace acquisition

 Trace utilization

Outline

“Requirements Specification”:

 Introduction

 Content of Software Requirements Specifications

 IEEE Std. 830

 Volere Template

Writing Good Requirements

 Requirements Management and Traceability

 Requirements on Requirements Management Tools

 Sample Software Requirements Specification

 Exercise 3: Requirements Inspection and SRS Evaluation

71

Requirements on Requirements Management Tools

INCOSE Requirements Management Tools Survey

 Performed by the Tools Database

Working Group (TDWG) of the

International Council on Systems Engineering (INCOSE)

 Gathering of information on Requirements Management tools since

the 1990's

 Survey questions for Requirements Management tools developed and enhanced by

INCOSE/TDGW

 Survey responses, including rating of compliance with each question or feature,

provided directly by tool vendors

 TDWG reserves the right to review and correct any

"informational injustices" (i.e. exaggerated answers)

 Results provided through TDWG’s Tools

Database -- unfortunately: “… currently not

supported, and INCOSE does not have

a timeline for its return”
(http://oldsite.incose.org/ProductsPubs/products/toolsdatabase.aspx)

72

… however:

a rich source for

requirements on

Requirements

Management

Tools !!!

Requirements on Requirements Management Tools

INCOSE RM Tools Survey: Categories, Sample Questions

1. Capturing Requirements/

 identification

2. Capturing system element

 structure

3. Requirements flowdown

4. Traceability analysis

5. Configuration Management

6. Documents and other output

 media

7. Groupware

8. Interfaces to other tools

9. System Environment

10. User Interfaces

11. Standards

12. Support and Maintenance

13. Training

14. Other Comments

73

1. Capturing Requirements/identification

1.1. Input document enrichment/analysis: Using existing document

information (such as glossary, index, etc.), aid the user in

requirements analysis, identification of requirements, etc.

1.1.1. Input document change/comparison analysis: The ability to

compare/contrast two different versions of a source document.

1.2. Automatic parsing of requirements: A mechanism for

automatic identification of requirements by key words, structure,

unique identifiers, etc. to create requirements from the text.

1.3. Interactive/semi-automatic requirement identification: The

ability to identify requirements from a text file via interactive means

such as mouse highlighting of the requirement text or prompting by

the system "is this a requirement?"

1.4. Manual requirement identification: A manual means of

identifying or creating requirements.

1.5. Batch mode operation: A mechanism for inputting/identifying

requirements from outside of the tool.

1.5.1. Batch-mode document/source-link update: Does the tool

have the ability to update existing linked documents from

new/changed versions of the source documents without having to

re-establish traceability links.

1.6. Requirement classification: Does the tool have the ability to

classify/categorize requirements during identification

Requirements on Requirements Management Tools

INCOSE RM Tools Survey: Responses IBM Rational DOORS v9.2

74

Requirements Management Survey Questions

Compliance

(Full, Partial, None) Comments
1. Capturing Requirements/identification

1.1. Input document enrichment/analysis: Using existing

document information (such as glossary, index, etc.), aid the

user in requirements analysis, identification of requirements,

etc.

Full Automatic input parsers analyze text for keywords and create attributes

for recognized data such as references and security classification.

Following parsing requirements can be automatically labeled based on

any search criteria.

1.1.1. Input document change/comparison analysis: The ability

to compare/contrast two different versions of a source

document.

Full The spreadsheet import does automatic updates of new versions. Other

parsers may be user modified to compare existing with new data. Also, a

document compare function can be used to compare two documents that

have been separately imported

1.2. Automatic parsing of requirements: A mechanism for

automatic identification of requirements by key words, structure,

unique identifiers, etc. to create requirements from the text.

Full Multiple parsers are available to read all kinds of data. All parsers may be

configured to fit the users' particular needs.

1.3. Interactive/semi-automatic requirement identification: The

ability to identify requirements from a text file via interactive

means such as mouse highlighting of the requirement text or

prompting by the system "is this a requirement?"

Full Automatic parsers will recognize requirements without intervention unless

input data is ambiguous in which case the user will be prompted

1.4. Manual requirement identification: A manual means of

identifying or creating requirements.

Full Requirements can be entered manually into DOORS.

1.5. Batch mode operation: A mechanism for

inputting/identifying requirements from outside of the tool.

Full Full batch loading of requirements from multiple source formats is

provided

1.5.1. Batch-mode document/source-link update: Does the tool

have the ability to update existing linked documents from

new/changed versions of the source documents without having

to re-establish traceability links.

Full Requirements that are updated, either directly or in batch operations,

retain their links. New versions of documents may be used to update the

requirements, however, the use of constant requirements identifiers in the

source documents significantly aids the process.

It should be noted however, that DOORS provides a fully featured

Microsoft Word-like editing environment to negate the need for external

modification and in many instances remove the need for repeated update

from external sources. Where needed links can also be loaded in batch

mode from external files

1.6. Requirement classification: Does the tool have the ability to

classify/categorize requirements during identification

Full DOORS provides supports for user-defined attributes. An attribute to

classify /categorize requirements can be created.

Outline

“Requirements Specification”:

 Introduction

 Content of Software Requirements Specifications

 IEEE Std. 830

 Volere Template

Writing Good Requirements

 Requirements Management and Traceability

 Requirements on Requirements Management Tools

 Sample Software Requirements Specification

 Exercise 3: Requirements Inspection and SRS Evaluation

75

Sample Software Requirements Specification

FlexRay Requirements Specification V2.1

76

Sample Software Requirements Specification

FlexRay SRS V2.1 - Sample Evaluation (1/5)

 General Observations:

 Real-world Example

 SRS according Volere

 SRS Purpose:

• Publication of Specification

• Requirements plus additional explanations

77

Sample Software Requirements Specification

FlexRay SRS V2.1 - Sample Evaluation (2/5)

 Evaluation against IEEE Std. 830 “Characteristics of a

Good SRS” (cf. slide 13)

 Evaluation Results - Overview

 Used Scale:

 1 ... Criterion fully fulfilled

 2 ... Criterion largely fulfilled

 3 ... Criterion partly fulfilled

 4 ... Criterion not fulfilled

 0 ... Criterion not applicable

Correct Unambiguous Complete Consistent Ranked Verifiable Modifiable Traceable

0 2 0 1 1 2 1 1

78

Sample Software Requirements Specification

FlexRay SRS V2.1 - Sample Evaluation (3/5)

 Unambiguous: 2

 In favor:

• Definition of terms

• Definition of notation

• Explanations (subordinate requirements)

 Problems:

• Use of prose

• p.12, ID301: “state of the art automotive environments”

• p.94, ID1708: “independent (as far as possible)”

79

Sample Software Requirements Specification

FlexRay SRS V2.1 - Sample Evaluation (4/5)

 Consistent: 1

 Not applicable sections marked as such

 Ranked for importance and/or stability: 1

 Importance: Expressed via “Bindingness” (“shall/should/may”)

 Stability: Sections on “Open Issues” and “Waiting Room”

80

Sample Software Requirements Specification

FlexRay SRS V2.1 - Sample Evaluation (5/5)

 Verifiable: 2

 Requirements are partly “abstract” and require interpretation

within a concrete solution

• p.25, ID426: 'FlexRay' shall support presence of up to two active

stars in a system.

• p.24, ID425: Presence of nodes on the link between 'repeater

modules' is not required to be supported.

 Linguistic ambiguities (cf. Criterion “Unambiguous”)

 Referenceable requirements support requirements-based testing

 Modifiable: 1

 Traceable: 1

81

Outline

“Requirements Specification”:

 Introduction

 Content of Software Requirements Specifications

 IEEE Std. 830

 Volere Template

Writing Good Requirements

 Requirements Management and Traceability

 Requirements on Requirements Management Tools

 Sample Software Requirements Specification

 Exercise 3: Requirements Inspection and SRS

Evaluation

82

Exercise 3: Requirements Inspection and

SRS Evaluation

Analyze and evaluate the provided sample software requirements specification

PACEMAKER and produce an evaluation report.

Perform the following steps:

1) Identify the purpose and context of the PACEMAKER requirements specification.

2) Identify how the structure and content of the PACEMAKER requirements specification

match with the sample outlines for requirements specifications provided by IEEE Std 830-

1998 and through the Volere Template.

3) Select a few examples of – if possible good and bad – requirements specified in the

PACEMAKER requirements specification. Use therefor the criteria and material provided

in the lecture on “Writing Good Requirements”.

4) Evaluate the overall PACEMAKER requirements specification against the “Characteristics

of a Good SRS” as provided by IEEE Std. 830-1998. Use therefor the rating scale

presented in the lecture.

Use a group-based approach for performing above steps, discuss and agree on your ratings

in the group, and provide clear rationales and evidence for your judgments.

Submit a report of your evaluation via TUWEL. Each group is expected to submit a pdf

document named Exercise3Team<YourTeamNumber>. Please list all team members on the

front page of your report.

83

Outline

“Requirements Specification”:

 Introduction

 Content of Software Requirements Specifications

 IEEE Std. 830

 Volere Template

Writing Good Requirements

 Requirements Management and Traceability

 Requirements on Requirements Management Tools

 Sample Software Requirements Specification

 Exercise 3: Requirements Inspection and SRS Evaluation

84

