
Requirements Monitoring

Paul Grünbacher

Christian Doppler Laboratory MEVSS
Institute for Software Systems Engineering
Johannes Kepler University Linz, Austria

http://mevss.jku.at

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Very-Large-Scale Software Systems

Size is just one of the challenges …

• System-of-systems architectures
• Independent elements with

different execution environments
• Globally distributed development
• Emerging behavior and properties
• Variability
• Evolutionary development (20+ years)

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Requirements Monitoring

“… help determine if the software meets its
users’ needs … ” [Robinson2010]

• Analyze requirements-level properties by
continuously analyzing the system in use

• Automate runtime requirements evaluation
• Interpret low-level software events as contributors to

eventual requirements satisfaction or violation
• Address invisibility arising from software
complexities and changeability

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

“Most large software systems result from weaving together
many independently developed systems. […]
Requirements monitoring can sound the alert should these
creations fail to meet their obligations.”

4

“[...] requirements monitors be installed to gather and
analyze pertinent information about the system’s run-time
environment. [...] detect divergences from our assumptions
that adversely affect adherence to requirements.”

[Fickas and Feather, RE 1995]

Requirements Monitoring in Systems of Systems

[Robinson, IEEE Software 2010]

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Level 2 (process optimization)

Level 1 (process control)

Level 3 (production planning systems)

HMI Database
Customer
and Third-

party
Systems

PLC

Iron Steel CastingI-HMI

S-HMI
C-HMI

PLC

I-DB

S-DB
C-DB

5

Plant Automation SoS
Ironmaking, Steelmaking, Continuous Casting

R

R

R
RR

R

R

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Requirements-based Monitoring in SoS

6

Operationally and managerially independent systems
à monitoring requirements across different heterogeneous systems

Effects of the systems’ interactions difficult to predict
à monitoring when full behavior emerges during commissioning and
operation

Continuous evolution and evolutionary independence
à checking compliance with requirements after upgrades

Diverse types of requirements at many different levels
à unified checking framework

Maier 1998, Northrop 2006, Boehm 2006, Caffal and Michael 2005

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Continuous Change and Requirements Validation

• Requirements monitoring can help determine after
changes if the software meets its users’ needs.

• Validation is no longer idealized as an activity that occurs
once. Incremental development implies incremental
validation.

• Analyzers need to continuously validate systems
against users’ needs.

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Related Research Areas

Often focus on specific types of systems and technologies

8

Requirements Monitoring
(e.g., Maiden; Robinson;
Cleland-Huang et al.; …)

Complex event
processing
(e.g., Luckham et
al.; Wang et al.; …)

Runtime Verification
(e.g., Calinescu et al.;
Ghezzi et al.;…)

Performance Monitoring
(e.g., Kieker; Module 3; …)

Service Monitoring
(e.g., Baresi et al.;
Keller et al.; …)

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

What is a Monitor?

• A software system that observes and analyzes the
behavior of another system.

• Determines qualities of interest, i.e., the satisfaction of the
target system’s requirements

• A function that processes an input data stream to
determine the status of requirements.

MON(INmon) → Sat(REQ)

Note: In reality the monitored event stream comprises complex objects (XML,
JSON) that are produced by event management and logging frameworks (log4j)

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

An optimization run
needs to finish within x
seconds after triggered

by the HMI

OptimizationRun
_TRIGGERED

Optimization
System
Probe

Component
Interaction

if event
”OptimizationRun_TRIGGERED” occurs

Postcondition = event
”OptimizationRun_FINISHED” occurs

within 5 seconds

OptimizationRun
_FINISHED

HMI
Probe

10

Monitoring a PAS Requirement – Challenges

Constraint

Events

Probes

multiple levels and layers of
granularity

diverse types of constraints

different types of events and
data/structures

different technologies for
instrumentation

Requirement

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems 11

REMINDS Requirements Monitoring Model (RE’15)

Sc1: PAS (SoS)

Sc3: Iron (S) Sc5: Caster (S)

Sc6:
Discharge (C)

Sc9: HMI
(C)

Sc2: Lab System (S)

Sc10: C-
Archiving (C)

L2I (SI)

H2A (CI)

Sc4: Steel (S)

Sc8: Laddle
Tracking (C)

Sc7: S-
Archiving (C)

T2A (CI)

Casting

HMI.request
Optimization

HMI
Optimizer Mat.

Tracking

Cooling

HMI.setData HMI.request
Length

HMI.request
Speed

Cooling.initN
ozzles

HMI.restrict
Metal

Cooling.setM
ode

Optimizer.fini
shed

HMI.request
Optimization

HMI.request
Optimization

M. Vierhauser, R. Rabiser, P. Grünbacher, B. Aumayr, "A Requirements Monitoring
Model for Systems of Systems". Requirements Engineering Conference, 2015.

SoS
Events

SoS
Monitoring Scopes

 SoS
Requirements

SoS

Syst em ...

... ...

...

......Compo nen t

Req uireme nt
...

Constrain t
...

Requireme nt
...

Requireme nt
...

Constrain t
...

Probe

Even t

Probe

Event

Pro be

Event

Probe

Event

Comp.
In teracti on

Constraint
Ladle finished =>

Start casting

Requirement
A new cast sequence can start as soon

as a new ladle is provided

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems 12

SoS Monitoring Challenges

 SoS
Requirements

Requireme nt
...

Con strain t
...

Requireme nt
...

Requireme nt
...

Constrain t
...

Constraint diversity

Incremental definition

Runtime management of constraints

End-user support

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Robinson’s General 4-Layer Framework

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Event Layer

• Services for event acquisition, transportation,
filtering, and storage

• An event is a description of a significant action
in time typically leading to a state change

• Completion of a method call
• CPU reaching 90%
• Shipment arriving at destination
• …

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Event-based Monitoring

15

Optimizer_startOptimizer_finished Cutting_completed
cutlength=4.75

Optimizer_writeResult

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Model Layer

Interpreting events using models

Analyzing software behavior
• states and potential responses
• important to provide guidance for the software’s

evolution

Interpreting user behavior
• user’s state and likely responses

important to improve user guidance

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Models for Analyses

§Functional models defining the allowed states and
transitions

§Goal models
§Antimodels defining undesirable behavior (e.g., attacks)
§Quality of Service models
§Discovery Models (e.g., data mining to learn user

behavior)

17

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

SoS Requirements

18

Tap start must be (optionally) followed by slag start, which must be followed by tap end: A - B(optional) - C
When a ladle is full (net ladle weight > limit) and a tap is running, a new ladle must be started.
When a tap ends (event), after a certain time the tapped hot metal rate must go to zero (Event data) and remain at zero until next
tap start.
When a tap ends (event), after a certain time the slag rate must go to zero (Event data) and remain at zero until next slag start.
When a tap is running (started, but not yet ended) no other tap (optionally: at the same tap hole) can be started.
The cutlength must not be > maxtransportable and not < mintransportable
A certain time after tap end, hot metal temperature and analysis must be available (otherwise the expert system cannot make
suggestions).
Prepare to Cast mode has to be completed before System can go into Cast Mode
While machine mode is not Prepare or Casting, cooling model must not be valid
When the operator changes a „plan“, an archiving event must occur within x seconds
PRACTICE was set -> check data attached to find out if practice is valid
If property dummyBarFeedingMode = BOTTOM StrandStatuses AtTCM.Casting must be false in OptiDataContainer

The smallest allowed cut length is X

After an Event of Type CuttingEvent named StartedCutting (or containing Data with information about StartedCutting), the next
Event of Type CuttingEvent to come must be FinishedCutting (or containing Data with information about FinishedCutting)
Sample defined -> optimization run must start within x seconds
An optimization run needs to finish within x seconds after triggered by another component
Skip cycle: e.g. Skip waits at stockhouse – Skip is filled at stockhouse – skip moves to top hopper – skip fills into top hopper – skip
moves to stock house
Belt cycle: Belt empty and stopped – belt empty and moving – belt is filled and moving - belt is filled and stopped … -belt charges
top hopper.
Top hopper filled (may be several times; weight limit) – top hopper dumped
After TAILING, event TAILING_COMPLETED must occur while max one START CAST must have occured
START CAST -> TAILING INITIATED -> TAILING COMPLETED

READY TO CAST -> isSetPointValid
CASTING -> isSetPointValid
TAILING -> isSetPointValid

 SoS
Requirements

Requireme nt
...

Con strain t
...

Requireme nt
...

Requireme nt
...

Constrain t
...

….

An optimization run needs to
finish within x seconds after
triggered by another
component

The cutlength must not be >
maxtransportable and not <
mintransportable

When the tundish car moves to
the casting position the ladle
must have been mounted
within the last 30 seconds

If property
dummyBarFeedingMode =
BOTTOM StrandStatuses
AtTCM.Casting must be false in
OptiDataContainer

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Types of Constraints

19

trigger event

past events future events

Data
Conditions

Past
Occurrence

Future
Occurrence

The cutlength must not be >
maxtransportable

When the tundish car moves to
the casting position the ladle
must have been mounted within
the last 30 seconds An optimization run needs to
finish within 10 seconds and
perform actions in a specific
order

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Views Layer

§ Services for presenting
analyses to developers

§ Example: Event data
aggregation & visualization

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Application Layer

§ Application-specific services to present, control, and modify
the target system

§ Debugging, verification, business activity monitoring, evolution
§ Examples

§ Evolution Support: Compare results of multiple simulation runs, e.g.,
before and after an upgrade

§ Capture & Replay: Use collected production data for offline system
simulations

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Industrial SoS Monitoring Applications

• Continuous monitoring and cross-system analyses
during customer acceptance tests

• Capture and replay to facilitate offline diagnosis across
multiple systems

• Capture and compare after SoS evolution to ease
anomaly detection

22

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Existing Monitoring Frameworks

§ Kieker
§ ReqMon
§ Spass Meter
§ REMINDS Framework (CDL MEVSS)
§ ...

23

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems 24

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

System to be Monitored

ReMinds Framework Architecture

Core Layers

Extension
Layers

Extension
Layers

25

Existing Tools

Vierhauser, Rabiser, Grünbacher, Danner, Wallner, Zeisel: A Flexible Framework
for Runtime Monitoring of System-of-Systems Architectures, WICSA 2014

Developers

Users in
testing,
commissioning,
and operation

Probing

Analysis

Tools & Clients

Aggregation

Variability

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Generic Monitoring Framework

26

Aggregation &
Distribution

Processing &
Analysis

Var
DefPersistor

Event Broker

Ag-I

Di-I

Event P&AMD

UEM
Probe

Templates

Probing &
Instrumentation P P P P P P

Views
V

V V V V

Extension
Components

Core
Components

P
V
P&A
MD
VarDef
UEM
Ag-I
Di-I

Probe
View
Processing & Analysis
Monitor Description
Variability Definition
Unified Event Model
Aggregation Interface
Distribution Interface

Variability
Management

Vierhauser, Michael; Rabiser, Rick; Grünbacher, Paul; Danner, Christian; Wallner, Stefan; Zeisel,
Helmut, "A Flexible Framework for Runtime Monitoring of System-of-Systems Architectures", In:
Proceedings 11th Working IEEE/IFIP Conference on Software Architecture (WICSA 2014), Sydney,
Australia, 2014

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Tool Architecture

27

Monitored
SoS

...

...

...

......

...

...

...

...

Persistence

Aggregation & Distribution

Processing & Analysis

Requirements Monitoring Model (RMM)

Event Broker

Constraint
Engine

Events

Scopes Requirements/
Constraints

Persistence
Handler

Processors Violation
Handler

Framework	Components
(Server)

TCP/IP
(RMI)

TCP/IP
(RMI)

TCP/IP
(Socket/

JMS)

Oracle
MySQL

Derby

Developer IDE Tools

Monitoring Tool Suite

Monitoring &
Diagnosis

View

Constraint
DSL Editor

Requirements
Editor

Probe Wizard

Event Model
Editor

Scope
Editor

Server Management Tools

Server UI

User	Interface	
Components	(Clients)

Events/
Violations
Reviewer

RMM
Manager

Trace
Manager

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems 28

DSL and Incremental Constraint Checking

Event Model

Probes
(instrumenting

running system)

Constraint
Engine

Constraint
Instance Store
CI CI CI CI

Constraint
Definition

Compiled
Constraint Definition

EM
Facade

Runtime
Error

Manager
Error

Handler

Constraint
Manager

DSL Editor

Eval. Delay
Manager

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Event Model

Probes
(instrumenting

running system)

Constraint
Engine

Constraint
Instance Store
CI CI CI CI

Constraint
Definition

Compiled
Constraint Definition

EM
Facade

Runtime
Error

Manager
Error

Handler

Constraint
Manager

DSL Editor

Eval. Delay
Manager

29

DSL and Incremental Constraint Checking

End-user definition
of constraints

Constraint
diversity

Incremental
definition

Runtime
management

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Typical Usage Scenario

30

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Evaluation of DSL Expressiveness

31

• Workshops & interviews with Primetals architects and engineers
• Analyzed technical specification documents

PAS RMM
Element #
Scopes 21
Rqts/Constraints 40
Event types 109
Probes 22

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Evaluation of Checking Scalability

32

Type [#] [ms]
CST-01 FUTURE 128 1.38

CST-02 FUTURE 2 10.55

CST-03 DATA 747 54.06

CST-04 DATA 753 22.00

CST-05 PAST 1 9.74

CST-06 DATA 16 0.66

CST-07 DATA 16 0.60

Type [#] [ms]
CST-08 DATA 9,700 0.37

CST-09 FUTURE 687 1.20

CST-10 FUTURE 584 1.37

CST-11 DATA 548 14.64

CST-12 FUTURE 584 9.71

CST-13 PAST 55,029 1.55

Evaluation Runs

Element 6h Run 168h Run

Active
Scopes

5 5

Checks 10,572 262,979

Events
Captured

12,484 363,491

Active
Probes

14 14

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Simulation of Emergencies

33

Temporarily disabling StrandOptimization
Number of constraint checks and violations per minute

StrandOptimization StrandTracking

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems 34

DSL and Constraint Checking: Lessons Learned

34

Diversity of requirements
in SoS

The DSL will change and
evolve over time

Too many
features confuse

Avoid unnecessary
dependencies

Use an iterative language
design + dynamic constraint
management

Simplify and automate
extending the DSL

Keep the YAGNI* principle in
mind

Keep the mapping of the DSL
to the constraint checker
flexible

*”You Aren’t Gonna Need It”

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

ReMinds Benefits

• Monitoring at different layers and levels of granularity

• Monitoring across different systems and technologies

• Different speeds of systems

• Variability of system requirements and monitors

• Controlling the performance overhead of the monitoring solution

35

2015 Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

References

• William Robinson, A Roadmap for Comprehensive Requirements Modeling, IEEE Computer, May
2010 (vol. 43 no. 5), pp. 64-72

• Neil A. M. Maiden: Monitoring Our Requirements. IEEE Software 30(1): 16-17 (2013)
• M. Vierhauser, R. Rabiser, P. Grünbacher, K. Seyerlehner, S. Wallner, and H. Zeisel, "ReMinds: A

Flexible Runtime Monitoring Framework for Systems of Systems," Journal of Systems and
Software, 2015

• M. Vierhauser, R. Rabiser, P. Grünbacher, and A. Egyed, "Developing a DSL-Based Approach for
Event-Based Monitoring of Systems of Systems: Experiences and Lessons Learned,“ 30th
IEEE/ACM International Conference Automated Software Engineering, Lincoln, Nebraska, USA,
2015.

• M. Vierhauser, R. Rabiser, P. Grünbacher, and B. Aumayr, "A Requirements Monitoring Model for
Systems of Systems,“ 23rd IEEE International Requirements Engineering Conference (RE'15),
Ottawa, Canada, 2015.

• M. Vierhauser, R. Rabiser, and P. Grünbacher, "A Case Study on Testing, Commissioning, and
Operation of Very-Large-Scale Software Systems," Proc. of the 36th International Conference on
Software Engineering, ICSE Companion, Hyderabad, India, ACM, 2014, pp. 125-134.

• R. Rabiser, M. Vierhauser, P. Grünbacher, "Assessing the Usefulness of a Requirements Monitoring
Tool: A Study Involving Industrial Software Engineers", In: Proceedings 38th Int'l Conference on
Software Engineering (ICSE 2016), Austin, USA, 2016

36

