
Software Patterns

Software Engineering & Projektmanagement VO
(188.410)

Richard Mordinyi

richard.mordinyi@qse.ifs.tuwien.ac.at

2

Agenda

 Industrial Use Case
– Software Engineering Integration for Flexible Automation Systems

 Complex Systems and Complexity Management
 Motivation for Software Patterns
 Software Pattern Categories
 Practical Examples

– Engineering Service Bus
 Conclusion

3

Industrial Scenario

 Large-scale engineering
project
– e.g., hydro power plants,

car manufacturing plants

 Cooperation of engineering
disciplines required

 Disciplines have specific

engineering tools

 Manual effort needed at the
interfaces
– High risks

Requirements
Management

Anfoderungs-
Management

Process
Engineering

Pipe &
Instrumentation

Main Contractor

Anfoderungs-
Management

Electrical
Engineering

EPC Contractor

PCS
Programming

Anfoderungs-
Management

PLC
Programming

EPC Contractor

SCADA

Anfoderungs-
ManagementPLC

Condition
Monitoring

Plant

...

...
Process Eng.

Elec. Eng,

Software Eng.

Operator

Onsite Eng.

Maintenance Eng.

4

Complex Systems

 Magnitude

– Number of Elements in the system
– Number of possible states of elements
– Difference between number of possible and usable solutions

 Diversity
– Magnitude of heterogeneity of elements

 Connectivity, structural complexity
– Number of potential connections between elements

 Literature defines systems as complex if
… they consists of a large number of interacting components,
… simple linear modeling is insufficient for understanding,
but requires sophisticated dynamic approaches (e.g., simulations).

5

Managing Complexity

 Abstraction

– simplification of a scenario
 Decoupling

– identify the separation of system components that should not depend on
each other

 Decomposition
– KISS - Keep It Simple, Stupid
– components that are easier to understand, manage, or maintain
– problem of reassembling

 Classification
– system parts with similar properties

6

Managing Complexity

 Standardization

– benefit of a structured and non-dynamic environment
 Modeling

– generating an abstract and simplified view
 Transformation

– transformation of the given problem to a domain with proven solution
approach

 Experience
– documented experiences from experienced contributors

7

Industrial Scenario

 Complexity-drivers
– Technical heterogeneity

“Engineering Polynesia”
– Semantic heterogeneity

“Engineering Babylon”
– Process heterogeneity

“Engineering Chaos”

 Engineering Service Bus
(https://github.com/openengsb)

Requirements
Management

Anfoderungs-
Management

Process
Engineering

Pipe &
Instrumentation

Main Contractor

Anfoderungs-
Management

Electrical
Engineering

EPC Contractor

PCS
Programming

Anfoderungs-
Management

PLC
Programming

EPC Contractor

SCADA

Anfoderungs-
ManagementPLC

Condition
Monitoring

Plant

...

...
Process Eng.

Elec. Eng,

Software Eng.

Operator

Onsite Eng.

Maintenance Eng.
 Operating Numbers

 184 repositories
 5508 Issues
 170k LOC
 74k LOConf
 314 Project Dependencies

Model Mec.

Model
SW

Model
Elec.

8

Pattern Definitions

 „…a solution to a problem in a context…“

 „A pattern is the abstraction from a concrete form which keeps recurring in
specific non-arbitrary contexts”

 „Pattern“ has been defined as „an idea that has been useful in one practical
context and will probably be useful in others.“

9

Elements of a Pattern

 A meaningful name
– Aliases, classifications

 Motivation and problem statement
 Context

10

Elements of a Pattern

 A meaningful name
– Aliases, classifications

 Motivation and problem statement
 Context
 Solution

– Structure
– Participants
– Collaboration
– Consequences
– Implementation
– Examples

11

Advantages for Software Development

 Common vocabulary saves discussions
 Help manage complex systems

– Patterns explicitly capture expert knowledge and design tradeoffs
• therefore make this expertise more widely available

– Combination of patterns
 Facilitates non-functional requirements

– Reusability, adaptability, extendability
 Minimizes development time and costs
 Improves documentation

12

Experience

13

Drawbacks of Patterns

 Patterns do not lead to direct code reuse
 Patterns are deceptively simple
 Teams may suffer from pattern overload
 Patterns are validated by experience and discussion

– rather than by automated testing
– http://clean-code-developer.de/

14

Classification of Patterns

 Architectural Patterns
– Structure of software systems
– Subsystems, dependencies, communication

 Design Patterns
– Describes the structure and relations at the level of classes

 Idioms
– Focus on low-level details
– Programming language specific

 Protopatterns
– Particular case
– A new, understandable solution to be used in larger scale

 Antipatterns
– Commonly used but ineffective techniques

15

When to use Patterns

 Solutions to problems that recur with variations

– No need for reuse if the problem only arises in one context
 Solutions that require several steps

– Patterns can be overkill if solution is simple linear set of instructions
 Solutions where the solver is more interested in the existence of the solution

than its complete derivation
– Patterns leave out too much to be useful to someone who really wants

to understand

16

Most popular Patterns

 The most popular design pattern is the Interface pattern

http://dilbert.com/strips/comic/1994-06-10/

 The second most popular design pattern is Proxy Pattern

 The third most popular design pattern is "Big Ball of Mud"

17

Types of Patterns

 Creational patterns
– Deal with initializing and configuring classes and objects

 Structural patterns

– Deal with decoupling interface and implementation of classes and
objects

 Behavioral patterns

– Deal with dynamic interactions among objects

18

Fundamental Pattern - Interface

 Provides distinction between behaviour and concrete implementation
 Should be stable - in comparison to implementation

19

Fundamental Pattern - Interface

 Provides distinction between behaviour and concrete implementation
 Should be stable - in comparison to implementation

20

Fundamental Pattern - Delegation

 Class needs additional functionality, not (yet) implemented within that class

21

Fundamental Pattern - Delegation

 Class needs additional functionality, not (yet) implemented within that class
– Extend

22

Fundamental Pattern - Delegation

 Class needs additional functionality, not (yet) implemented within that class
– Extend

– Outsource functionality into third class and use its instance via delegation

23

Fundamental Pattern - Delegation

 Class needs additional functionality, not (yet) implemented within that class
– Extend

– Outsource functionality into third class and use its instance via delegation

24

Fundamental Pattern - Immutable

 Once created state of an instance must not be changed
– Configuration information

25

Fundamental Pattern - Immutable

 Once created state of an instance must not be changed
– Configuration information

 Initialize variables in constructor
 Provide readable only access via Getter-Methods

26

Creational Patterns

 Singleton
– Provision of a single instance only

 Factory
– Method in a derived class creates associates

 Abstract Factory
– Factory for building related objects without specifying their concrete

classes
 Builder

– Factory for building complex objects in different variants
 Prototype

– Factory for cloning new instances from a prototypical instance

27

Creational Pattern - Singleton

 Make sure that there is only one instance of a class
– Communication with hardware
– Creation of Ids
– logging

28

Creational Pattern - Singleton

 Make sure that there is only one instance of a class
– Communication with hardware
– Creation of Ids
– logging

Threadsafe??

29

Creational Pattern - Singleton

 Make sure that there is only one instance of a class
– Communication with hardware
– Creation of Ids
– logging

Threadsafe??

30

Creational Pattern - Factory

 Initialization of instances depending on complex context variables
– initialization of additional sub-instances
– Complex configuration process steps

 Helps decoupling as only interface is known

31

Creational Pattern - Factory

 Initialization of instances depending on complex context variables
– initialization of additional sub-instances
– Complex configuration process steps

 Helps decoupling as only interface is known

32

Creational Pattern – Abstract Factory

 Abstract Factory
– a group of individual

factories that have a
common theme

 Two hierarchies
– various abstractions client

is interested in
– abstract AbstractFactory

class provides interface
• for each class that is

responsible for
creating the members
of a particular family

 Client only knows abstract
interface
– Family may grow

independently of the client

33

Creational Patterns

 Singleton
– Provision of a single instance only

 Factory
– Method in a derived class creates associates

 Abstract Factory
– Factory for building related objects without specifying their concrete

classes
 Builder

– Factory for building complex objects in different variants
 Prototype

– Factory for cloning new instances from a prototypical instance

34

Structural Patterns

 Facade

– Facade simplifies the interface for a subsystem
 Adapter

– Translator adapts a server interface for a client
 Proxy

– One object approximates another
 Bridge

– Abstraction for binding one of many implementations
 Composite

– Treats individual objects and compositions uniformly
 Flyweight

– Many fine-grained objects shared efficiently

35

Structural Pattern - Facet

 provides a simplified, higher-level interface of a subsystem
– easier to use, understand, and test subsystem
– Balance between simple but restricted and rich but complex

 May help creating a layered architecture

36

Structural Pattern - Facet

 provides a simplified, higher-level interface of a subsystem
– easier to use, understand, and test subsystem
– Balance between simple but restricted and rich but complex

 May help creating a layered architecture

37

Structural Pattern - Adapter

 wrapper pattern or simply a wrapper
 provides access to external functionality

– e.g., access to external libraries, (propriatary) systems
– typically no direct access because of incompatible interfaces

38

Structural Pattern - Adapter

 wrapper pattern or simply a wrapper
 provides access to external functionality

– e.g., access to external libraries, (propriatary) systems
– typically no direct access because of incompatible interfaces

 translates one interface for a class into a compatible interface
– Perform data transformations into appropriate forms

39

Structural Pattern - Adapter

 wrapper pattern or simply a wrapper
 provides access to external functionality

– e.g., access to external libraries, (propriatary) systems
– typically no direct access because of incompatible interfaces

 translates one interface for a class into a compatible interface
– Perform data transformations into appropriate forms

Software
Engineer

Process Engineer

Electrical
Engineer

Mechanical
equipment properties

Transmission lines
Terminal points

Data Types
Logical Behavior

Requirements
Location IDs
Components

Interfaces

Signals (I/O)

Machine vendor
catalogue

40

Structural Pattern - Proxy

 Extends concept of the delegation pattern
 Enriches interface functionality

– Implements interface and acts as a representative of the „original“
implementation

– Security, logging, caching…
 Cascading Proxies

41

Structural Pattern - Proxy

 Extends concept of the delegation pattern
 Enriches interface functionality

– Implements interface and acts as a representative of the „original“
implementation

– Security, logging, caching…
 Cascading Proxies

42

Remote Connectors

43

Structural Pattern - Proxy

 Extends concept of the delegation pattern
 Enriches interface functionality

– Implements interface and acts as a representative of the „original“
implementation

– Security, logging, caching…
 Cascading Proxies

44

Composite Connectors

44

45

Structural Patterns

 Facade

– Facade simplifies the interface for a subsystem
 Adapter

– Translator adapts a server interface for a client
 Proxy

– One object approximates another
 Bridge

– Abstraction for binding one of many implementations
 Composite

– Treats individual objects and compositions uniformly
 Flyweight

– Many fine-grained objects shared efficiently

46

Behavioral Patterns

 Observer
– Dependents update automatically when a subject changes

 Decorator
– Decorator extends an object transparently

 State
– Object whose behavior depends on its state

 Strategy
– Vary algorithms independently

 Chain of Responsibility
– Request delegated to the responsible service provider

 Iterator
– Aggregate elements are accessed sequentially

 Command
– Object represents all the information needed to call a method at a later time

 Mediator
– Mediator coordinates interactions between its associates

 Memento
– Snapshot captures and restores object states

47

Behavioral Pattern - Observer

 in case of changes of the instance‘s state execute specific action(s)
– e.g., notification of instances interested in change
– one-to-many dependency

48

Behavioral Pattern - Decorator

 Dynamically add new functionality to an existing object
– Some basic work still has to be done at design time

 Elements
– Interface Component
– Implemented by concrete components
– Abstract decorator class

• Implements interface
• and keeps reference to interface

to forward functionality
– Concrete decorator

implementations
 Drawback

– Testing
– proxy

49

Behavioral Pattern - Decorator

 Dynamically add new functionality to an existing object
– Some basic work still has to be done at design time

50

Behavioral Pattern - Decorator

 Dynamically add new functionality to an existing object
– Some basic work still has to be done at design time

51

Behavioral Pattern - State

 Allow an object to update its behavior when its internal state changes
– Makes state transitions explicit
– May result in lots of subclasses

52

Behavioral Pattern - State

 Allow an object to update its behavior when its internal state changes
– Makes state transitions explicit
– May result in lots of subclasses

http://sourcemaking.com/design_patterns/state

53

Behavioral Pattern - Strategy

 Close binding between person and email/sms
– no use of additional communication technique without changing code
– Notification service decides technique of communication

54

Behavioral Pattern - Strategy

 Close binding between person and email/sms
– no use of additional communication technique without changing code
– Notification service decides technique of communication

 Context object decides
which strategy to use

55

Behavioral Pattern - Strategy

 Close binding between person and email/sms
– no use of additional communication technique without changing code
– Notification service decides technique of communication

 Context object decides
which strategy to use

56

Behavioral Pattern - Chain of Responsibility

 Chain of Objects
– a source of command objects
– a series of processing objects with logic capable of handling specific

command objects

57

Behavioral Pattern - Chain of Responsibility

 Chain of Objects
– a source of command objects
– a series of processing objects with logic capable of handling specific

command objects

58

Behavioral Pattern - Chain of Responsibility

call executeWorkflow("simpleFlow") on the
"workflowService"

Remote Service Request

59

Behavioral Pattern - Chain of Responsibility

60

Behavioral Pattern - Chain of Responsibility

61

Behavioral Pattern - Chain of Responsibility

62

63

Behavioral Patterns

 Observer
– Dependents update automatically when a subject changes

 Decorator
– Decorator extends an object transparently

 State
– Object whose behavior depends on its state

 Strategy
– Vary algorithms independently

 Chain of Responsibility
– Request delegated to the responsible service provider

 Iterator
– Aggregate elements are accessed sequentially

 Command
– Object represents all the information needed to call a method at a later time

 Mediator
– Mediator coordinates interactions between its associates

 Memento
– Snapshot captures and restores object states

64

Summary

 Industrial Use Case
 Engineering Service Bus
 Design patterns provide a structure in which problems can be solved.

– Review different applications of one pattern
– Gain experience
– "code smells"

 Offering EngSB-related Topics
– http://qse.ifs.tuwien.ac.at/topics.htm
– http:// cdl.ifs.tuwien.ac.at
– http:// cdl.ifs.tuwien.ac.at/jobs
– richard.mordinyi@tuwien.ac.at

65

References

 Shannon C. E. A Mathematical Theory of Communication. Bell Syst. Techn. J., 1948.
 McDermid, J.A. Complexity: Concept, Causes and Control. in 6th IEEE Int. Conference on

Complex Computer Systems. 2000: IEEE Computer
 Society..
 Norman D. O. and M. L. Kuras. Engineering Complex Systems. Technical Report, the

MITRE Corporation, 2004.
 Developer.com, A Survey of Common Design Patterns, 2002,

http://www.developer.com/design/article.php/1502691/A-Survey-of-Common-Design-Patterns.htm

 Anand, R. and H.C. Roy, What is the complexity of a distributed computing system?
Complexity, 2007. 12(6): p. 37-45.

 Bob, C., Complexity in Design. IEEE Computer, 2005. 38(10): p. 10-12.
 Dirk Riehle and Heinz Zullighoven. 1996. Understanding and using patterns in software

development. Theor. Pract. Object Syst. 2, 1 (November 1996)
 Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software AW, ’94
 Pattern Languages of Program Design series by AW, ’95-’99.
 Siemens & Schmidt, Pattern-Oriented Software Architecture, Wiley, volumes ’96 & ’00
 http://sourcemaking.com/design_patterns

66

EngSB - Patterns

 Interface Pattern: https://github.com/openengsb/openengsb-domain-
notification/blob/master/src/main/java/org/openengsb/domain/notification/Notification
Domain.java

– email: https://github.com/openengsb/openengsb-connector-
email/blob/master/src/main/java/org/openengsb/connector/email/internal/EmailN
otifier.java

– facebook: https://github.com/openengsb/openengsb-connector-
facebook/blob/master/src/main/java/org/openengsb/connector/facebook/internal/
FacebookNotifier.java

 Delegation pattern: https://github.com/openengsb/openengsb-
framework/blob/master/components/common/src/main/java/org/openengsb/core/com
mon/events/ForwardHandler.java

 Immutable pattern: https://github.com/openengsb/openengsb-
framework/blob/master/components/ekb/src/main/java/org/openengsb/core/ekb/intern
al/ConnectorInformation.java

https://github.com/openengsb/openengsb-domain-notification/blob/master/src/main/java/org/openengsb/domain/notification/NotificationDomain.java�
https://github.com/openengsb/openengsb-domain-notification/blob/master/src/main/java/org/openengsb/domain/notification/NotificationDomain.java�
https://github.com/openengsb/openengsb-domain-notification/blob/master/src/main/java/org/openengsb/domain/notification/NotificationDomain.java�
https://github.com/openengsb/openengsb-connector-email/blob/master/src/main/java/org/openengsb/connector/email/internal/EmailNotifier.java�
https://github.com/openengsb/openengsb-connector-email/blob/master/src/main/java/org/openengsb/connector/email/internal/EmailNotifier.java�
https://github.com/openengsb/openengsb-connector-email/blob/master/src/main/java/org/openengsb/connector/email/internal/EmailNotifier.java�
https://github.com/openengsb/openengsb-connector-facebook/blob/master/src/main/java/org/openengsb/connector/facebook/internal/FacebookNotifier.java�
https://github.com/openengsb/openengsb-connector-facebook/blob/master/src/main/java/org/openengsb/connector/facebook/internal/FacebookNotifier.java�
https://github.com/openengsb/openengsb-connector-facebook/blob/master/src/main/java/org/openengsb/connector/facebook/internal/FacebookNotifier.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/events/ForwardHandler.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/events/ForwardHandler.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/events/ForwardHandler.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/ekb/src/main/java/org/openengsb/core/ekb/internal/ConnectorInformation.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/ekb/src/main/java/org/openengsb/core/ekb/internal/ConnectorInformation.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/ekb/src/main/java/org/openengsb/core/ekb/internal/ConnectorInformation.java�

67

EngSB - Patterns

 Singleton pattern: https://github.com/openengsb/openengsb-
framework/blob/master/components/api/src/main/java/org/openengsb/core/api/contex
t/ContextHolder.java

 Factory pattern: https://github.com/openengsb/openengsb-
framework/blob/master/components/api/src/main/java/org/openengsb/core/api/Conne
ctorInstanceFactory.java

 Proxy pattern:
– https://github.com/openengsb/openengsb-

framework/blob/master/components/services/src/main/java/org/openengsb/core/
services/internal/virtual/ProxyConnector.java

– https://github.com/openengsb/openengsb-
framework/blob/master/components/common/src/main/java/org/openengsb/core/
common/virtual/InvokeAllIgnoreResultStrategy.java

 Chain of responsibility pattern: https://github.com/openengsb/openengsb-
framework/blob/master/components/common/src/main/java/org/openengsb/core/com
mon/remote/

https://github.com/openengsb/openengsb-framework/blob/master/components/api/src/main/java/org/openengsb/core/api/context/ContextHolder.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/api/src/main/java/org/openengsb/core/api/context/ContextHolder.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/api/src/main/java/org/openengsb/core/api/context/ContextHolder.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/api/src/main/java/org/openengsb/core/api/ConnectorInstanceFactory.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/api/src/main/java/org/openengsb/core/api/ConnectorInstanceFactory.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/api/src/main/java/org/openengsb/core/api/ConnectorInstanceFactory.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/services/src/main/java/org/openengsb/core/services/internal/virtual/ProxyConnector.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/services/src/main/java/org/openengsb/core/services/internal/virtual/ProxyConnector.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/services/src/main/java/org/openengsb/core/services/internal/virtual/ProxyConnector.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/virtual/InvokeAllIgnoreResultStrategy.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/virtual/InvokeAllIgnoreResultStrategy.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/virtual/InvokeAllIgnoreResultStrategy.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/remote/�
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/remote/�
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/remote/�

	Software Patterns
	Agenda
	Industrial Scenario
	Complex Systems
	Managing Complexity
	Managing Complexity
	Industrial Scenario
	Pattern Definitions
	Elements of a Pattern
	Elements of a Pattern
	Advantages for Software Development
	Experience
	Drawbacks of Patterns
	Classification of Patterns
	When to use Patterns
	Most popular Patterns
	Types of Patterns
	Fundamental Pattern - Interface
	Fundamental Pattern - Interface
	Fundamental Pattern - Delegation
	Fundamental Pattern - Delegation
	Fundamental Pattern - Delegation
	Fundamental Pattern - Delegation
	Fundamental Pattern - Immutable
	Fundamental Pattern - Immutable
	Creational Patterns
	Creational Pattern - Singleton
	Creational Pattern - Singleton
	Creational Pattern - Singleton
	Creational Pattern - Factory
	Creational Pattern - Factory
	Creational Pattern – Abstract Factory
	Creational Patterns
	Structural Patterns
	Structural Pattern - Facet
	Structural Pattern - Facet
	Structural Pattern - Adapter
	Structural Pattern - Adapter
	Structural Pattern - Adapter
	Structural Pattern - Proxy
	Structural Pattern - Proxy
	Remote Connectors
	Structural Pattern - Proxy
	Composite Connectors
	Structural Patterns
	Behavioral Patterns
	Behavioral Pattern - Observer
	Behavioral Pattern - Decorator
	Behavioral Pattern - Decorator
	Behavioral Pattern - Decorator
	Behavioral Pattern - State
	Behavioral Pattern - State
	Behavioral Pattern - Strategy
	Behavioral Pattern - Strategy
	Behavioral Pattern - Strategy
	Behavioral Pattern - Chain of Responsibility
	Behavioral Pattern - Chain of Responsibility
	Behavioral Pattern - Chain of Responsibility
	Behavioral Pattern - Chain of Responsibility
	Behavioral Pattern - Chain of Responsibility
	Behavioral Pattern - Chain of Responsibility
	Foliennummer 62
	Behavioral Patterns
	Summary
	References
	EngSB - Patterns
	EngSB - Patterns

