
Software Patterns

Software Engineering & Projektmanagement VO
(188.410)

Richard Mordinyi

richard.mordinyi@qse.ifs.tuwien.ac.at

2

Agenda

 Industrial Use Case
– Software Engineering Integration for Flexible Automation Systems

 Complex Systems and Complexity Management
 Motivation for Software Patterns
 Software Pattern Categories
 Practical Examples

– Engineering Service Bus
 Conclusion

3

Industrial Scenario

 Large-scale engineering
project
– e.g., hydro power plants,

car manufacturing plants

 Cooperation of engineering
disciplines required

 Disciplines have specific

engineering tools

 Manual effort needed at the
interfaces
– High risks

Requirements
Management

Anfoderungs-
Management

Process
Engineering

Pipe &
Instrumentation

Main Contractor

Anfoderungs-
Management

Electrical
Engineering

EPC Contractor

PCS
Programming

Anfoderungs-
Management

PLC
Programming

EPC Contractor

SCADA

Anfoderungs-
ManagementPLC

Condition
Monitoring

Plant

...

...
Process Eng.

Elec. Eng,

Software Eng.

Operator

Onsite Eng.

Maintenance Eng.

4

Complex Systems

 Magnitude

– Number of Elements in the system
– Number of possible states of elements
– Difference between number of possible and usable solutions

 Diversity
– Magnitude of heterogeneity of elements

 Connectivity, structural complexity
– Number of potential connections between elements

 Literature defines systems as complex if
… they consists of a large number of interacting components,
… simple linear modeling is insufficient for understanding,
but requires sophisticated dynamic approaches (e.g., simulations).

5

Managing Complexity

 Abstraction

– simplification of a scenario
 Decoupling

– identify the separation of system components that should not depend on
each other

 Decomposition
– KISS - Keep It Simple, Stupid
– components that are easier to understand, manage, or maintain
– problem of reassembling

 Classification
– system parts with similar properties

6

Managing Complexity

 Standardization

– benefit of a structured and non-dynamic environment
 Modeling

– generating an abstract and simplified view
 Transformation

– transformation of the given problem to a domain with proven solution
approach

 Experience
– documented experiences from experienced contributors

7

Industrial Scenario

 Complexity-drivers
– Technical heterogeneity

“Engineering Polynesia”
– Semantic heterogeneity

“Engineering Babylon”
– Process heterogeneity

“Engineering Chaos”

 Engineering Service Bus
(https://github.com/openengsb)

Requirements
Management

Anfoderungs-
Management

Process
Engineering

Pipe &
Instrumentation

Main Contractor

Anfoderungs-
Management

Electrical
Engineering

EPC Contractor

PCS
Programming

Anfoderungs-
Management

PLC
Programming

EPC Contractor

SCADA

Anfoderungs-
ManagementPLC

Condition
Monitoring

Plant

...

...
Process Eng.

Elec. Eng,

Software Eng.

Operator

Onsite Eng.

Maintenance Eng.
 Operating Numbers

 184 repositories
 5508 Issues
 170k LOC
 74k LOConf
 314 Project Dependencies

Model Mec.

Model
SW

Model
Elec.

8

Pattern Definitions

 „…a solution to a problem in a context…“

 „A pattern is the abstraction from a concrete form which keeps recurring in
specific non-arbitrary contexts”

 „Pattern“ has been defined as „an idea that has been useful in one practical
context and will probably be useful in others.“

9

Elements of a Pattern

 A meaningful name
– Aliases, classifications

 Motivation and problem statement
 Context

10

Elements of a Pattern

 A meaningful name
– Aliases, classifications

 Motivation and problem statement
 Context
 Solution

– Structure
– Participants
– Collaboration
– Consequences
– Implementation
– Examples

11

Advantages for Software Development

 Common vocabulary saves discussions
 Help manage complex systems

– Patterns explicitly capture expert knowledge and design tradeoffs
• therefore make this expertise more widely available

– Combination of patterns
 Facilitates non-functional requirements

– Reusability, adaptability, extendability
 Minimizes development time and costs
 Improves documentation

12

Experience

13

Drawbacks of Patterns

 Patterns do not lead to direct code reuse
 Patterns are deceptively simple
 Teams may suffer from pattern overload
 Patterns are validated by experience and discussion

– rather than by automated testing
– http://clean-code-developer.de/

14

Classification of Patterns

 Architectural Patterns
– Structure of software systems
– Subsystems, dependencies, communication

 Design Patterns
– Describes the structure and relations at the level of classes

 Idioms
– Focus on low-level details
– Programming language specific

 Protopatterns
– Particular case
– A new, understandable solution to be used in larger scale

 Antipatterns
– Commonly used but ineffective techniques

15

When to use Patterns

 Solutions to problems that recur with variations

– No need for reuse if the problem only arises in one context
 Solutions that require several steps

– Patterns can be overkill if solution is simple linear set of instructions
 Solutions where the solver is more interested in the existence of the solution

than its complete derivation
– Patterns leave out too much to be useful to someone who really wants

to understand

16

Most popular Patterns

 The most popular design pattern is the Interface pattern

http://dilbert.com/strips/comic/1994-06-10/

 The second most popular design pattern is Proxy Pattern

 The third most popular design pattern is "Big Ball of Mud"

17

Types of Patterns

 Creational patterns
– Deal with initializing and configuring classes and objects

 Structural patterns

– Deal with decoupling interface and implementation of classes and
objects

 Behavioral patterns

– Deal with dynamic interactions among objects

18

Fundamental Pattern - Interface

 Provides distinction between behaviour and concrete implementation
 Should be stable - in comparison to implementation

19

Fundamental Pattern - Interface

 Provides distinction between behaviour and concrete implementation
 Should be stable - in comparison to implementation

20

Fundamental Pattern - Delegation

 Class needs additional functionality, not (yet) implemented within that class

21

Fundamental Pattern - Delegation

 Class needs additional functionality, not (yet) implemented within that class
– Extend

22

Fundamental Pattern - Delegation

 Class needs additional functionality, not (yet) implemented within that class
– Extend

– Outsource functionality into third class and use its instance via delegation

23

Fundamental Pattern - Delegation

 Class needs additional functionality, not (yet) implemented within that class
– Extend

– Outsource functionality into third class and use its instance via delegation

24

Fundamental Pattern - Immutable

 Once created state of an instance must not be changed
– Configuration information

25

Fundamental Pattern - Immutable

 Once created state of an instance must not be changed
– Configuration information

 Initialize variables in constructor
 Provide readable only access via Getter-Methods

26

Creational Patterns

 Singleton
– Provision of a single instance only

 Factory
– Method in a derived class creates associates

 Abstract Factory
– Factory for building related objects without specifying their concrete

classes
 Builder

– Factory for building complex objects in different variants
 Prototype

– Factory for cloning new instances from a prototypical instance

27

Creational Pattern - Singleton

 Make sure that there is only one instance of a class
– Communication with hardware
– Creation of Ids
– logging

28

Creational Pattern - Singleton

 Make sure that there is only one instance of a class
– Communication with hardware
– Creation of Ids
– logging

Threadsafe??

29

Creational Pattern - Singleton

 Make sure that there is only one instance of a class
– Communication with hardware
– Creation of Ids
– logging

Threadsafe??

30

Creational Pattern - Factory

 Initialization of instances depending on complex context variables
– initialization of additional sub-instances
– Complex configuration process steps

 Helps decoupling as only interface is known

31

Creational Pattern - Factory

 Initialization of instances depending on complex context variables
– initialization of additional sub-instances
– Complex configuration process steps

 Helps decoupling as only interface is known

32

Creational Pattern – Abstract Factory

 Abstract Factory
– a group of individual

factories that have a
common theme

 Two hierarchies
– various abstractions client

is interested in
– abstract AbstractFactory

class provides interface
• for each class that is

responsible for
creating the members
of a particular family

 Client only knows abstract
interface
– Family may grow

independently of the client

33

Creational Patterns

 Singleton
– Provision of a single instance only

 Factory
– Method in a derived class creates associates

 Abstract Factory
– Factory for building related objects without specifying their concrete

classes
 Builder

– Factory for building complex objects in different variants
 Prototype

– Factory for cloning new instances from a prototypical instance

34

Structural Patterns

 Facade

– Facade simplifies the interface for a subsystem
 Adapter

– Translator adapts a server interface for a client
 Proxy

– One object approximates another
 Bridge

– Abstraction for binding one of many implementations
 Composite

– Treats individual objects and compositions uniformly
 Flyweight

– Many fine-grained objects shared efficiently

35

Structural Pattern - Facet

 provides a simplified, higher-level interface of a subsystem
– easier to use, understand, and test subsystem
– Balance between simple but restricted and rich but complex

 May help creating a layered architecture

36

Structural Pattern - Facet

 provides a simplified, higher-level interface of a subsystem
– easier to use, understand, and test subsystem
– Balance between simple but restricted and rich but complex

 May help creating a layered architecture

37

Structural Pattern - Adapter

 wrapper pattern or simply a wrapper
 provides access to external functionality

– e.g., access to external libraries, (propriatary) systems
– typically no direct access because of incompatible interfaces

38

Structural Pattern - Adapter

 wrapper pattern or simply a wrapper
 provides access to external functionality

– e.g., access to external libraries, (propriatary) systems
– typically no direct access because of incompatible interfaces

 translates one interface for a class into a compatible interface
– Perform data transformations into appropriate forms

39

Structural Pattern - Adapter

 wrapper pattern or simply a wrapper
 provides access to external functionality

– e.g., access to external libraries, (propriatary) systems
– typically no direct access because of incompatible interfaces

 translates one interface for a class into a compatible interface
– Perform data transformations into appropriate forms

Software
Engineer

Process Engineer

Electrical
Engineer

Mechanical
equipment properties

Transmission lines
Terminal points

Data Types
Logical Behavior

Requirements
Location IDs
Components

Interfaces

Signals (I/O)

Machine vendor
catalogue

40

Structural Pattern - Proxy

 Extends concept of the delegation pattern
 Enriches interface functionality

– Implements interface and acts as a representative of the „original“
implementation

– Security, logging, caching…
 Cascading Proxies

41

Structural Pattern - Proxy

 Extends concept of the delegation pattern
 Enriches interface functionality

– Implements interface and acts as a representative of the „original“
implementation

– Security, logging, caching…
 Cascading Proxies

42

Remote Connectors

43

Structural Pattern - Proxy

 Extends concept of the delegation pattern
 Enriches interface functionality

– Implements interface and acts as a representative of the „original“
implementation

– Security, logging, caching…
 Cascading Proxies

44

Composite Connectors

44

45

Structural Patterns

 Facade

– Facade simplifies the interface for a subsystem
 Adapter

– Translator adapts a server interface for a client
 Proxy

– One object approximates another
 Bridge

– Abstraction for binding one of many implementations
 Composite

– Treats individual objects and compositions uniformly
 Flyweight

– Many fine-grained objects shared efficiently

46

Behavioral Patterns

 Observer
– Dependents update automatically when a subject changes

 Decorator
– Decorator extends an object transparently

 State
– Object whose behavior depends on its state

 Strategy
– Vary algorithms independently

 Chain of Responsibility
– Request delegated to the responsible service provider

 Iterator
– Aggregate elements are accessed sequentially

 Command
– Object represents all the information needed to call a method at a later time

 Mediator
– Mediator coordinates interactions between its associates

 Memento
– Snapshot captures and restores object states

47

Behavioral Pattern - Observer

 in case of changes of the instance‘s state execute specific action(s)
– e.g., notification of instances interested in change
– one-to-many dependency

48

Behavioral Pattern - Decorator

 Dynamically add new functionality to an existing object
– Some basic work still has to be done at design time

 Elements
– Interface Component
– Implemented by concrete components
– Abstract decorator class

• Implements interface
• and keeps reference to interface

to forward functionality
– Concrete decorator

implementations
 Drawback

– Testing
– proxy

49

Behavioral Pattern - Decorator

 Dynamically add new functionality to an existing object
– Some basic work still has to be done at design time

50

Behavioral Pattern - Decorator

 Dynamically add new functionality to an existing object
– Some basic work still has to be done at design time

51

Behavioral Pattern - State

 Allow an object to update its behavior when its internal state changes
– Makes state transitions explicit
– May result in lots of subclasses

52

Behavioral Pattern - State

 Allow an object to update its behavior when its internal state changes
– Makes state transitions explicit
– May result in lots of subclasses

http://sourcemaking.com/design_patterns/state

53

Behavioral Pattern - Strategy

 Close binding between person and email/sms
– no use of additional communication technique without changing code
– Notification service decides technique of communication

54

Behavioral Pattern - Strategy

 Close binding between person and email/sms
– no use of additional communication technique without changing code
– Notification service decides technique of communication

 Context object decides
which strategy to use

55

Behavioral Pattern - Strategy

 Close binding between person and email/sms
– no use of additional communication technique without changing code
– Notification service decides technique of communication

 Context object decides
which strategy to use

56

Behavioral Pattern - Chain of Responsibility

 Chain of Objects
– a source of command objects
– a series of processing objects with logic capable of handling specific

command objects

57

Behavioral Pattern - Chain of Responsibility

 Chain of Objects
– a source of command objects
– a series of processing objects with logic capable of handling specific

command objects

58

Behavioral Pattern - Chain of Responsibility

call executeWorkflow("simpleFlow") on the
"workflowService"

Remote Service Request

59

Behavioral Pattern - Chain of Responsibility

60

Behavioral Pattern - Chain of Responsibility

61

Behavioral Pattern - Chain of Responsibility

62

63

Behavioral Patterns

 Observer
– Dependents update automatically when a subject changes

 Decorator
– Decorator extends an object transparently

 State
– Object whose behavior depends on its state

 Strategy
– Vary algorithms independently

 Chain of Responsibility
– Request delegated to the responsible service provider

 Iterator
– Aggregate elements are accessed sequentially

 Command
– Object represents all the information needed to call a method at a later time

 Mediator
– Mediator coordinates interactions between its associates

 Memento
– Snapshot captures and restores object states

64

Summary

 Industrial Use Case
 Engineering Service Bus
 Design patterns provide a structure in which problems can be solved.

– Review different applications of one pattern
– Gain experience
– "code smells"

 Offering EngSB-related Topics
– http://qse.ifs.tuwien.ac.at/topics.htm
– http:// cdl.ifs.tuwien.ac.at
– http:// cdl.ifs.tuwien.ac.at/jobs
– richard.mordinyi@tuwien.ac.at

65

References

 Shannon C. E. A Mathematical Theory of Communication. Bell Syst. Techn. J., 1948.
 McDermid, J.A. Complexity: Concept, Causes and Control. in 6th IEEE Int. Conference on

Complex Computer Systems. 2000: IEEE Computer
 Society..
 Norman D. O. and M. L. Kuras. Engineering Complex Systems. Technical Report, the

MITRE Corporation, 2004.
 Developer.com, A Survey of Common Design Patterns, 2002,

http://www.developer.com/design/article.php/1502691/A-Survey-of-Common-Design-Patterns.htm

 Anand, R. and H.C. Roy, What is the complexity of a distributed computing system?
Complexity, 2007. 12(6): p. 37-45.

 Bob, C., Complexity in Design. IEEE Computer, 2005. 38(10): p. 10-12.
 Dirk Riehle and Heinz Zullighoven. 1996. Understanding and using patterns in software

development. Theor. Pract. Object Syst. 2, 1 (November 1996)
 Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software AW, ’94
 Pattern Languages of Program Design series by AW, ’95-’99.
 Siemens & Schmidt, Pattern-Oriented Software Architecture, Wiley, volumes ’96 & ’00
 http://sourcemaking.com/design_patterns

66

EngSB - Patterns

 Interface Pattern: https://github.com/openengsb/openengsb-domain-
notification/blob/master/src/main/java/org/openengsb/domain/notification/Notification
Domain.java

– email: https://github.com/openengsb/openengsb-connector-
email/blob/master/src/main/java/org/openengsb/connector/email/internal/EmailN
otifier.java

– facebook: https://github.com/openengsb/openengsb-connector-
facebook/blob/master/src/main/java/org/openengsb/connector/facebook/internal/
FacebookNotifier.java

 Delegation pattern: https://github.com/openengsb/openengsb-
framework/blob/master/components/common/src/main/java/org/openengsb/core/com
mon/events/ForwardHandler.java

 Immutable pattern: https://github.com/openengsb/openengsb-
framework/blob/master/components/ekb/src/main/java/org/openengsb/core/ekb/intern
al/ConnectorInformation.java

https://github.com/openengsb/openengsb-domain-notification/blob/master/src/main/java/org/openengsb/domain/notification/NotificationDomain.java�
https://github.com/openengsb/openengsb-domain-notification/blob/master/src/main/java/org/openengsb/domain/notification/NotificationDomain.java�
https://github.com/openengsb/openengsb-domain-notification/blob/master/src/main/java/org/openengsb/domain/notification/NotificationDomain.java�
https://github.com/openengsb/openengsb-connector-email/blob/master/src/main/java/org/openengsb/connector/email/internal/EmailNotifier.java�
https://github.com/openengsb/openengsb-connector-email/blob/master/src/main/java/org/openengsb/connector/email/internal/EmailNotifier.java�
https://github.com/openengsb/openengsb-connector-email/blob/master/src/main/java/org/openengsb/connector/email/internal/EmailNotifier.java�
https://github.com/openengsb/openengsb-connector-facebook/blob/master/src/main/java/org/openengsb/connector/facebook/internal/FacebookNotifier.java�
https://github.com/openengsb/openengsb-connector-facebook/blob/master/src/main/java/org/openengsb/connector/facebook/internal/FacebookNotifier.java�
https://github.com/openengsb/openengsb-connector-facebook/blob/master/src/main/java/org/openengsb/connector/facebook/internal/FacebookNotifier.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/events/ForwardHandler.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/events/ForwardHandler.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/events/ForwardHandler.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/ekb/src/main/java/org/openengsb/core/ekb/internal/ConnectorInformation.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/ekb/src/main/java/org/openengsb/core/ekb/internal/ConnectorInformation.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/ekb/src/main/java/org/openengsb/core/ekb/internal/ConnectorInformation.java�

67

EngSB - Patterns

 Singleton pattern: https://github.com/openengsb/openengsb-
framework/blob/master/components/api/src/main/java/org/openengsb/core/api/contex
t/ContextHolder.java

 Factory pattern: https://github.com/openengsb/openengsb-
framework/blob/master/components/api/src/main/java/org/openengsb/core/api/Conne
ctorInstanceFactory.java

 Proxy pattern:
– https://github.com/openengsb/openengsb-

framework/blob/master/components/services/src/main/java/org/openengsb/core/
services/internal/virtual/ProxyConnector.java

– https://github.com/openengsb/openengsb-
framework/blob/master/components/common/src/main/java/org/openengsb/core/
common/virtual/InvokeAllIgnoreResultStrategy.java

 Chain of responsibility pattern: https://github.com/openengsb/openengsb-
framework/blob/master/components/common/src/main/java/org/openengsb/core/com
mon/remote/

https://github.com/openengsb/openengsb-framework/blob/master/components/api/src/main/java/org/openengsb/core/api/context/ContextHolder.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/api/src/main/java/org/openengsb/core/api/context/ContextHolder.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/api/src/main/java/org/openengsb/core/api/context/ContextHolder.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/api/src/main/java/org/openengsb/core/api/ConnectorInstanceFactory.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/api/src/main/java/org/openengsb/core/api/ConnectorInstanceFactory.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/api/src/main/java/org/openengsb/core/api/ConnectorInstanceFactory.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/services/src/main/java/org/openengsb/core/services/internal/virtual/ProxyConnector.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/services/src/main/java/org/openengsb/core/services/internal/virtual/ProxyConnector.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/services/src/main/java/org/openengsb/core/services/internal/virtual/ProxyConnector.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/virtual/InvokeAllIgnoreResultStrategy.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/virtual/InvokeAllIgnoreResultStrategy.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/virtual/InvokeAllIgnoreResultStrategy.java�
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/remote/�
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/remote/�
https://github.com/openengsb/openengsb-framework/blob/master/components/common/src/main/java/org/openengsb/core/common/remote/�

	Software Patterns
	Agenda
	Industrial Scenario
	Complex Systems
	Managing Complexity
	Managing Complexity
	Industrial Scenario
	Pattern Definitions
	Elements of a Pattern
	Elements of a Pattern
	Advantages for Software Development
	Experience
	Drawbacks of Patterns
	Classification of Patterns
	When to use Patterns
	Most popular Patterns
	Types of Patterns
	Fundamental Pattern - Interface
	Fundamental Pattern - Interface
	Fundamental Pattern - Delegation
	Fundamental Pattern - Delegation
	Fundamental Pattern - Delegation
	Fundamental Pattern - Delegation
	Fundamental Pattern - Immutable
	Fundamental Pattern - Immutable
	Creational Patterns
	Creational Pattern - Singleton
	Creational Pattern - Singleton
	Creational Pattern - Singleton
	Creational Pattern - Factory
	Creational Pattern - Factory
	Creational Pattern – Abstract Factory
	Creational Patterns
	Structural Patterns
	Structural Pattern - Facet
	Structural Pattern - Facet
	Structural Pattern - Adapter
	Structural Pattern - Adapter
	Structural Pattern - Adapter
	Structural Pattern - Proxy
	Structural Pattern - Proxy
	Remote Connectors
	Structural Pattern - Proxy
	Composite Connectors
	Structural Patterns
	Behavioral Patterns
	Behavioral Pattern - Observer
	Behavioral Pattern - Decorator
	Behavioral Pattern - Decorator
	Behavioral Pattern - Decorator
	Behavioral Pattern - State
	Behavioral Pattern - State
	Behavioral Pattern - Strategy
	Behavioral Pattern - Strategy
	Behavioral Pattern - Strategy
	Behavioral Pattern - Chain of Responsibility
	Behavioral Pattern - Chain of Responsibility
	Behavioral Pattern - Chain of Responsibility
	Behavioral Pattern - Chain of Responsibility
	Behavioral Pattern - Chain of Responsibility
	Behavioral Pattern - Chain of Responsibility
	Foliennummer 62
	Behavioral Patterns
	Summary
	References
	EngSB - Patterns
	EngSB - Patterns

