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Industrial Scenario 
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Complex Systems 

 
 Magnitude 

– Number of Elements in the system 
– Number of possible states of elements 
– Difference between number of possible and usable solutions 

 Diversity 
– Magnitude of heterogeneity of elements 

 Connectivity, structural complexity 
– Number of potential connections between elements 

 Literature defines systems as complex if 
… they consists of a large number of interacting components, 
… simple linear modeling is insufficient for understanding, 
but requires sophisticated dynamic approaches (e.g., simulations).  
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Managing Complexity 

 
 Abstraction 

– simplification of a scenario 
 Decoupling 

– identify the separation of system components that should not depend on 
each other 

 Decomposition 
– KISS - Keep It Simple, Stupid 
– components that are easier to understand, manage, or maintain 
– problem of reassembling 

 Classification 
– system parts with similar properties 
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Managing Complexity 

 
 Standardization 

– benefit of a structured and non-dynamic environment 
 Modeling 

– generating an abstract and simplified view 
 Transformation 

– transformation of the given problem to a domain with proven solution 
approach 

 Experience 
– documented experiences from experienced contributors 
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Industrial Scenario 

 Complexity-drivers 
– Technical heterogeneity 

“Engineering Polynesia” 
– Semantic heterogeneity 

“Engineering Babylon” 
– Process heterogeneity 

“Engineering Chaos” 
 

 Engineering Service Bus 
(https://github.com/openengsb) 
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Pattern Definitions 

 
 

 „…a solution to a problem in a context…“ 
 

 „A pattern is the abstraction from a concrete form which keeps recurring in 
specific non-arbitrary contexts” 
 

 „Pattern“ has been defined as „an idea that has been useful in one practical 
context and will probably be useful in others.“ 
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Elements of a Pattern 

 A meaningful name 
– Aliases, classifications 

 Motivation and problem statement 
 Context 
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Elements of a Pattern 

 A meaningful name 
– Aliases, classifications 

 Motivation and problem statement 
 Context 
 Solution 

– Structure 
– Participants 
– Collaboration 
– Consequences 
– Implementation 
– Examples 
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Advantages for Software Development 

 Common vocabulary saves discussions 
 Help manage complex systems 

– Patterns explicitly capture expert knowledge and design tradeoffs 
• therefore make this expertise more widely available 

– Combination of patterns 
 Facilitates non-functional requirements 

– Reusability, adaptability, extendability 
 Minimizes development time and costs 
 Improves documentation 
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Experience 
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Drawbacks of Patterns 

 Patterns do not lead to direct code reuse 
 Patterns are deceptively simple 
 Teams may suffer from pattern overload 
 Patterns are validated by experience and discussion 

– rather than by automated testing 
– http://clean-code-developer.de/ 
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Classification of Patterns 

 Architectural Patterns  
– Structure of software systems 
– Subsystems, dependencies, communication 

 Design Patterns 
– Describes the structure and relations at the level of classes  

 Idioms 
– Focus on low-level details 
– Programming language specific 

 Protopatterns 
– Particular case 
– A new, understandable solution to be used in larger scale 

 Antipatterns 
– Commonly used but ineffective techniques 
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When to use Patterns 

 
 Solutions to problems that recur with variations 

–  No need for reuse if the problem only arises in one context 
 Solutions that require several steps 

– Patterns can be overkill if solution is simple linear set of instructions 
 Solutions where the solver is more interested in the existence of the solution 

than its complete derivation 
– Patterns leave out too much to be useful to someone who really wants 

to understand  
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Most popular Patterns 

 The most popular design pattern is the Interface pattern 

http://dilbert.com/strips/comic/1994-06-10/ 

 The second most popular design pattern is Proxy Pattern 

 The third most popular design pattern is "Big Ball of Mud" 
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Types of Patterns 

 Creational patterns 
– Deal with initializing and configuring classes and objects 

 
 Structural patterns 

– Deal with decoupling interface and implementation of classes and 
objects 

 
 Behavioral patterns 

– Deal with dynamic interactions among objects 
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Fundamental Pattern - Interface 

 Provides distinction between behaviour and concrete implementation 
 Should be stable - in comparison to implementation 
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Fundamental Pattern - Interface 

 Provides distinction between behaviour and concrete implementation 
 Should be stable - in comparison to implementation 



20 

Fundamental Pattern - Delegation 

 Class needs additional functionality, not (yet) implemented within that class 
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Fundamental Pattern - Delegation 

 Class needs additional functionality, not (yet) implemented within that class 
– Extend 

– Outsource functionality into third class and use its instance via delegation 
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Fundamental Pattern - Immutable 

 Once created state of an instance must not be changed 
– Configuration information 
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Fundamental Pattern - Immutable 

 Once created state of an instance must not be changed 
– Configuration information 

 Initialize variables in constructor 
 Provide readable only access via Getter-Methods 
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Creational Patterns 

 Singleton 
– Provision of a single instance only 

 Factory 
– Method in a derived class creates associates 

 Abstract Factory 
– Factory for building related objects without specifying their concrete 

classes 
 Builder 

– Factory for building complex objects in different variants 
 Prototype 

– Factory for cloning new instances from a prototypical instance 
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Creational Pattern - Singleton  

 Make sure that there is only one instance of a class 
– Communication with hardware 
– Creation of Ids 
– logging 
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Creational Pattern - Singleton  

 Make sure that there is only one instance of a class 
– Communication with hardware 
– Creation of Ids 
– logging 
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Creational Pattern - Factory  

 Initialization of instances depending on complex context variables 
– initialization of additional sub-instances 
– Complex configuration process steps 

 Helps decoupling as only interface is known 
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Creational Pattern - Factory  

 Initialization of instances depending on complex context variables 
– initialization of additional sub-instances 
– Complex configuration process steps 

 Helps decoupling as only interface is known 
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Creational Pattern – Abstract Factory  

 Abstract Factory 
– a group of individual 

factories that have a 
common theme 

 Two hierarchies 
– various abstractions client 

is interested in 
– abstract AbstractFactory 

class provides interface 
• for each class that is 

responsible for 
creating the members 
of a particular family 

 Client only knows abstract 
interface 
– Family may grow 

independently of the client 
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Creational Patterns 

 Singleton 
– Provision of a single instance only 

 Factory 
– Method in a derived class creates associates 

 Abstract Factory 
– Factory for building related objects without specifying their concrete 

classes 
 Builder 

– Factory for building complex objects in different variants 
 Prototype 

– Factory for cloning new instances from a prototypical instance 
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Structural Patterns 

 
 Facade 

– Facade simplifies the interface for a subsystem 
 Adapter 

– Translator adapts a server interface for a client 
 Proxy 

– One object approximates another 
 Bridge 

– Abstraction for binding one of many implementations 
 Composite 

– Treats individual objects and compositions uniformly 
 Flyweight 

– Many fine-grained objects shared efficiently 
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Structural Pattern - Facet 

 provides a simplified, higher-level interface of a subsystem 
– easier to use, understand, and test subsystem 
– Balance between simple but restricted and rich but complex 

 May help creating a layered architecture 
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Structural Pattern - Facet 
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– Balance between simple but restricted and rich but complex 

 May help creating a layered architecture 
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Structural Pattern - Adapter 

 wrapper pattern or simply a wrapper 
 provides access to external functionality  

– e.g., access to external libraries, (propriatary) systems 
– typically no direct access because of incompatible interfaces 
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Structural Pattern - Adapter 

 wrapper pattern or simply a wrapper 
 provides access to external functionality  

– e.g., access to external libraries, (propriatary) systems 
– typically no direct access because of incompatible interfaces 

 translates one interface for a class into a compatible interface 
– Perform data transformations into appropriate forms 
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Structural Pattern - Adapter 

 wrapper pattern or simply a wrapper 
 provides access to external functionality  

– e.g., access to external libraries, (propriatary) systems 
– typically no direct access because of incompatible interfaces 

 translates one interface for a class into a compatible interface 
– Perform data transformations into appropriate forms 

Software 
Engineer

Process Engineer

Electrical 
Engineer

Mechanical 
equipment properties

Transmission lines
Terminal points

Data Types
Logical Behavior

Requirements
Location IDs
Components

Interfaces

Signals (I/O)

Machine vendor 
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Structural Pattern - Proxy 

 Extends concept of the delegation pattern 
 Enriches interface functionality 

– Implements interface and acts as a representative of the „original“ 
implementation 

– Security, logging, caching… 
 Cascading Proxies 
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Structural Pattern - Proxy 

 Extends concept of the delegation pattern 
 Enriches interface functionality 

– Implements interface and acts as a representative of the „original“ 
implementation 

– Security, logging, caching… 
 Cascading Proxies 
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Remote Connectors 
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Structural Pattern - Proxy 

 Extends concept of the delegation pattern 
 Enriches interface functionality 

– Implements interface and acts as a representative of the „original“ 
implementation 

– Security, logging, caching… 
 Cascading Proxies 
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Composite Connectors 

44 
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Structural Patterns 

 
 Facade 

– Facade simplifies the interface for a subsystem 
 Adapter 

– Translator adapts a server interface for a client 
 Proxy 

– One object approximates another 
 Bridge 

– Abstraction for binding one of many implementations 
 Composite 

– Treats individual objects and compositions uniformly 
 Flyweight 

– Many fine-grained objects shared efficiently 
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Behavioral Patterns 

 Observer 
– Dependents update automatically when a subject changes 

 Decorator 
– Decorator extends an object transparently 

 State 
– Object whose behavior depends on its state 

 Strategy 
– Vary algorithms independently 

 Chain of Responsibility 
– Request delegated to the responsible service provider 

 Iterator 
– Aggregate elements are accessed sequentially 

 Command 
– Object represents all the information needed to call a method at a later time 

 Mediator 
– Mediator coordinates interactions between its associates 

 Memento 
– Snapshot captures and restores object states 
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Behavioral Pattern - Observer 

 in case of changes of the instance‘s state execute specific action(s) 
– e.g., notification of instances interested in change 
– one-to-many dependency 
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Behavioral Pattern - Decorator 

 Dynamically add new functionality to an existing object 
– Some basic work still has to be done at design time 

 Elements 
– Interface Component 
– Implemented by concrete components 
– Abstract decorator class  

• Implements interface 
• and keeps reference to interface 

to forward functionality 
– Concrete decorator 

implementations 
 Drawback 

– Testing 
– proxy 
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Behavioral Pattern - Decorator 

 Dynamically add new functionality to an existing object 
– Some basic work still has to be done at design time 
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Behavioral Pattern - Decorator 

 Dynamically add new functionality to an existing object 
– Some basic work still has to be done at design time 
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Behavioral Pattern - State  

 Allow an object to update its behavior when its internal state changes 
– Makes state transitions explicit  
– May result in lots of subclasses  
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Behavioral Pattern - State  

 Allow an object to update its behavior when its internal state changes 
– Makes state transitions explicit  
– May result in lots of subclasses  

http://sourcemaking.com/design_patterns/state 
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Behavioral Pattern - Strategy 

 Close binding between person and email/sms 
– no use of additional communication technique without changing code 
– Notification service decides technique of communication 
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Behavioral Pattern - Strategy 

 Close binding between person and email/sms 
– no use of additional communication technique without changing code 
– Notification service decides technique of communication 

 Context object decides 
which strategy to use 
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Behavioral Pattern - Chain of Responsibility 

 Chain of Objects 
– a source of command objects 
– a series of processing objects with logic capable of handling specific 

command objects  
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Behavioral Pattern - Chain of Responsibility 

 Chain of Objects 
– a source of command objects 
– a series of processing objects with logic capable of handling specific 

command objects  
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Behavioral Pattern - Chain of Responsibility 

call executeWorkflow("simpleFlow") on the 
"workflowService" 

Remote Service Request 
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Behavioral Pattern - Chain of Responsibility 
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Behavioral Pattern - Chain of Responsibility 



61 

Behavioral Pattern - Chain of Responsibility 
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Behavioral Patterns 

 Observer 
– Dependents update automatically when a subject changes 

 Decorator 
– Decorator extends an object transparently 

 State 
– Object whose behavior depends on its state 

 Strategy 
– Vary algorithms independently 

 Chain of Responsibility 
– Request delegated to the responsible service provider 

 Iterator 
– Aggregate elements are accessed sequentially 

 Command 
– Object represents all the information needed to call a method at a later time 

 Mediator 
– Mediator coordinates interactions between its associates 

 Memento 
– Snapshot captures and restores object states 
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Summary 

 Industrial Use Case 
 Engineering Service Bus 
 Design patterns provide a structure in which problems can be solved. 

– Review different applications of one pattern 
– Gain experience 
– "code smells" 

 
 

 Offering EngSB-related Topics 
– http://qse.ifs.tuwien.ac.at/topics.htm 
– http:// cdl.ifs.tuwien.ac.at 
– http:// cdl.ifs.tuwien.ac.at/jobs 
– richard.mordinyi@tuwien.ac.at 

 



65 

References 

 Shannon C. E. A Mathematical Theory of Communication. Bell Syst. Techn. J., 1948. 
 McDermid, J.A. Complexity: Concept, Causes and Control. in 6th IEEE Int. Conference on 

Complex Computer Systems. 2000: IEEE Computer 
 Society.. 
 Norman D. O. and M. L. Kuras. Engineering Complex Systems. Technical Report, the 

MITRE Corporation, 2004. 
 Developer.com, A Survey of Common Design Patterns, 2002, 

http://www.developer.com/design/article.php/1502691/A-Survey-of-Common-Design-Patterns.htm 

 Anand, R. and H.C. Roy, What is the complexity of a distributed computing system? 
Complexity, 2007. 12(6): p. 37-45. 

 Bob, C., Complexity in Design. IEEE Computer, 2005. 38(10): p. 10-12. 
 Dirk Riehle and Heinz Zullighoven. 1996. Understanding and using patterns in software 

development. Theor. Pract. Object Syst. 2, 1 (November 1996) 
 Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software AW, ’94 
 Pattern Languages of Program Design series by AW, ’95-’99.  
 Siemens & Schmidt, Pattern-Oriented Software Architecture, Wiley, volumes ’96 & ’00 
 http://sourcemaking.com/design_patterns 



66 

EngSB - Patterns 

 Interface Pattern: https://github.com/openengsb/openengsb-domain-
notification/blob/master/src/main/java/org/openengsb/domain/notification/Notification
Domain.java 

– email: https://github.com/openengsb/openengsb-connector-
email/blob/master/src/main/java/org/openengsb/connector/email/internal/EmailN
otifier.java  

– facebook: https://github.com/openengsb/openengsb-connector-
facebook/blob/master/src/main/java/org/openengsb/connector/facebook/internal/
FacebookNotifier.java 

 Delegation pattern: https://github.com/openengsb/openengsb-
framework/blob/master/components/common/src/main/java/org/openengsb/core/com
mon/events/ForwardHandler.java  

 Immutable pattern: https://github.com/openengsb/openengsb-
framework/blob/master/components/ekb/src/main/java/org/openengsb/core/ekb/intern
al/ConnectorInformation.java  
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EngSB - Patterns 

 Singleton pattern: https://github.com/openengsb/openengsb-
framework/blob/master/components/api/src/main/java/org/openengsb/core/api/contex
t/ContextHolder.java  

 Factory pattern: https://github.com/openengsb/openengsb-
framework/blob/master/components/api/src/main/java/org/openengsb/core/api/Conne
ctorInstanceFactory.java  

 Proxy pattern:  
– https://github.com/openengsb/openengsb-

framework/blob/master/components/services/src/main/java/org/openengsb/core/
services/internal/virtual/ProxyConnector.java 

– https://github.com/openengsb/openengsb-
framework/blob/master/components/common/src/main/java/org/openengsb/core/
common/virtual/InvokeAllIgnoreResultStrategy.java 

 Chain of responsibility pattern: https://github.com/openengsb/openengsb-
framework/blob/master/components/common/src/main/java/org/openengsb/core/com
mon/remote/ 
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