
Efficient & Fast Text Processing

Sebastian Hofstätter

sebastian.hofstaetter@tuwien.ac.at

Today Efficient & Fast Text Processing

Measure!

Garbage collection

Memory mapped files

Working with UTF-8

Using the right data structures

Parallelization

❶

❷

❸

❹

❺

❻

Please ask questions at any point!

Performance

3

• Performance is language / runtime dependent
• But overall themes are language agnostic

• Some languages are better suited than others for performance
• But a lot depends on high-level decisions and not on bit packing tricks

• Not every piece of code has to be optimized
• But if your code block is being called a billion times for every processed GB 🤷‍♂️

optimize it!

Performance is a feature

4

• Great example: Stack Overflow https://stackexchange.com/performance
• 1.3 billion page views / month with 18ms rendering time

• 9 web servers (mostly redundant)

• 2 SQL servers (11.000 queries / second peak load per server)

• 1 Redis + 3 Elasticsearch + 1 proxy server (+ redundancies)

• Powered by C# and ASP.NET (statically typed + memory managed runtime)

Details: https://nickcraver.com/blog/2016/03/29/stack-overflow-the-hardware-2016-edition/

And more in-depth: https://blog.marcgravell.com/2016/05/how-i-found-cuda-or-rewriting-tag.html

https://stackexchange.com/performance
https://nickcraver.com/blog/2016/03/29/stack-overflow-the-hardware-2016-edition/
https://blog.marcgravell.com/2016/05/how-i-found-cuda-or-rewriting-tag.html

A few notes …

5

• The purpose of this lecture is to give you inspirations
& some practical skills for the exercise and beyond

• You are not required to use anything shown (except the profiler!)

• There is much much more out there than in this lecture!

• Examples in this lecture are C# (but as much language agnostic as possible)

Computer latencies at human scale

6

System Event Actual Latency Scaled Latency

One CPU cycle 0.4 ns 1 s

Level 1 cache access 0.9 ns 2 s

Level 2 cache access 2.8 ns 7 s

Level 3 cache access 28 ns 1 min

Main memory access (DDR DIMM) ~100 ns 4 min

Intel Optane memory access <10 μs 7 hrs

NVMe SSD I/O ~25 μs 17 hrs

SSD I/O 50–150 μs 1.5–4 days

Rotational disk I/O 1–10 ms 1–9 months

Internet call: San Francisco to New York City 65 ms 5 years

Internet call: San Francisco to Hong Kong 141 ms 11 years

Originally in Systems Performance: Enterprise and the Cloud, adapted from
https://www.prowesscorp.com/computer-latency-at-a-human-scale

https://www.prowesscorp.com/computer-latency-at-a-human-scale

Measure!

Using profilers & benchmark libraries

Why measure?

8

• Modern hardware/OS stack is so complex, that we cannot predict the
impact of low-level changes

• Our intuition might be wrong (especially if we work on already
optimized code)

• Gives you concrete evidence of improvement

Tools

9

• Profiler
• Observes a running program and reports performance metrics about it

• Most can measure very granular: method based or line-by-line based

• A lot of different metrics about CPU, memory usage

• Most offer a UI to explore the results

• (Micro)Benchmarking library
• Helps to test isolated parts of a program in an (as much as possible)

controlled environment

• Like a unit test, but for performance = easy to repeat

• Runs a method multiple times and aggregates performance metrics

Profiler

10

• Intel VTune Amplifier Profiler https://software.intel.com/en-us/vtune

• Allows for incredible detail, probably too much for most tasks

• Supports quite a few languages: C, C++, C#, Fortran, Java, Python, Go,
Assembly

• For C# (.NET): JetBrains dotTrace and dotMemory
https://www.jetbrains.com/profiler/

• For every mainstream language in one form or another

https://software.intel.com/en-us/vtune
https://www.jetbrains.com/profiler/

JetBrains dotTrace – call tree view – before optimization
https://github.com/sebastian-hofstaetter/teaching/tree/master/introduction-to-information-retrieval/inverted-index-example 11

https://github.com/sebastian-hofstaetter/teaching/tree/master/introduction-to-information-retrieval/inverted-index-example

12
JetBrains dotTrace – call tree view – after optimization
https://github.com/sebastian-hofstaetter/teaching/tree/master/introduction-to-information-retrieval/inverted-index-example

https://github.com/sebastian-hofstaetter/teaching/tree/master/introduction-to-information-retrieval/inverted-index-example

JetBrains dotTrace – line-by-line analysis 13

Benchmarking library

14

• As an example: BenchmarkDotNet
for C#

• Define a method to be benchmarked
Runner takes care of the rest

• Comparable library for every major
language available:
C++: https://github.com/google/benchmark
Java: http://openjdk.java.net/projects/code-tools/jmh

...

public class Md5VsSha256 {
private SHA256 sha256 = SHA256.Create();
private MD5 md5 = MD5.Create();
private byte[] data;

[Params(1000, 10000)]
public int N;

[GlobalSetup]
public void Setup() {

data = new byte[N];
new Random(42).NextBytes(data);

}

[Benchmark]
public byte[] Sha256() => sha256.ComputeHash(data);

[Benchmark]
public byte[] Md5() => md5.ComputeHash(data);

}

public class Program {
public static void Main(string[] args) {

var summary = BenchmarkRunner.Run<Md5VsSha256>();
}

}

https://github.com/google/benchmark
http://openjdk.java.net/projects/code-tools/jmh/

Benchmarking tips

15

• Try not to compare apples and oranges
• Use the same input, output & task

• Don’t run any other programs on your pc
• Watch out for indexing, updating, etc... operations in the background

• If on a laptop: Plug it in + select the highest performance (Windows)

Garbage Collection

Memory management!

Memory locations: Stack & Heap

17

• Both are regions in memory

• Stack is small + fixed size
• Used for local variables and other function related stuff

• Calling a function puts the variables on the stack
returning from a function removes them again

• Fast, because all local offsets are known at compile time + add. optimizations

• Heap is used for allocating everything that does not fit into the stack
• Either managed by “hand” = explicitly deleting objects

or via an automatic garbage collector

Value & Reference types

18

• Value: data is located in the variable location (stack or inside and array)

• Reference: var contains pointer to actual data location (somewhere else)
+ many bytes overhead per instance (!)

• A lot of conceptual differences between languages
• C++ everything is put on the stack if you don’t explicitly allocate

• Java, JavaScript, C# primitive (value) types on the stack, all objects on the heap

• C# allows to define new value types

• Also defines behavior of pass-by-value vs. pass-by-reference

Comparison: https://adamsitnik.com/Value-Types-vs-Reference-Types/

https://adamsitnik.com/Value-Types-vs-Reference-Types/

Garbage Collection 101

19

• Part of the runtime of memory managed languages (C#, Java, Python …)

• Keeps track of allocations and free memory on the heap

• Once an object is not used anymore (e.g. there is no reference pointing to it)

• “garbage collects” it and sets the memory to be unused

• The GC is your friend!

• If your program spends too much time collecting garbage:

Help the GC with domain specific knowledge and avoid unnecessary
allocations

Garbage Collection 101: Example

20

• Implementing a posting list with: List<T> (self adjusting array based structure)

.. ..

List<int> Somewhere on the heap

Term cat Create instance:

Not enough space:
allocate new array

1st doc:

2nd doc:

Length: 1

3rd doc:

Somewhere else on
the heap

Copy contents

Length: 3
Available: 4

Garbage Collector

Term tiger Create instance:

 delete

Allocate new array

Allocate new array

...

Indexing actions

Length: 0
Available: 2

Length: 2

Again new location:

missed opportunity of
array reuse

Avoiding Garbage Collection

21

• Use an array pool
• Easy to use: rent and return arrays

• Hold a reference to an array until it is needed again

• Good when you know you need arrays of same size multiple times

• Allocate one big block of memory and fill it up as you go along
• For example: one big char array for your dictionary instead of many string

objects

• Handle an overflow before you overflow …

Research example: Realtime Posting Lists

22

• Realtime search needs
• Updates available right away

• High throughput

• Posting lists are allocated in a
pool with different slice sizes

• Growing a posting list does
not move the existing data

Busch et al. Earlybird: Real-Time Search at Twitter
http://users.umiacs.umd.edu/~jimmylin/publications/
Busch_etal_ICDE2012.pdf

http://users.umiacs.umd.edu/~jimmylin/publications/Busch_etal_ICDE2012.pdf

Strings are immutable! (C#, Java, and many others)

23

• Immutable: Can not change the contents of the data after initialization

• Operations on string objects result in copied memory + new string
• Substring, split, …

• Copying objects results in more garbage collection
• So you pay twice: once for copying/allocating and once for cleaning up

For more: https://lemire.me/blog/2017/07/07/are-your-strings-immutable/

https://lemire.me/blog/2017/07/07/are-your-strings-immutable/

The future: Span<T> (C# only for now)

24

• Abstracts away the memory region/type of the data

• Example: Span<char> unifies: string, char[] and char*

• Including language/framework/runtime integration

• Allows you to write fast, safe + memory efficient code

Introduction article: https://msdn.microsoft.com/en-us/magazine/mt814808.aspx

Performance improvements: https://blogs.msdn.microsoft.com/dotnet/2018/04/18/performance-improvements-in-net-core-2-1/

https://msdn.microsoft.com/en-us/magazine/mt814808.aspx
https://blogs.msdn.microsoft.com/dotnet/2018/04/18/performance-improvements-in-net-core-2-1/

Memory mapped files

Let the operating system handle the memory

Memory mapped files

26

• A feature provided by the operating system

• Most languages support it (C++, Java, C#, Python …)

• OS puts the file contents in the RAM

• You get a pointer to this block of memory (~byte array)
• You can sequentially go through your bytes (like a stream)

• AND: also jump back a few bytes 😲 or completely randomly jump around

• Read & write

Memory mapped files: C#

27

• It’s easy!

using (var mf = MemoryMappedFile.CreateFromFile(filepath, FileMode.Open))
using (var accessor = mf.CreateViewAccessor())
{

byte* buffer = null;
accessor.SafeMemoryMappedViewHandle.AcquirePointer(ref buffer);

// use buffer as you want
// – including calling methods with it as parameter

accessor.SafeMemoryMappedViewHandle.ReleasePointer();
}

Memory mapped files

28

.. .. 32 32byte* buffer

Oh, a whitespace @ [2] Oh, another whitespace

wordspan = (address=buffer + 2, len=7)

Use in further code, don t copy memory

Memory mapped files

29

• Beware: does not erase cost of I/O

• Makes additional buffering redundant when reading text
• Removes pressure from the runtime GC (if used)

• Makes it easier to view and process a file as byte[]

• Allows to read & write huge files
• OS takes care of paging

• Also: Processes can share 1 memory mapped file

UTF-8 🎉

It’s not that easy …

UTF-8: The Format

32

• 1 – 4 bytes per character

• The 1st byte is compatible with ASCII + is uniquely identified as single
char

• Byte[] length != how many characters you have

Number
of bytes

Bits for
code point

First
code point

Last
code point

Byte 1 Byte 2 Byte 3 Byte 4

1 7 U+0000 U+007F 0xxxxxxx

2 11 U+0080 U+07FF 110xxxxx 10xxxxxx

3 16 U+0800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

4 21 U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

Working with raw UTF-8 bytes

33

• We don’t know all characters by looking at the raw bytes
• But we can check them individually for ASCII characters

(line breaks, whitespaces, …)

• And search for beginning and end markers for an article in a file with many
articles

• It is not necessary to transform a file of byte[] into a string
(basically a char[]) as a whole

• Only decode parts you are interested in (e.g. tokens)

Convert byte array to useable string (C#)

34

var text = Encoding.UTF8.GetString(buffer, doc.from, doc.until);
var words = text.Split(' ');

foreach (var word in words) {

// process the word

}

Don’t do that (if you care about maximum performance)

Allocating 2x
duplicates !!

Allocating
iterator

Avoid creating objects

35

.. .. 32 32byte* buffer

Oh, a whitespace @ [2] Oh, another whitespace

wordspan = (address=buffer + 2, len=7)

Use in further code, don t copy memory

Avoid creating objects (C#)

36

char* wordBuffer = stackalloc char[100];
var currentWordStart = doc.from;

for (var i = doc.from; i < doc.until; i++) {

if (*(buffer + i) == 32) { // split on whitespace character
if (currentWordStart < i) {

var realLength = Encoding.UTF8.GetChars(bytes: buffer + currentWordStart,
byteCount: i - currentWordStart,
chars: wordBuffer,
charCount: 100);

// process the word buffer with realLength

}
currentWordStart = i + 1;

}
}

Using the right data structures

There are many solutions to a problem

Strings vs. numbers

38

• Always use int/long when you can – Always !!
• As an internal document id

• As an internal word id (if you use it in more than the dictionary lookup)

• In general: if you work with databases – never use a string key

• 64-bit system = 1 pointer to a string = 8 bytes = 1 long value
• 1 String object takes up at least 8 bytes for the contents + 1 int (4 bytes) for

the length + couple of other bytes for the object identity + function table …

• And you save a random memory lookup

Matching known short strings

39

• A string with 4 chars = 8 byte = 1 long

• Just recast the pointer and interpret the 8 bytes as a long

• Pre-compute known strings

..char* buffer

T h i s

..

(long*)buffer

= 4715255123

Recast the pointer

De-reference the
pointer to long

8 bytes

Idea from ASP.NET Core Web Server to get known http headers
https://github.com/aspnet/KestrelHttpServer/blob/release/2.2/src/Kestrel.Core/Internal/Infrastructure/HttpUtilities.cs

https://github.com/aspnet/KestrelHttpServer/blob/release/2.2/src/Kestrel.Core/Internal/Infrastructure/HttpUtilities.cs

Finding stop words

40

• Most English stop words are <= 4 characters long

• Stop words: 10 to 100

• But we have to check them against every token (Wikipedia has 5
billion tokens)

• Can we do better than a Set<string>?

• Yes - Compare longs instead!

Benchmarks & Code @ https://github.com/sebastian-hofstaetter/search-engine/tree/master/benchmarks/stopwords

https://github.com/sebastian-hofstaetter/search-engine/tree/master/benchmarks/stopwords

Finding stop words

41Results from https://github.com/sebastian-hofstaetter/search-engine/tree/master/benchmarks/stopwords

Method StopWordCount Mean Error StdDev Scaled

StringSet 50 34.277 ns 0.2420 ns 0.2263 ns 1.00

LongIteration 50 20.633 ns 0.0705 ns 0.0589 ns 0.60

LongHashSet 50 13.380 ns 0.0391 ns 0.0327 ns 0.39

LongBinarySearch 50 22.290 ns 0.0495 ns 0.0439 ns 0.65

LongTreeSet 50 21.182 ns 0.0599 ns 0.0531 ns 0.62

StopWordSet 50 3.081 ns 0.0377 ns 0.0353 ns 0.09

https://github.com/sebastian-hofstaetter/search-engine/tree/master/benchmarks/stopwords

Parallelization

e.g. Multithreading

Multithreading tips

43

• In general multithreading improves indexing time
• Especially with SSD disks (I/O becomes less of a bottleneck)

• Locking, context switches, synchronization, etc… all take time

• Try to do as much independent work per thread as possible
• For example: Let 1 thread work on 1 index and 1 document independent from

the other threads

Multithreaded index creation example

44

• This is one possibility, there are countless others you might try

Inverted Index
Segment 1

Thread 1

Document

Document

Document

Document

Document

Document

Document

Inverted Index
Segment 2

Thread 2

Document

Document

Document

Document

Document

Document

Document

Merged
Inverted Index

Synchronization

Atomic operations

45

• Problem: x = x + 1 is not thread safe (!)
• Is actually: load x in y, add y + 1, move y into x

• This can lead to a “+ 1” just jumped over by another thread

• Atomics: combine load, transform, move into single instruction
• Making the operation thread safe

• Supports easy add, increment, exchange operations

See: C++ https://software.intel.com/en-us/node/506090

C# https://docs.microsoft.com/en-us/dotnet/standard/threading/interlocked-operations

Also supported by Java and many other languages

https://software.intel.com/en-us/node/506090
https://docs.microsoft.com/en-us/dotnet/standard/threading/interlocked-operations

Summary: Efficient & Fast Text Processing

❶

❷

❸

Try to avoid copying large amounts of memory

Read some articles about performance optimization for your stack

No matter what you do measure it

46

❶

❷

❸

Thank You

Try to avoid copying large amounts of memory

Read some articles about performance optimization for your stack

No matter what you do measure it

