Foundations of Information Retrieval

Sebastian Hofstatter

sebastian.hofstaetter@tuwien.ac.at

Today Foundations of Information Retrieval

With a break after ~40 minutes 0 | nve rted I N deX

@) Search

9 The Anatomy of a Large-Scale
Hypertextual Web Search Engine

Some materials taken from: Introduction to IR by Manning lecture materials
& Mihai Lupu’s previous lecture slides

Information Retrieval

Document

o o
Elephant weight ----------9

How
Relevant? ——

Information Retrieval (Finding the needle in the haystack)

Document Document Docun

(o o
Elephant weight ----------2

How Document Document Docun

Notes on terminology

* Documents can be anything: a web page, word file, text file, article ...
(we assume it to be text for the moment)

* A |ot of details to look out for: encoding, language, hierarchy, fields, ...

e Collection: A set of documents (we assume it to be static for the moment)

* Relevance: Does a document satisfy the information need of the user
and does it help complete the user’s task?

Relevance (based on text content)

o o
Elephant;weight

How Relevant?

~
- ~
4

-
4

|

|

|

|

|
A\ 4

* If a word appears more often ->
more relevant

e Solution: count the words

.y * If a document is longer, words will

Document 1

Elephant ees—

Count(Elephant) =1
Count(weight) =0

Document 2

Elephant e—

—Weight

Document 3

tend to appear more often ->

take into account the document
length

Count(Elephant) =3
Count(weight) = 2

* Counting only when we have a
guery is inefficient

Count(Elephant) =0
Count(weight) =0

Details of scoring models in the scoring lecture

Inverted Index

Transforming text-based information

Inverted Index

* Inverted index allows to efficiently retrieve documents from large
collections

* Inverted index stores all statistics per term (that the scoring model needs)
 Document frequency: how many documents contain the term
* Term frequency per document: how often does the term appear per document
* Document length
e Average document length

 Save statistics in a format that is accessible by a given term
e Save metadata of a document (Name, location of the full text, etc..)

Inverted Index

Document data

Term data

— * Every document gets an internal

Document Ids & Metadata:

(“Wildlife”, ”location”,...) document id

(”Zoo Vienna” ,...)

[0]
[1]

Document Lengths:

* Term dictionary is saved as a search
friendly data structure (more on that later)

[0] = 231 [1] = 381 ...

»elephant®* => | 155 [21 | 355 | 45 | ... |

"lion* => [12 7192 [-] * Term Frequencies are stored in a
"weight* => [41 64 [- | “posting list” = a list of doc id, frequency
7N :
L Docld Term Frequency pa | rS

10

Creating the Inverted Index

Metadata

Register metadata e store

(+ assign documentid) .- ’

Document

This is a sample

infos.

oo - || J—]]

+ Case folding

document-fullof | 7T g -] o I— > Removed the s

=T -

|
|
i Filter stop words
v

_.-”" Add or update
| Igd posting list

-
-
-

»sample® => 195 [71 | 922 |

11

Creating the Inverted Index

* Simplified example pipeline

* Linguistic models are language
dependent

* A query text and a document
text both have to undergo the
same steps

12

Tokenization

* Transform a list of characters into a list of tokens

e A Token is itself an instance of a list of characters

 Each token is a candidate for an added term in the index

* How to split the stream of text into tokens?

Tokenization

* Naive baseline: split on each whitespace and punctuation character
* This splits U.S.A to [U,S,A] or 25.9.2018 to [25,9,2018]
* Still a good baseline for English

* Improvement: keep abbreviations, names, numbers together as one
token

* Open source tools like Stanford tokenizer
https://nlp.stanford.edu/software/tokenizer.shtml

e Can also handle emoji &) b

14

https://nlp.stanford.edu/software/tokenizer.shtml

Tokenization: Language issues

* French

e ['ensemble — one token or two?
e L?Ll'?Lle?
e Want l'ensemble to match with un ensemble

* German noun compounds are not segmented

» Lebensversicherungsgesellschaftsangestellter
* ‘life insurance company employee’

* German retrieval systems benefit greatly from a compound splitter module
e Can give a 15% performance boost for German

Tokenization: Language issues

* Chinese and Japanese have no spaces between words:

 SHRDR I B REREENGH S B,

* Not always guaranteed a unique tokenization

* Further complicated in Japanese, with multiple alphabets

intermingled

* Dates/amounts in multiple formats

7 F —F 2 500%#t 1115 AE

D7=H

ﬁﬁ%tﬂmmmmumwww

\ /

Katakana Hiragana

Wl

Kanji

End-user can express query entirely in hiragana!

Stemming

 Reduce terms to their “roots” before indexing

* “Stemming’ suggests crude affix chopping
* language dependent
* automate(s), automatic, automation all reduced to automat.

* More advanced form: Lemmatization: Reduce inflectional/variant
forms to base form (am, are, is — be)
 Computationally more expensive

Stemming: Porter’s algorithm

e Common algorithm for stemming English text

* Conventions + 5 phases of reductions

* phases applied sequentially
» each phase consists of a set of commands

e sample convention: Of the rules in a compound command, select the one that
applies to the longest suffix.

A lot of details at: http://snowball.tartarus.org/algorithms/porter/stemmer.html

18

http://snowball.tartarus.org/algorithms/porter/stemmer.html

Normalization

* Normalize words in the index

* Abbreviations: We want to match U.S.A. = USA
e Accents: e.g., French résumé = resume.
 Umlauts: e.g., German: Tuebingen = Tiibingen

* Can be very domain-specific

Case folding

 Reduce all letters to lower case
* Allows to match more occurrences

* This removes precise information about names, abbreviations etc...

* A possible solution is to store two versions — one lowercased and one original
The usefulness of this depends on the user entering a query in the correct
casing

Search

Efficiently searching with the Inverted Index

Querying the Inverted Index

Inverted

Possibly . index

-
-
-
-
-
-
-
-
o
-

“« L
Elephant weight i Statistics Document 18192

Elephant e—

Vv N

Scoring model 71| m—weight
// L J
4

}
? P
How Relevant: \L .+ Opentop
1: Doc 18192 -7 document Document 18193 |
2: Doc 21230
3: Doc 30123

* No need to read full documents

* Only operate on frequency
numbers of potentially relevant
documents™

e Sort documents based on
relevance score — retrieve most
relevant documents

*it’s not that easy because a document could be relevant without
containing the exact query terms — but for now keep it simple

22

Types of queries (including, but not limited to)

* Exact matching: match full words and concatenate multiple query
words with “or”

* Boolean queries: “and” / “or” / “not” operators between words

* Expanded queries: automatically incorporate synonyms and other
similar or relevant words into the query

* Wildcard queries, phrase queries, phonetic queries (e.g. Soundex) ...

Boolean queries

* Ask a query with Boolean operators: and / or / not
A and B ; (A and B) or C ; A and (not B) ...

* Lucene: allows to plug in any other query type in A,B,C

* And there are a lot of built in query types to choose from:
https://lucene.apache.org/core/7 0 0/core/org/apache/lucene/search/Query.html

Related in name:

* Boolean Retrieval Model:
* Simple form of retrieval without relevance ranking
 Just binary information if the word is or is not in a document

(more in the IR book by Manning: https://nlp.stanford.edu/IR-book/htm|/htmledition/processing-boolean-queries-1.html)

24

https://lucene.apache.org/core/7_0_0/core/org/apache/lucene/search/Query.html
https://nlp.stanford.edu/IR-book/html/htmledition/processing-boolean-queries-1.html

Wildcard queries

* Only specify part of a word you want to search for:

e Simple autocomplete: comp™* -> computer, computation, compiler ...
e * stands for any possible characters the index knows about

* Good with a tree-like dictionary, where we follow all branches after the
known characters

e Can become computationally very expensive
* Especially if the * is at the beginning & in the middle

* Mitigated by specialized index architectures like:
Permuterm and k-gram indexes (more in the IR book by Manning)

Query expansion

e Search including additional words not part of the query
* Added words need to be topically related, not only synonyms

* This allows to retrieve/boost relevant documents without the actual
query present in the document

e Data could be from a variety of sources:
* Handcrafted synonyms, abbreviations: e.g. WordNet
* Learned from previous search user sessions: Only possible for big user bases

* Unsupervised learned from a word embedding: Encoding relationships
between words in vectors and taking the nearest neighbors

Query expansion: Research Example

Get similarity from embedding

™~

0.94 example

sample |-- -7 0.87 sampling
”Sample query R >
LY - SN 0.76 inquire
0.73 question
Gather posting lists S P .
Docid e . ,"/ “/’I _
. query Inquire question
#4 4x1 #4 2x0.76
#6 8x1 #6 4x0.73
- #9 3x0.76 #9 1x0.73 B
tf(d)

Weight from embedding

-

~~. Search for all
\ .
) terms in the

— L", inverted index
Inv.
Index

S~
~
N

. Getidf
\ of terms

-

v
Score per doc
+ repeat with
“sample” part
+ combine
+sort
= result

* Using a Word Embedding to
automatically expand with
similar words

* Adapted relevance model to
score 1 document with
multiple similar words
together

N. Rekabsaz, M. Lupu, A. Hanbury, and G. Zuccon,
“Generalizing Translation Models in the Probabilistic

Relevance Framework,” CIKM 2016
https://dl.acm.org/citation.cfm?id=2983833

27

https://dl.acm.org/citation.cfm?id=2983833

Break

5 minutes or so

Inverted Index: Dictionary

Document data

Term data

Document Ids & Metadata:

(0]
[1]

(,,Name** ,”location”,...)
(“Other name” ,...)

Document Lengths:

[0] = 231 [1] = 381 ...

RTINS | 15 | 2:1 | 35 | 45 | -

MICIICRIEN | 12 | 7:1 | 922 | -

»token« => | VS I

\ Posting list

The dictionary

* Dictionary<T> maps textto T

* Tis a posting list or potentially other data
about the term depending on the index

* Wanted properties:
* Random lookup
e Fast (creation & especially lookup)

* Memory efficient (keep the complete
dictionary in memory)

* Naturally, there are a lot of choices

29

Dictionary data structures

* Hash table: Maps the hash value of a word to a position in a table

* Trie (or Prefix Tree): stores alphabet per node and path forms word
* B-Tree: Self balancing tree, can have more than two child nodes

* Finite State Transducer (FST): Memory friendly automaton

Related:
e Bloom Filter: Test if an element is in a set (false positives possible)

Hash table

e Uses a hash function to quickly map a key to a value
 Collisions possible, have to be dealt with (quite a few options)

* Allows for fast lookup: O(1) (this doesn’t mean it is freel)

* No sorting or sorted sequential access

* Does only a direct mapping
* No wildcards — no autocomplete

31

Trie

* Tree structure with one character key per node

and as many children as available characters per node
(in it’s simplest form)

e At the beginning every next character pointer is null

* When a word is inserted in the Trie structure: for every character a new node
is added recursively, each deeper level corresponds to the next char index

* A path in the Trie represents a word

* Not feasible for large character sets (No emoji support)
* There are versions that mitigate this problem

For the curious: https://medium.com/basecs/trying-to-understand-tries-3ec6bede0014

32

https://medium.com/basecs/trying-to-understand-tries-3ec6bede0014

B-Tree (an its variants: B+, B* ..)

* Self balancing tree with multiple children per node
* The same height for all leaves

* Logarithmic time access (add, lookup)
* Can be implemented very cache friendly (one node contains multiple keys)
* B+: Allows for fast sequential access (if leaves are connected with pointers)

* Also heavily used in relational database indexes, file systems

Fun fact: The “B” in B-Tree has no official meaning

33

B-Tree with Prefixes

| () * At the upper nodes, we

| /L | ,J\ don’t need to compare

fl\ d ~ the whole string as key

o N _ .
1 O N * Split nodes with the
2 [O— OO RS [(% shortest separator string
1 : = * Full strings are still
: U sequentially + sorted
L accessible
A == L L L Prefix B-Trees, Bayer and Unterauer
— - TODS 1977

https://dl.acm.org/citation.cfm?id=320530

Fig. 1. Example of a simple prefix B-tree

35

https://dl.acm.org/citation.cfm?id=320530

Finite State Transducer

* Automaton, where arcs encode characters and parts of the output
e Output is summed up while traversing the arcs

* Very memory efficient dictionary index structure
 70mb for Wikipedia dictionary

* Used in Lucene as primary search dictionary
* Not used for indexing, rather build from existing sorted vocabulary
* Stores terms and an address of the term data in another location

Finite State Transducer in Lucene

* FST maps the words:
[mop, moth, pop, star, stop,
top] to their index (0, 1, 2, ...)

* As you traverse the arcs sum
up the outputs:

e stop hits 3 onthe sand 1 on
the o, so its output is 4.

e Qutput can be arbitrarily
assigned

Figure and example from: http://blog.mikemccandless.com/2010/12/using-finite-state-transducers-in.html

37

http://blog.mikemccandless.com/2010/12/using-finite-state-transducers-in.html

Bloom filter

* Checks whether an element is in a set, does not store the actual items

* Probabilistic data structure
* False positives possible, but no false negatives
 False positive probability depends on filter size, set size, hash functions

* Can be used to check if an expensive request to e.g. a data storage at
another machine is going to yield a result

Definition:

* False positive: Predicts a yes, although the element is actually a no

Good article with further information: https://en.wikipedia.org/wiki/Precision and recall

38

https://en.wikipedia.org/wiki/Precision_and_recall

Bloom filter

e Data store: a bit array
tX Yy, 2] Bit array is all 0 at the beginning

ﬂN Different (here 3) hash functions, each
returns a position in the array
“ 1 1 1 0 1 0 1

 Set bits to 1 for elements (x, vy, z) in these

positions
* Positions can overlap

q * Lookup (g): Check if positions returned
by hash functions are all 1, if not
element is definitely not in the set

0 1

Figure from: https://en.wikipedia.org/wiki/Bloom filter

39

https://en.wikipedia.org/wiki/Bloom_filter

Spell-checking

* Two principal uses
* Correcting documents being indexed
* Correcting user queries to retrieve correct answers — e.g. did you mean .. ?

e Two main flavors:

* |solated word
* Check each word on its own for misspelling
* Will not catch typos resulting in correctly spelled words
e e.g., from — form
* Context-sensitive
* Look at surrounding words,
* e.g., I flew form Heathrow to Narita.

Spell-checking by Peter Norvig

e Simple isolated spell-checking in a few lines of code

e Uses a text file of ~1 million words (from books)
* For correct spelling information

* Probability of each word occurring, if multiple correctly spelled candidates are
available

* Get set of candidate words with: deletion or insertion of 1 char,
swapping two adjacent chars, replace 1 char with 1 other

* Select most probable correct spelling from available candidates

Details (and implementation in various languages) here: https://norvig.com/spell-correct.html|

41

https://norvig.com/spell-correct.html

he Anatomy of a Large-Scale
Hypertextual Web Search Engine

In this paper, we present Google, a prototype of a large-scale search engine which
makes heavy use of the structure present in hypertext.

1998: Google

* Started as a research project at Stanford

* Obviously a lot of good ideas

* Information retrieval as a problem of context and scale

Original paper: (highly recommended reading)

The Anatomy of a Large-Scale Hypertextual Web Search Engine, Brin and Page
http://ilpubs.stanford.edu:8090/361/

43

http://ilpubs.stanford.edu:8090/361/

1998: Google — using context

e Using context inside the document (HTML tags + formatting)

* Using positional posting lists and proximity in the ranking

e Using links:
* PageRank: Using the link graph between documents to assign a score to each
document (detailed explanation in the web search lecture)

* Use anchor (link) text as a description of the page it points to

44

Relevance beyond pure text matching

* PageRank, Localization, Speed ... Google, Bing, etc. use 100s of values
to rank results

* Values (Google calls them “Signals”) are combined to generate
displayed ranking order
* Learning to Rank: combine values with Machine Learning
* Uses log data from previous users to learn better relevance scores

 Active field of research to use recent advances in NLP (Natural Language
Processing) to learn relationships between the query and the full text of the
documents

Summary: Foundations of Information Retrieval

0 We save statistics about terms in an inverted index

e The statistics in the index can be access by a given term (query)

9 The statistics are used to create a relevance score for a document

46

We save statistics about terms in an inverted index

The statistics in the index can be access by a given term (query)

The statistics are used to create a relevance score for a document

hank You

