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Today Foundations of Information Retrieval 

Inverted Index

Search

The Anatomy of a Large-Scale 
Hypertextual Web Search Engine

With a break after ~40 minutes ❶

❷

❸

Some materials taken from:    Introduction to IR by Manning lecture materials 
& Mihai Lupu’s previous lecture slides
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Information Retrieval (Finding the needle in the haystack)
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Notes on terminology
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• Documents can be anything: a web page, word file, text file, article …
(we assume it to be text for the moment)

• A lot of details to look out for: encoding, language, hierarchy, fields, …

• Collection: A set of documents (we assume it to be static for the moment)

• Relevance: Does a document satisfy the information need of the user 
and does it help complete the user’s task?



Relevance (based on text content)
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• If a word appears more often -> 
more relevant

• Solution: count the words

• If a document is longer, words will 
tend to appear more often ->
take into account the document 
length

• Counting only when we have a 
query is inefficient

Details of scoring models in the scoring lecture  

Document 3Document 1

Elephant

Document 2

weight

Elephant

How Relevant?

Elephant  weight  

Count(Elephant) = 1
Count(weight) = 0

Count(Elephant) = 3
Count(weight) = 2

Count(Elephant) = 0
Count(weight) = 0



Inverted Index

Transforming text-based information



Inverted Index
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• Inverted index allows to efficiently retrieve documents from large 
collections

• Inverted index stores all statistics per term (that the scoring model needs) 

• Document frequency: how many documents contain the term

• Term frequency per document: how often does the term appear per document

• Document length

• Average document length

• Save statistics in a format that is accessible by a given term

• Save metadata of a document (Name, location of the full text, etc..)



Inverted Index
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• Every document gets an internal 
document id

• Term dictionary is saved as a search 
friendly data structure (more on that later)

• Term Frequencies are stored in a 
“posting list” = a list of doc id, frequency 
pairs

Document Ids & Metadata: 

[0] =   Wildlife    location       
[1] =   Zoo Vienna       
...
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 lion    

 weight      

...

...1:5 2:1 3:5 4:5

...1:2 7:1 9:2

4:1 6:4 ...

Document Lengths:

[0] = 231 [1] = 381 ...

DocId Term Frequency



Creating the Inverted Index
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Tokenization 
+ Case folding

Document this

Register metadata 
(+ assign document id)

is a

sample document

full of infos

Stemming
this is a

sample document

full of info

Filter stop words

sample document

full info

Removed the s

     Add or update 
posting list

Terms

Add to dictionary

1:2 7:1 9:2 sample  =>

Metadata
store

This is a sample 
document - full of 
infos.



Creating the Inverted Index

12

• Simplified example pipeline

• Linguistic models are language 
dependent

• A query text and a document 
text both have to undergo the 
same steps

Tokenization 
+ Case folding

Document this

Register metadata 
(+ assign document id)

is a

sample document

full of infos

Stemming
this is a

sample document

full of info

Filter stop words

sample document

full info

Removed the s

     Add or update 
posting list

Terms

Add to dictionary

1:2 7:1 9:2 sample  =>

Metadata
store

This is a sample 
document - full of 
infos.



Tokenization
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• Transform a list of characters into a list of tokens

• A Token is itself an instance of a list of characters

• Each token is a candidate for an added term in the index

• How to split the stream of text into tokens? 



Tokenization
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• Naïve baseline: split on each whitespace and punctuation character
• This splits U.S.A to [U,S,A] or 25.9.2018 to [25,9,2018]

• Still a good baseline for English

• Improvement: keep abbreviations, names, numbers together as one 
token
• Open source tools like Stanford tokenizer 

https://nlp.stanford.edu/software/tokenizer.shtml

• Can also handle emoji 👌👍

https://nlp.stanford.edu/software/tokenizer.shtml


Tokenization: Language issues
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• French
• L'ensemble→ one token or two?

• L ? L’ ? Le ?

• Want l’ensemble to match with un ensemble

• German noun compounds are not segmented
• Lebensversicherungsgesellschaftsangestellter

• ‘life insurance company employee’

• German retrieval systems benefit greatly from a compound splitter module
• Can give a 15% performance boost for German 



Tokenization: Language issues
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• Chinese and Japanese have no spaces between words:
• 莎拉波娃现在居住在美国东南部的佛罗里达。

• Not always guaranteed a unique tokenization

• Further complicated in Japanese, with multiple alphabets 
intermingled
• Dates/amounts in multiple formats

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円)

Katakana Hiragana Kanji

End-user can express query entirely in hiragana!



Stemming
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• Reduce terms to their “roots” before indexing

• “Stemming” suggests crude affix chopping
• language dependent

• automate(s), automatic, automation all reduced to automat.

• More advanced form: Lemmatization: Reduce inflectional/variant 
forms to base form (am, are, is → be)
• Computationally more expensive 



Stemming: Porter’s algorithm
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• Common algorithm for stemming English text

• Conventions + 5 phases of reductions
• phases applied sequentially

• each phase consists of a set of commands

• sample convention: Of the rules in a compound command, select the one that 
applies to the longest suffix.

A lot of details at: http://snowball.tartarus.org/algorithms/porter/stemmer.html

http://snowball.tartarus.org/algorithms/porter/stemmer.html


Normalization
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• Normalize words in the index

• Abbreviations: We want to match U.S.A. = USA

• Accents: e.g., French résumé = resume.

• Umlauts: e.g., German: Tuebingen = Tübingen

• Can be very domain-specific



Case folding
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• Reduce all letters to lower case
• Allows to match more occurrences

• This removes precise information about names, abbreviations etc…
• A possible solution is to store two versions – one lowercased and one original

The usefulness of this depends on the user entering a query in the correct 
casing



Search

Efficiently searching with the Inverted Index



Querying the Inverted Index
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• No need to read full documents

• Only operate on frequency 
numbers of potentially relevant 
documents*

• Sort documents based on 
relevance score – retrieve most 
relevant documents

* it’s not that easy because a document could be relevant without 
containing the exact query terms – but for now keep it simple

Elephant weight  

Possibly 
Relevant?

Document 18192

Document 18193

Document

Inverted 
index

Statistics

Scoring model

1: Doc 18192
2: Doc 21230
3: Doc 30123

weight

Elephant

Open top 
document

How Relevant?



Types of queries (including, but not limited to)
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• Exact matching:  match full words and concatenate multiple query 
words with “or” 

• Boolean queries: “and” / “or” / “not” operators between words

• Expanded queries: automatically incorporate synonyms and other 
similar or relevant words into the query

• Wildcard queries, phrase queries, phonetic queries (e.g. Soundex) …



Boolean queries
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• Ask a query with Boolean operators: and / or / not
A and B ; (A and B) or C ; A and (not B) ...

• Lucene: allows to plug in any other query type in A,B,C 
• And there are a lot of built in query types to choose from:

https://lucene.apache.org/core/7_0_0/core/org/apache/lucene/search/Query.html

Related in name:

• Boolean Retrieval Model: 
• Simple form of retrieval without relevance ranking 

• Just binary information if the word is or is not in a document 
(more in the IR book by Manning: https://nlp.stanford.edu/IR-book/html/htmledition/processing-boolean-queries-1.html)

https://lucene.apache.org/core/7_0_0/core/org/apache/lucene/search/Query.html
https://nlp.stanford.edu/IR-book/html/htmledition/processing-boolean-queries-1.html


Wildcard queries
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• Only specify part of a word you want to search for:

• Simple autocomplete: comp* -> computer, computation, compiler …
• * stands for any possible characters the index knows about

• Good with a tree-like dictionary, where we follow all branches after the 
known characters

• Can become computationally very expensive
• Especially if the * is at the beginning & in the middle

• Mitigated by specialized index architectures like: 
Permuterm and k-gram indexes (more in the IR book by Manning)



Query expansion
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• Search including additional words not part of the query

• Added words need to be topically related, not only synonyms

• This allows to retrieve/boost relevant documents without the actual 
query present in the document 

• Data could be from a variety of sources: 
• Handcrafted synonyms, abbreviations: e.g. WordNet 

• Learned from previous search user sessions: Only possible for big user bases

• Unsupervised learned from a word embedding: Encoding relationships 
between words in vectors and taking the nearest neighbors



Query expansion: Research Example
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Sample query  
sample 

query

example0.94

sampling0.87

inquire0.76

question0.73

Get similarity from embedding

Inv. 
Index

Search for all 
terms in the 

inverted index

query inquire question

#4 4

#6 8

#4 2

#9 3

#6 4

#9 1

Doc id

tf(d)

Gather posting lists

x0.76

x0.76

x0.73

x0.73

x1

x1
Score per doc 
+ repeat with 
 sample  part
+ combine
+ sort
= result

Get idf
of terms

Weight from embedding

• Using a Word Embedding to 
automatically expand with 
similar words

• Adapted relevance model to 
score 1 document with 
multiple similar words 
together

N. Rekabsaz, M. Lupu, A. Hanbury, and G. Zuccon, 
“Generalizing Translation Models in the Probabilistic 
Relevance Framework,” CIKM 2016 
https://dl.acm.org/citation.cfm?id=2983833

https://dl.acm.org/citation.cfm?id=2983833


Break

5 minutes or so



Inverted Index: Dictionary
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• Dictionary<T> maps text to T
• T is a posting list or potentially other data 

about the term depending on the index

• Wanted properties:
• Random lookup

• Fast (creation & especially lookup)

• Memory efficient (keep the complete 
dictionary in memory)

• Naturally, there are a lot of choices 

Document Ids & Metadata: 

[0] = ( Name          location       
[1] =   Other name       
...
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 index    =>

 example    

 token      

...

...1:5 2:1 3:5 4:5

...1:2 7:1 9:2

4:1 6:4 ...

Document Lengths:

[0] = 231 [1] = 381 ...

The dictionary
Posting list



Dictionary data structures
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• Hash table: Maps the hash value of a word to a position in a table

• Trie (or Prefix Tree): stores alphabet per node and path forms word 

• B-Tree: Self balancing tree, can have more than two child nodes

• Finite State Transducer (FST):  Memory friendly automaton 

Related:

• Bloom Filter: Test if an element is in a set (false positives possible)



Hash table
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• Uses a hash function to quickly map a key to a value
• Collisions possible, have to be dealt with (quite a few options)

• Allows for fast lookup: O(1) (this doesn’t mean it is free!)

• No sorting or sorted sequential access

• Does only a direct mapping
• No wildcards – no autocomplete



Trie
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• Tree structure with one character key per node 
and as many children as available characters per node 
(in it’s simplest form)

• At the beginning every next character pointer is null 

• When a word is inserted in the Trie structure: for every character a new node 
is added recursively, each deeper level corresponds to the next char index

• A path in the Trie represents a word

• Not feasible for large character sets (No emoji support 😢)
• There are versions that mitigate this problem

For the curious: https://medium.com/basecs/trying-to-understand-tries-3ec6bede0014

https://medium.com/basecs/trying-to-understand-tries-3ec6bede0014


B-Tree (an its variants: B+, B* ..)
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• Self balancing tree with multiple children per node

• The same height for all leaves

• Logarithmic time access (add, lookup)
• Can be implemented very cache friendly (one node contains multiple keys)

• B+: Allows for fast sequential access (if leaves are connected with pointers)

• Also heavily used in relational database indexes, file systems

Fun fact: The “B” in B-Tree has no official meaning 



B-Tree with Prefixes
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• At the upper nodes, we 
don’t need to compare 
the whole string as key

• Split nodes with the 
shortest separator string

• Full strings are still 
sequentially + sorted 
accessible

Prefix B-Trees, Bayer and Unterauer 
TODS 1977
https://dl.acm.org/citation.cfm?id=320530

https://dl.acm.org/citation.cfm?id=320530


Finite State Transducer
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• Automaton, where arcs encode characters and parts of the output
• Output is summed up while traversing the arcs 

• Very memory efficient dictionary index structure
• 70mb for Wikipedia dictionary

• Used in Lucene as primary search dictionary
• Not used for indexing, rather build from existing sorted vocabulary

• Stores terms and an address of the term data in another location



Finite State Transducer in Lucene
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• FST maps the words:
[mop, moth, pop, star, stop, 
top] to their index (0, 1, 2, ...)

• As you traverse the arcs sum 
up the outputs:

• stop hits 3 on the s and 1 on 
the o, so its output is 4. 

• Output can be arbitrarily 
assigned

m

p/2

s/3

o

t

o

o/1

a

t/1

h

p

p

r

t/5

Figure and example from: http://blog.mikemccandless.com/2010/12/using-finite-state-transducers-in.html

http://blog.mikemccandless.com/2010/12/using-finite-state-transducers-in.html


Bloom filter

38

• Checks whether an element is in a set, does not store the actual items

• Probabilistic data structure
• False positives possible, but no false negatives

• False positive probability depends on filter size, set size, hash functions

• Can be used to check if an expensive request to e.g. a data storage at 
another machine is going to yield a result

Definition:

• False positive: Predicts a yes, although the element is actually a no
Good article with further information: https://en.wikipedia.org/wiki/Precision_and_recall

https://en.wikipedia.org/wiki/Precision_and_recall


Bloom filter
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• Data store: a bit array

• Bit array is all 0 at the beginning

• Different (here 3) hash functions, each 
returns a position in the array 
• Set bits to 1 for elements (x, y, z) in these 

positions

• Positions can overlap 

• Lookup (q): Check if positions returned 
by hash functions are all 1, if not 
element is definitely not in the set 

Figure from: https://en.wikipedia.org/wiki/Bloom_filter

0 1 1 1 1 0 1 0 1

{   x,   y,   z   }

q

0

https://en.wikipedia.org/wiki/Bloom_filter


Spell-checking
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• Two principal uses
• Correcting documents being indexed

• Correcting user queries to retrieve correct answers – e.g. did you mean .. ?

• Two main flavors:
• Isolated word

• Check each word on its own for misspelling

• Will not catch typos resulting in correctly spelled words

• e.g., from → form

• Context-sensitive
• Look at surrounding words, 

• e.g., I flew form Heathrow to Narita.



Spell-checking by Peter Norvig
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• Simple isolated spell-checking in a few lines of code

• Uses a text file of ~1 million words (from books)
• For correct spelling information

• Probability of each word occurring, if multiple correctly spelled candidates are 
available

• Get set of candidate words with: deletion or insertion of 1 char, 
swapping two adjacent chars, replace 1 char with 1 other

• Select most probable correct spelling from available candidates 

Details (and implementation in various languages) here: https://norvig.com/spell-correct.html

https://norvig.com/spell-correct.html


The Anatomy of a Large-Scale 
Hypertextual Web Search Engine

In this paper, we present Google, a prototype of a large-scale search engine which 
makes heavy use of the structure present in hypertext.



1998: Google

43

• Started as a research project at Stanford

• Obviously a lot of good ideas

• Information retrieval as a problem of context and scale

Original paper: (highly recommended reading)

The Anatomy of a Large-Scale Hypertextual Web Search Engine, Brin and Page 
http://ilpubs.stanford.edu:8090/361/

http://ilpubs.stanford.edu:8090/361/


1998: Google – using context
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• Using context inside the document (HTML tags + formatting)

• Using positional posting lists and proximity in the ranking

• Using links:
• PageRank: Using the link graph between documents to assign a score to each 

document (detailed explanation in the web search lecture)

• Use anchor (link) text as a description of the page it points to



Relevance beyond pure text matching
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• PageRank, Localization, Speed … Google, Bing, etc. use 100s of values 
to rank results

• Values (Google calls them “Signals”) are combined to generate 
displayed ranking order
• Learning to Rank: combine values with Machine Learning 

• Uses log data from previous users to learn better relevance scores

• Active field of research to use recent advances in NLP (Natural Language 
Processing) to learn relationships between the query and the full text of the 
documents



Summary: Foundations of Information Retrieval

❶

❷

❸

The statistics in the index can be access by a given term (query)

The statistics are used to create a relevance score for a document

We save statistics about terms in an inverted index

46



❶

❷
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Thank You 

The statistics in the index can be access by a given term (query)

The statistics are used to create a relevance score for a document

We save statistics about terms in an inverted index


