
Relevance & Scoring

Sebastian Hofstätter

sebastian.hofstaetter@tuwien.ac.at

Today Relevance & Scoring

Relevance

TF-IDF

Vector Space Model

BM25

With a break after VSM ❶

❷

❸

Some materials taken from: Introduction to IR by Manning lecture materials
Mihai Lupu’s & Navid Rekabsaz’ previous lecture slides

❹

Recap - Inverted Index query workflow

3

• Inverted Index stores statistics
about terms & documents

• Scoring model works with
those statistics

• Sort documents based on
relevance score – retrieve most
relevant documents

Elephant weight

Possibly
Relevant?

Document 18192

Document 18193

Document

Inverted
index

Statistics

Scoring model

1: Doc 18192
2: Doc 21230
3: Doc 30123

weight

Elephant

Open top
document

How Relevant?

Relevance

+ Some notes on the search workflow

Scoring model

5

• Input: statistics, Output: floating point value (i.e. the score)

• Evaluated pairwise – 1 query, 1 document: 𝑠𝑐𝑜𝑟𝑒 𝑞, 𝑑

• Capture the notion of relevance in a mathematical model

Today we focus on free-text queries & „ad-hoc“ document retrieval
(document content only)

Search algorithm

6

float Scores={}

for each query term q

fetch posting list for q

for each pair(d, 𝑡𝑓𝑡,𝑑) in posting list

if d not in Scores do Scores[d]=0

Scores[d] += score(q, d, 𝑡𝑓𝑡,𝑑, …)

return Top K entries of Scores

We transform information back
to a document centric view
(from the term centric view in
the inverted index)

Relevance

7

• If a word appears more often →
more relevant

• Solution: count the words

• If a document is longer, words will
tend to appear more often →
take into account the document
length

Document 3Document 1

Elephant

Document 2

weight

Elephant

How Relevant?

Elephant weight

Count(Elephant) = 1
Count(weight) = 0

Count(Elephant) = 3
Count(weight) = 2

Count(Elephant) = 0
Count(weight) = 0

Relevance

8

• Words are meaningless – we see them as discrete symbols

• Documents are therefore a stream of meaningless symbols

• We try to find patterns or trends

• Understanding of relevance probably requires deep understanding of
language and/or the human brain
• A step in this direction → using neural networks for relevance computation

Relevance limitations

9

• “Relevance” means relevance to the need rather than to the query
• “Query” is shorthand for an instance of information need, its initial verbalized

presentation by the user

• Relevance is assumed to be a binary attribute
• A document is either relevant to a query/need or it is not

• We need these oversimplifications to create & evaluate mathematical
models

From: A probabilistic model of information retrieval: development and comparative experiments,
Spärck Jones et al. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.6108&rep=rep1&type=pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.6108&rep=rep1&type=pdf

TF-IDF

Term Frequency – Inverse Document Frequency

Term Frequency – conceptional data view

11

• Bag of words: word order is not important

• First step for a retrieval model: number of occurrences counts!

• 𝑡𝑓𝑡,𝑑 number of occurrences of term t in document d

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 231 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Te
rm

s

Documents

Te
rm

 d
at

a

 elephant =>

 lion =>

 weight

...

...1:5 2:1 3:5 4:5

...1:2 7:1 9:2

4:1 6:4 ...

DocId Term Frequency

Term Frequency – actual data storage

12

• Inverted index saves only non-0 entries, not the whole matrix
• Otherwise we would waste a lot of storage capacity

• Therefore not good at random lookups into the document column
• Needs to iterate through the posting list to find the correct document

• However, for scoring models 𝑡𝑓𝑡,𝑑 with 0 can be skipped

TF - Term Frequency

13

• 𝑡𝑓𝑡,𝑑 = how often does term 𝑡 appear in document 𝑑

• Powerful starting point for many retrieval models

• Main point of our intuition at the beginning

• Using the raw frequency is not the best solution
• Use relative frequencies

• Dampen the values with logarithm

Term Frequency & Logarithm

14

• In long documents, a term may
appear hundred of times.

• Retrieval experiments show that
using the logarithm of the
number of term occurrences is
more effective than raw counts.

• Commonly used approach:
apply logarithm

log(1 + 𝑡𝑓𝑡,𝑑)0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

W
e

ig
h

t

tf – Term Frequency

raw count log(count+1)

Document Frequency

15

• 𝑑𝑓𝑡 = in how many documents does term 𝑡 appear in

• Rare terms are more informative than frequent terms
• Recall stop words

• Consider a term in the query that is rare in the collection
• e.g., TUWIEN in a news corpora

• A document containing this term is very likely to be relevant to the
query TUWIEN

→ We want a high weight for rare terms like TUWIEN.

𝐷

𝑑𝑓𝑡

Total # of
documents

of Documents
with 𝑡𝑓𝑡,𝑑 > 0

IDF – Inverse Document Frequency

16

• A common way of defining the inverse document
frequency of a term is as follows:

idf 𝑡 = 𝑙𝑜𝑔
𝐷

𝑑𝑓𝑡

• 𝑑𝑓𝑡 is an inverse measure of the “informativeness” of
the term

• 𝑑𝑓𝑡 ≤ |𝐷|

• Logarithm is used also for idf to “dampen” its effect.

IDF – Inverse Document Frequency

17

• Does idf have an effect on ranking for one-term queries, like query
“iPhone”?

• idf has no effect on ranking one term queries
• idf affects the ranking of documents for queries with at least two terms

• For the query capricious person, idf weighting makes occurrences of
capricious count for much more in the final document ranking than
occurrences of person

TF-IDF

18

𝑇𝐹_𝐼𝐷𝐹 𝑞, 𝑑 = ෍

𝑡∈𝑇𝑑∩𝑇𝑞

𝑙𝑜𝑔(1 + 𝑡𝑓𝑡,𝑑) ∗ 𝑙𝑜𝑔(
𝐷

𝑑𝑓𝑡
)

For more variations: https://en.wikipedia.org/wiki/Tf-idf

෍

𝑡∈𝑇𝑑∩𝑇𝑞

Sum over all query
terms, that are in
the index

𝑡𝑓𝑡,𝑑

𝐷

𝑑𝑓𝑡

Term frequency

Total # of
documents

of Documents
with 𝑡𝑓𝑡,𝑑 > 0

increases with the number of
occurrences within a document

increases with the rarity of
the term in the collection

• A rare word (in the collection) appearing a lot in one
document creates a high score

• Common words are downgraded

https://en.wikipedia.org/wiki/Tf-idf

TF-IDF – Usage

19

• Useful not only as a standalone model in document retrieval

• Weights used as a base for many other retrieval models
• Example: Vector Space Model (VSM) works better with tf-idf weights

• Also useful as a generic word weighting mechanism for NLP
• Task agnostic importance of a word in a document in a collection

• Assign every word in a collection its tf-idf score

• Example: Latent Semantic Analysis (LSA) works better with tf-idf weights

VSM

Vector Space Model

Terms & Docs – conceptional data view

21

• 𝑡𝑓𝑡,𝑑 number of occurrences of term t in document d

• Why don’t we interpret the rows & columns as vectors?

• We can compute a score with those vectors!

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 231 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Te
rm

s

Documents

VSM - Vector Space Model

22

• Documents and queries are represented
as vectors in a t-dimensional space
• T is the collection of distinct terms in collection with M members

• N is the number of documents in collection

• M≈[100K to 500K] N≈[100 to many millions]

• Document vector Ԧ𝑑 = (𝑤𝑡1,𝑑 , 𝑤𝑡2,𝑑 , … , 𝑤𝑡𝑀,𝑑)
• 𝑤𝑡,𝑑 is referred to as term weighting

• Query vector Ԧ𝑞 = (𝑞𝑡1 , 𝑞𝑡2 , … , 𝑞𝑡𝑀)

Cosine similarity

23

• Cosine similarity measures direction of vectors, but
not the magnitude

• Not a distance – but equivalent to Euclidean distance
of unit (length=1) vectors

sim 𝑑, 𝑞 = cos 𝜃

=
Ԧ𝑑 ∙ Ԧ𝑞

| Ԧ𝑑|| Ԧ𝑞|

𝜃

Ԧ𝑑

Ԧ𝑑 ∙ Ԧ𝑞

Vector of doc d

Dot product

= ෍

𝑖=1

𝑑𝑖𝑚

𝑑𝑖 ∗ 𝑞𝑖

Ԧ𝑞 Vector of query q

𝜃 Angle between
two vectors

VSM with cosine similarity

24

• A query or document is projected as a vector where
terms represent the dimensions

• Scoring function is the cosine similarity between the
vectors

• Intuition for relevance: documents with a similar
direction as the query are more likely relevant

𝑉𝑆𝑀 𝑑, 𝑞 = cos Ԧ𝑑, Ԧ𝑞 =
Ԧ𝑑 ∙ Ԧ𝑞

| Ԧ𝑑|| Ԧ𝑞|
=

σ𝑡∈𝑇𝑤𝑡,𝑑 ∗ 𝑞𝑡

σ𝑡∈𝑇𝑤𝑡,𝑑
2 ∗ σ𝑡∈𝑇 𝑞𝑡

2
Ԧ𝑑

Ԧ𝑑 ∙ Ԧ𝑞

Vector of doc d

Dot product

Ԧ𝑞 Vector of query q

𝑞𝑡 Entry in the
query vector at
position of term t

𝑤𝑡,𝑑 Entry in the doc
vector at position
of term t

෍

𝑡∈𝑇𝑑∩𝑇𝑞

Sum over all query
terms, that are in
the index

𝑡𝑓𝑡,𝑑

𝐷

𝑑𝑓𝑡

Term frequency

Total # of
documents

of Documents
with 𝑡𝑓𝑡,𝑑 > 0

VSM – Using tf-idf

25

𝑉𝑆𝑀𝑡𝑓_𝑖𝑑𝑓 𝑑, 𝑞 = ෍

𝑡∈𝑇𝑑∩𝑇𝑞

log 1 + 𝑡𝑓𝑡,𝑑 ∗ log(ൗ
|𝐷|

𝑑𝑓𝑡
)

σ𝑡∈𝑇𝑑
log 1 + 𝑡𝑓𝑡,𝑑 ∗ log(ൗ

|𝐷|
𝑑𝑓𝑡

)
2

• As a common practice, VSM model uses tf-idf as the weight

• The formula incorporates the normalization of the cosine similarity

• It is calculated only on the common terms between document and
query (we don’t use 0-entries from our conceptional data view)

Break ⏰

Do you have questions in the meantime?

Research Example: Neural Networks for IR

27

• “Learning to Rank” instead of
handcrafted formulas

• Moving from BOW counting
to vector representations

• Needs a lot of data

• More complex than “simple”
classification tasks

Mitra and Craswell, “An Introduction to Neural Information
Retrieval” Foundations and Trends® in IR, 2018
https://www.microsoft.com/en-
us/research/publication/introduction-neural-information-retrieval/

https://www.microsoft.com/en-us/research/publication/introduction-neural-information-retrieval/

BM25

“BestMatch25”

Probabilistic retrieval

29

• Retrieval is inherently uncertain

• Probabilities provide a foundation for uncertain reasoning

• The probabilistic model seeks to ground retrieval in answering, for
each document and each query, the “Basic Question”:

What is the probability that this document is relevant to this query?

Probabilistic retrieval

30

• Strong (and pretty unrealistic) independence assumptions:
• Terms in a document are independent

• Documents are independent

• With those assumptions:
• Theoretical foundation for the search workflow

𝑃 𝑟𝑒𝑙 𝑑, 𝑞 ∝𝑞
𝑃 𝑟𝑒𝑙 𝑑, 𝑞

𝑃 𝑟𝑒𝑙 𝑑, 𝑞
… ς𝑖∈𝑞

𝑃 𝑇𝐹𝑖 = 𝑡𝑓𝑖 𝑟𝑒𝑙

𝑃 𝑇𝐹𝑖 = 𝑡𝑓𝑖| 𝑟𝑒𝑙
… σ𝑞,𝑡𝑓𝑖>0

𝑤𝑖

Details (a lot of them): The Probabilistic Relevance Framework: BM25 and Beyond
http://www.staff.city.ac.uk/~sb317/papers/foundations_bm25_review.pdf

=score(q,d)

http://www.staff.city.ac.uk/~sb317/papers/foundations_bm25_review.pdf

Aboutness / eliteness terms

31

• Hidden property for document – query term pair: eliteness
• If the term is elite in the document, the document is about the concept

denoted by the term

• Eliteness is what connects relevance and term frequency

• Eliteness is binary

• A document is built up from elite & non-elite terms

• We assume for each elite & non-elite terms there is a Poisson
distribution (2 Poisson model)
• Does not account for different document lengths

• Exhibits interesting eliteness <-> term frequency saturation property

Term Frequency Saturation

32

• 2-Poisson model eliteness <-> term frequency properties:

1. Eliteness weight increases monotonically with tf

2. But asymptotically approaches a maximum value as tf → ∞

• Saturation: any one term’s contribution to the document score
cannot exceed a saturation point (the asymptotic limit)

• Very useful – therefore used in the BM25 model

BM25

33

• Created 1994 by Robertson et al.

• Grounded in probabilistic retrieval

• In general, BM25 improves on TF-IDF results

• But only set as a default scoring in Lucene in 2015

Original paper: http://www.staff.city.ac.uk/~sb317/papers/robertson_walker_sigir94.pdf

TF-IDF vs BM25 in Lucene https://opensourceconnections.com/blog/2015/10/16/bm25-the-next-generation-of-lucene-relevation/

http://www.staff.city.ac.uk/~sb317/papers/robertson_walker_sigir94.pdf
https://opensourceconnections.com/blog/2015/10/16/bm25-the-next-generation-of-lucene-relevation/

BM25 (as defined by Robertson et al. 2009)

34

𝐵𝑀25 𝑞, 𝑑 = ෍

𝑡∈𝑇𝑑∩𝑇𝑞

𝑡𝑓𝑡,𝑑

𝑘1(1 − 𝑏 + 𝑏
𝑑𝑙𝑑

𝑎𝑣𝑔𝑑𝑙
) + 𝑡𝑓𝑡,𝑑

∗ 𝑙𝑜𝑔
𝐷 − 𝑑𝑓𝑡 + 0.5

𝑑𝑓𝑡 + 0.5

• Assuming we have no additional relevance information
• If we do: Use RSJ (Robertson/Spärck Jones) weight instead of IDF

• Simpler than the original formula
• Over time it was shown that more complex parts not needed

Details (a lot of them): The Probabilistic Relevance Framework: BM25 and Beyond
http://www.staff.city.ac.uk/~sb317/papers/foundations_bm25_review.pdf

෍

𝑡∈𝑇𝑑∩𝑇𝑞

Sum over all query
terms, that are in
the index

𝑡𝑓𝑡,𝑑

𝑑𝑙𝑑

𝑎𝑣𝑔𝑑𝑙

𝐷

𝑑𝑓𝑡

𝑘1, 𝑏

Term frequency

Document length

Average document
length in index

Total # of
documents

of Documents
with 𝑡𝑓𝑡,𝑑 > 0

Hyperparameters

http://www.staff.city.ac.uk/~sb317/papers/foundations_bm25_review.pdf

BM25 vs. TF-IDF

35

• Simple case of BM25 looks a lot like TF-IDF

• 1 main difference: BM25 𝑡𝑓 component contains saturation function
• Therefore works better in practice

• BM25 variants can be adapted to:
• Incorporate additional reference information

• Long(er) queries

• multiple fields

BM25 vs. TF-IDF - Saturation

36

• TF-IDF: weight is always
increasing (even with log)

• BM25: diminishing returns
quickly = asymptotically
approaches 𝑘1 + 1

Note: we added (𝑘1+1) to the numerator to make
tf@1 = 1, but it does not change the ranking
because it is added to every term

Note: we assume the doc length = avgdl
1,0

2,0

3,0

4,0

5,0

6,0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

W
ei

gh
t

tf - Term Frequency

log(1+tf) (k1+1)*tf / (k1 + tf) ; k1 = 1,2

BM25 vs. TF-IDF - Example

37

• Suppose your query is “machine learning”

• Suppose you have 2 documents with term counts:
• doc1: learning 1024; machine 1

• doc2: learning 16; machine 8

• TF-IDF: log(tf) * log(|D|/df)

• doc1: 11 * 7 + 1 * 10 = 87

• doc2: 5 * 7 + 4 * 10 = 75

Example taken from: https://web.stanford.edu/class/cs276/

• BM25: k1 = 2

• doc1: 7 * 3 + 10 * 1 = 31

• doc2: 7 * 2.67 + 10 * 2.4 = 42.7

https://web.stanford.edu/class/cs276/

Hyperparameters

38

• 𝑘1, 𝑏 are hyperparameters = they are set by us, the developers

• 𝑘1 controls term frequency scaling
• 𝑘1 = 0 is binary model; 𝑘1 large is raw term frequency

• 𝑏 controls document length normalization
• 𝑏 = 0 is no length normalization; 𝑏 = 1 is relative frequency (fully scale by

document length)

• Common ranges: 0.5 < 𝑏 < 0.8 and 1.2 < 𝑘1 < 2

BM25F

39

• BM25 only covers the document as 1 unstructured heap of words

• Real world use case: documents have at least some structure
• Title, abstract, infobox, headers …

• Anchor text in web pages describing a page (see Google paper in Lecture 1)

• BM25F allows for multiple fields (or “streams”) in a document
• For example - 3 streams per doc: title/abstract/body

• BM25F allows to assign different weights to the individual streams

BM25F (as defined by Robertson et al. 2009)

40

𝐵𝑀25𝐹 𝑞, 𝑑 = ෍

𝑡∈𝑇𝑑∩𝑇𝑞

෪𝑡𝑓𝑡,𝑑
𝑘1 + ෩𝑡𝑓𝑡,𝑑

∗ 𝑙𝑜𝑔
𝐷 − 𝑑𝑓𝑡 + 0.5

𝑑𝑓𝑡 + 0.5

෪𝑡𝑓𝑡,𝑑 =෍

𝑠=1

𝑆𝑑

𝑤𝑠

𝑡𝑓𝑡,𝑠

1 − 𝑏𝑠 + 𝑏𝑠
𝑠𝑙𝑠

𝑎𝑣𝑔𝑠𝑙
)

• Assuming we have no additional relevance information
– if we do use RSJ

• Shared IDF might be problematic, could be improved

Details (a lot of them): The Probabilistic Relevance Framework: BM25 and Beyond
http://www.staff.city.ac.uk/~sb317/papers/foundations_bm25_review.pdf

෍

𝑡∈𝑇𝑑∩𝑇𝑞

Sum over all query
terms, that are in
the index

𝑡𝑓𝑡,𝑠

𝑠𝑙𝑠

𝑎𝑣𝑔𝑠𝑙

𝐷

𝑑𝑓𝑡

𝑘1, 𝑏𝑠

Term frequency in
the stream s

Stream length

Average stream
length in index

Total # of
documents

of Documents
with 𝑡𝑓𝑡,𝑑 > 0

Hyperparameters

𝑤𝑠 Stream weight

෍

𝑠=1

𝑆𝑑
Sum over streams
for one doc

http://www.staff.city.ac.uk/~sb317/papers/foundations_bm25_review.pdf

BM25F

41

• BM25F first combines streams and then terms
• This is different than chaining together BM25 results on different streams

• The saturation function is applied at the stream level

• This follows the property that the f.e. the title and body of 1
document are not independent from each other
• And may not be treated as independent

• Naturally, one assigns a higher stream weight to titles and abstracts
• Exact values have to be found again with evaluating different settings and

relevance judgements

Details coming up in the evaluation lecture

Summary: Scoring & Relevance

❶

❷

❸

TF-IDF uses term and document frequencies to score a query & doc

BM25 is a good scoring model grounded in probabilistic retrieval

Scoring models capture relevance in a mathematical model

42

❶

❷

❸

Thank You

TF-IDF uses term and document frequencies to score a query & doc

BM25 is a good scoring model grounded in probabilistic retrieval

Scoring models capture relevance in a mathematical model

