
Foundations of Information Retrieval

Sebastian Hofstätter

sebastian.hofstaetter@tuwien.ac.at

Today Foundations of Information Retrieval

Inverted Index

Search

The Anatomy of a Large-Scale
Hypertextual Web Search Engine

With a break after ~40 minutes ❶

❷

❸

Some materials taken from: Introduction to IR by Manning lecture materials
& Mihai Lupu’s previous lecture slides

Information Retrieval

3

Document

How
Relevant?

Elephant weight

Information Retrieval (Finding the needle in the haystack)

4

How
Relevant?

Document Document

Document

Document

Document Document

Elephant weight

Notes on terminology

5

• Documents can be anything: a web page, word file, text file, article …
(we assume it to be text for the moment)

• A lot of details to look out for: encoding, language, hierarchy, fields, …

• Collection: A set of documents (we assume it to be static for the moment)

• Relevance: Does a document satisfy the information need of the user
and does it help complete the user’s task?

Relevance (based on text content)

6

• If a word appears more often ->
more relevant

• Solution: count the words

• If a document is longer, words will
tend to appear more often ->
take into account the document
length

• Counting only when we have a
query is inefficient

Details of scoring models in the scoring lecture

Document 3Document 1

Elephant

Document 2

weight

Elephant

How Relevant?

Elephant weight

Count(Elephant) = 1
Count(weight) = 0

Count(Elephant) = 3
Count(weight) = 2

Count(Elephant) = 0
Count(weight) = 0

Inverted Index

Transforming text-based information

Inverted Index

9

• Inverted index allows to efficiently retrieve documents from large
collections

• Inverted index stores all statistics per term (that the scoring model needs)

• Document frequency: how many documents contain the term

• Term frequency per document: how often does the term appear per document

• Document length

• Average document length

• Save statistics in a format that is accessible by a given term

• Save metadata of a document (Name, location of the full text, etc..)

Inverted Index

10

• Every document gets an internal
document id

• Term dictionary is saved as a search
friendly data structure (more on that later)

• Term Frequencies are stored in a
“posting list” = a list of doc id, frequency
pairs

Document Ids & Metadata:

[0] = Wildlife location
[1] = Zoo Vienna
...

D
o

cu
m

e
n

t
d

at
a

Te
rm

 d
at

a

 elephant =>

 lion

 weight

...

...1:5 2:1 3:5 4:5

...1:2 7:1 9:2

4:1 6:4 ...

Document Lengths:

[0] = 231 [1] = 381 ...

DocId Term Frequency

Creating the Inverted Index

11

Tokenization
+ Case folding

Document this

Register metadata
(+ assign document id)

is a

sample document

full of infos

Stemming
this is a

sample document

full of info

Filter stop words

sample document

full info

Removed the s

 Add or update
posting list

Terms

Add to dictionary

1:2 7:1 9:2 sample =>

Metadata
store

This is a sample
document - full of
infos.

Creating the Inverted Index

12

• Simplified example pipeline

• Linguistic models are language
dependent

• A query text and a document
text both have to undergo the
same steps

Tokenization
+ Case folding

Document this

Register metadata
(+ assign document id)

is a

sample document

full of infos

Stemming
this is a

sample document

full of info

Filter stop words

sample document

full info

Removed the s

 Add or update
posting list

Terms

Add to dictionary

1:2 7:1 9:2 sample =>

Metadata
store

This is a sample
document - full of
infos.

Tokenization

13

• Transform a list of characters into a list of tokens

• A Token is itself an instance of a list of characters

• Each token is a candidate for an added term in the index

• How to split the stream of text into tokens?

Tokenization

14

• Naïve baseline: split on each whitespace and punctuation character
• This splits U.S.A to [U,S,A] or 25.9.2018 to [25,9,2018]

• Still a good baseline for English

• Improvement: keep abbreviations, names, numbers together as one
token
• Open source tools like Stanford tokenizer

https://nlp.stanford.edu/software/tokenizer.shtml

• Can also handle emoji 👌👍

https://nlp.stanford.edu/software/tokenizer.shtml

Tokenization: Language issues

15

• French
• L'ensemble→ one token or two?

• L ? L’ ? Le ?

• Want l’ensemble to match with un ensemble

• German noun compounds are not segmented
• Lebensversicherungsgesellschaftsangestellter

• ‘life insurance company employee’

• German retrieval systems benefit greatly from a compound splitter module
• Can give a 15% performance boost for German

Tokenization: Language issues

16

• Chinese and Japanese have no spaces between words:
• 莎拉波娃现在居住在美国东南部的佛罗里达。

• Not always guaranteed a unique tokenization

• Further complicated in Japanese, with multiple alphabets
intermingled
• Dates/amounts in multiple formats

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円)

Katakana Hiragana Kanji

End-user can express query entirely in hiragana!

Stemming

17

• Reduce terms to their “roots” before indexing

• “Stemming” suggests crude affix chopping
• language dependent

• automate(s), automatic, automation all reduced to automat.

• More advanced form: Lemmatization: Reduce inflectional/variant
forms to base form (am, are, is → be)
• Computationally more expensive

Stemming: Porter’s algorithm

18

• Common algorithm for stemming English text

• Conventions + 5 phases of reductions
• phases applied sequentially

• each phase consists of a set of commands

• sample convention: Of the rules in a compound command, select the one that
applies to the longest suffix.

A lot of details at: http://snowball.tartarus.org/algorithms/porter/stemmer.html

http://snowball.tartarus.org/algorithms/porter/stemmer.html

Normalization

19

• Normalize words in the index

• Abbreviations: We want to match U.S.A. = USA

• Accents: e.g., French résumé = resume.

• Umlauts: e.g., German: Tuebingen = Tübingen

• Can be very domain-specific

Case folding

20

• Reduce all letters to lower case
• Allows to match more occurrences

• This removes precise information about names, abbreviations etc…
• A possible solution is to store two versions – one lowercased and one original

The usefulness of this depends on the user entering a query in the correct
casing

Search

Efficiently searching with the Inverted Index

Querying the Inverted Index

22

• No need to read full documents

• Only operate on frequency
numbers of potentially relevant
documents*

• Sort documents based on
relevance score – retrieve most
relevant documents

* it’s not that easy because a document could be relevant without
containing the exact query terms – but for now keep it simple

Elephant weight

Possibly
Relevant?

Document 18192

Document 18193

Document

Inverted
index

Statistics

Scoring model

1: Doc 18192
2: Doc 21230
3: Doc 30123

weight

Elephant

Open top
document

How Relevant?

Types of queries (including, but not limited to)

23

• Exact matching: match full words and concatenate multiple query
words with “or”

• Boolean queries: “and” / “or” / “not” operators between words

• Expanded queries: automatically incorporate synonyms and other
similar or relevant words into the query

• Wildcard queries, phrase queries, phonetic queries (e.g. Soundex) …

Boolean queries

24

• Ask a query with Boolean operators: and / or / not
A and B ; (A and B) or C ; A and (not B) ...

• Lucene: allows to plug in any other query type in A,B,C
• And there are a lot of built in query types to choose from:

https://lucene.apache.org/core/7_0_0/core/org/apache/lucene/search/Query.html

Related in name:

• Boolean Retrieval Model:
• Simple form of retrieval without relevance ranking

• Just binary information if the word is or is not in a document
(more in the IR book by Manning: https://nlp.stanford.edu/IR-book/html/htmledition/processing-boolean-queries-1.html)

https://lucene.apache.org/core/7_0_0/core/org/apache/lucene/search/Query.html
https://nlp.stanford.edu/IR-book/html/htmledition/processing-boolean-queries-1.html

Wildcard queries

25

• Only specify part of a word you want to search for:

• Simple autocomplete: comp* -> computer, computation, compiler …
• * stands for any possible characters the index knows about

• Good with a tree-like dictionary, where we follow all branches after the
known characters

• Can become computationally very expensive
• Especially if the * is at the beginning & in the middle

• Mitigated by specialized index architectures like:
Permuterm and k-gram indexes (more in the IR book by Manning)

Query expansion

26

• Search including additional words not part of the query

• Added words need to be topically related, not only synonyms

• This allows to retrieve/boost relevant documents without the actual
query present in the document

• Data could be from a variety of sources:
• Handcrafted synonyms, abbreviations: e.g. WordNet

• Learned from previous search user sessions: Only possible for big user bases

• Unsupervised learned from a word embedding: Encoding relationships
between words in vectors and taking the nearest neighbors

Query expansion: Research Example

27

Sample query
sample

query

example0.94

sampling0.87

inquire0.76

question0.73

Get similarity from embedding

Inv.
Index

Search for all
terms in the

inverted index

query inquire question

#4 4

#6 8

#4 2

#9 3

#6 4

#9 1

Doc id

tf(d)

Gather posting lists

x0.76

x0.76

x0.73

x0.73

x1

x1
Score per doc
+ repeat with
 sample part
+ combine
+ sort
= result

Get idf
of terms

Weight from embedding

• Using a Word Embedding to
automatically expand with
similar words

• Adapted relevance model to
score 1 document with
multiple similar words
together

N. Rekabsaz, M. Lupu, A. Hanbury, and G. Zuccon,
“Generalizing Translation Models in the Probabilistic
Relevance Framework,” CIKM 2016
https://dl.acm.org/citation.cfm?id=2983833

https://dl.acm.org/citation.cfm?id=2983833

Break

5 minutes or so

Inverted Index: Dictionary

29

• Dictionary<T> maps text to T
• T is a posting list or potentially other data

about the term depending on the index

• Wanted properties:
• Random lookup

• Fast (creation & especially lookup)

• Memory efficient (keep the complete
dictionary in memory)

• Naturally, there are a lot of choices

Document Ids & Metadata:

[0] = (Name location
[1] = Other name
...

D
o

cu
m

e
n

t
d

at
a

Te
rm

 d
at

a

 index =>

 example

 token

...

...1:5 2:1 3:5 4:5

...1:2 7:1 9:2

4:1 6:4 ...

Document Lengths:

[0] = 231 [1] = 381 ...

The dictionary
Posting list

Dictionary data structures

30

• Hash table: Maps the hash value of a word to a position in a table

• Trie (or Prefix Tree): stores alphabet per node and path forms word

• B-Tree: Self balancing tree, can have more than two child nodes

• Finite State Transducer (FST): Memory friendly automaton

Related:

• Bloom Filter: Test if an element is in a set (false positives possible)

Hash table

31

• Uses a hash function to quickly map a key to a value
• Collisions possible, have to be dealt with (quite a few options)

• Allows for fast lookup: O(1) (this doesn’t mean it is free!)

• No sorting or sorted sequential access

• Does only a direct mapping
• No wildcards – no autocomplete

Trie

32

• Tree structure with one character key per node
and as many children as available characters per node
(in it’s simplest form)

• At the beginning every next character pointer is null

• When a word is inserted in the Trie structure: for every character a new node
is added recursively, each deeper level corresponds to the next char index

• A path in the Trie represents a word

• Not feasible for large character sets (No emoji support 😢)
• There are versions that mitigate this problem

For the curious: https://medium.com/basecs/trying-to-understand-tries-3ec6bede0014

https://medium.com/basecs/trying-to-understand-tries-3ec6bede0014

B-Tree (an its variants: B+, B* ..)

33

• Self balancing tree with multiple children per node

• The same height for all leaves

• Logarithmic time access (add, lookup)
• Can be implemented very cache friendly (one node contains multiple keys)

• B+: Allows for fast sequential access (if leaves are connected with pointers)

• Also heavily used in relational database indexes, file systems

Fun fact: The “B” in B-Tree has no official meaning

B-Tree with Prefixes

35

• At the upper nodes, we
don’t need to compare
the whole string as key

• Split nodes with the
shortest separator string

• Full strings are still
sequentially + sorted
accessible

Prefix B-Trees, Bayer and Unterauer
TODS 1977
https://dl.acm.org/citation.cfm?id=320530

https://dl.acm.org/citation.cfm?id=320530

Finite State Transducer

36

• Automaton, where arcs encode characters and parts of the output
• Output is summed up while traversing the arcs

• Very memory efficient dictionary index structure
• 70mb for Wikipedia dictionary

• Used in Lucene as primary search dictionary
• Not used for indexing, rather build from existing sorted vocabulary

• Stores terms and an address of the term data in another location

Finite State Transducer in Lucene

37

• FST maps the words:
[mop, moth, pop, star, stop,
top] to their index (0, 1, 2, ...)

• As you traverse the arcs sum
up the outputs:

• stop hits 3 on the s and 1 on
the o, so its output is 4.

• Output can be arbitrarily
assigned

m

p/2

s/3

o

t

o

o/1

a

t/1

h

p

p

r

t/5

Figure and example from: http://blog.mikemccandless.com/2010/12/using-finite-state-transducers-in.html

http://blog.mikemccandless.com/2010/12/using-finite-state-transducers-in.html

Bloom filter

38

• Checks whether an element is in a set, does not store the actual items

• Probabilistic data structure
• False positives possible, but no false negatives

• False positive probability depends on filter size, set size, hash functions

• Can be used to check if an expensive request to e.g. a data storage at
another machine is going to yield a result

Definition:

• False positive: Predicts a yes, although the element is actually a no
Good article with further information: https://en.wikipedia.org/wiki/Precision_and_recall

https://en.wikipedia.org/wiki/Precision_and_recall

Bloom filter

39

• Data store: a bit array

• Bit array is all 0 at the beginning

• Different (here 3) hash functions, each
returns a position in the array
• Set bits to 1 for elements (x, y, z) in these

positions

• Positions can overlap

• Lookup (q): Check if positions returned
by hash functions are all 1, if not
element is definitely not in the set

Figure from: https://en.wikipedia.org/wiki/Bloom_filter

0 1 1 1 1 0 1 0 1

{ x, y, z }

q

0

https://en.wikipedia.org/wiki/Bloom_filter

Spell-checking

40

• Two principal uses
• Correcting documents being indexed

• Correcting user queries to retrieve correct answers – e.g. did you mean .. ?

• Two main flavors:
• Isolated word

• Check each word on its own for misspelling

• Will not catch typos resulting in correctly spelled words

• e.g., from → form

• Context-sensitive
• Look at surrounding words,

• e.g., I flew form Heathrow to Narita.

Spell-checking by Peter Norvig

41

• Simple isolated spell-checking in a few lines of code

• Uses a text file of ~1 million words (from books)
• For correct spelling information

• Probability of each word occurring, if multiple correctly spelled candidates are
available

• Get set of candidate words with: deletion or insertion of 1 char,
swapping two adjacent chars, replace 1 char with 1 other

• Select most probable correct spelling from available candidates

Details (and implementation in various languages) here: https://norvig.com/spell-correct.html

https://norvig.com/spell-correct.html

The Anatomy of a Large-Scale
Hypertextual Web Search Engine

In this paper, we present Google, a prototype of a large-scale search engine which
makes heavy use of the structure present in hypertext.

1998: Google

43

• Started as a research project at Stanford

• Obviously a lot of good ideas

• Information retrieval as a problem of context and scale

Original paper: (highly recommended reading)

The Anatomy of a Large-Scale Hypertextual Web Search Engine, Brin and Page
http://ilpubs.stanford.edu:8090/361/

http://ilpubs.stanford.edu:8090/361/

1998: Google – using context

44

• Using context inside the document (HTML tags + formatting)

• Using positional posting lists and proximity in the ranking

• Using links:
• PageRank: Using the link graph between documents to assign a score to each

document (detailed explanation in the web search lecture)

• Use anchor (link) text as a description of the page it points to

Relevance beyond pure text matching

45

• PageRank, Localization, Speed … Google, Bing, etc. use 100s of values
to rank results

• Values (Google calls them “Signals”) are combined to generate
displayed ranking order
• Learning to Rank: combine values with Machine Learning

• Uses log data from previous users to learn better relevance scores

• Active field of research to use recent advances in NLP (Natural Language
Processing) to learn relationships between the query and the full text of the
documents

Summary: Foundations of Information Retrieval

❶

❷

❸

The statistics in the index can be access by a given term (query)

The statistics are used to create a relevance score for a document

We save statistics about terms in an inverted index

46

❶

❷

❸

Thank You

The statistics in the index can be access by a given term (query)

The statistics are used to create a relevance score for a document

We save statistics about terms in an inverted index

