

VU Discrete Mathematics

Exercises for 18th November 2025

31) Which of the following mappings is well-defined?

- a) $f : \mathbb{Z}_m \rightarrow \mathbb{Z}_m, \bar{x} \mapsto \bar{x^2}$,
- b) $g : \mathbb{Z}_m \rightarrow \mathbb{Z}_m, \bar{x} \mapsto \bar{2^x}$.

32) Use the Chinese remainder theorem to solve the following system of congruence relations:

$$7x \equiv 8 \pmod{24}, \quad 12x \equiv 4 \pmod{28}, \quad 9x \equiv 3 \pmod{15}.$$

33) Let $(m, e) = (3233, 49)$ be a public RSA key. Compute the private key (m, d) .

Use the public key to encrypt the string „COMPUTER“. To this end, decompose the string into blocks of length 2 and, afterwards, apply the mapping A \mapsto 01, B \mapsto 02, ..., Z \mapsto 26 letter by letter.

34) Let (m, e) and (m, d) be Bob's public and private RSA key, respectively. Suppose that Eve wants Bob to sign the message A , but Bob refuses to do so. But Eve gets Bob to sign another message A' and uses the signed message (A', σ') . How can Eve use this idea to get message A signed with Bob's signature?

Hint: Pick a random integer R and consider the message $A' = R^e A \pmod{m}$

35) Let φ denote Euler's totient function. Prove that the identity

$$\varphi(m \cdot n) = \varphi(m)\varphi(n) \frac{\gcd(m, n)}{\varphi(\gcd(m, n))}$$

holds for all $m, n \in \mathbb{N}^+$.

36) Let $A_{d,n} = \{x \mid 1 \leq x \leq n \text{ and } \gcd(x, n) = d\}$

(a) Show that $\bigcup_{d|n} A_{d,n} = \{1, 2, \dots, n\}$.

(b) Show that $|A_{d,n}| = |A_{1,n/d}|$. Hint: First show that $\gcd(k, n) = d$ if and only if $\gcd\left(\frac{k}{d}, \frac{n}{d}\right) = 1$ and use this to construct a bijection.

(c) Use (a) and (b) to show that

$$\sum_{d|n} \varphi(d) = \sum_{d|n} \varphi\left(\frac{n}{d}\right) = n$$

where φ denotes Euler's totient function.