VU Einführung in die Künstliche Intelligenz

SS 2023

Hans Tompits

Institut für Logic and Computation Forschungsbereich Wissensbasierte Systeme

www.kr.tuwien.ac.at

Human Judgment and Irrationality

- ▶ Decision theory is a *normative theory*, i.e., it describes how a rational agent should act.
- \blacktriangleright A descriptive theory, on the other hand, describes how agents (e.g., humans) really do act.
- ➤ Evidence suggests that these two kinds of theories do not coincide \implies humans appear to be "predictably irrational".

Allais Paradox

 \blacktriangleright Assume that there is a choice between lotteries A and B and then between C and D , which have the following prizes:

- A: 80% chance of winning \$4000
- B: 100% chance of winning \$3000
- C: 20% chance of winning \$4000
- D: 25% chance of winning \$3000
- \blacktriangleright Most people prefer B over A (taking the sure thing), and C over D (taking the higher EMV).
- ➤ However, the normative analysis yields a different result:
	- Assume, without loss of generality, a utility function with $U({$0}) = 0.$
	- Then, $B \succ A$ implies $U(\$3000) > 0.8 \cdot U(\$4000)$, and $C \succ D$ implies $0.2 \cdot U(\$4000) > 0.25 \cdot U(\$3000)$.
	- From the latter we obtain

 $U(\$3000) < \frac{0.2}{0.25}U(\$4000) = 0.8 \cdot U(\$4000).$

 \blacktriangleright There is no utility function consistent with theses choices! $\frac{2}{12}$

Allais Paradox (ctd.)

- ➤ One possible explanation for the apparent irrational preferences is the *certainty effect*, i.e., people are strongly attracted to gains that are certain.
- ▶ Why is that?

Allais Paradox (ctd.)

- ➤ Possible answers:
	- 1. People may choose to reduce their computational burden: by choosing the certain outcomes, there is no need to estimate probabilities.
	- 2. People may mistrust the legitimacy of the stated probabilities (in particular, if stated by people with a vested interest in the outcomes).
	- 3. People may account their emotional state as well as their financial state.
		- People know they would experience regret if they gave up a certain reward (B) for an 80% chance of a higher reward and then lost.
		- $-$ I.e., in choosing A, there is a 20% chance of getting no money and *feeling like a complete idiot*, which is worse than just getting no money.
- \rightarrow Choosing B over A and C over D may not be irrational: just willing to give up \$200 EMV to avoid a 20% chance of feeling like an idiot.

Ellsberg Paradox

- ▶ Prizes have an equal value, but probabilities are underconstrained.
- ➤ Payoff depends on the color of a ball chosen from an urn.
- \blacktriangleright You are told that the urn contains 1/3 red balls, and 2/3 either black or yellow balls, but you do not know how many black and how many yellow.
- \blacktriangleright Then, you are asked to choose between A and B, and then between C and D:
	- A: \$100 for a red ball
	- B: \$100 for a black ball
	- C: \$100 for a red or a yellow ball
	- D: \$100 for a black or yellow ball
- \blacktriangleright If you think there are more red than black balls, you should prefer A over B and C over D , and the opposite otherwise.
- \triangleright But most people prefer A over B and D over C!
- \rightarrow People have *ambiguity aversion*.

Ellsberg Paradox (ctd.)

Ambiguity aversion (ctd.):

- A: \$100 for a red ball
- B: \$100 for a black ball
- C: \$100 for a red or a yellow ball
- D: \$100 for a black or yellow ball
- A gives you a $1/3$ chance of winning, while B could be anywhere between 0 and 2/3.
- \blacktriangleright Likewise, D gives you a 2/3 chance, while C could be anywhere between $1/3$ and $3/3$.
- \rightarrow Most people *elect the known probability* rather than the unknown one.

Decision Networks

- ➤ Decision networks (or influence diagrams) are a general framework for supporting rational decisions.
- ➤ They contain information about an agent's current state, its possible actions, the state that will result from the agent's action, and the utility of that state.
- ► Example of a decision network for the *airport siting problem:*

Decision Networks (ctd.)

Decision network uses three types of nodes:

➤ Chance nodes (ovals): represent random variables.

- E.g., the agent is uncertain about construction costs, the level of air traffic, the potential for litigation.
- There are also the *Deaths, Noise*, and *Cost* variables, depending on the site chosen.
- Chance nodes are associated with a conditional probability distribution that is indexed by the state of the parent nodes.
- ➤ Decision nodes (rectangles): represent points where a decision maker has a choice of actions; e.g., the choice of an airport site influences the cost, noise, etc.

➤ Utility nodes (diamonds): represent the agent's utility function.

• It has as parents all variables describing the outcome that directly affect utility.

Evaluating Decision Networks

➤ Algorithm for evaluating decision networks:

- 1. Set the evidence variables for the current state.
- 2. For each possible value of the decision node:
	- a) Set the decision node to that value.
	- b) Calculate the posterior probabilities for the parent nodes of the utility node, using a standard probabilistic inference algorithm.
	- c) Calculate the resulting utility for the action.
- 3. Return the action with the highest utility.
- ☞ Decision networks are an extension of Bayesian networks, in which only chance nodes occur.

The Value of Information

- ► In the decision network analysis it is assumed that all relevant information is available before making a decision.
- ▶ In practice this is hardly ever the case:
	- ☞ One of the most important parts of decision making is knowing what questions to ask.
- ➤ Information value theory enables an agent to choose what information to acquire.
- ▶ Basic assumption:
	- the agent can acquire the value of any observable chance variables.
- ► These observation actions affect only the *belief state*, not the external physical state.
- ➤ The value of an observation derives from the potential to affect the agent's eventual physical action \implies this potential can be estimated directly from the decision model itself.

The Value of Information: Example

A simple example:

- \blacktriangleright An oil company plans to buy one of *n* indistinguishable blocks of ocean-drilling rights.
- ▶ One of the blocks contains oil worth C dollars, while all other are worthless.
- \blacktriangleright The price for each block is C/n Dollars.
- \blacktriangleright If the company is *risk neutral*, then it is indifferent between buying a block and not buying one.
- ➤ Now assume that the company can buy information (results of a survey) that says definitively whether block 3 contains oil or not.
- ► How much should the company be willing to pay for this information?

Example (ctd.)

To answer this question, we examine what the company would do if it had the information:

- \blacktriangleright With probability $1/n$, the survey will indicate oil in block 3.
	- In this case, the company will buy block 3 for C/n dollars and make a profit of $C - C/n = (n - 1)C/n$ dollars.
- ► With probability $(n-1)/n$, the survey will show that block 3 contains no oil, hence the company will buy a different one.
	- Now, the probability of finding oil in one of the other blocks changes from $1/n$ to $1/(n-1)$, so the expected profit is $\frac{C}{(n-1)} - \frac{C}{n} = \frac{C}{n(n-1)}$ Dollars.

➤ Then, the resulting expected profit, given the survey information is

$$
\frac{1}{n}\cdot\frac{(n-1)C}{n}+\frac{n-1}{n}\cdot\frac{C}{n(n-1)}=\frac{C}{n}.
$$

 \blacktriangleright The company should be willing to pay up to C/n Dollars \implies the information is worth as much as the block itself!

Remarks

- ► The value of information derives from the fact that *with* the information, one's course of action can be changed to suit the *actual* situation.
- ▶ One can discriminate according to the situation:
	- without the information, one has to do what is best on average over the possible situations.
- ➤ In general, the value of a given piece of information is defined to be the difference in expected value between the best actions before and after an information is obtained.

The Value of Perfect Information

- ▶ Assumption:
	- *Exact evidence* about the value of a random variable E_i can be obtained (i.e., we learn $E_i = e_i$).
	- \rightarrow We use the phrase value of perfect information (VPI).
- \blacktriangleright Given initial evidence e, the value of the current best action α is defined by

 $EU(\alpha|\mathbf{e}) = \max_{a} EU(a|\mathbf{e}) = \max_{a} \sum_{c'}$ $\sum_{s'} P(\text{RESULT}(a) = s'|a, e) U(s').$

 \blacktriangleright The value of the new best action α_{e_j} after evidence $E_j = e_j$ is obtained is

> $EU(\alpha_{e_j} | \mathbf{e}, e_j) = \max_{a} \sum_{s'}$ $\sum_{s'} P(\text{RESULT}(a) = s'|a, \mathbf{e}, e_j) U(s').$

▶ But the value of E_j is currently unknown, so to determine the value of discovering E_j , given current information ${\bf e}$, we average over all possible values e_{j_k} that might be discovered for E_j :

 $VPI_e(E_j) = (\sum$ $\sum_{k} P(E_j = e_{j_k} | \mathbf{e}) EU(\alpha_{e_{j_k}} | \mathbf{e}, E_j = e_{j_k})) - EU(\alpha | \mathbf{e}).$

14/19

Some Properties of the VPI

➤ The expected value of information is nonnegative:

 $VPI_e(E_j) \geq 0$, for all **e** and all E_j .

 \blacktriangleright VPI is nonadditive:

in general, $\mathit{VPI}_\mathsf{e}(E_j,E_k) \neq \mathit{VPI}_\mathsf{e}(E_j) + \mathit{VPI}_\mathsf{e}(E_k).$ ➤ VPI is order independent:

 $VPI_e(E_j, E_k) = VPI_e(E_k, E_j).$

Decision-theoretic Expert Systems

- ➤ Decision analysis (evolved in the 1950s and 1960s) studies the application of decision theory to actual decision problems.
- ➤ Traditionally, there are two roles in decision analysis:
	- the *decision maker*, stating preferences between outcomes; and
	- the *decision analyst*, who enumerates possible actions and outcomes, and elicits preferences to determine the best course of action.
- ► Early expert system research concentrated on answering questions rather than on making decisions.
- ► The addition of *decision networks* allows expert systems to recommend optimal decisions, reflecting preferences as well as available evidence.

Decision-theoretic Expert Systems (ctd.)

The process of creating a decision-theoretic expert system, e.g., for selecting a medical treatment for congenital heart disease (aortic coarctation) in children:

- 1. create a causal model (e.g., determine symptoms, treatments, disorders, outcomes, etc.);
- 2. simplify to a qualitative decision model;
- 3. assign probabilities (e.g., from patient databases, literature studies, experts subjective assessments, etc.);
- 4. assign utilities (e.g., create a scale from best to worst outcome and give each a numeric value);
- 5. verify and refine the model, evaluate the system against correct input-output-pairs, a so called gold standard;
- 6. perform sensitivity analysis, i.e., check whether the best decision is sensitive to small changes in the assigned probabilities and utilities.

Influence Diagram Example

Influence diagram for aortic coarctation:

Summary

- ➤ Decision theory puts probability theory and utility theory together to describe what an agent should do.
- ➤ A rational agent makes decisions by considering all possible actions and choosing the one that leads to the best expected outcome.
- ▶ An agent whose preferences are consistent with a set of simple axioms possesses a *utility function*; furthermore, it selects actions as if maximising expected utility.
- ➤ The value of information is defined as expected improvement in utility compared with making a decision without the information.
- ► Expert systems that incorporate utility information are more powerful than pure inference systems:
	- they are able to make decisions and use the value of information to decide whether to acquire it, and
	- they can calculate their sensitivity to small changes in probability and utility assessments.