
Formale Methoden der Informatik

Formale Methoden der Informatik
Block 1: Foundations of Complexity Theory

5. Other Important Complexity Classes

Reinhard Pichler

Institut für Informationssysteme
Arbeitsbereich DBAI

Technische Universität Wien

21 October, 2013

Pichler 21 October, 2013 Page 1

Formale Methoden der Informatik

Outline

5. Other Important Complexity Classes
5.1 L (Logarithmic Space)
5.2 PSPACE (Polynomial Space)
5.3 EXPTIME (Exponential Time)

Pichler 21 October, 2013 Page 2

Formale Methoden der Informatik 5. Other Important Complexity Classes 5.1. L (Logarithmic Space)

The Class L (1)

Definition of L

L is the class of all problems that can be solved by a program that uses
logarithmic space, i.e. P ∈ L if there is a program such that for all
instances I of P, the program uses at most O(log2|I |) bits of read/write
memory.

The running time is, in principle, unlimited!
(but it can be polynomially bounded, as we shall see).

Logarithmic space = really little space, e.g. log2(65536) = 16.

By rephrasing O(log2|I |), we have that a program can use at most
c · log2|I |+ d bits of the read/write memory, where c , d are
constants.

Thus the read/write memory of a program is limited to constantly
many

• pointers (addresses of memory),
• counters, or
• Boolean flags.

Pichler 21 October, 2013 Page 3

Formale Methoden der Informatik 5. Other Important Complexity Classes 5.1. L (Logarithmic Space)

The Class L (2)

We must assume that an input to a logarithmic space program is
stored in the read-only memory!

• Clearly, c · log2n + d < n for a sufficiently large n.
• Thus without the assumption, on a large input the program would

not be able even to traverse its input.

An example of a problem in L:

FIND-NODE

INSTANCE: A natural number n, and a tree T where each node is
labeled with a natural number.

QUESTION: Does T contain a node labeled with n?

We have FIND-NODE ∈ L because we can traverse T in
depth-first manner using only three pointers to nodes in T :
current, next, and aux .

Pichler 21 October, 2013 Page 4

Formale Methoden der Informatik 5. Other Important Complexity Classes 5.1. L (Logarithmic Space)

Solving FIND-NODE in Logarithmic Space

We assume the following methods (implementable to run in log. space):

root(T) returns the root of T

• root(T) = nil if T is empty

firstChild(T , x) returns the first child of a node x in T

• firstChild(T , x) = nil if such a child does not exist

rightSibling(T , x) returns the right sibling of a node x in T

• rightSibling(T , x) = nil if such a sibling does not exist

parent(T , x) returns the parent of a node x in T

• parent(T , x) = nil if x is the root in T

isChildOf (T , x1, x2) returns true iff x1 is a child of x2 in T

isLeaf (T , x) returns true iff firstChild(T , x) = nil

hasRightSibling(T , x) returns true iff rightSibling(T , x) 6= nil

labelling(T , x) returns the label of x in T

Pichler 21 October, 2013 Page 5

Formale Methoden der Informatik 5. Other Important Complexity Classes 5.1. L (Logarithmic Space)

// space efficient implementation of depth-first traversal

Boolean find(Tree T , Integer val)
current = root(T);
if labelling(T , current) = val then return true;
next = firstChild(T , current);

while (next != nil) {

if isChildOf (T , next, current) and !isLeaf (T , next) then {
current := next; next := firstChild(T , next) }

else if isChildOf (T , next, current) and isLeaf (T , next) then {
aux := current; current := next; next := aux }

else if isChildOf (T , current, next) and hasRightSibling(T , current) then
{ aux := current; current := next; next := rightSibling(T , aux) }

else if isChildOf (T , current, next) and !hasRightSibling(T , current) {
current := next; next := parent(T , next) }

if labelling(T , current) = val then return true
}
return false

Pichler 21 October, 2013 Page 6

Formale Methoden der Informatik 5. Other Important Complexity Classes 5.1. L (Logarithmic Space)

L and P

Theorem

L ⊆ P, i.e. every problem solvable in logarithmic space is also solvable in
polynomial time.

Proof sketch

Recall that a logarithmic space program Π1 on input I uses at most
c · log2|I |+ d bits of read/write memory (including the program counter,
registers, etc), where c , d are constants. Note that each stage of the
execution of Π1 on I is uniquely described by the content of the memory.
Thus observe that we have 2c·log2|I |+d possible configurations in which Π1

may be. Observe that 2c·log2|I |+d = (2log2 |I |)c · 2d = |I |c · 2d . Since c , d
are constants, we get that there are only polynomially many different
configurations in which Π1 may be.

Based on the above observation, we can write a polynomial time program
Π2 that lists all the possible configurations of Π1 on I , and then decides
whether Π1 returns true or false on I .

Pichler 21 October, 2013 Page 7

Formale Methoden der Informatik 5. Other Important Complexity Classes 5.2. PSPACE (Polynomial Space)

The Class PSPACE

PSPACE

PSPACE is the class of all problems that can be solved by a program that
uses polynomial space, i.e. P ∈ PSPACE if there is a program Π such
that: for all instances I of P, Π uses at most O(|I |k) bits of memory,
where k is a constant .

The class is quite wide and powerful, and many real world problems
fall into this class.

“polynomial space” means that the program execution may be in
exponentially many different states (vs. polynomially many states in
case of L)

PSPACE-complete problems are considered intractable (we’ll see
NP ⊆ PSPACE).

Pichler 21 October, 2013 Page 8

Formale Methoden der Informatik 5. Other Important Complexity Classes 5.2. PSPACE (Polynomial Space)

Example of a Problem in PSPACE: Tic-Tac-Toe

Recall the classic Tic-Tac-Toe game (played on a 3× 3 board)

An (n, k)-Tic-Tac-Toe is a generalization played on an n × n board.

The first player to obtain a row of k is the winner.

Note that each game ends after at most n2 steps.

TTT-WINNING-STRATEGY

INSTANCE: Natural numbers n, k , and a configuration C of an n × n
board.

QUESTION: Does the player 1 have a winning strategy for the
(n, k)-Tic-Tac-Toe game starting from the configuration C?

Pichler 21 October, 2013 Page 9

Formale Methoden der Informatik 5. Other Important Complexity Classes 5.2. PSPACE (Polynomial Space)

Winning Strategies In Generalized Tic-Tac-Toe

P
1
w
in
s

P
1
w
in
s

P
1
w
in
s

P
1
w
in
s

P
1
w
in
s

P
1
w
in
s

P
1
w
in
s

P
1
w
in
s

P
1
w
in
s

P1 chooses

P1 chooses

All choices of P2

All choices of P2

Pichler 21 October, 2013 Page 10

Formale Methoden der Informatik 5. Other Important Complexity Classes 5.2. PSPACE (Polynomial Space)

PSPACE: Summary

TTT-WINNING-STRATEGY

This problem is in PSPACE (and is PSPACE-complete):

it suffices to have a stack of at most n2 configurations;

each configuration has polynomial size.

Observations

Alternation is typical for PSPACE-complete problems, i.e.:
there exists a choice for player P1, s.t.
for all choices of player P2,
there exists a choice for player P1, . . .

Problems in PSPACE can be solved by polynomially deep nested
loops: In case of TTT-WINNING-STRATEGY, the nesting is
bounded by n2.

Pichler 21 October, 2013 Page 11

Formale Methoden der Informatik 5. Other Important Complexity Classes 5.2. PSPACE (Polynomial Space)

Other Problems in PSPACE

First-order queries

Evaluating a first-order sentence over a structure.

SQL evaluation

Evaluating an SQL query over a database.

The two above are essentially the same problem!

Universality of a regular expression

Checking if a regular expression E matches all possible strings.

Pichler 21 October, 2013 Page 12

Formale Methoden der Informatik 5. Other Important Complexity Classes 5.2. PSPACE (Polynomial Space)

PSPACE vs. P

Theorem

P ⊆ PSPACE, i.e. every problem solvable in polynomial time is also
solvable in polynomial space.

Proof sketch

Trivial, any program running in polynomial time never uses more than
polynomial space, i.e. if Π is a polynomial time program to solve P ∈ P,
then Π also runs in polynomial space and thus proves P ∈ PSPACE.

Pichler 21 October, 2013 Page 13

Formale Methoden der Informatik 5. Other Important Complexity Classes 5.2. PSPACE (Polynomial Space)

PSPACE vs. NP

Theorem

NP ⊆ PSPACE.

Proof sketch

Assume a problem P ∈ NP. Then there is a certificate relation R for P
that is polynomially balanced and polynomially decidable.

We can devise a program that solves instances I of P in polynomial
space:

Traverse the candidate certificates one by one (keep only one in
memory). Since R is polynomially balanced, it is safe to concentrate
on candidates of polynomial size.

For each candidate C , check (I ,C) ∈ R. Since R is polynomially
decidable, each test requires at most polynomial time, and thus also
only polynomial space.

Pichler 21 October, 2013 Page 14

Formale Methoden der Informatik 5. Other Important Complexity Classes 5.3. EXPTIME (Exponential Time)

The Class EXPTIME

EXPTIME

EXPTIME is the class of all problems that can be solved in exponential
time, i.e. P ∈ EXPTIME if there is a program such that for all instances

I of P, the program runs in O(2|I |
k

), where k is a constant.

The following inclusions are known:

PSPACE ⊆ EXPTIME (same argument as for L ⊆ P)

P (EXPTIME (a nontrivial diagonalization argument)

Examples of problems in EXPTIME:

existence of winning strategies in GO generalized to n × n boards
(reason: there exists no polynomial bound on the length of the
game),

evaluation of DATALOG queries (SQL extended with recursion).

Pichler 21 October, 2013 Page 15

Formale Methoden der Informatik 5. Other Important Complexity Classes 5.3. EXPTIME (Exponential Time)

Discussion

There are many more complexity classes. For instance:

2-EXPTIME = problems solvable in O(22|I |k) time

3-EXPTIME = problems solvable in O(222|I|
k

) time

. . .

EXPSPACE = problems solvable in O(2|I |
k

) space

2-EXPSPACE = problems solvable in O(22|I |k) space

3-EXPSPACE = problems solvable in O(222|I|
k

) space

. . .

Pichler 21 October, 2013 Page 16

Formale Methoden der Informatik 5. Other Important Complexity Classes 5.3. EXPTIME (Exponential Time)

Learning Objectives

Understanding the definitions of L, PSPACE and EXPTIME

Being aware of the main inclusions between P, NP, and the three
classes above.

Pichler 21 October, 2013 Page 17

	Other Important Complexity Classes
	L (Logarithmic Space)
	PSPACE (Polynomial Space)
	EXPTIME (Exponential Time)

