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Variants of Satisfiability

SAT

INSTANCE: Boolean formula ϕ.

QUESTION: Is ϕ satisfiable?

3-SAT

INSTANCE: Boolean formula ϕ in 3-CNF

QUESTION: Is ϕ satisfiable?

2-SAT

INSTANCE: Boolean formula ϕ in 2-CNF

QUESTION: Is ϕ satisfiable?
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Variants of Satisfiability

We have already seen that 2-SAT is tractable:
A polynomial-time algorithm can, for instance, be obtained via a
polynomial-time Turing reduction to REACHABILITY.

In contrast, SAT and 3-SAT are intractable:
In this lecture, we shall only briefly mention the proof idea of the
NP-completeness proof for these two problems. Detailed proofs will
be given in the Komplexitätstheorie lecture in the summer term.
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Complexity of SAT and 3-SAT

Cook-Levin Theorem

SAT is NP-complete.

Theorem

3-SAT is NP-complete.

Proof of the NP-membership

SAT and also 3-SAT can be decided by the following NP-algorithm:
1. Guess a truth assignment T for the variables in ϕ.
2. Check that ϕ is true in T .
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Proof idea of the NP-hardness of SAT

To show that SAT is NP-hard, we have to show that for every problem P
in NP there is a polynomial-time many-one reduction from P to SAT.

Since NP has infinitely many problems, we cannot deal with each problem
separately. We need a method to deal with all problems in NP at once.

The idea is as follows. Take an arbitrary problem P ∈ NP and an
arbitrary instance I of P. We must show that we can build in polynomial
time a formula ϕ such that I is a positive instance of P ⇔ ϕ is satisfiable.

Since P ∈ NP, by definition there must exist a polynomially balanced and
polynomially decidable certificate relation R for P. Recall that I is a
positive instance of P ⇔ there exists an object C of polynomial size in
|I | such that (I ,C ) ∈ R. For testing (I ,C ) ∈ R we have a polynomial
time algorithm A available.
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Proof idea of the NP-hardness of SAT

Thus to provide the reduction it suffices to build in polynomial time a
formula ϕ such that the following equivalence holds: ϕ is satisfiable ⇔
there is some polynomial-size object C such that A returns true on (I ,C ).

Intuitively, the desired propositional formula ϕ must perform two jobs:

1 generate the candidate certificates,

2 simulate the computation of A on a candidate pair (I ,C ).

The second part is non-trivial: how can we use a Boolean formula to
simulate SIMPLE programs? How to deal with while loops, for loops,
if/then/else statements?

Answer: this can be done in principle, but it makes more sense to
substitute SIMPLE programs by Turing machines. Turing machines are a
much simpler model of computation that is still equivalent to SIMPLE in
terms of computability and complexity.
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Complexity of SAT and 3-SAT

Proof idea of the NP-hardness of 3-SAT

We have to reduce SAT to 3-SAT, i.e.: Let ϕ be an arbitrary Boolean
formula. We have to show that there exists a Boolean formula
R(ϕ) = ψ, s.t. ψ is in 3-CNF and ϕ is satisfiable ⇔ ψ is satisfiable.

Remarks.

An arbitrary Boolean formula ϕ can be transformed in polynomial
time into a sat-equivalent formula ψ in 3-CNF.

In general, ϕ and ψ are not logically equivalent.

This result is by no means trivial: The “usual” transformation into
CNF via de Morgan’s laws and the distributivity of ∧ and ∨ usually
leads to an exponential blow-up. For instance, consider the CNF
which is logically equivalent to (x1 ∧ y1) ∨ . . . ∨ (xn ∧ yn).
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The VALIDITY Problem

VALIDITY

INSTANCE: Boolean formula ϕ.

QUESTION: Is ϕ valid (i.e., true in every assignment appropriate to ϕ)?

Definition

The class co-NP is the class of problems whose complement is in NP,
i.e., a problem P is in co-NP iff the complement co-P of P is in NP.

Theorem

VALIDITY is co-NP-complete (i.e., co-VALIDITY is NP-complete).
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Proof

Recall the following equivalences:
ϕ is valid ⇔ ¬ϕ is unsatisfiable and ϕ is unsatisfiable ⇔ ¬ϕ is valid.

Membership. VALIDITY can be reduced to the co-SAT-problem.
Since SAT is in NP, co-SAT is in co-NP and so is VALIDITY.

Hardness. co-SAT can be reduced to the VALIDITY-problem.
Since SAT is NP-hard, co-SAT is co-NP-hard and so is VALIDITY.
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Some NP-complete Graph Problems

We have already encountered the INDEPENDENT SET problem. The
following two problems are closely related:

CLIQUE

INSTANCE: Undirected graph G = (V ,E ) and integer K .

QUESTION: Does there exist a clique C of size ≥ K?
i.e., C ⊆ V , s.t. for all i , j ∈ C with i 6= j , [i , j ] ∈ E .

VERTEX COVER

INSTANCE: Undirected graph G = (V ,E ) and integer K .

QUESTION: Does there exist a vertex cover N of size ≤ K?
i.e., N ⊆ V , s.t. for all [i , j ] ∈ E , either i ∈ N or j ∈ N.
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INDEPENDENT SET vs. CLIQUE

Example

1

2

3 4

5

6
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Proposition

Let G = (V ,E ) be an undirected graph with I ⊆ V . Moreover, let
G = (V ,E ) be the complement graph, i.e. [i , j ] ∈ E ⇔ [i , j ] 6∈ E.
I is an independent set in G ⇔ I is a clique in G.
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INDEPENDENT SET vs. VERTEX COVER

Example
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Proposition

Let G = (V ,E ) be an undirected graph with I ⊆ V .
I is an independent set in G ⇔ N = V \ I is a vertex cover in G.

Idea. An independent set never contains both endpoints of an edge.
Hence, of every edge in E , at least one endpoint is in V \ I .
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Complexity

Theorem

INDEPENDENT SET, CLIQUE, and VERTEX COVER are
NP-complete.

Proof

Membership. An NP-algorithm for these problems first guesses a subset
S of the vertices V and then checks in polynomial time that S has the
desired property (e.g., S is an independent set of size ≥ K ).

Hardness. By the above equivalences, it suffices to prove the
NP-hardness of one of these 3 problems. In fact, we have already seen a
reduction from 3-SAT to INDEPENDENT SET, from which its
NP-hardness follows immediately.
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Further Graph Problems

3-COLORABILITY

INSTANCE: Undirected graph G = (V ,E )

QUESTION: Does G have a 3-coloring? i.e., an assignment of one of 3
colors to each of the vertices in V such that any two vertices i , j
connected by an edge [i , j ] ∈ E do not have the same color?

k-COLORABILITY (for fixed value k ≥ 1)

INSTANCE: Undirected graph G = (V ,E )

QUESTION: Does G have a k-coloring? i.e., an assignment of one of k
colors to each of the vertices in V such that any two vertices i , j
connected by an edge [i , j ] ∈ E do not have the same color?
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Further Graph Problems

HAMILTON-PATH

INSTANCE: (directed or undirected) graph G = (V ,E )

QUESTION: Does G have a Hamilton path?
i.e., a path visiting all vertices of G exactly once.

HAMILTON-CYCLE

INSTANCE: (directed or undirected) graph G = (V ,E )

QUESTION: Does G have a Hamilton cycle?
i.e., a cycle visiting all vertices of G exactly once.
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Further Variants of Satisfiability

Not-all-equal SAT (NAESAT)

INSTANCE: Boolean formula ϕ in 3-CNF

QUESTION: Does there exist a truth assignment T on ϕ, such that the
3 literals in each clause do not have the same truth value?

1-IN-3-SAT

INSTANCE: Boolean formula ϕ in 3-CNF

QUESTION: Does there exist a truth assignment T on ϕ, such that in
each clause, exactly one literal is true in T?
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Remarks

Clearly 1-IN-3-SAT ⊂ NAESAT ⊂ 3-SAT. The instances of these
3 problems are the same, namely 3-CNF formulae. However, the
positive instances of 1-IN-3-SAT are a proper subset of NAESAT,
which in turn are a proper subset of the positive instances of 3-SAT.

Note that the NP-completeness of any of these 3 problems does not
immediately imply the NP-completeness of any of the other
problems, since it is a priori not clear if further constraining the
positive instances makes things easier or harder.

3-SAT is a special case of SAT, i.e., the instances of the former are
a proper subset of the latter while the question remains the same.
The NP-hardness of the special case immediately implies the
NP-hardness of the general case.
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NP-Completeness

Theorem

All of the following problems are NP-complete.

k-COLORABILITY for any k ≥ 3 (e.g., 3-COLORABILITY)

HAMILTON-PATH, HAMILTON-CYCLE, TSP(D)

k-SAT for any k ≥ 3, NAESAT, 1-IN-3-SAT

Proof

Membership. All problems above can be solved by guessing a candidate
of polynomial size and checking in polynomial time that it is a solution.

Hardness. in the Komplexitätstheorie lecture in the summer term
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Problem Solving by Reductions to SAT

Motivation

SAT is a canonical NP-complete problem, and thus is often used to
prove NP-hardness of other problems by a reduction from SAT.

However, reductions to SAT also play an important role because
efficient SAT solvers have been developed in recent years.

A reduction from a problem P ∈ NP to SAT together with a SAT
solver may provide a good algorithm for P.
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Graph Homomorphism

HOMOMORPHISM

INSTANCE: Two directed graphs G1 = (V1,E1) and G2 = (V2,E2)

QUESTION: Does there exist a homomorphism from G1 to G2? That is,
does there exist a mapping h : V1 → V2 such that: if (v1, v2) ∈ E1, then
(h(v1), h(v2)) ∈ E2?

HOMOMORPHISM is one of the basic tasks in querying databases:

G1 can be seen as a query, and G2 as a database.

We ask if G1 can be matched in G2.

Answering select-from-where queries of SQL is essentially
HOMOMORPHISM in disguise.
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Graph Homomorphism: An Example (1)

G1 G2

x2

x1

b2

b4

b1

b3

x3

G2 can be seen as a database consisting of a single relation E (start, end):
E = {(b3, b1), (b2, b1), (b3, b2), (b2, b4), (b3, b4)}.
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Graph Homomorphism: An Example (1)
G1 G2

x2

x1

b2

b4

b1

b3

x3

G2 can be seen as a database consisting of a single relation E (start, end):
E = {(b3, b1), (b2, b1), (b3, b2), (b2, b4), (b3, b4)}.

Computing all homomorphisms from G1 to G2 comes down to answering
the following SQL query

select e1.end, e1.start, e2.start
from E e1, E e2, E e3
where e1.start = e3.start and e1.end = e2.end and e2.start = e3.end
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Graph Homomorphism: An Example (1)

G1 G2

x2

x1

b2

b4

b1

b3

x3

G2 can be seen as a database consisting of a single relation E (start, end):
E = {(b3, b1), (b2, b1), (b3, b2), (b2, b4), (b3, b4)}.

More elegantly, we write this query in Datalog notation as

Q(x1, x2, x3) :– E (x2, x1),E (x3, x1),E (x2, x3).
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Graph Homomorphism: An Example (2)

G1 G2

x2

x1

b2

b4

b1

b3

x3

The above homomorphism shows that (b1, b3, b2) is in the answer of Q.
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Graph Homomorphism: An Example (3)

G1 G2

x2

x1

b2

b4

b1

b3

x3

The above homomorphism shows that (b4, b3, b2) is in the answer of Q.

Are there any other homomorphisms (and answers to Q)? No.
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Graph Homomorphism: A More Complicated Example

G1 G2
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Reducing Homomorphism to SAT

Reduction

Let an arbitrary instance of HOMOMORPHISM be given by two directed
graphs G1 = (V1,E1) and G2 = (V2,E2). Let V1 = {a1, . . . , an} and
V2 = {b1, . . . , bm}.

We have to define a formula ϕ such that ϕ is satisfiable ⇔ there exists a
homomorphism from G1 to G2.

For ϕ we use the following propositional variables:

Mai ,bj for each 1 ≤ i ≤ n and 1 ≤ j ≤ m (meaning: if Mai ,bj is true,
then ai of G1 is mapped to bj of G2)

E 1
ai ,aj for all 1 ≤ i , j ≤ n (E 1

ai ,aj means G1 has an edge from ai to aj)

E 2
bi ,bj

for all 1 ≤ i , j ≤ m (E 2
bi ,bj

means G2 has an edge from bi to bj)
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Reduction (continued)

The formula ϕ is defined as ϕ = α1 ∧ α2 ∧ α3 ∧ α4 ∧ α5, where

α1 says that each node in G1 must be assigned to a node in G2:

α1 =
∧

1≤i≤n

( ∨
1≤j≤m

Mai ,bj

)
α2 ensures that a node in G1 is assigned to at most one node in G2:

α2 =
∧

1≤i≤n,1≤k,l≤m,k 6=l

(¬Mai ,bk ∨ ¬Mai ,bl )

α3 and α4 simply restate the edge relations E1 and E2 as formulas:

α3 =
∧

(v1,v2)∈E1

E 1
v1,v2
∧

∧
v1,v2∈V1,(v1,v2)6∈E1

¬E 1
v1,v2

α4 =
∧

(v1,v2)∈E2

E 2
v1,v2
∧

∧
v1,v2∈V2,(v1,v2)6∈E2

¬E 2
v1,v2
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Reduction (continued)

Finally, α5 ensures that if a node ai1 is mapped to bj1 (i.e. if Mai1 ,bj1
is set to true), a node ai2 is mapped to bj2 (i.e. if Mai2 ,bj2

is set to

true), and there is an edge (ai1 , ai2 ) ∈ E1 (i.e. if E 1
ai1 ,ai2

is set to

true), then there must be an edge (bj1 , bj2 ) ∈ E2 (i.e. E 2
bj1 ,bj2

must

also evaluate to true):

α5 =
∧

1≤i1,i2≤n,1≤j1,j2≤m

(¬E 1
ai1 ,ai2

∨ ¬Mai1 ,bj1
∨ ¬Mai2 ,bj2

∨ E 2
bj1 ,bj2

)

This concludes the definition of the reduction. The reduction clearly
works in polynomial time. It remains to prove its correctness, i.e.,
there is a homomorphism h from G1 to G2 ⇔ ϕ is satisfiable.

Pichler 16 October, 2013 Page 28



Formale Methoden der Informatik 4. NP-Completeness 4.4. Problem Solving by Reductions to SAT

Correctness of the Reduction

“⇒” Suppose there is a homomorphism h from G1 to G2. We define an
assignment T that makes ϕ evaluate to true, and thus show satisfiability
of ϕ. We define the truth assignment T by setting the following variables
to true:

Mai ,h(ai ) for each ai ∈ V1;

E 1
ai ,aj for all edges (ai , aj) ∈ E1;

E 2
bi ,bj

for all edges (bi , bj) ∈ E2;

The remaining variables are set to false.

It remains to show that ϕ evaluates to true in T . To this end, we have to
show that each of the subformulas α1, α2, α3, α4, α5 evaluates to true.
This is easy and therefore left as an exercise (inspect each subformula αi

and give an argument why T as defined above satisfies αi ).
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Correctness of the Reduction (continued)

“⇐” Suppose ϕ is satisfiable, i.e. there is a truth assignment T under
which all formulas αi , 1 ≤ i ≤ 5, evaluate to true. We have to show that
there is a homomorphism h from G1 to G2.

We define h as follows: For each ai ∈ V1, let h(ai ) = bj , where bj ∈ V2 is
the unique vertex such that Mai ,bj is assigned true by T . The existence
of such a unique vertex is guaranteed since α1 and α2 evaluate to true by
assumption. Hence, the mapping h is well-defined.

It remains to show that h is indeed a homomorphism. Let (a1, a2) ∈ E1

be an arbitrary edge of G1. We must show that (h(a1), h(a2)) ∈ E2. The
argument is as follows:

Since α3 evaluates to true, we have that E 1
a1,a2

is assigned true by T .

By the construction of h, we have that Ma1,h(a1) and Ma2,h(a2) are
both assigned true by T .

Since α5 evaluates to true, it must be the case then that E 2
h(a1),h(a2)

is assigned true by T .

Since α4 evaluates to true, we must have (h(a1), h(a2)) ∈ E2.
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NP-Completeness and Algorithm Design Techniques

Showing that a problem is NP-complete implies that the problem is not
in P unless NP = P (which is considered very unlikely).

When a problem is known to be NP-complete, further efforts are usually
directed to:

Heuristics

Attacking special cases

Approximation algorithms

Randomized algorithms

(Exponential) algorithms that are practical for small instances

etc.
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Learning Objectives

You should now be familiar with the intuition of NP-completeness
(and recognize NP-complete problems).

Two fundamental NP-complete problems: SAT and 3-SAT.

Difference between logical equivalence and sat-equivalence.

Many more examples of NP-complete problems, e.g.: CLIQUE,
INDEPENDENT SET, VERTEX COVER, 3-COLORABILITY,
HAMILTON-PATH, HAMILTON-CYCLE, TSP(D), etc.

Usefulness of reductions to SAT.
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