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The deadline for submitting your exercises for review is April 14. If you would like to
receive the corrections before the exercise session on April 15, you should submit your solutions
to TUWEL no later than April 7.

Exercise 1 By providing a reduction from the HALTING problem to REACHABLE-CODE, prove that
REACHABLE-CODE is undecidable.

Solution: your solution

Exercise 2 By providing a semi-decision procedure, prove that CORRECTNESS is semi-decidable.

Solution: your solution

Exercise 3 By providing a reduction from CORRECTNESS to HALTING, prove that CORRECT-
NESS is semi-decidable.

Solution: your solution

Exercise 4 Prove that the following problem is undecidable:

ALL-FALSE

INSTANCE: A program Π that takes as input a natural number and returns true or false. It is
guaranteed that Π terminates on any input.

QUESTION: Is it the case that Π(k) = false for all natural numbers k?

Hint: For your proof you may assume the availability of an interpreter for instances of HALTING. In
particular, you have available a decision procedure Πint that does the following:

(a) Πint takes as input a program Π, a string I, and a natural number n.

(b) Πint emulates the first n steps of the run of Π on I. If Π terminates on I within n steps, then Πint

returns true. Otherwise, Πint returns false.

Solution: your solution

Suppose you have n processes, where some processes may need to communicate with each other. Suppose
you also have m computers, where some of them are connected by a (fast) direct network connection. Each
computer has a limit on the number of processes it can run. Your problem is to assign processes to computers
so that the limits are obeyed and all the processes that need to communicate can communicate. This can
be formalized as follows:
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ASSIGNMENT

INSTANCE: A pair G1 = (V1, E1) and G2 = (V2, E2) of undirected graphs, and a function limit
that assigns to each v ∈ V2 an integer. The graph G2 is reflexive, i.e. for every v ∈ V2, [v, v] ∈ E2.

QUESTION: Does there exist an assignment µ that assigns to each vertex in V1 a vertex in V2
such that:

(A) if [v, v′] ∈ E1, then also [µ(v), µ(v′)] ∈ E2, and

(B) for every vertex v in V2, no more than limit(v) nodes of V1 are assigned to v.

Exercise 5 Give a proof that ASSIGNMENT is in NP, i.e. define a certificate relation and briefly discuss
that it is polynomially balanced and polynomial-time decidable.

Solution: your solution

Exercise 6 Define a polynomial-time reduction from CLIQUE to ASSIGNMENT.

Note: the result of Exercise 5 together with the reduction show that ASSIGNMENT is NP-complete.

Solution: your solution

We consider a polynomial-time reduction from INDEPENDENT SET to SAT. Let an arbitrary
instance of INDEPENDENT SET be given by the undirected graph G = (V,E) and integer k. Let V
be of the form V = {b1, . . . , bm}. We construct a propositional formula ϕG,k (i.e. an instance of SAT) as
follows. First of all, we use the following propositional variables:

- Mi,bj for each 1 ≤ i ≤ k and 1 ≤ j ≤ m (intended meaning: Mi,bj is set to true in a model of ϕG,k if and
only if the number i is assigned to the node bj of G).

Then the formula ϕG,k is defined as ϕG,k = α1 ∧ α2 ∧ α3, where

α1 =
∧

1≤i≤k

( ∨
1≤j≤m

Mi,bj

)

α2 =
∧

(1≤n≤m)∧(1≤i,j≤k)∧(i6=j)

¬(Mi,bn ∧Mj,bn)

α3 =
∧

[v1,v2]∈E

∧
1≤i,j≤k

¬(Mi,v1 ∧Mj,v2
)

Informal explanation of the reduction. Intuitively (!), the formulae α1, α2, α3 can be explained as follows.

• The formula α1 expresses the condition that each number i ∈ {1, . . . k, } must be assigned to at least
one node from G.

• The formula α2 makes sure that a pair of numbers do not share the same vertex in G. Thus α1 together
with α2 make sure that at least k nodes from G have numbers “assigned”.

• The formula α3 ensures that for every edge [v1, v2] of G we have not assigned numbers to both v1 and
v2.

Remark. All the above comments are explanations of the intuition of the problem reduction. They are not
proofs!! When you are requested to prove the correctness of the problem reduction, you are not allowed to
refer to these explanations. Your proofs have to be self-contained !
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Exercise 7 Prove formally the “⇒” direction of the correctness of the reduction, i.e. prove the following
statement: if G has an independent set I of size ≥ k, then there exists a truth assignment T that makes ϕG,k

evaluate to true.

Solution: your solution

Exercise 8 Prove the “⇐” direction of the correctness of the reduction, i.e. prove the following statement:
if ϕG,k is satisfiable, then there exists some independent set I in G of size ≥ k.

Solution: your solution

Exercise 9 Argue that the following problem is solvable in logarithmic space:

SAME-DIGITS

INSTANCE: A pair L1, L2 of lists, where each list contains some digits from 0, . . . , 9.

QUESTION: Is the set of digits occurring in L1 equal to the set of digits occurring in L2?

Solution: your solution

Exercise 10 Let L = {w ∈ {1}∗ | w has length 3k for some integer k ≥ 0}, i.e. L is the set of all strings
w such that (a) w is built using the symbol 1, and (b) the length of w is a multiple of 3. Define a Turing
machine M that decides L, i.e. define a tuple M = (K,Σ, δ, s) such that, for all w ∈ {1}∗, we have:

• if w ∈ L, then M(w) = ”yes”;

• if w 6∈ L, then M(w) = ”no”.

Additionally, provide a high-level description of M .

Solution: your solution
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