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Background Reading

Christos H. Papadimitriou:
Computational Complexity.
Addison Wesley, 1994.
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Structure of Block 1

Topics

1 Computation and computability

2 Complexity of problems and algorithms

3 Reductions

4 NP-completeness

5 Other important complexity classes

6 Turing machines

Papadimitriou’s book

Sect. 2 & 3

Sect. 1 & 4

Sect. 8

Sect. 9

Sect. 16 & 19 (small parts)

Sect. 2

Caveat. Usually, textbooks on computability and complexity introduce
Turing machines first and define most concepts in terms of Turing
machines. Due to rather bad experience with this approach in previous
years of this lecture, we provide most definitions in terms of a simple
programming language. Turing machines are only introduced at the end.
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Related Lectures

Complexity Theory
181.142 – 2.0 VU – Komplexitätstheorie
Reinhard Pichler
(in the summer term)

Complexity Analysis
184.215 – 2.0 VU – Komplexitätsanalyse
Thomas Eiter
(in the summer term)

Database Theory
181.140 – 2.0 VU – Datenbanktheorie
Reinhard Pichler
(in the summer term)
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Problems
Computability theory focuses on analyzing the existence of algorithms to
solve problems.

Complexity theory focuses on analyzing how hard it is to solve a problem
in terms of computation time and required space.

Definition of Problems

A problem is a question together with an infinite set of possible instances
(i.e. possible inputs).

A problem is a decision problem if the question has a yes/no answer.

Example Problem

REACHABILITY:
INSTANCE: A graph (V ,E ) and nodes u, v ∈ V .
QUESTION: Is there a path in the graph from u to v?

REACHABILITY is a decision problem.
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Some other Types of Problems

Different questions than those with yes/no answer

function problems: compute some output function f (x) (depending
on the instance x), e.g.: compute a path with some specific property

optimization problems: compute the optimal value (= min/max) of
some function f (x) (depending on the instance x), e.g.: length of
the shortest path

enumeration problems: compute all possible solutions to a problem
instance, e.g.: all (cycle-free) paths from u to v

counting problems: compute the number of possible solutions to a
problem instance, e.g.: How many (cycle-free) different paths from u
to v exist?
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Algorithms

Definition of an Algorithm

An algorithm for a problem P is a description of computation steps that
allow to solve any given instance of the problem P.

The definition is a bit vague...
• What is a “description”?
• What is a “computation step”?

The answer is “it depends”, however we require the following:

1 the description must be understandable/sharable by humans

2 an algorithm performs finitely many computation steps

3 works on all instances of the problem: for each possible instance of
the problem, the execution of the computation steps results in the
correct answer to the question.

4 each step is “simple”, i.e. can be performed by a machine
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Programs

Programming Languages

Programming languages allow us to write programs, which are formal
descriptions of computation steps.

In imperative languages (like C or JAVA) the computation steps are
given explicitly (“assign”, “allocate”, “go to”, “output”)

In declarative languages (functional like HASKELL, logical like
PROLOG) the computation steps are implicit:

• an interpreter takes a program with its input and performs
computation steps to produce an output

Programs are understandable/sharable by humans and can be
executed by a machine.
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Algorithms vs. Programs

Not all programs are legitimate algorithms!

Why? A program may not produce an answer for all allowed
instances (e.g., it may enter an infinite loop, raise an exception, etc.)

The Question in Computability Theory

Given a problem P, can we write a program that is an algorithm for P?

It turns out that:

Some problems have algorithms. (obvious)

For some problems no algorithm exists! (maybe not so obvious)
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Our Programming Language

To talk about programs we need to fix a programming language

We use the very core of procedural languages (call it SIMPLE):

• variables of different types (String, Integer, Boolean, Void)
• variable assignments (e.g. x := y + z)
• “if/then/else” statements
• “while” loops
• “for” loops, “repeat” loops (can be simulated using “while” loops)
• “return” statement

A program may take some input:
• a list L = (V1,V2, . . . ,Vn) of values of different types;

• alternatively, takes a single string I as an input:

(any list L can be coded into a string, just think of XML)

A program returns a value of some type using the “return”
statement.
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Our Programming Language (Example)

Example

String multiply(String s, Integer n)
result := s
while n > 1 do { result := result + s; n := n − 1; }
return result;

concatenates n copies of the string s

input: one string, one integer
• again, both arguments can be encoded into a single string!

output: a string
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Suitability of Our Programming Language
Is our language adequate? That is:

• Are there problems not solvable in SIMPLE, but solvable in JAVA, C?

• Is SIMPLE powerful enough to express all algorithms?

It is adequate! All problems that can be solved in JAVA, C, or any
other known language can also be solved in SIMPLE.

Because in SIMPLE one can implement:

• e.g. a Java Virtual Machine (JVM) to run JAVA programs,
• in general, an interpreter for all known programming languages.

Thus, if we can prove that an algorithm cannot be implemented in
SIMPLE, it cannot be implemented in any other programming
language either.

Church-Turing Thesis

Any algorithm can be programmed in SIMPLE.
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Decidability of a Problem

Decidability

A decision problem P is called decidable if there exists an algorithm for
P. Otherwise, if there doesn’t exist an algorithm for P, then P is called
undecidable.

By the Church-Turing Thesis we have:

Theorem

A decision problem is decidable if and only if there exists a SIMPLE
program for it.

Many real world problems are decidable:

Given a database and an SQL query, check if the output is empty.

Given a regular expression E and a string S , check if S matches E .

Given a natural number n, check if n is a prime number.
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More Complex Programs

There are many real world problems for which algorithms are not
obvious!

Many of such problems are related to questions about behavior of
programs.

• Given a program Π and its input I , does the program enter an
infinite loop?

• Given a program Π, does it terminate on all inputs?

Algorithms for such problems would be great for ensuring
correctness of programs.

Moreover, many mathematical problems could be solved using an
algorithm for termination.

• We consider Goldbach’s Conjecture, which has been an open
problem in mathematics since 1742.
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Goldbach’s Conjecture

Every even integer greater than 2 is the sum of two primes.

We can write a program that checks the conjecture for 4, 6, 8, 10, 12, . . .

Boolean test(Integer n) /* checks if n is the sum of two primes */
for all i ≤ n, j ≤ n do {

if i is prime, j is prime, and i + j = n then return true; }
return false;

Void testConjecture()
n:=4;
while test(n)=true do { n := n + 2 }

Theorem

Goldbach’s Conjecture is true iff testConjecture() does not terminate.
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Goldbach’s Conjecture (Cnt’d)

Suppose we have a program Π, which decides whether
testConjecture() terminates.

By running Π on a computer we can determine the validity of GC

• If Π outputs “no”, then the conjecture is true.
• If Π outputs “yes”, then the conjecture is disproven, i.e. there exists

even n > 2 that is not the sum of two primes.

We don’t know how long it will take to execute Π, but since Π is an
algorithm, we are guaranteed the resolution of GC.

Numerous other mathematical problems could be solved using an
algorithm for termination (consider Fermat’s Theorem).

We next show that it is impossible to write a program that
decides if another program terminates.
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Proving Undecidability of the Halting Problem

HALTING PROBLEM

INSTANCE: A source code S (of a SIMPLE program), an input string I .
QUESTION: Does the program S terminate on input I ?

We show that there is no program Π that would decide the Halting
problem.

The proof will be by contradiction, i.e. we assume that the Halting
problem is decidable, and then show that the assumption leads to a
contradiction.

We assume that the input to a program is a string.

The source code of a program is also a string.
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Proving Undecidability of the Halting Problem (Step 1)
Assume there is a program Πh such that:

• Πh takes two strings as input:
Π (the source code of a program)
I (an input for the program Π)

• Πh outputs:
true if Π terminates on I
false if Π does not terminate on I

Πh

Π

I false (if Π doesn’t halt on I )

true (if Π halts on I )

Boolean Πh (String Π, String I )
/* code to check if Π terminates on I . */
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Proving Undecidability of the Halting Problem (Step 2)

Build a program Π′
h from Πh:

Π′
h takes one string as input, duplicates it, and passes it to Πh.

Hence, Π′
h checks whether an input program Π halts on Π.

Πh
Π′

h

true (if Π halts on Π)

false (if Π doesn’t halt on Π)

Π

Boolean Π′
h (String Π)

return Πh(Π,Π);
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Proving Undecidability of the Halting Problem (Step 3)
Build another program Π′′

h form Π′
h:

if the code of Π′
h returns true, then Π′′

h enters an infinite loop!

Πh
Π′

h

true (if Π halts on Π)

false (if Π doesn’t halt on Π)

Π

Π′′
h

Boolean Π′′
h (String Π)

if Π′
h(Π) = true then { while (true) do {} }

else return false;

Observation 1:
1 if Π halts on Π, then Π′′

h does not halt on Π.

2 if Π does not halt on Π, then Π′′
h halts on Π.
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Proving Undecidability of the Halting Problem (Step 4)

What happens if we feed (the source code of) Π′′
h to Π′′

h?

There can only be two possibilities:

1 Π′′
h halts on Π′′

h . It follows from Observation 1 that Π′′
h does not halt

on Π′′
h . Contradiction!

2 Π′′
h does not halt on Π′′

h . It follows from Observation 2 that Π′′
h halts

on Π′′
h . Contradiction!

Hence any attempt to write a program Πh will lead to failure!

Theorem

The Halting problem is undecidable.
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Other Examples of Undecidable Problems

CORRECTNESS

INSTANCE: A source code S for a function that takes a string and
outputs a string, and a pair of strings I1, I2.
QUESTION: Does S return I2 when run on input I1?

Intuitively, CORRECTNESS is undecidable because answering the
question involves checking if S terminates on I1.

REACHABLE-CODE

INSTANCE: A source code S , a number n of a line in S .
QUESTION: Is there an input I for S such that the run of S on I will
reach the code on line n?

Optimization potential: unreachable code can be safely removed!

Undecidability (intuitively): if we let n be the “last” line in S , then the
problem is equivalent to checking if S terminates on some input.

Remark. These informal arguments for the undecidability of the above
problems will be made precise later when we introduce “reductions”.
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Semi-decidable Problems

We relax the notion of decidability and introduce semi-decidable problems

Definition

A decision problem P is called semi-decidable if we can build a program
Π such that:

Π takes as input instances I of P;

if I is a “yes” instance, then Π returns true;

if I is a “no” instance, then Π returns false or does not terminate;

In other words:

Π works correctly on all positive instances of P, but

Π may not terminate on the negative instances of P.

Is the Halting problem semi-decidable?
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The Halting Problem is Semi-decidable because...
...we can construct a program that returns true for every positive
instance of the Halting problem!

The positive instances of the Halting problem are pairs (Π, I ) of a
program and an input such that Π halts on I .

For instance, we can write an interpreter program Πi such that:

Πi takes as input a source code Π and an input I for Π;

Πi parses Π and simulates a run of Π on I ;

If the simulation of Π on I reaches the end, then Πi returns true;

If the simulation of Π on I does not end, then, clearly, Πi cannot
return any value;

Πi

Π

I

true (if Π halts on I )
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Other Examples of Semi-decidable Problems

REACHABLE-CODE is semi-decidable, but the proof is more involved.

Recall: REACHABLE-CODE

INSTANCE: A source code S , a number n of a line in S .
QUESTION: Is there an input I for S such that the run of S on I will
reach the code on line n?

Observation: given a pair (I , i), where I is an input for S and i is a
natural number, we can

• execute in an interpreter the first i steps of S running on I , and
• decide whether the code on line n is reached within i steps.

Simply enumerate all pairs (I , i) and for each pair check whether S
on I reaches the line n within i steps:

if (S , n) is a positive instance, we will eventually find (I , i) such that
S on I reaches the line n within i steps (then output true).

if (S , n) is a negative instance, the enumeration will never end.

Pichler 7 October, 2013 Page 26



Formale Methoden der Informatik 1. Computation and Computability 1.7. Semi-decidability

REACHABLE-CODE continued

Enumeration of the pairs (I , i)

Observation 1. The set of finite strings over a finite alphabet is countably
infinite. Hence, the set of possible inputs I is countable.
Observation 2. The cartesian product of two countable sets is countable.

Cantor’s enumeration principle

enumeration of A×B with A = {a1, a2, a3, . . . } and B = {b1, b2, b3, . . . }
(a1, b1) (a1, b2) (a1, b3) . . . ,
(a2, b1) (a2, b2) (a2, b3) . . . ,
(a3, b1) (a3, b2) (a3, b3) . . . ,
(a4, b1) (a4, b2) (a4, b3) . . . ,

...
...

...




1 4 9 16 . . . ,
2 3 8 15 . . . ,
5 6 7 14 . . . ,

10 11 12 13 . . . ,
...

...
...

...


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Other Examples of Semi-decidable Problems (2)

CORRECTNESS is semi-decidable (analogous to the Halting problem).

Entscheidungsproblem

INSTANCE: A formula ϕ in First-Order Logic.
QUESTION: Is ϕ valid?

The Entscheidungsproblem is semi-decidable because:

For each valid formula there is a finite derivation in the Sequential
Calculus (or any other complete deduction system like Natural
Deduction).

Simply enumerate all derivations in the deduction system.

• if a formula ϕ is valid, we will eventually find a derivation for ϕ
• if ϕ is not valid, the program would not terminate (no problem –

we are not asking for decidability).

The Entscheidungsproblem is semi-decidable but not decidable.

Pichler 7 October, 2013 Page 28



Formale Methoden der Informatik 1. Computation and Computability 1.8. Complementation

Complement of a Decision Problem

Let P be a decision problem, i.e. a “yes/no” question with a set of
possible instances of the problem.

The complement of P is obtained by “inverting” the question of P.

Recall

REACHABILITY

INSTANCE: A graph (V ,E ) and nodes u, v ∈ V .
QUESTION: Is there a path in the graph from u to v?

The complement of REACHABILITY is

UNREACHABILITY (or co-REACHABILITY)

INSTANCE: A graph (V ,E ) and nodes u, v ∈ V .
QUESTION: Is there no path in the graph from u to v?
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Properties of Complementation

Theorem

If P is a decidable decision problem and co-P is the complement of P,
then co-P is also decidable.

Proof:

If P is a decidable decision problem, then there is a program Π that
returns true on all positive instances of P and false on all negative
instances of P.

Take a program Π′ that is exactly as Π but inverts the output value.

Π′ is a decision procedure for co-P.

Π

Π′

false

true

true

falsetrue
I

Boolean Π′ (String I )
if Π(I ) = true

then return false
else return true;
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Theorem

If P is a decision problem, co-P is the complement of P, and both P and
co-P are semi-decidable, then P is decidable.

Proof:

Since P is semi-decidable, there is a program ΠP that terminates
and returns true on all positive instances of P.

Since co-P is semi-decidable, there is a program Πco-P that
terminates and returns true on all positive instances of co-P, or
equivalently, on all negative instances of P.

Define Π′ that runs ΠP and Πco-P in parallel, and outputs the
corresponding result when one of the two programs terminates
(termination of one triggers termination of the other).

ΠPΠ′

Πco-P false

true

true

true

I abort
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Beyond Semi-decidability
We have seen problems which are undecidable but semi-decidable.
Question: are there problems which are not even semi-decidable?

Theorem

If P is a decision problem such that

1 P is undecidable, and

2 P is semi-decidable, then

the complement co-P of P is not semi-decidable.

Proof.

Proof by contradiction. Suppose co-P is semi-decidable. By the previous
theorem, since P and co-P are both semi-decidable, then P is decidable.
This contradicts the assumption (1) that P is undecidable.

We can infer from the theorem that the complement of the Halting
problem is not semi-decidable. The same is true for CORRECTNESS,
REACHABLE-CODE and the Entscheidungsproblem.
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Beyond Semi-decidability (2)
We have seen problems which are not semi-decidable; but their
complements are semi-decidable.

Question: are there problems P such that neither P nor its
complement co-P is semi-decidable?

Such problems exist:

SAME-OUTPUT

INSTANCE: A pair Π1,Π2 of programs that take a single string as input,
an input string I .
QUESTION: Do Π1 and Π2 behave the same on input I ? That is, Π1 on
I and Π2 on I both return the same value or both do not terminate?

Intuitively, we cannot recognize positive instances where Π1 and Π2

both don’t terminate on I . If we could, non-termination would be
semi-decidable, leading to a contradiction.

Neither can we recognize negative instances such that Π1 terminates
on I and Π2 doesn’t terminate on I . Again, if we could, then
non-termination would be semi-decidable.
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Beyond Semi-decidability (3)
The following problems have the same undecidability properties as
SAME-OUTPUT:

ALL-HALTING

INSTANCE: A program Π that takes a single string as input.
QUESTION: Does Π halt on all input strings I ?

Intuitively, positive instances of ALL-HALTING are unrecognizable
because we need to check termination on infinitely many strings I .

Negative instances are unrecognizable because we cannot spot
non-termination on some string I .

PROGRAM-EQUIVALENCE

INSTANCE: A pair Π1,Π2 of programs that take a single string as input.
QUESTION: Are Π1 and Π2 equivalent?
That is, is it true that for all inputs I , Π1 on I and Π2 on I both return
the same value or both do not terminate?
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Learning Objectives

Ability to read and formulate decision/optimization problems

Several kinds of problems (decision p., function p., optimization p.,
enumeration p., counting p.)

Problem vs. problem instance

Problem vs. algorithm vs. program

Church-Turing thesis

Halting problem

Decidability vs. undecidability vs. semi-decidability

Complement of a decision problem

Properties of complementation
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