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Exercise 1

By providing a reduction from the HALTING problem to
REACHABLE-CODE, prove that REACHABLE-CODE is undecidable.
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Solution to Exercise 1

The reduction is defined as follows. Let (Π, I ) be an arbitrary instance of
HALTING. We build an instance (Π′, n) of REACHABLE-CODE as
follows. We let Π′ be defined as

String Π′ (String S)
Π(I ); // Π and I are hardcoded, S is ignored
return 0;

We let n be the line number of “return 0;” in Π′.

In other words, for an instance x = (Π, I ), the instance R(x) resulting
from the reduction is (Π′, n). To prove the correctness of the reduction
we have to show:

(Π, I ) is a positive instance of HALTING ⇔ (Π′, n) is a positive instance
of REACHABLE-CODE.
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Solution to Exercise 1 (continued)

“⇒” Assume (Π, I ) is a positive instance of HALTING, i.e. Π terminates
on I . Then the call Π(I ) in program Π′ terminates on any input S to Π′.
Thus the statment “return 0;” is reached on any input to Π′. Hence,
(Π′, n) is a positive instance of REACHABLE-CODE.

“⇐” Assume (Π′, n) is a positive instance of REACHABLE-CODE, i.e.
Π′ has an input S on which it reaches the line number n. Since the code
of line n comes after the call Π(I ), it must be the case that Π terminates
on I , i.e. (Π, I ) is a positive instance of HALTING.
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Solution to Exercise 1: Why does it work?

Why does the reduction R prove the undecidability of
REACHABLE-CODE?

Towards a contradiction, suppose REACHABLE-CODE is decidable.
Then there is an algorithm Πrc(·) such that Πrc(x) returns true if x is a
positive instance of REACHABLE-CODE, and returns false otherwise.

Build a procedure Πh, which takes instances of HALTING, as follows:

Bool Πh(String Π,String I )
return Πrc(R((Π, I )));

It is easy to see that Πh is a decision procedure for HALTING:

Πh(Π, I ) returns true if Π terminates on I

Πh(Π, I ) returns false if Π does not terminate on I

We arrive at a contradiction: we know from the lecture that HALTING
is undecidable.
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Sanity test

Check that the problem instances that you are using in your solutions are
compatible with the definition of a given problem:

INSTANCE: A pair (Π, I ), where Π is a program that takes one
string as input and returns a string, and I is a string.

In a proof:

• (Π, I ), (Π′, I ′), (Π, ”hello”) are O.K.
• (Π, I , I ′), (Π, I , k), Π are not O.K.

INSTANCE: A program Π that takes one string as input and returns
a string.

In a proof:
• Π, Π′, Π1, Π2, are O.K.
• (Π, I ), (Π′, I ′), (Π, I , I ′), (Π, I , k) are not O.K.

Šimkus SS 2013 Page 6



Formale Methoden der Informatik 1. Sample Solutions 1.2. Exercise 2

Exercise 2

By providing a semi-decision procedure, prove that CORRECTNESS is
semi-decidable.

Solution to Exercise 2

We can write an interpreter Πint that takes as input Π and I1, I2, i.e. an
instance of CORRECTNESS, and simulates the run of Π on I1:

- If the simulation reaches the point where the string I2 is output, then
Πint returns true.

- If the simulation ends with an output I ′ such that I ′ 6= I2, then Πint

returns false.
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Solution to Exercise 2 (continued)

It can be seen as follows that such an interpreter Πint is a semi-decision
procedure for CORRECTNESS. We distinguish the following cases:

Case 1. Suppose that (Π, I1, I2) is a positive instance, i.e., Π outputs
I2 on input I1. Then the simulation in Πint will encounter the output
I2 and return true by the construction of Πint .

Case 2.1. Suppose that (Π, I1, I2) is a negative instance and that Π
halts on input I1. Then Π halts with an output I ′ 6= I2. Hence, the
simulation in Πint will detect that the output I ′ is not equal to I2.
Thus, Πint returns false by the construction of Πint .

Case 2.2. Suppose that (Π, I1, I2) is a negative instance and that Π
does not halt on input I1. Then the simulation of this computation
of Π on I1 by the interpreter Πint will not terminate either. Hence,
Πint will run forever on the negative instance (Π, I1, I2), which is a
correct behavior for a semi-decision procedure.
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Exercise 3

By providing a reduction from CORRECTNESS to HALTING, prove
that CORRECTNESS is semi-decidable.
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Solution to Exercise 3

The reduction is defined as follows. Let (Π, I1, I2) be an arbitrary instance
of CORRECTNESS. We build an instance (Π′, I ′) of HALTING by
setting I ′ = I1 and constructing Π′ as follows:

String Π′ (String S)
OUT = Π(S); // Π is hardcoded in Π′

if OUT = I2 then return 0
else while True do {}

To prove the correctness of the reduction we have to show:

(Π, I1, I2) is a positive instance of CORRECTNESS ⇔ (Π′, I ′) is a
positive instance of HALTING.
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Solution to Exercise 3 (continued)

“⇒” Assume (Π, I1, I2) is a positive instance of CORRECTNESS, i.e.
Π returns I2 on input I1. Then OUT = I2 when I1 is input to Π′. Then
Π′ terminates with output 0 on input I1. Hence (Π′, I ′) is a positive
instance of HALTING.

“⇐” Assume (Π′, I ′) is a positive instance of HALTING, i.e. Π′

terminates on I ′. Then the call Π(S) in program Π′ terminates on
S = I ′. This means that the “if” statement is reached by Π′ on input I ′.
Since Π′ terminates on I ′, it must be the case that OUT = I2. Hence, we
have the fact that Π returns I2 on input I ′, where I ′ = I1 by problem
reduction, i.e. (Π′, I1, I2) is a positive instance of CORRECTNESS.
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Exercise 4

Prove that the following problem is undecidable:

ALL-FALSE

INSTANCE: A program Π that takes as input a natural number
and returns true or false. It is guaranteed that Π terminates on any
input.

QUESTION: Π(k) = false for all natural numbers k?

Hint: For your proof you may assume the availability of an interpreter for
instances of HALTING. In particular, you have available a decision
procedure Πint that does the following:

1 Πint takes as input a program Π, a string I , and a natural number n.

2 Πint emulates the first n steps of the run of Π on I . If Π terminates
on I within n steps, then Πint returns true. Otherwise, Πint returns
false.

Šimkus SS 2013 Page 12



Formale Methoden der Informatik 1. Sample Solutions 1.4. Exercise 4

Solution to Exercise 4

We provide a reduction from co-HALTING, which is known to be
undecidable. Let (Π, I ) be an arbitrary instance of co-HALTING. We
build an instance Π′ of ALL-FALSE by constructing Π′ as follows:

String Π′ (Int n)
return Πint(Π, I , n) // Π and I are ’hard-coded’ in Π′

To prove the correctness of the reduction we have to show:

(Π, I ) is a positive instance of co-HALTING ⇔ Π′ is a positive instance
of ALL-FALSE.
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Solution to Exercise 4 (continued)

“⇒” Assume (Π, I ) is a positive instance of co-HALTING, i.e. Π does
not terminate on I . In particular, for any n, Π does not terminate on I
within n steps. Hence, for any n, Πint(Π, I , n) = false by definition of
Πint and Π′(n) = false definition of Π′. That is, Π′(n) = false for any
natural number n. Thus Π′ is a positive instance of ALL-FALSE.

“⇐” Assume Π′ is a positive instance of ALL-FALSE, i.e. Π′(n) = false
for all natural numbers n. By definition of Π′, Πint(Π, I , n) = false for all
n. That is, there is no number n such that Πint(Π, I , n) = true, i.e. such
that Π terminates on I within n steps. Thus (Π, I ) is a positive instance
of co-HALTING.
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Problem

Suppose you have n processes, where some processes may need to
communicate with each other. Suppose you also have m computers,
where some of them are connected by a (fast) direct network connection.
Each computer has a limit on the number of processes it can run. Your
problem is to assign processes to computers so that the limits are obeyed
and all the processes that need to communicate can communicate. This
can be formalized as follows:

ASSIGNMENT

INSTANCE: A pair G1 = (V1,E1) and G2 = (V2,E2) of undirected
graphs, and a function limit that assigns to each v ∈ V2 an integer.
It is assumed that G2 is reflexive, i.e. for every v ∈ V2, [v , v ] ∈ E2.

QUESTION: Does there exist an assignment µ that assigns to each
vertex in V1 a vertex in V2 such that:

(A) if [v , v ′] ∈ E1, then also [µ(v), µ(v ′)] ∈ E2, and

(B) for every vertex v in V2, no more than limit(v) nodes of V1

are assigned to v .
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Exercise 5

Give a proof that ASSIGNMENT is in NP, i.e. define a certificate
relation and briefly discuss that it is polynomially balanced and
polynomial-time decidable.
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Solution to Exercise 5

Define the relation

R = {〈(G1,G2, limit), µ〉 | µ is a correct assignment from V1 to V2 },

where “correct” means that it satisfies the conditions (A) and (B).

Clearly, R is a certificate relation for ASSIGNMENT, since the following
equivalences hold: (G1,G2, limit) is a positive instance of
ASSIGNMENT ⇔ there exists an assignment µ that it satisfies the
conditions (A) and (B) ⇔ 〈(G1,G2, limit), µ〉 ∈ R.

R is polynomially balanced because any assignment µ can be represented
in space that is linear in the size of G1 and G2. E.g. by a list of vertex
pairs of length ≤ |V1|.

Finally R is decidable in polynomial time because, given (G1,G2, limit)
and a candidate assignment µ one can check in polynomial time w.r.t.
the size of (G1,G2, limit) and µ whether µ satisfies the conditions (A)
and (B).

Šimkus SS 2013 Page 17



Formale Methoden der Informatik 1. Sample Solutions 1.6. Exercise 6

Exercise 6

Define a polynomial-time reduction from CLIQUE to ASSIGNMENT.

Note: the result of Exercise 5 together with the reduction show that
ASSIGNMENT is NP-complete.
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Solution to Exercise 6

Assume an instance (G , k) of CLIQUE. We next define an instance
(G1,G2, limit) of ASSIGNMENT as follows.

1 We let G1 be a graph with V1 = {1, . . . , k} and such that there is
an edge between every pair of distinct vertices in V1. I.e. G1 is a
complete graph with k vertices.

2 We obtain G2 by adding self-loops to G . That is V2 = V and there
is an edge [v , v ′] ∈ E2 iff [v , v ′] ∈ E or v = v ′. This makes sure that
G2 is reflexive.

3 We let limit(v) = 1 for every v ∈ V2.

It is not difficult to see that:

G has a clique of size ≥ k ⇔ there exists an assignment µ from vertices
in G1 to G2 that satisfies the conditions (A) and (B).
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Solution to Exercise 6 (Cnt’d)

(⇒) Suppose G has a clique of size ≥ k . Then G also has a clique
C = {v1, . . . , vk} of size = k. Define an assignment µ : V1 → V2 as
follows:

µ(i) = vi , i ∈ {1, . . . , k}.

We check that µ satisfies (A) and (B):

(A): Take any pair [i , j ] ∈ E1. Since C is a clique in G , we know that C
is also a clique in G2. Since µ(i), µ(j) ∈ C by the construction of µ,
we get [µ(i), µ(j)] ∈ E2.

(B): For every vertex v of V2 there are only two options:
• No vertex is assigned to v .
• v = vi for some vi ∈ C . In this case, only the vertex i assigned to v .
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Solution to Exercise 6 (Cnt’d)

(⇐) Suppose there exists an assignment µ from vertices in G1 to G2 that
satisfies the conditions (A) and (B).

Take the following set:

C = {v ∈ V2 | ∃i ∈ V1 : µ(i) = v}.

In other words, C is the range of the function µ. Clearly, due to the
selection of limit, we get |C | = k.

It remains to see that C is a clique in G . Take any pair v , v ′ ∈ C with
v 6= v ′. Then there exist i 6= i ′ ∈ V1 s.t.µ(i) = v and µ(i ′) = v ′. By the
construction of E1, we know [i , i ′] ∈ E1. Since µ satisfies (A), we get
[v , v ′] ∈ E2. Since v 6= v ′, we must have [v , v ′] ∈ G by the construction
of G2 from G .
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Exercise 7

We consider a polynomial-time reduction from INDEPENDENT SET
to SAT. Let an arbitrary instance of INDEPENDENT SET be given by
the undirected graph G = (V ,E ) and integer k . Let V be of the form
V = {b1, . . . , bm}. We construct a propositional formula ϕG ,k (i.e. an
instance of SAT) as follows. First of all, we use the following
propositional variables:

- Mi,bj for each 1 ≤ i ≤ k and 1 ≤ j ≤ m (intended meaning: Mi,bj is set
to true in a model of ϕG ,k if and only if the number i is assigned to the
node bj of G ).
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Exercise 7 (continued)

Then the formula ϕG ,k is defined as ϕG ,k = α1 ∧ α2 ∧ α3, where

α1 =
∧

1≤i≤k

( ∨
1≤j≤m

Mi,bj

)
α2 =

∧
(1≤n≤m)∧(1≤i,j≤k)∧(i 6=j)

¬(Mi,bn ∧Mj,bn)

α3 =
∧

[v1,v2]∈E

∧
1≤i,j≤k

¬(Mi,v1 ∧Mj,v2 )
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Exercise 7 (continued)

Informal explanation of the reduction. Intuitively (!), the formulae
α1, α2, α3 can be explained as follows.

The formula α1 expresses the condition that each number
i ∈ {1, . . . k , } must be assigned to at least one node from G .

The formula α2 makes sure that each number i ∈ {1, . . . , k} is
assigned to a separate node in G . Thus α1 together with α2 make
sure that at least k nodes from G have numbers “assigned”.

The formula α3 ensures that for every edge [v1, v2] of G we have not
assigned numbers to both v1 and v2.

Remark. All the above comments are explanations of the intuition of the
problem reduction. They are not proofs!! When you are requested to
prove the correctness of the problem reduction, you are not allowed to
refer to these explanations. Your proofs have to be self-contained!
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Exercise 7 (continued)

Prove formally the “⇒” direction of the correctness of the reduction, i.e.
prove the following statement: if G has an independent set I of size ≥ k,
then there exists a truth assignment T that makes ϕG ,k evaluate to true.

Solution to Exercise 7

Suppose G has an independent set I ′ = {bj1 , . . . bjl} of size ≥ k. Then,
in particular, G has an independent set I = {bj1 , . . . , bjk} of size = k. We
define an assignment T that makes ϕG ,k evaluate to true, and thus
shows the satisfiability of ϕG ,k . T is defined by setting the following
variables to true:

Mi,bji
for all i ∈ {1, . . . , k}.

The remaining variables are set to false. To see that ϕG ,k evaluates to
true, we have to show that each of the subformulas α1, α2, α3 of ϕG ,k

evaluates to true:
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Solution to Exercise 7 (continued)

α1: By construction, the formula α1 evaluates to true if for every
i ∈ {1, . . . , k}, there exists 1 ≤ j ≤ m such that Mi,bj is set to true
in T . This is indeed true: for every i ∈ {1, . . . , k}, we have that ji is
such that Mi,bji

is set to true in T , by the definition of T .

α2: For the formula α2 to evaluate to true in T there should not
exist distinct integers 1 ≤ c 6= d ≤ k and a vertex bn ∈ I such that
Mc,bn and Md,bn are set to true in T . Suppose towards a
contradiction that such c , d , bn exist. Then by the definition of T ,
bjc = bjd = bn. This contradicts the assumption that I of size k.

α3: Consider arbitrary indices i1, i2, j1, j2 with (1 ≤ i1, i2 ≤ k) and
(1 ≤ j1, j2 ≤ m) such that [bj1 , bj2 ] ∈ E . We have to show that
¬Mi1,bj1

∨ ¬Mi2,bj2
is true in T . Suppose it is not the case, i.e.

Mi1,bj1
∧Mi2,bj2

is true in T . Then by the construction of T ,
{bj1 , bj2}] ⊆ I . This contradicts the assumption that I is an
independent set in G .
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Exercise 8

Prove the “⇐” direction of the correctness of the reduction in Exercise 7,
i.e. prove the following statement: if ϕG ,k is satisfiable, then there exists
some independent set I in G of size ≥ k.
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Solution to Exercise 8

Suppose ϕG ,k is satisfiable, i.e. there is a truth assignment T under
which all subformulae α1, α2, α3 evaluate to true. We have to show that
G has an independent set of size ≥ k. We construct a set I of vertices as
follows:

I = {bj | ∃i : T (Mi,bj ) = true}.

It remains to show that I is an independent set in G of size ≥ k. Since
α1 and α2 evaluate to true in T , we have that |I | ≥ k.

To see that I is an independent set, assume an arbitrary pair v1, v2 ∈ I .
We must show that G has no edge [v1, v2].

Towards a contradiction, assume [v1, v2] ∈ E . First note, by construction
of I , there are i , j such that Mi,v1 and Mj,v2 are true in T , i.e. such that
(Mi,v1 ∧Mj,v2 ) is true in T . Since T makes α3 evaluate to true, we have
have that

∧
1≤i,j≤k ¬(Mi,v1 ∧Mj,v2 ) evaluates to true. That is,

¬(Mi,v1 ∧Mj,v2 ) evaluates to true for any 1 ≤ i , j ≤ k . Contradiction.
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Exercise 9

Argue that the following problem is solvable in logarithmic space:

SAME-DIGITS

INSTANCE: A pair L1, L2 of lists, where each list contains some
digits from 0, . . . , 9.

QUESTION: Is the set of digits occurring in L1 equal to the set of
digits occurring in L2?

Solution to Exercise 9

We go through each element e of L1 (1 pointer) and try to find e in L2

(1 pointer). In the second step, we go through each element e of L2 (1
pointer) and try to find e in L1 (1 pointer). We can reuse the pointers
from the first step for the second step. Thus in total we need only 2
(constantly many) pointers.
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Exercise 10

Let L = {w ∈ {1}∗ | w has length 3k for some integer k ≥ 0}, i.e. L is
the set of all strings w such that (a) w is built using the symbol 1, and
(b) the length of w is a multiple of 3. Define a Turing machine M that
decides L, i.e. define a tuple M = (K ,Σ, δ, s) such that, for all w ∈ {1}∗,
we have:

if w ∈ L, then M(w) = ”yes”;

if w 6∈ L, then M(w) = ”no”.

Additionally, provide a high-level description of M.
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Solution to Exercise 10

M = (K ,Σ, δ, s0) with K = {s0, s1, s2}, Σ = {1,t, .} and a transition
function δ defined as follows:

p ∈ K σ ∈ Σ δ(p, σ)

s0 . (s0, .,→)
s0 1 (s1, 1,→)
s0 t (“yes”,t,−)
s1 1 (s2, 1,→)
s1 t (“no”,t,−)
s2 1 (s0, 1,→)
s2 t (“no”,t,−)

(note: δ(s1, .) and δ(s2, .) can be arbitrary)
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Solution to Exercise 10 (continued)

High-level description of M: The machine reads the input from left to
right. Whenever it reads the symbol 1, it switches the state from s0 to
s1, from s1 to s2, or from s2 to s0. It rejects the input if it reads t not
being in the state s0.
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