Formale Methoden der Informatik

Formale Methoden der Informatik
Block 1: Foundations of Complexity Theory

6. Turing Machines

Reinhard Pichler

Institut fur Informationssysteme
Arbeitsbereich DBAI
Technische Universitat Wien

21 October, 2013

Pichler 21 October, 2013

Qutline

6. Turing Machines

6.1 Basic Definitions

6.2 Turing Machines as Algorithms
6.3 Church-Turing Thesis revisited
6.4 Nondeterministic Machines

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Basic Definitions
Motivation

m Turing machines are used as a formal model of algorithms.
m Recall that SIMPLE programs were not defined completely.

m The notion of Turing machines is better suited for a formal
definition of complexity classes and for formal proofs of properties
(e.g. that any problem in NP can be reduced to SAT).

Definition

A Turing machine is a quadruple M = (K, ¥, 4, s) with a finite set of
states K, a finite set of symbols ¥ (alphabet of M) so that L,> € ¥, a
transition function ¢:

KxX— (KU{h, “yes", “no" }) x ¥ x {—,+,—},

a halting state h, an accepting state “yes’, a rejecting state “no’,
and cursor directions: — (right), < (left), and — (stay).

Pichler 21 October, 2013

Formale Methoden der Informatik

6. Turing Machines

Example 1: Recognizing palindromes

Example

Consider a Turing machine M for recognizing palindromes:
M= (K,%,d,s) with K=1{s,q,90,91,9,q9;}, £ =10,1,U,>} and a
transition function ¢ defined as follows:

peK oeXx | dp,o) peK oeXx | dp,o)

S > (S,D, —>) q6 0 (q7|—|7%)

S 0 (Qo,l>, %) q(/) 1 (“nona 1, _)
s 1 (q1,>, —) qs > (“yes”, >, —)
s L) (“yes”, LI, —) 91 1 (q,L, <)

q0 0 (90,0, —) a0 0 (“no”,0,-)
do 1 (q07 17 %) qi > (“yeS” y Py _)
do L (Qé,u,%) q 0 (q707<_)

a1 0 (g1,0,—) q 1 (g,1,«)

a1 1 (g1,1,—) q > (s,>, —)

a1 u (qiv L, %)

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Example 1 (continued)

Example

Consider the computation of M on the input string 1001:

>11/0|0 |1 |||

s
(s,>,1001)

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Example 1 (continued)

Example

Consider the computation of M on the input string 1001:

>11/0|0 |1 |ujuju|d
s

(s,>,1001) (s,>1,001)

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Example 1 (continued)

Example

Consider the computation of M on the input string 1001:

>(>(0|0|1 UL ju|u
a1

(s,>,1001) (s,>1,001) (g1,>>0,01)

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Example 1 (continued)

Example

Consider the computation of M on the input string 1001:

>(> (0|01 |U LU |U
a1

(s,>,1001) (s,»1,001) (g1,>>0,01) (qg1,>00,1)

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Example 1 (continued)

Example

Consider the computation of M on the input string 1001:

>

>

0

0

1

L

L

L

L

(s,>,1001) (s,>1,001) (gi,>50,01)

a1

(q17 > D 007 1)

Pichler 21 October, 2013

(q1,>>001,¢€)

Formale Methoden der Informatik 6. Turing Machines

Example 1 (continued)

Example

Consider the computation of M on the input string 1001:

>(> 0|01 jUjUu LU
a1

(s,>,1001) (s,»1,001) (g1,>>0,01) (g1,>>00,1) (g1,>>001,¢€)
(q1,>> 0010, €)

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Example 1 (continued)

Example

Consider the computation of M on the input string 1001:

>/>10|0(1jujUuju|y

/

d1

(s,>,1001) (s,>1,001) (g1,>>0,01) (g1,>>00,1) (g1,>>001,¢€)
(g1, 001,¢) (qy,>>001,L)

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Example 1 (continued)

Example

Consider the computation of M on the input string 1001:

>i>10]0 U U UL U
q

(s,>,1001) (s,»1,001) (g1,>>0,01) (g1,>>00,1) (g1,>>001,¢€)
(g1,>>001,¢) (g7,>>001,10) (gq,>>00,0UU)

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Example 1 (continued)

Example

Consider the computation of M on the input string 1001:

>I>10]0|UjUjUU U
q

(s,>,1001) (s,»1,001) (g1,>>0,01) (g1,>>00,1) (g1,>>001,¢€)
(g1,>>001L0¢) (qg7,>>001,10) (g,>>00,UL) (q,>>0,00UU)

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Example 1 (continued)

Example

Consider the computation of M on the input string 1001:

>I>(O0|0| Uyl ju
q

(s,>,1001) (s,»1,001) (g1,>>0,01) (g1,>>00,1) (g1,>>001,¢€)
(gq1,>>001L,¢) (g7,>>001,1) (g,>>00,01)) (q,0>0,00 L)
(g,>>,00 L L)

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Example 1 (continued)

Example

Consider the computation of M on the input string 1001:

>1>10]0|UjUjUU U
S

(s,>,1001) (s,»1,001) (g1,>>0,01) (g1,>>00,1) (g1,>>001,¢€)
(g1,>>001L¢) (g7,>>001,1) (q,>>00,0U) (q,>>0,0UL)
(g,>>,000L) (s,>>0,0U L)

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Example 1 (continued)

Example

Consider the computation of M on the input string 1001:

>0 |U U UL
qo
(s,>,1001) (s,»1,001) (g1,>>0,01) (g1,>>00,1) (g1,>>001,¢€)

(gq1,>>001L,¢) (g7,>>001,1) (g,>>00,01)) (q,0>0,00 L)
(g,>>,000LL) (s,>>0,0UL) (go,>>0,UL)

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Example 1 (continued)

Example

Consider the computation of M on the input string 1001:

>0 U UL
do
(s,>,1001) (s,»1,001) (g1,>>0,01) (g1,>>00,1) (g1,>>001,¢€)

(gq1,>>001L,¢) (g7,>>001,1) (g,>>00,01)) (q,0>0,00 L)
(g,>>,00U L) (s,0>0,0UL) (go,>>p0,UU) (go,>>>0U,U)

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Example 1 (continued)

Example

Consider the computation of M on the input string 1001:

>|> (>0 u U]

/

do

(s,>,1001) (s,»1,001) (g1,>>0,01) (g1,>>00,1) (g1,>>001,¢€)
(g1,>>001,¢) (g7,>>001,10) (g,>>00,0L) (g,>>0,00ULL)
(g,>>,0000L) (s,>0,0UL) (qo,>>p0,0UL) (qgo,>r>>0U, L)
(g, >>>0,UL)

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Example 1 (continued)

Example

Consider the computation of M on the input string 1001:

> >y u U
q

(s,>,1001) (s,»1,001) (g1,>>0,01) (g1,>>00,1) (g1,>>001,¢€)
(g1,>>001L¢) (qg7,>>001,10) (g,>>00,0L) (g,>>0,00UL L)
(g,>>,0000L) (s,>0,0UL) (qo,>>p0,0L) (qgo,>r>>0U,U)
(g5, >>0,UU) (g,>>>,ULLU)

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Example 1 (continued)

Example

Consider the computation of M on the input string 1001:

> >y
S

(s,>,1001) (s,»1,001) (g1,>>0,01) (g1,>>00,1) (g1,>>001,¢€)
(gq1,>>001,¢) (q7,>>001,1) (g,>>00,01) (q,>>0,00L)
(g,>>,0000L) (s,>0,0UL) (qo,>>p0,0L) (go,>r>>0U,U)
(gi,>>>0,UL) (g,oe>,UUU) (s,>>pU, UL

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Example 1 (continued)

Example

Consider the computation of M on the input string 1001:

> >y iy

] lyesl !

(s,>,1001) (s,»1,001) (g1,>>0,01) (g1,>>00,1) (g1,>>001,¢€)
(g1,>>001L,¢) (q7,>>001,10) (gq,>>00,0L) (g,>>0,00UL L)
(g,>>,000L) (s,>>0,0UL) (qo,>>p0,0L) (qgo,>r>>0U,U)
(g, >>0,UU) (g,o>>,UUU) (s,popU,UL) (Myes”, > U, UL

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

High-level description of M

in state s: Move the cursor to the first symbol to the right of > and
store this symbol in the next state, i.e., enter state g; (with

i € {0,1}) when / was read. If no more such symbol exists (i.e., we
read U in state s), then halt with “yes” (i.e., € is a palindrome).

in state g; (with / € {0,1}): move to the right until the first LI is
reached (the tape contents is left unchanged). When LI is finally
read, enter state g. and move back to the last non-blank symbol.

in state g/: check if the current symbol is i: If this is the case, then
we “erase” i and enter state g. If in state g we read 1 (or in state
g; we read 0), then halt with “no”. If we read > (i.e., no more
symbol i € {0,1} is left), then halt with “yes".

in state g: The first and last symbol of the string have now been
erased (i.e. overwritten by > and LJ, resp.). State g is used to move
the cursor back to the > preceding the remaining string.

When > is read in state g, then enter s and continue as in step 1.

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Transition function

m Function ¢ is the “program” of the machine.

m For the current state g € K and the current symbol o € X,
- 6(q,0) = (p, p, D) where p is the new state,
— p is the symbol to be overwritten on o, and
— D € {—,«,—} is the direction in which the cursor will move.

m For any states p and q, §(q,>) = (p, p, D) with p => and D =—.
In other words: The delimiter > is never overwritten by another
symbol, and the cursor never moves off the left end of the tape.

m If the machine moves off the right end of the string, it reads L.
In other words: The string becomes longer but it cannot become
shorter; thus it keeps track of the space used by the machine.

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

m The machine starts as follows:
(i) the initial state of M = (K, %, 9, s) is s,
(ii) the tape is initialized to >x where x is a finitely long string in
(X — {U,>})* (x is the input of the machine) and
(iii) the cursor points to .

m The machine halts iff one of the 3 halting states (h, “yes”, “no”) has

been reached.

m If "yes’ has been reached, the machine accepts the input.
If “no” has been reached, the machine rejects the input.

m Output M(x) of a machine M on input x:
(i) If M accepts/rejects, then M(x) = “yes” /"no".
(ii) If h has been reached, then M(x) = y, where >y LI ... is the
string of M at the time of halting (y = string between > and first U).
(iii) If M never halts on input x, then M(x) =~
(In this case, we say that M “diverges"”.)

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Operational Semantics

m A configuration (q, w, u):
g € K is the current state and w, u € 2.* where

(i) w is the string to the left of the cursor including the symbol
scanned by the cursor and

(ii) u is the string to the right of the cursor.

= The relation 4 (yields in one step): (g, w, u) M (¢, w', u)
Let o be the last symbol of w and 6(q,0) = (p, p, D).
Then g’ = p, and w’, v are obtained according to (p, p, D).

m Example. If D =—, then

(i) w' is w with its last symbol replaced by p and the first symbol of
u appended to it (L if v is empty) and
(ii) u’ is u with the first symbol removed (or empty, if u is empty).

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Configurations reached in several steps

m Yields in k steps: (q, w, u) ﬂk (q',w', u")
iff there are configurations (q;, w;, u;),i = 1,...,k + 1 such that
e (q,w,u) =(q1,wr,),
® (q,-, Wi, U,') M) (q,-+1, Wi+1, u,-+1), | = 1, c ooy k, and
o (¢, w',u') = (qr+1, Wk, Ukt1)
m Yields: (q,w, u) M (g’ ,w',u")

k
iff there is some k > 0 such that (g, w, v) M (q',w', u').

*

M* . . . M
m [herefore, — is the transitive and reflexive closure of —.

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Turing Machines as Algorithms
Definition

mlet L C (X —{>,U})* be alanguage.
A Turing machine M decides L iff for every string x € (X — {>, LI})*,
the following conditions hold:

o if xe L, M(x)= "yes" and
o if x¢ L, M(x) = "no"

m If L is decided by a Turing machine, then L is a recursive language.

Definition

m A Turing machine M accepts L iff for every string x € (¥ — {>, U})*,

o if x € L, then M(x) = "yes"
o if x & L, then either M(x) = “no” or M(x) =" .

m If L is accepted by some Turing machine, then L is a recursively
enumerable language (r.e., for short).

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Solving problems using Turing machines

m The instances of a problem need to be represented by strings.

m Observation. Any “finite” mathematical object can be represented
by a finite string over an appropriate alphabet.

m Solving a decision problem amounts to deciding the language
consisting of the encodings of the “yes" instances of the problem.

m Therefore, we may identify decision problems with languages:
Decidable (resp. semi-decidable) problems correspond to recursive
(resp. recursively enumerable) languages.

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

How does representation affect solvability?

Representation of a graph

Graph: Various string representations:

V1 > V2

List of edges:
“{(1,10), (1,11), (10, 100) }"

adjacency matrix (as list of rows):
“(0110, 0001, 0000, 0000)"

V3 V4

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

How does representation affect solvability?

m All “reasonable” encodings are related polynomially:
If A and B are both “reasonable” representations of the same set of
instances, and representation A of an instance is a string with n
symbols, then the representation B of the same instance has length
at most p(n) for some polynomial p.

m Exception. Unary representation of numbers requires exponentially
more symbols than the binary representation.

m A reasonably succinct input representation is assumed.
In particular, numbers are always represented in binary.

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Time Bounds

Definition

m The time required by M on input x is t iff

t
(5,5, x) 2 (H, w1,)

with H € {h, “yes”, “no” }.
m If M(x) =7, then the time required is thought to be cc.

Definition
Machine M operates in time f(n) if, for any input string x,
the time required by M on x is at most f(|x]).

Pichler 21 October, 2013

Formally Defining P and EXPTIME

Defining the class P (i.e. problems solvable in polynomial time)

P = {L| L is decided by some TM operating in time O(n*) where k is a constant}

Defining the class EXPTIME (i.e. problems solvable in exponential time)
EXPTIME ={L| L is decided by some TM operating in time O(2”k) where k is a constant}

Pichler 21 October, 2013

Space Bounds

Definition
The space required by M on input x is Z, if

*

M
(s,>,x) — (q',w',u)
implies |w’u’| < £. In other words, M uses at most ¢ tape cells.
Definition

Machine M operates in space f(n) if, for any input string x,
the space required by M on x is at most f(|x|).

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Special Treatment of Input and Output

Motivation

m With the above definition of space complexity, we treat
input/output in the same way as the actual workspace.

m This does not allow us to detect sublinear space or to recognize that
some exponentially big output is produced by a program with
polynomial workspace (e.g., a winning strategy in Tic-Tac-Toe).

Dedicated input/output tape

m To detect sublinear space, we assume that the input to M is written
onto a separate read-only input tape.

m For a function problem, we may also assume that the output is
written to a write-only output tape.

m We assume that input/output tape do not contribute to space usage.

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Defining Space Complexity Classes

Defining the class L (i.e. problems solvable in logarithmic space)

L ={L| L is decided by some TM operating in space O(log n)}

Defining the class PSPACE (i.e. problems solvable in polynomial space)
PSPACE = {L | L is decided by some TM operating in space O(n*) where k is a constant}

Defining the class EXPSPACE (i.e. problems solvable in polynomial space)
EXPSPACE = {L | L is decided by some TM operating in space O(2”k) where k is a constant}

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Church-Turing Thesis revisited

Church-Turing Thesis

Any “reasonable” attempt to model mathematically computer algorithms
ends up with a model of computation that is equivalent to Turing
machines.

Evidence for this thesis

All of the following models can be shown to have precisely the same
expressive power as Turing machines:

m our programming language SIMPLE
m random access machines
m u-recursive functions

m any conventional programming language (Java, C, ...)

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Strengthening of the Church-Turing Thesis

Any “reasonable” attempt to model mathematically computer algorithms
and their time/space performance ends up with a model of computation
and associated time/space cost that is equivalent to Turing machines
within a polynomial.”

Evidence for this thesis

m Variations of the definition of Turing machines (e.g., 2-side-infinite
tape, k-string TMs, etc.) lead to the same complexity classes.

m It can be shown that Turing machines can simulate random access
machines with only a polynomial loss of efficiency and vice versa.

(For a formal proof see Papadimitriou, Theorems 2.4 + 2.5)

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Nondeterministic Machines

Motivation

m Nondeterministic machines are an unrealistic model of computation.

m Nevertheless, they have proved to be very useful in complexity
analyses.

m Intuition: ldentify complexity due to size of the search space

m Nondeterministic TMs can be simulated by deterministic TMs with
an exponential loss of efficiency.

m An open question: is a polynomial simulation possible?
(i.,e. P =NP?)

Pichler 21 October, 2013

6. Turing Machines

Formale Methoden der Informatik

Transition relation

Definition
A nondeterministic Turing machine (NTM) is a quadruple
N = (K,%,A,s) like the ordinary Turing machine except that A is a

transition relation (rather than a transition function):

AC(KxX)x[(KU{h,"yes", “no"}) x ¥ x {—,+,—}]

Definition
Configurations are defined as before, but “yields" is a relation (rather

than a function) for an NTM N: (q, w, u) N (q’, w', u") iff there is a
tuple in A that makes this a legal transition.

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

N TMs deciding languages

Pichler

Definition
A nondeterministic Turing machine N decides a language L iff for any
x € L*, the following holds:

*

x € Liff (s,>, x) N (“yes”, w, u) for some strings w and wu.

Remarks

(i) An input is accepted if there is some sequence of nondeterministic
choices that results in the accepting state “yes".

(ii) The input is rejected only if no sequence of nondeterministic choices
can lead to acceptance.

(iii) Note the asymmetry between accepting and rejecting!

21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Nondeterministic Computation (Example)

e
VANNVANERVAN

Pichler 21 October, 2013

Time Complexity

Definition

A nondeterministic Turing machine N decides a language L in time f(n)
iff N decides L and)

for any x € £*, if (5,5, x) 5 (g, w, u), then k < f(|x|).

— All possible computation paths must have length at most f(|x|).

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

NTMs vs. DTMs

Theorem (A)

Suppose that a language L is decided by an NTM N in time f(n).
Then it is also decided by a deterministic TM M in time O(cf("),
where ¢ > 1 is a constant depending on N.

Theorem (B)

Suppose that a language L is decided by an NTM N in time f(n).
Then it is also decided by a deterministic TM M in space O((f(n))?),
where d > 1 is a constant depending on N.

Proof idea. The proof is by simulating (interpreting) N using a
deterministic TM M. For this, on input x, the machine M traverses all
the possible computation paths of N on x, looking for an accepting path.
This causes an exponential blow-up in time (hence O(cf()), but can be
done in space that is polynomial (hence O((f(n))?)).

We have applied this argument in more detail to prove NP C PSPACE!

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Nondeterministic Guesses

Observation

The proof idea of the previous theorem reveals another intuition of
nondeterminism, namely guess and check:

m We can think of a nondeterministic computation as guessing an
appropriate sequence (¢, ¢, ..., ¢;) of transitions and checking
that, with these choices, the computation is indeed successful.

m Guesses are not confined to sequences of transitions. An NTM can
guess any (intermediate) result which might be computed by such a
sequence of transitions, and check that the guess was correct.

m Example. NP-algorithm for TSP(D): Guess a permutation of the
cities and check that the cost of the tour fits within the budget.

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Defining Nondeterministic Time Complexity Classes

Defining NP via NTMs
NP = {L| L is decided by some NTM in time O(n*) where k is a constant}

The class NEXPTIME
NEXPTIME ={L| L is decided by some NTM in time O(Q”k) where k is a constant}

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Adequacy of the Second Definition of NP

The above definition and the definition of NP in terms of polynomially
balanced and polynomially decidable relation are equivalent!

From Certificates to NTMs

For a problem P that has a polynomially balanced and polynomially
decidable relation R, we can devise an NTM N that decides P (i.e. P
viewed as a language) in polynomial time:

On instance x, N uses nondeterminism to write a candidate certificate C
on the tape and then checks in polynomial time whether (x, C) € R.

From NTMs to Certificates

Any language L that can be decided by an NTM N in polynomial time
can also be characterized in terms of a polynomially balanced and
polynomially decidable certificate relation R for L:

Define R by assigning to all positive instances of L (i.e., the words
x € L), the polynomially long accepting computations of M on x.

Pichler 21 October, 2013

Space Complexity

Definition

Given an NTM N we say that NV decides language L within space f(n) iff
N decides L and for any x € (X —{U})*,

|f(5>x>)—> (g, w',u),
then |w/u’| < f(|x]).

Intuition. All possible computations require at most f(|x|) space.

Sublinear space

For sublinear function (e.g. f(n) = log n), we make the same assumption
of a separate read-only tape, which does not contribute to space usage.

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Defining Nondeterministic Space Complexity Classes

The class NL (nondeterministic logarithmic space)

NL = {L | L is decided by some NTM within space O(log n)}

The class NPSPACE
NPSPACE = {L | L is decided by some NTM within space O(n*) where k is a constant}

The class NEXPSPACE
NEXPSPACE = {L | L is decided by some NTM within space O(Q”k) where k is a constant}

NPSPACE = PSPACE, NEXPSPACE = EXPSPACE (surprising!)

Whether NL = L is unknown.

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Relations Between Considered Classes

Theorem
L C NLC P C NP C PSPACE C EXPTIME C NEXPTIME C EXPSPACE

Proof

m Any TM is also an NTM.
= L C NL, P C NP, and EXPTIME C NEXPTIME

m Recall Theorems (A) and (B).
= NP C PSPACE and NEXPTIME C EXPSPACE.

Remark. It is unknown if any of the inclusions is proper. However, it can
be shown that in case of an exponential gap, the inclusion is indeed
proper, i.e., L C PSPACE, P C EXPTIME, etc.

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

co-Problems

Definition
Any complexity class C has its complementary class denoted by co-C and
defined as follows.
m For every language L in 27, let L denote its complement i.e.
[L=%*\ L.
m Then co-C is defined as co-C = {L | L € C}.

Remark

m Examples. co-NL, co-NP, co-NEXPTIME, etc.

m Deterministic complexity classes C coincide with their co-class co-C,
e.g.. P =co-P.

m In contrast, nondeterministic complexity classes C may be different
from their co-class co-C, e.g.: It is unknown whether NP = co-NP or
NP # co-NP (the latter is considered more likely).

Pichler 21 October, 2013

Formale Methoden der Informatik 6. Turing Machines

Learning Objectives

Definition of Turing machines.
Turing machines as a reasonable model of computation.

Formal definition of “deterministic’ complexity classes P,
EXPTIME, L, PSPACE, EXPSPACE.

Solving problems with Turing machines.
(Decision problems can be considered as languages!)

(Strengthening of) the Church-Turing Thesis

Nondeterministic Turing machines. Differences between
deterministic and nondeterministic TMs

Nondeterminism as “guess and check” algorithms
Definitions of NL, NP, NEXPTIME via nondeterministic T Ms.

The definition of complementary problems.

Pichler 21 October, 2013

	Turing Machines
	Basic Definitions
	Turing Machines as Algorithms
	Church-Turing Thesis revisited
	Nondeterministic Machines

