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Basic Ideas

Example

Recall the algorithm for solving the TSP problem (i.e., what is the length
of the shortest tour through n cities?) based on a simple binary search
which successively solves instances of the TSP(D) problem (i.e., does
there exist a tour of length at most B for various values of B?).

Observation

The task of solving the TSP problem is thus reduced to the task of
solving the TSP(D) problem.

Remark. Problem reductions are a key technique in complexity theory.
However, they play an important role in any field where problems have to
be solved, i.e. the importance of problem reductions is by no means
restricted to (theoretical) computer science.
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First Idea of Reductions

Idea (not restricted to theoretical computer science)

Suppose that we want to solve some new problem A (i.e., we want
to construct an algorithm for the problem A).

Further, suppose that we know how to solve some related problem B
(i.e., we already have a suitable algorithm for the problem B).

Idea. Try to solve A by transforming problem A into problem B
(i.e., the algorithm for problem A may make use of the algorithm for
problem B).

If this problem solving strategy works, we say that problem A is reduced
to problem B. =⇒ Problem A is not harder than problem B.
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Second Idea of Reductions

Idea (typical for complexity theory)

Suppose that we know that some problem A is hard to solve (i.e., it
has already been proved that there exists no efficient algorithm or no
algorithm at all for problem A).

Further, suppose that we want to prove that some new problem B is
also hard (i.e., we suspect that there exists no efficient algorithm or
no algorithm at all for problem B).

Idea. Construct an algorithm for problem A which makes use of the
algorithm for problem B).

Conclusion. If such a problem reduction from A to B exists, then
problem B must be at least as hard as problem A. =⇒ This problem
reduction proves the same hardness result for B as for A.

Pichler 14 October, 2013 Page 5



Formale Methoden der Informatik 3. Reductions and Completeness 3.1. Basic Ideas

Reductions and Limiting Resources

Motivation

The problem reduction from A to B should be easier than the
problems involved.

Otherwise the complexity of problem A is “hidden” in the reduction
and a comparison of the complexity of A and B is impossible.

Conclusion. If problem A can be reduced to problem B then problem
A is at most as hard as problem B (or, equivalently, B is at least as
hard as A), provided that the problem reduction is sufficiently easy.

Typical requirement in complexity theory

Reductions must be feasible in polynomial time or in logarithmic space.
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Turing Reductions

Idea

The algorithm for problem A uses the algorithm for problem B as a
subroutine.

The algorithm for problem A thus consists of a (polynomial-time or
log-space bounded) control program which may call the subroutine
for solving instances of problem B arbitrarily often.

Example. We have already seen in this lecture how to solve the TSP
problem via binary search and successively calling a subroutine which
solves an instance of the TSP(D) problem.

Polynomial-time Turing reductions are called Cook reductions.
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Many-one Reductions

Idea

Define a function R from instances of problem A to instances of B,
i.e.: each instance x of A is mapped to an instance R(x) of B.

Solve instance R(x) with the algorithm for problem B. The answer
of algorithm B on the instance R(x) is already the correct answer to
the instance x of A. We say that x and R(x) are equivalent, e.g.
(for decision problems) x is a positive instance of A ⇔ R(x) is a
positive instance of B.

Remark. Many-one reductions are a special case of Turing
reductions, where the subroutine for problem B may be called exactly
once and where the computation ends immediately after this call.

Polynomial-time many-one reductions are called Karp reductions.
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Some Decision Problems

SAT

INSTANCE: Boolean formula ϕ.

QUESTION: Is ϕ satisfiable?

3-SAT

INSTANCE: Boolean formula ϕ in 3-CNF (i.e., CNF where each clause
consists of exactly 3 literals).

QUESTION: Is ϕ satisfiable?
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Some Decision Problems

2-SAT

INSTANCE: Boolean formula ϕ in 2-CNF (i.e., CNF where each clause
consists of exactly 2 literals).

QUESTION: Is ϕ satisfiable?

INDEPENDENT SET

INSTANCE: Undirected graph G = (V ,E ) and integer K .

QUESTION: Does there exist an independent set I of size ≥ K?
i.e., I ⊆ V , s.t. for all i , j ∈ I the condition [i , j ] 6∈ E holds?
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Example: Turing Reduction

Proposition

There exists a polynomial-time Turing reduction from the 2-SAT
problem to the REACHABILITY problem.

Remark

We have already seen in this lecture that the REACHABILITY problem
is tractable (i.e., it can be solved in polynomial time).

Conclusion

The 2-SAT problem is tractable.
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Problem Reduction 2-SAT → REACHABILITY

Proof sketch

Let ϕ be an arbitrary instance of 2-SAT.
Define a graph G (ϕ) as follows:

The variables of ϕ and their negations form the vertices of G (ϕ).

There is an arc (α, β) iff there is a clause α ∨ β or β ∨ α in ϕ,
i.e., if (α, β) is an arc, so is (β, α) where α is the complement of α.

Intended meaning of the arcs (α, β): If α is true in some satisfying
assignment I of ϕ, then β must also be true in I .

It can be shown that ϕ is unsatisfiable iff there is a variable x such that
there are paths from x to ¬x and from ¬x to x in G (ϕ).
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Example

ψ = (x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ x2) ∧ (x2 ∨ x3)

x1

¬x1

x2

¬x2

x3

¬x3
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Example

ψ = (x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ x2) ∧ (x2 ∨ x3)

¬x2 ⇒ x3
¬x3 ⇒ x2

x1

¬x1

x2

¬x2

x3

¬x3
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Proof sketch (continued)

We thus get the following algorithm for 2-SAT:

1 Construct the graph G (ϕ) as described above;

2 For all variables x of ϕ check if ¬x is reachable from x in the graph
G (ϕ) and x is reachable from ¬x ;

3 If, by the REACHABILTY tests in step 2, a variable x has been
found s.t. both ¬x is reachable from x and x is reachable from ¬x ,
then the 2-SAT-algorithm returns “no”. Otherwise, it returns “yes”.
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Example (continued)

ψ = (x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ x2) ∧ (x2 ∨ x3)

x2 reaches no other node

x1 reaches only x2

¬x3 reaches only x2

⇒ ψ is satisfiable.

x1

¬x1

x2

¬x2

x3

¬x3
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Example: Many-one Reduction

Proposition

There exists a polynomial-time many-one reduction from the 3-SAT
problem to the INDEPENDENT SET problem.

Remark

The SAT problem is the classical NP-complete problem. It remains
NP-complete even if we restrict the Boolean formulae to 3-CNF.
(A detailed proof of the NP-completeness of SAT and of 3-SAT will be
given in the Komplexitätstheorie lecture in the summer term).

Conclusion

The INDEPENDENT SET problem is intractable.
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Problem Reduction 3-SAT → INDEPENDENT SET

Proof

Let an arbitrary instance of 3-SAT be given by the Boolean formula ϕ
with m clauses, each consisting of exactly three literals.
Then we construct the following instance of INDEPENDENT SET:

The graph G contains a vertex for every literal in ϕ:
V = {l11, l12, l13, . . . , lm1, lm2, lm3}, i.e. |V | = 3m.

The vertices corresponding to the literals of a clause are all connected by
an edge: E ⊇ {[li1, li2], [li1, li3], [li2, li3]} for all i , i.e.
G contains a triangle for every clause.

Moreover, for any pair of literals liα, ljβ , if liα and ljβ are complementary
literals, then E contains an edge [liα, ljβ].

Finally, we set K = m.
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Example

The 3-CNF formula
ϕ = (x1 ∨ x2 ∨ x3)∧ (¬x1 ∨¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨¬x3) is reduced to the
following graph:

x2 x3

x1

¬x2 x3

¬x1

x2 ¬x3

¬x1
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Example

The 3-CNF formula
ϕ = (x1 ∨ x2 ∨ x3)∧ (¬x1 ∨¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨¬x3) is reduced to the
following graph:

x2 x3

x1

¬x2 x3

¬x1

x2 ¬x3

¬x1

The independent set I = {l11, l22, l33} corresponds to the satisfying truth
assignment T with T (x1) = T (¬x2) = T (¬x3) = true.
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Correctness of the Problem Reduction

Proof (continued)

To prove the correctness of the reduction, we must show that ϕ is
satisfiable ⇔ the resulting instance (G ,K ) is positive.

Below, we prove the two directions of this equivalence separately.

Proof of the “⇐” direction

“⇐” Suppose that (G ,K ) is a positive instance of INDEPENDENT SET,
i.e. there exists an independent set I with |I | ≥ K = m. We have to
show that ϕ is a positive instance of 3-SAT, i.e., ϕ is satisfiable.

Observe that the vertices in a triangle are all adjacent, and hence I can
contain at most one vertex from each triangle. That is, if `iα, `iβ ∈ I ,
then α = β. Since |I | ≥ K and K = m, I contains precisely one vertex
from each triangle. That is, I = {`1α1 , . . . , `mαm} for some combination
α1, . . . , αm of values from {1, 2, 3}.
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Proof of the “⇐” direction (continued)

We define the truth assignment T to the variables in ϕ as follows:

1 A variable x of ϕ is set to true in T if there exists `iα ∈ I s.t. x is
the positive literal at position α in the ith clause of ϕ.

2 The remaining variables are set to false in T .

We show next that under T all clauses have a literal that evaluates to
true, and thus ϕ is indeed satisfiable.

Consider an arbitrary clause C in ϕ. Suppose it is the ith clause in ϕ.
Take the literal `iαi in C , i.e., `iαi ∈ I . We claim that `iαi is true in T .

Case 1: If `iαi is a positive literal, i.e. some variable y , then `iαi is true
because y is set to true by item (1).

Case 2: Now suppose `iαi is a negative literal of the form ¬y . We have
to verify that y is set to false by T . Suppose this is not the case, i.e. y
is set to true. Then there exists `jβ ∈ I s.t. y is the positive literal at
position β in the jth clause of ϕ. Then `iαi and `jβ correspond to
complementary literals and thus [`iαi , `jβ] ∈ E . This contradicts the
assumption that I is an independent set.
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Correctness of the Problem Reduction

Proof of the “⇒” direction

“⇒” Suppose ϕ is satisfiable. To show that the resulting (G ,K ) is
positive, we have to find an independent set of cardinality at least K .

Since ϕ is satisfiable, there exists a satisfying truth assignment T of ϕ.
Clearly, T makes true at least one literal in each clause of ϕ. Thus we
can define a vertex set I = {`1i1 , . . . , `mim} such that each index in is the
position of a true (in T ) literal in the nth clause of ϕ. (If several literals
in a clause are true in T , choose one arbitarily). It remains to prove that
(i) I is an independent set and (ii) |I | ≥ K .

The point (ii) is trivial: By the construction of I , we have |I | = m, and
according to the definition of the reduction we have K = m.

The point (i) is also true. Suppose it is false, i.e. there is a pair
`iα, `jβ ∈ I with [`iα, `jβ] ∈ E . By the construction of G , there are no
self-loops in G , i.e. no `kl with [`kl , `kl ] ∈ E . Thus we must have i 6= j .
Then by the definition of the reduction, `iα and `jβ must correspond to
complementary literals, of which one must be false according to T .
Contradiction: to construct I we selected only true literals.
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Hardness and Completeness

Remarks

From now on, unless explicitly stated otherwise, we only consider
polynomial-time many-one reductions in this lecture.
We write P ′ ≤ P to denote that problem P ′ can be reduced to P
(by a polynomial-time many-one reduction).

The reducibility relation ≤ orders problems with respect to their
difficulty as it is reflexive and transitive.

Definition

Let C be a complexity class and let P be a problem.

P is called C-hard if any problem P ′ ∈ C is reducible to P.

P is called C-complete if P lies in C and P is C-hard, i.e.:

completeness = membership and hardness
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The Role of Completeness in Complexity Theory

Complete problems are the maximal elements in a class with respect
to the reducibility relation ≤.

Complete problems are a central concept and methodological tool in
complexity theory:

• The complexity of a problem is categorized by showing that it is
complete for a complexity class.

• Conversely, complete problems capture the essence of a class.

Completeness can be used to give negative complexity results:
A complete problem is the least likely among all problems in C to
belong to a weaker class C′ ⊆ C.
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The Role of Completeness in Complexity Theory

Proposition

If an NP-complete problem P is in P, then NP = P.

Proof

We know that P ⊆ NP holds. We show that also NP ⊆ P holds:
Let P ′ be an arbitrary problem in NP.
As P is NP-complete, there is a reduction R of P ′ to P. But then we can
construct a deterministic polynomial-time decision procedure for P ′ as
follows: For any instance x of problem P ′, first compute R(x) and then
decide R(x) with a decision procedure for P. Since P ∈ P, also P ′ ∈ P.
In total, we thus have NP ⊆ P and, therefore, also NP = P. �

Conclusion. It is generally believed that NP 6= P, in which case there can
be no polynomial-time decision procedure for any NP-complete problem!!
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Proving Undecidability

Idea

Recall that the HALTING problem is undecidable.

There exist many more (in fact, uncountably many) undecidable
problems.

In order to prove the undecidability of some new problem P, we
could search for a similarly ingenious proof as the diagonalization.

Better idea. In order to prove the undecidability of problem P,
we show that the HALTING problem can be reduced to P.
Clearly, this establishes the undecidability of P (since, a decision
procedure for P together with the problem reduction from HALTING
to P would immediately yield a a decision procedure for HALTING,
which does not exist as we already know).

The problem reduction need not be bounded in terms of time or
space, but must be computable.
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Example

CORRECTNESS

INSTANCE: A program Π for a function that takes a string and outputs
a string, and a pair of strings I1, I2.
QUESTION: Does Π return I2 when run on input I1?

A formal proof that CORRECTNESS is undecidable

The proof proceeds by a reduction from HALTING to CORRECTNESS.
Let (Π, I ) be an arbitrary instance of the HALTING problem, i.e. Π is a
program that takes one string as input, and I is an input for Π.

From this, we construct an instance (Π′, I1, I2) of CORRECTNESS by
setting I1 = I2 = I , and building Π′ from Π as follows:

String Π′ (String S) {
call Π(S);
return S ; }
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A formal proof that CORRECTNESS is undecidable

It remains to show that the following equivalence holds:

Π halts on I ⇔ Π′ returns I2 on I1.

“⇒” Suppose Π halts on I . Due to the construction of Π′, Π′ also halts
on the input I and returns I as output. Since I1 = I2 = I by the definition
of the reduction, we have that Π′ returns I2 on I1.

“⇐” Suppose Π′ returns I2 on I1. Since I1 = I2 = I , we have that Π′

returns I on I . Since running Π′ on I involves running Π on I , we have
that Π halts on I .
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Discussion

Reductions can also be used to show that a problem is not
semi-decidable.

Take a problem P that is not semi-decidable, e.g., the co-problem of
HALTING.

Suppose there is a reduction from P to a problem P ′.

Then P ′ is not semi-decidable either. Indeed, a semi-decision
procedure for P ′ in combination with the reduction would imply
semi-decidability of P.
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Example

INCORRECTNESS

INSTANCE: A program Π for a function that takes a string and outputs
a string, and a pair of strings I1, I2.
QUESTION: Does Π not return I2 when run on input I1?

Proof of non semi-decidability of INCORRECTNESS

Observe that the previous reduction from HALTING to
CORRECTNESS is also a reduction from the complement of
HALTING (i.e. co-HALTING) to INCORRECTNESS.

Indeed the equivalence “Π halts on I ⇔ Π′ returns I2 on I1”, which we
have proved already, implies the equivalence “Π does not halt on I ⇔ Π′

does not return I2 on I1”

Since co-HALTING is not semi-decidable, we have that
INCORRECTNESS is not semi-decidable.
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Learning Objectives

Two motivations for reducing one problem (or language) to another.

Two kinds of reductions (Turing, many-one).

Limiting the resources used by reductions.

Cook / Karp reductions.

Proving the correctness of problem reductions.

The definitions of C-hard and C-complete problems for a complexity
class C.

Understanding the role of complete problems in complexity theory.

Proving undecidability by reduction from the HALTING problem.

Proving non-semi-decidability by reduction from the co-HALTING
problem.
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