Formal Methods in Computer Science
Block 2: Satisfiability problems
From Uninterpreted Functions to Equality Logic
WS 2013

Ackermann’s Reduction

(on page 67 in D.Kroening, O. Strichman. Decision Procedures, Springer, 2008)

Algorithm: ACKERMANN’S-REDUCTION

Input: An EUF-formula ¢”YF with k uninterpreted functions FO .. F® of arity > 0. For
each F (1 <1< k), my instances occur in @ZUF .

EUF

Output: An equality logic formula ¥ such that o is valid if and only if ¢ is valid.

1. Assign indices to the uninterpreted function instances from subexpressions outwards (sepa-
rately for each function symbol). Denote by Fi(l) the instance F'() that is given the index i.
Denote by arg(Fi(l)) the argument(s) of Fi(l).

2. Let flatf (oPUF) := T(pPUF), where T is a function that takes an EUF-formula (or term)
as input and transforms it to an equality formula (or term respectively) by replacing each

uninterpreted function instance Fi(l) with a new term variable fl-(l). In the case of nested
functions, only the variable corresponding to the most external instance remains. Constants
and variables remain unchanged under 7.

3. Let FC% m(EUFY) denote the following conjunction of functional consistency constraints for
a function symbol F®:

m;—1 my
FCEo (™) = N N\ (Tlarg(BD) = T(arg(F")) — 17 = 11,
=1 j=i+1

If the arity of F() is > 1, then read (s1,...,5,) = (t1,...,tn) as Np=1(8p = 1p).
4. Let FCF(oPUF) be /\f:1 ch(l)(goEUF). Moreover, let
sOE — FCE(EUF) ﬂatE(EUF)'

Return ¢¥.

Bryant’s Reduction

(on page 70 in D.Kroening, O. Strichman. Decision Procedures, Springer, 2008)

Algorithm: BRYANT’'S-REDUCTION

Input: An EUF-formula ¢®YF with m instances of an uninterpreted function F.

Output: An equality logic formula ¥ such that ¢ is valid if and only if @®UF is valid.

1. Assign indices to the uninterpreted function instances from subexpressions outwards. Denote
by F; the instance F' that is given the index i, and by arg(F;) its argument(s).

2. Let flat® (pPUF) .= T*(oPUF), where T* is a function that takes an EUF-formula (or term)
as input and transforms it to an equality formula (or term respectively) by replacing each
uninterpreted function instance F; with a new term variable F* (in the case of nested functi-
ons, only the variable corresponding to the most external instance remains). Constants and
variables remain unchanged under 7*.

3. Fori € {1,...,m}, let f; be a new variable. Let

case T*(arg(Fy)) = T*(arg(F;)) 1
Fr= : . : :
T*(arg(Fi-1)) = T*(arg(Fy)) : fin
TRUE : fi
be a case statement (as defined in the lecture slides) and let
i j—1
C(Fr) =\ (Ff = f; A T*(arg(Fy)) = T*(arg(F)) A\ T*(arg(Fr)) # T*(arg(F,)))
j=1 k=1
be the associated formula.
Finally, let
FCP("UF) = \ C(F})
=1
4. Let
o = FCP(PUT) — flat® (P77,
Return ¢”.
Remarks:

e The generalization to more function symbols and to function symbols with arity > 1 works
as in Ackermann’s reduction.

e In the aforementioned book, there are two small errors, which we corrected:

1. In the case statement we replaced the wrong statements of the form arg(F ;‘) by the
correct ones of the form arg(F}).

2. In the definition of F CE(@EUF) we replaced the wrong statement of the form F* by
the correct one of the form C(F}).

