
Formale Methoden der Informatik

Formale Methoden der Informatik
Block 1: Computability and Complexity

Exercises (Examples)

Mantas Šimkus

Institut für Informationssysteme
Arbeitsbereich DBAI

Technische Universität Wien

SS 2013

Šimkus SS 2013 Page 1

Formale Methoden der Informatik 1. Examples 1.1. Exericise 1

Exercise 1

By providing a reduction from the HALTING problem, prove that the
following problem is undecidable:

HELLO-WORLD

INSTANCE: A string I and a program Π that takes one string as
input and outputs a string.
QUESTION: Does the program Π on input I return the string “Hello
world!” as output?

Šimkus SS 2013 Page 2

Formale Methoden der Informatik 1. Examples 1.1. Exericise 1

Solution to Exercise 1

The reduction is defined as follows. Let (Π, I) be an arbitrary instance of
HALTING. We build an instance (Π′, I ′) of HELLO-WORLD by setting
I ′ = I and constructing Π′ as follows:

String Π′ (String S)
Type val = Π(S); /* Type is the type of the output of Π*/
return “Hello world!”;

In other words, for a instance x = (Π, I), the instance R(x) resulting
from the reduction is (Π′, I ′). To prove the correctness of the reduction
we have to show: (Π, I) is a positive instance of HALTING ⇔ (Π′, I ′) is
a positive instance of HELLO-WORLD.

“⇒ Assume (Π, I) is positive, i.e. Π terminates on I . Then by the
construction of (Π′, I ′), we have that Π′ returns “Hello world!” on I ′. It
follows that (Π′, I ′) is a positive instance of HELLO-WORLD.

“⇐ Assume (Π′, I ′) is positive, i.e. Π′ returns “Hello world!” on the input
I ′. Since Π′ involves the call Π(I ′) and since I ′ = I , we have that Π
terminates on I , i.e. that (Π, I) is a positive instance of HALTING.

Šimkus SS 2013 Page 3

Formale Methoden der Informatik 1. Examples 1.1. Exericise 1

Solution to Exercise 1: Why does it work?

Why does the reduction R prove the undecidability of HELLO-WORLD?

Towards a contradiction, suppose HELLO-WORLD is decidable. Then
there is an algorithm Πhw (·) such that Πhw (x) returns true if x is a
positive instance of HELLO-WORLD, and returns false otherwise.

Build a procedure Πh, which takes instances of HALTING, as follows:

Bool Πh(String Π,String I)
return Πhw (R((Π, I)));

It is easy to see that Πh is a decision procedure for HALTING:

Πh(Π, I) returns true if Π terminates on I

Πh(Π, I) returns false if Π does not terminate on I

We arrive at a contradiction: we know from the lecture that HALTING
is undecidable.

Šimkus SS 2013 Page 4

Formale Methoden der Informatik 1. Examples 1.1. Exericise 1

Sanity test

Check that the problem instances that you are using in your solutions are
compatible with the definition of a given problem:

INSTANCE: A pair (Π, I), where Π is a program that takes one
string as input and returns a string, and I is a string.

In a proof:

• (Π, I), (Π′, I ′), (Π, ”hello”) are O.K.
• (Π, I , I ′), (Π, I , k), Π are not O.K.

INSTANCE: A program Π that takes one string as input and returns
a string.

In a proof:
• Π, Π′, Π1, Π2, are O.K.
• (Π, I), (Π′, I ′), (Π, I , I ′), (Π, I , k) are not O.K.

Šimkus SS 2013 Page 5

Formale Methoden der Informatik 1. Examples 1.2. Exericise 2

Exercise 2

Prove that the HELLO-WORLD problem is semi-decidable.

Solution to Exercise 2

Recall that a decision problem P is called semi-decidable if we can build a
program Π such that:

Π takes as input instances I of P;

if I is a “yes” instance, then Π returns true;

if I is a “no” instance, then Π returns false or does not terminate;

To show that HELLO-WORLD is semi-decidable we can provide a
procedure Π′ that fulfills the above conditions:

Π′ that takes as input an instance of HELLO-WORLD, i.e. a
program Π and an input I ,

Π′ simulates the run of Π on I .

If the simulation reaches output “Hello world!”, then Π′ returns true.

If the simulation ends without output “Hello world!”, then Π′ returns
false. (Observe: termination guaranteed on positive instances only).

Šimkus SS 2013 Page 6

Formale Methoden der Informatik 1. Examples 1.2. Exericise 2

Solution to Exercise 2 (continued)

We argue that such an interpreter Π′ is a semi-decision procedure for
HELLO-WORLD. We distinguish the following cases:

Case 1. Suppose that (Π, I) is a positive instance, i.e., Π on the
string I as input returns “Hello world”. Then the simulation in Π′

will encounter the call to print “Hello world” and return true by the
construction of Π′.

Case 2.1. Suppose that (Π, I) is a negative instance and that Π halts
on input I . Then Π halts with output different from “Hello world”.
Hence, the simulation in Π′ will detect that the output is different
from “Hello world”. Thus, Π′ returns false by the construction of Π′.

Case 2.2. Suppose that (Π, I) is a negative instance and that Π does
not halt on input I . Then the simulation of this computation of Π
on I by the interpreter Π′ will not terminate either. Hence, Π′ will
run forever on the negative instance (Π, I), which is a correct
behavior for a semi-decision procedure.

Šimkus SS 2013 Page 7

Formale Methoden der Informatik 1. Examples 1.3. Exericise 3

Exercise 3

Give a formal proof that 3-COLORABILITY is in NP, i.e. define the
required certificate relation and discuss its polynomial balance and
polynomial decidability.

Šimkus SS 2013 Page 8

Formale Methoden der Informatik 1. Examples 1.3. Exericise 3

Solution to Exercise 3

Define the relation

R = {(G , µ) | µ is a 3-coloring for the graph G}.

We argue that R is a certificate relation for 3-COLORABILITY.
Indeed, a graph G is a positive instance of 3-COLORABILITY⇔
there exists a proper 3-coloring µ of G ⇔ (G , µ) ∈ R.

R is polynomially balanced because a color assignment µ can be
represented in space that is linear in the size of G .

R is polynomially decidable. Indeed, given a graph G and an
assignment µ of colors, checking if µ is a k-coloring of G is feasible
in polynomial time in the size of G and µ.

Šimkus SS 2013 Page 9

Formale Methoden der Informatik 1. Examples 1.4. Exercise 4

Exercise 4

Formally prove that VERTEX COVER is NP-hard. For this you may use
the well-known fact that INDEPENDENT SET is NP-complete.

Solution to Exercise 4

We reduce INDEPENDENT SET to VERTEX COVER.

Let (G , k) be an arbitrary instance of INDEPENDENT SET, i.e., G is
an undirected graph and k is an integer. Let G = (V ,E). We construct
the instance (G , |V | − k) of VERTEX COVER. Clearly, this reduction is
feasible in polynomial time.

It remains to prove the correctness. Indeed, by the proposition on page
18 in the lecture “4. NP-Completeness”, we have that (G , k) is a
positive instance of INDEPENDENT SET iff (G , |V | − k) is a positive
instance of VERTEX COVER.

Šimkus SS 2013 Page 10

Formale Methoden der Informatik 1. Examples 1.5. Exericise 5

Exercise 5

We consider a polynomial time reduction from the 3-COLORABILITY
problem for directed graphs to SAT. Let G = (V ,E) be a directed graph
(i.e. an instance of 3-COLORABILITY) with V = {a1, . . . , an}. We
construct a formula ϕG (i.e. an instance of SAT) as follows.
We use propositional variables cmi , where 1 ≤ i ≤ n and m ∈ {0, 1, 2}, to
indicate that the vertex ai of G is colored with color m. Then ϕG is
defined as ϕG = ϕ1 ∧ ϕ2 ∧ ϕ3, where

ϕ1 =
∧

1≤i≤n

(c0
i ∨ c1

i ∨ c2
i),

ϕ2 =
∧

1≤i≤n

(
¬(c0

i ∧ c1
i) ∧ ¬(c0

i ∧ c2
i) ∧ ¬(c1

i ∧ c2
i)
)
,

ϕ3 =
∧

(ai ,aj)∈E

(
¬(c0

i ∧ c0
j) ∧ ¬(c1

i ∧ c1
j) ∧ ¬(c2

i ∧ c2
j)
)
.

Prove the “⇒” direction of the correctness of the reduction, i.e. prove
the following statement: if G is 3-colorable, then ϕG is satisfiable.

Šimkus SS 2013 Page 11

Formale Methoden der Informatik 1. Examples 1.5. Exericise 5

Solution to Exercise 5

To prove “⇒”, assume G = (V ,E) is 3-colorable. Let µ : V → {0, 1, 2}
be an assignment of colors that shows 3-colorability of G .

To show that ϕG is satisfiable, we have to define a truth assinment T
that makes ϕG evaluate to true.

We take the truth assignment T as follows:

T (cmi) =

{
true if µ(ai) = m,

false if µ(ai) 6= m.

To show that ϕG evaluates to true under T , it suffices to make sure that

ϕ1, ϕ2, ϕ3 evaluate to true under T .

µ assigns at least one color to each vertex of G . Then due to the
construction of T , the formula ϕ1 evaluates to true under T .

µ assigns no more than one color to each vertex of G . Then due to
the construction of T , also ϕ2 evaluates to true under T .

We deal with ϕ3 next...

Šimkus SS 2013 Page 12

Formale Methoden der Informatik 1. Examples 1.5. Exericise 5

Solution to Exercise 5

We know µ is a proper 3-coloring of G , i.e. for each (ai , aj) ∈ E , we
have (∗) µ(ai) 6= µ(aj). Towards a contradiction, suppose ϕ3

evaluates to false under T . Then there must exists (ai , aj) ∈ E and
and some m ∈ {0, 1, 2} such that the subformula ¬(cmi ∧ cmj)
evaluates to false under T . Hence, (cmi ∧ cmj) evaluates to true
under T . It follows that T (cmi) = true and T (cmj) = true. Then
due to the construction of T , we have µ(ai) = m and µ(aj) = m.
This contradicts (∗), and thus ϕ3 evaluates to true under T .

Šimkus SS 2013 Page 13

Formale Methoden der Informatik 1. Examples 1.6. Exercise 6

Exercise 6

Consider the following problem:

MOST-FREQUENT

INSTANCE: A list L of letters from {a, . . . , z}, and a letter s from
{a, . . . , z}.
QUESTION: Is s the most frequent element in L?

Argue that MOST-FREQUENT can be solved using only logarithmic
space.

Šimkus SS 2013 Page 14

Formale Methoden der Informatik 1. Examples 1.6. Exercise 6

Solution to Exercise 6

We only need one pointer to an element in the list and two counters.
Both require only logarithmic space. The decision procedure for
MOST-FREQUENT works in two phases:

First, we traverse the input (with the pointer) and count (with the
first counter) the number of occurrences of the letter s. At the end
of this step, the number of occurrences of the letter s is stored in
the first counter.

In a loop over all letters from {a, . . . , z}, we do the following: If the
current letter is s, then we do nothing. For any other letter, we
traverse the input (with the pointer) and count (with the second
counter) the number of occurrences of the current letter. If the
number of occurrences of this letter is greater than the number
stored in the first counter, we halt with “no”. Otherwise, we
proceed to the next letter.

If the above loop ends without encountering a letter that occurs more
often than s, then the procedure halts with “yes”.

Šimkus SS 2013 Page 15

Formale Methoden der Informatik 1. Examples 1.6. Exercise 6

Solution to Exercise 6 (continued)

Remark. Since the alphabet {a, . . . , z} is fixed, the above loop can be
“hard coded” in the program, i.e., 26 copies of the code to be carried out
in the loop. If the alphabet were part of the input, we would simply use a
second pointer to the current letter to be processed in the loop.

Šimkus SS 2013 Page 16

Formale Methoden der Informatik 1. Examples 1.6. Exercise 6

Exercise 7

Let L = {w ∈ {0, 1}∗ | |w | is even}, i.e. L is the set of all strings w such
that (a) w is built using symbols 0 and 1, and (b) w is of even length.
Define a Turing machine M that decides L, i.e. define a tuple
M = (K ,Σ, δ, s) such that, for all w ∈ {0, 1}∗, we have:

if w ∈ L, then M(w) = ”yes”;

if w 6∈ L, then M(w) = ”no”.

Additionally, provide a high-level description of M.

Šimkus SS 2013 Page 17

Formale Methoden der Informatik 1. Examples 1.6. Exercise 6

Solution to Exercise 7

M = (K ,Σ, δ, s) with K = {s, q}, Σ = {0, 1,t, .} and a transition
function δ defined as follows:

p ∈ K σ ∈ Σ δ(p, σ)
s . (s, .,→)
s 0 (q, 0,→)
s 1 (q, 1,→)
s t (“yes”,t,−)
q 0 (s, 0,→)
q 1 (s, 1,→)
q t (“no”,t,−)

Šimkus SS 2013 Page 18

Formale Methoden der Informatik 1. Examples 1.6. Exercise 6

Solution to Exercise 7 (continued)

High-level description of M:

In state s: If the symbol is ., then move the head to the right
without changing the state. If the symbol is 0 or 1, then move the
head to the right and change the state to q. If the symbol is t, then
stop in the state “yes”.

In state q: If the symbol is 0 or 1, then move the head to the right
and change the state to s. If the symbol is t, then stop in the state
“no”.

Šimkus SS 2013 Page 19

	Examples
	Exericise 1
	Exericise 2
	Exericise 3
	Exercise 4
	Exericise 5
	Exercise 6

