
Formale Methoden der Informatik

Block 2: Satisfiability Problems

4. A Decision Procedure for Equality Logic

Uwe Egly

Knowledge-Based Systems Group
Institute of Information Systems
Vienna University of Technology

1 / 59

The overall procedure again

Goal of the SAT part

Provide necessary tools and background info to construct a decision
procedure for equality logic with uninterpreted functions (EUF).

Overall procedure

The problem of deciding a EUF-formula ϕEUF is reduced to the
SAT problem of a propositional formula ϕP such that

ϕEUF is E -valid iff ϕE is E -valid iff ϕP is unsat

Then a model of ϕP provides a counterexample to the E-validity of
ϕEUF !

2 / 59

The task for today

Given a formula ϕE (this can be the negation of some ψE).
We want to construct a propositional formula ϕP such that

ϕE is E -satisfiable iff ϕP is satisfiable

The construction of ϕP from ϕE (reduction) requires run time
polynomial in the size of ϕE .

The reduction uses several kinds of (equality) graphs.

An overview of the translation can be found in:
D. Kroening, O. Strichman. Decision Procedures, Springer, 2008

3 / 59

Outline

Basic Concepts

Simplifying E -formulas

Reduction of E -formulas to Propositional Formulas

4 / 59

Equality logic

We work in a restricted quantifier-free fragment of TE .

Σ consists only of constants, Boolean variables and
.
=.

That is, we have no FSs and other PSs of arity > 0.

5 / 59

Why equality logic?

Technically not necessary
(E -logic has the same expressive power as propositional logic)

It can be shown that the satisfiability problem for equality
logic is NP-complete.

But often allow for more natural problem descriptions
especially if E -logic is extended by uninterpreted functions.

☞ Examples and applications will be discussed in the next
lecture.

6 / 59

The syntax of equality logic

Definition (The syntax of equality logic (E -logic))

formula ::= atom | (formula) |¬formula | formula ∧ formula |

formula ∨ formula | formula→ formula

atom ::= term
.
= term |Boolean variable

term ::= identifier | constant

Remarks

1. The set of Boolean vars and the set of term vars are disjoint!

2.
.
= is always interpreted as equality!

3. The connectives ↔ and ⊕ are not part of the language.

4. An E -formula is a formula of E -logic.

7 / 59

Example

Consider formula ϕ : x1
.
= x2 ∧

(

x2
.
= x3 ∨ (¬(x1

.
= x3) ∧ x1

.
= 2)
)

Let Σ = ({1/0, 2/0, 3/0}, {
.
=/2})

Let U = N, interpret any constant by itself and assign natural
numbers to variables as follows:

{x1 7→ 2, x2 7→ 2, x3 7→ 9}

Then ϕ is true in this structure.

8 / 59

Removal of constants from E -formulas

Definition (Removal of constants from an E -formula)

Let ϕE be any E -formula with constants c1, . . . , cn. Construct an
E -formula ψE without any constant by replacing each ci by vci

,
where vci

is a new term variable (identifier).

Observations

1. The length of ϕE is equal to the length of ψE .

2. ϕE and ψE are equi-satisfiable.
☞ See extra-sheet4-1.pdf in TUWEL for a proof sketch!

9 / 59

Removal of Boolean variables from E -formulas

Definition (Removal of Boolean variables from an E -formula)

Let ϕE be any E -formula with Boolean variables b1, . . . , bn. Con-
struct an E -formula ψE without any Boolean variable by replacing
each bi by vbi ,1

.
= vbi ,2, where vbi ,1, vbi ,2 are two new term variables

(identifiers).

Observations

1. The number of atoms in ϕE and ψE are identical.

2. ϕE and ψE are equi-satisfiable.
☞ See extra-sheet4-1a.pdf in TUWEL for a proof!

10 / 59

Equality and disequality literals

We consider E -formulas ϕE

in negation normal form (NNF) and

without constants and Boolean variables.

The set of all atoms in ϕE is denoted by At(ϕE).

Definition

The set of equality literals of ϕE , E .
=

, is the set of positive literals
(equalities) in ϕE . Likewise for the set of disequality literals of ϕE ,
E 6
.
=

, and negative literals (disequalities).

Example: ϕE : x
.
=y ∧ y

.
=z ∧ z 6

.
=x

E .
=

= {x
.
=y , y

.
=z} E 6

.
=

= {z 6
.
=x}

11 / 59

Equality graphs

Definition

The equality graph, GE (ϕE), for an E -formula ϕE in NNF and
without constants and Boolean variables is an undirected graph
(V ,E .

=
,E 6 .=), where the nodes (or vertices) V corresponds to the

variables in ϕE and the two edge sets correspond to the set of
equality literals and disequality literals, respectively.

NB: E .
=

and E 6
.
=

represent literal sets and edges in the graph.

Example: GE (ϕE) with ϕE : x
.
= y ∧ y

.
= z ∧ z 6

.
= x

12 / 59

Equality graphs

Definition

The equality graph, GE (ϕE), for an E -formula ϕE in NNF and
without constants and Boolean variables is an undirected graph
(V ,E .

=
,E 6 .=), where the nodes (or vertices) V corresponds to the

variables in ϕE and the two edge sets correspond to the set of
equality literals and disequality literals, respectively.

NB: E .
=

and E 6
.
=

represent literal sets and edges in the graph.

Example: GE (ϕE) with ϕE : x
.
= y ∧ y

.
= z ∧ z 6

.
= x

x

y

z

The variables of ϕE are the vertices of GE (ϕE)

13 / 59

Equality graphs

Definition

The equality graph, GE (ϕE), for an E -formula ϕE in NNF and
without constants and Boolean variables is an undirected graph
(V ,E .

=
,E 6 .=), where the nodes (or vertices) V corresponds to the

variables in ϕE and the two edge sets correspond to the set of
equality literals and disequality literals, respectively.

NB: E .
=

and E 6
.
=

represent literal sets and edges in the graph.

Example: GE (ϕE) with ϕE : x
.
= y ∧ y

.
= z ∧ z 6

.
= x

x

y

z

x
.

= y

Adding an equality edge . . .

14 / 59

Equality graphs

Definition

The equality graph, GE (ϕE), for an E -formula ϕE in NNF and
without constants and Boolean variables is an undirected graph
(V ,E .

=
,E 6 .=), where the nodes (or vertices) V corresponds to the

variables in ϕE and the two edge sets correspond to the set of
equality literals and disequality literals, respectively.

NB: E .
=

and E 6
.
=

represent literal sets and edges in the graph.

Example: GE (ϕE) with ϕE : x
.
= y ∧ y

.
= z ∧ z 6

.
= x

x

y

z

x
.

= y y
.

= z

. . . and another one . . .

15 / 59

Equality graphs

Definition

The equality graph, GE (ϕE), for an E -formula ϕE in NNF and
without constants and Boolean variables is an undirected graph
(V ,E .

=
,E 6 .=), where the nodes (or vertices) V corresponds to the

variables in ϕE and the two edge sets correspond to the set of
equality literals and disequality literals, respectively.

NB: E .
=

and E 6
.
=

represent literal sets and edges in the graph.

Example: GE (ϕE) with ϕE : x
.
= y ∧ y

.
= z ∧ z 6

.
= x

x

y

z

x
.

= y y
.

= z

z 6
.

= x

. . . and finally a disequality edge

16 / 59

Equality graphs

Definition

The equality graph, GE (ϕE), for an E -formula ϕE in NNF and
without constants and Boolean variables is an undirected graph
(V ,E .

=
,E 6 .=), where the nodes (or vertices) V corresponds to the

variables in ϕE and the two edge sets correspond to the set of
equality literals and disequality literals, respectively.

NB: E .
=

and E 6
.
=

represent literal sets and edges in the graph.

Example: GE (ϕE) with ϕE : x
.
= y ∧ y

.
= z ∧ z 6

.
= x

x

y

z

x
.

= y y
.

= z

z 6
.

= x

Observation: GE (ϕE) is independent from ϕE ’s (∧,∨)-structure!

17 / 59

Equality graphs and loss of information

Consider the following equality graph GE (ϕE):

x y

x
.

= y

x 6
.

= y

What is the formula ϕE ?

Possibility 1: ϕE is x
.
= y ∨ x 6

.
= y a tautology

Possibility 2: ϕE is x
.
= y ∧ x 6

.
= y a contradiction

☞ The same graph represents a tautology and a contradiction.

☞ We loose the information about the propositional structure
when we consider GE (ϕE) instead of ϕE !

18 / 59

Paths and cycles

A path in a graph G = (V ,E) is a sequence v1, . . . , vn of
vertices such that, for all 1 ≤ i < n, (vi , vi+1) ∈ E .

v1 is the start vertex and vn is the end vertex.

We often unify a path with its associated edges.

The length of a path v1, . . . , vn is the number of its edges.

A simple path in G is a path without repeated vertices.

A cycle in G = (V ,E) is a path v1, . . . , vn−1, v1 with repeated
vertices.

A simple cycle in G is a cycle where v1 (=vn) is the only
repeated vertex.

19 / 59

Examples of paths and cycles

A simple path v1, v2, v3, v4, v5, v6, v7 of length 6.

v1 v2 v3 v4 v5 v6 v7

20 / 59

Examples of paths and cycles

A cycle v1, v2, v3, v4, v5, v6, v7, v3, v1.

v1 v2 v3 v4 v5 v6 v7

21 / 59

Examples of paths and cycles

A simple cycle v1, v2, v3, v4, v5, v6, v7, v1.

v1 v2 v3 v4 v5 v6 v7

22 / 59

Equality and disequality paths

Definition (equality path, disequality path, simple paths)

An equality (eq) path in GE (ϕE) is a path consisting of edges from
E .

=
. The existence of an equality path between vertices x and y is

denoted by x
.
=∗ y .

A disequality (diseq) path in GE (ϕE) is a path consisting of edges
from E .

=
and exactly one edge from E 6

.
=

. The existence of a dise-

quality path between vertices x and y is denoted by x 6
.
=∗ y .

A simple (eq or diseq) path in GE (ϕE) is a path without cycles.

Example: Reconsider GE (ϕE)

x

y

z

x
.

= y y
.

= z

z 6
.

= x

23 / 59

Equality and disequality paths

Definition (equality path, disequality path, simple paths)

An equality (eq) path in GE (ϕE) is a path consisting of edges from
E .

=
. The existence of an equality path between vertices x and y is

denoted by x
.
=∗ y .

A disequality (diseq) path in GE (ϕE) is a path consisting of edges
from E .

=
and exactly one edge from E 6

.
=

. The existence of a dise-

quality path between vertices x and y is denoted by x 6
.
=∗ y .

A simple (eq or diseq) path in GE (ϕE) is a path without cycles.

Example: Reconsider GE (ϕE)

x

y

z

x
.

= y y
.

= z

z 6
.

= x

x
.
=∗ z : x

.
= y , y

.
= z

24 / 59

Equality and disequality paths

Definition (equality path, disequality path, simple paths)

An equality (eq) path in GE (ϕE) is a path consisting of edges from
E .

=
. The existence of an equality path between vertices x and y is

denoted by x
.
=∗ y .

A disequality (diseq) path in GE (ϕE) is a path consisting of edges
from E .

=
and exactly one edge from E 6

.
=

. The existence of a dise-

quality path between vertices x and y is denoted by x 6
.
=∗ y .

A simple (eq or diseq) path in GE (ϕE) is a path without cycles.

Example: Reconsider GE (ϕE)

x

y

z

x
.

= y y
.

= z

z 6
.

= x

x
.
=∗ z : x

.
= y , y

.
= z

x 6
.
=∗ x : x

.
= y , y

.
= z , z 6

.
= x

25 / 59

Contradictory cycles

Definition

A contradictory cycle (CC) in GE (ϕE) is a cycle with exactly one
disequality edge.

Important Property:

In a CC, for every two x,y, it holds that x
.
=∗ y and x 6

.
=∗ y .

x

y

z

x
.

= y y
.

= z

z 6
.

= x

x , y , z , x with the (dis-)equalities x
.
= y ,

y
.
= z , z 6

.
= x form a CC

x
.
=∗ y because of x , y and x

.
= y ∈ E .

=

x 6
.
=∗ y because of x , z , y and

z 6
.
= x ∈ E 6

.
=

and y
.
= z ∈ E .

=

26 / 59

Contradictory cycles and simple contradictory cycles

Contradictory cycle v1, v2, v4, v5, v2, v3, v1

v1

v2

v3

v4

v5

Contradictory cycle: A cycle with exactly one disequality edge.
Simple cycle: Only the start vertex is repeated.
Simple CC: Both conditions are satisfied.

27 / 59

Contradictory cycles and simple contradictory cycles

Contradictory cycle v1, v2, v4, v5, v2, v3, v1

v1

v2

v3

v4

v5

Theorem

Every contradictory cycle is either simple or contains a simple con-

tradictory cycle.

28 / 59

Contradictory cycles and simple contradictory cycles

Simple contradictory cycle v1, v2, v3, v1

v1

v2

v3

v4

v5

Theorem

Every contradictory cycle is either simple or contains a simple con-

tradictory cycle.

29 / 59

Subgraphs and satisfiability

Definition

A subgraph of GE (ϕE) is called E -satisfiable iff the conjunction of
the predicates represented by its edges is E -satisfiable.

Theorem

A subgraph of GE (ϕE) is E -unsatisfiable iff it contains a contradic-

tory cycle.

Example

Consider the contradictory cycle (CC) x
.
= y , y

.
= z , x 6

.
= z .

From x
.
= y and y

.
= z and transitivity

x
.
= y ∧ y

.
= z → x

.
= z

we derive x
.
= z , contradicting x 6

.
= z from the CC.

30 / 59

Outline

Basic Concepts

Simplifying E -formulas

Reduction of E -formulas to Propositional Formulas

31 / 59

The simplification algorithm

Algorithm: SIMPLIFY-EQUALITY-FORMULA

Input: An equality formula ϕE in NNF.

Output: An equality formula ψE equi-satisfiable with ϕE , with
length less than or equal to the length of ϕE .

1. Let ψE := ϕE .

2. Construct the equality graph GE (ψE).

3. Replace each pure literal in ψE whose corresponding edge is not
part of a simple contradictory cycle with true.

4. Simplify ψE with respect to Boolean constants true and false.

5. If any rewriting has occurred in the previous two steps, go to 2.

6. Return ψE .

32 / 59

The simplification algorithm

Algorithm: SIMPLIFY-EQUALITY-FORMULA

Input: An equality formula ϕE in NNF.

Output: An equality formula ψE equi-satisfiable with ϕE , with
length less than or equal to the length of ϕE .

1. Let ψE := ϕE .

2. Construct the equality graph GE (ψE).

3. Replace each pure literal in ψE whose corresponding edge is not
part of a simple contradictory cycle with true.

4. Simplify ψE with respect to Boolean constants true and false.

5. If any rewriting has occurred in the previous two steps, go to 2.

6. Return ψE . A literal ℓ is a pure literal in a formula λ if ℓ
occurs either positively or negatively in λ.

33 / 59

Simplifications: The formula and the graph

ϕE :
(

(x1 6
.
= x2 ∨ y1 6

.
= y2 ∨ f1

.
= f2) ∧

(u1 6
.
= f1 ∨ u2 6

.
= f2 ∨ g1

.
= g2) ∧

(u1
.
= f1 ∨ u2

.
= f2 ∨ z

.
= g1)

)

∧ z 6
.
= g2

E .
=

: {f1
.
= f2, g1

.
= g2, u1

.
= f1, u2

.
= f2, z

.
= g1}

E 6
.
=

: {x1 6
.
= x2, y1 6

.
= y2, u1 6

.
= f1, u2 6

.
= f2, z 6

.
= g2}

x1 x2 y1 y2 z

u1 f1 f2
u2 g1 g2

The edges (x1, x2), (y1, y2) and (f1, f2) are not part of any simple
contradictory cycle set corresponding literals true

34 / 59

Simplifying the formula

ψE :
(

(x1 6
.
= x2 ∨ y1 6

.
= y2 ∨ f1

.
= f2) ∧

(u1 6
.
= f1 ∨ u2 6

.
= f2 ∨ g1

.
= g2) ∧

(u1
.
= f1 ∨ u2

.
= f2 ∨ z

.
= g1)

)

∧ z 6
.
= g2

35 / 59

Simplifying the formula

ψ1
E :

(

(true ∨ true ∨ true) ∧

(u1 6
.
= f1 ∨ u2 6

.
= f2 ∨ g1

.
= g2) ∧

(u1
.
= f1 ∨ u2

.
= f2 ∨ z

.
= g1)

)

∧ z 6
.
= g2

36 / 59

Simplifying the formula

ψ1
E :

(

(true ∨ true ∨ true) ∧

(u1 6
.
= f1 ∨ u2 6

.
= f2 ∨ g1

.
= g2) ∧

(u1
.
= f1 ∨ u2

.
= f2 ∨ z

.
= g1)

)

∧ z 6
.
= g2

Propositional simplifications result in:

ψE
2 :

(

(u1 6
.
= f1 ∨ u2 6

.
= f2 ∨ g1

.
= g2) ∧

(u1
.
= f1 ∨ u2

.
= f2 ∨ z

.
= g1)

)

∧ z 6
.
= g2

ϕE and ψE
2 are equi-satisfiable, but ψE

2 is smaller than ϕE .

37 / 59

Simplifying the formula

After the first round of simplification, we have

ψE
2 :

(

(u1 6
.
= f1 ∨ u2 6

.
= f2 ∨ g1

.
= g2) ∧

(u1
.
= f1 ∨ u2

.
= f2 ∨ z

.
= g1)

)

∧ z 6
.
= g2

We go back to step 2 in the algorithm and construct GE (ψE
2):

z

u1 f1 f2
u2 g1 g2

No more simplifications are possible. ψ2
E is returned.

38 / 59

Outline

Basic Concepts

Simplifying E -formulas

Reduction of E -formulas to Propositional Formulas

39 / 59

Reduction of E -formulas to propositional formulas
The basic idea

The described method is called the sparse method.

For ϕE , generate two formulas e(ϕE) and Bt such that

ϕE is E -satisfiable iff e(ϕE) ∧ Bt is satisfiable

e(ϕE) is the propositional skeleton generated as follows:

Choose an ordering on variables and constants.

Orient the equations according to the ordering.

Replace xi
.
= xj by ei,j .

To maintain equi-satisfiability, add transitivity constraints.
(Bt is a conjunction of such constraints).

40 / 59

The construction of a propositional skeleton: An example

Let ϕE be x1
.
= x2 ∧ ((x2

.
= x3 ∧ x3 6

.
= x1) ∨ x2 6

.
= x1).

Fix an ordering, e.g., x1 < x2 < x3.

Orient the equations: x3
.
= x1 7→ x1

.
= x3, x2

.
= x1 7→ x1

.
= x2

Then e(ϕE) is e1,2 ∧ ((e2,3 ∧ ¬e1,3) ∨ ¬e1,2)

It holds that if ϕE is satisfiable then so is e(ϕE)

The converse is false, because . . .

e(ϕE) is satisfiable but ϕE is E -unsatisfiable (☞ next slide)

41 / 59

ϕ
E and its propositional skeleton

Reconsider ϕE : x1
.
= x2 ∧ ((x2

.
= x3 ∧ x3 6

.
= x1) ∨ x2 6

.
= x1).

Then e(ϕE) is e1,2 ∧ ((e2,3 ∧ ¬e1,3) ∨ ¬e1,2).

e(ϕE) is satisfiable.

Simply set e1,2 and e2,3 to true and e1,3 to false.

ϕE is E -unsatisfiable. Let us try to satisfy ϕE :

Then any E -interpretation must make x1
.
= x2 and

x2
.
= x3 ∧ x1 6

.
= x3 true.

But then transitivity results that x1
.
= x3 has to be true.

This however contradicts that x1 6
.
= x3 is true.

➥ Transitivity is important to maintain (un-)satisfiability!

42 / 59

Non-polar equality graphs for the construction of Bt

The construction of Bt is guided by cycles in the non-polar equality
graph of ϕE .

Definition

The non-polar equality graph corresponding to ϕE , GE
NP(ϕE), is

an undirected graph (V ,E), where the nodes in V correspond to
the variables in ϕE and the edges correspond to At(ϕE) (i.e., all
equality predicates define the edges).

☞ GE
NP(ϕE) is a degenerated version of GE (ϕE), because the

polarity of predicates (i.e., the negation sign) is neglected.

43 / 59

The transitivity constraints in Bt

For each cycle in GE
NP(ϕE) with n vertices, we add a

conjunction of n implications of the form p1 ∧ . . . ∧ pn−1 → pn.

☞ The size of Bt depends on the number of cycles in the graph!

Each implication forbids to set the “last” edge false if all the
other edges have been set to true.

Imposing this constraint for each of the edges in each one of
the cycles is sufficient to obtain

ϕE is E -satisfiable iff e(ϕE) ∧ Bt is satisfiable

44 / 59

Example: The formula ϕE , G
E
NP(ϕE) and Bt

ϕE : x1
.
= x2 ∧ ((x2

.
= x3 ∧ x1 6

.
= x3) ∨ x1 6

.
= x2)

e(ϕE) : e1,2 ∧ ((e2,3 ∧ ¬e1,3) ∨ ¬e1,2)

GE
NP(ϕE) : ({x1, x2, x3}, {(x1, x2), (x2, x3), (x1, x3)})

x1 x2

x3

A (simple) cycle of length 3 in GE
NP(ϕE) is x1, x2, x3, x1 with

corresponding edges (x1, x2), (x2, x3), (x1, x3) and
corresponding variables e1,2, e2,3, e1,3.

Maintain equi-satisfiability by setting Bt to

(e1,2 ∧ e2,3 → e1,3) ∧ (e1,2 ∧ e1,3 → e2,3) ∧ (e2,3 ∧ e1,3 → e1,2)

45 / 59

Is the use of simple cycles sufficient?

Theorem

In the construction of Bt , the use of simple cycles in GE
NP(ϕE) is

sufficient to maintain equi-satisfiability.

Problem: Number of simple cycles in GE
NP(ϕE) can be

exponential.

☞ Try to reduce the number of necessary cycles!

Solution: (Bryant and Velev): In the construction of Bt , it is
sufficient to generate transitivity constraints from
simple chord-free cycles (triangles) in the chordal
version of the input graph GE

NP(ϕE).

46 / 59

Chords, chord-free cycles and chordal graphs

Definition

A chord of a cycle is an edge between two non-adjacent vertices of
the cycle. If a cycle has no chords in a given graph, it is called a
chord-free cycle.

Definition

An (undirected) graph G is called chordal (or triangulated) if no
cycle of length ≥ 4 in G is chord-free.

Q1 Do we really need chordal graphs?

Q2 If so, how do we construct them?

47 / 59

The motivation for chordal graphs

Observation
For arbitrary graphs G , the number of simple chord-free cycles in
G can still be exponential in the number of vertices!

. . .

☞ We have to make the graph chordal (by adding edges)!

Example: Making a graph chordal

The simple cycle x1, x2, x3, x4, x5, x1 of length
5 is chord-free.

x1 x2

x3

x4x5

48 / 59

The motivation for chordal graphs

Observation
For arbitrary graphs G , the number of simple chord-free cycles in
G can still be exponential in the number of vertices!

. . .

☞ We have to make the graph chordal (by adding edges)!

Example: Making a graph chordal

We can make the graph chordal by, e.g.,
introducing the red edges!

x1 x2

x3

x4x5

49 / 59

An algorithm for making a graph chordal

Any graph can be made chordal (in PTIME) by adding edges!

Procedure: Let an undirected graph G = (V ,E) be given.

1. While V 6= {} do

1.1 Select a vertex v from V

1.2 Add E ′(v) := {(u,w) | (u, v), (v ,w) ∈ E , (u,w) 6∈ E} to E

1.3 Remove v and all edges containing v from G

2. Return original G extended by all edges added in 1.2

☞ Result depends on the elimination ordering for vertices

v1, v2, v3, v4
v1 v2

v3 v4

v2, v1, v3, v4
v2v1

v3 v4

50 / 59

An algorithm for making a graph chordal

Any graph can be made chordal (in PTIME) by adding edges!

Procedure: Let an undirected graph G = (V ,E) be given.

1. While V 6= {} do

1.1 Select a vertex v from V

1.2 Add E ′(v) := {(u,w) | (u, v), (v ,w) ∈ E , (u,w) 6∈ E} to E

1.3 Remove v and all edges containing v from G

2. Return original G extended by all edges added in 1.2

☞ Result depends on the elimination ordering for vertices

v1, v2, v3, v4
v1 v2

v3 v4

v2, v1, v3, v4
v2v1

v3 v4

51 / 59

An algorithm for making a graph chordal

Any graph can be made chordal (in PTIME) by adding edges!

Procedure: Let an undirected graph G = (V ,E) be given.

1. While V 6= {} do

1.1 Select a vertex v from V

1.2 Add E ′(v) := {(u,w) | (u, v), (v ,w) ∈ E , (u,w) 6∈ E} to E

1.3 Remove v and all edges containing v from G

2. Return original G extended by all edges added in 1.2

☞ Result depends on the elimination ordering for vertices

v1, v2, v3, v4
v1 v2

v3 v4

v2, v1, v3, v4
v2v1

v3 v4

52 / 59

An algorithm for making a graph chordal

Any graph can be made chordal (in PTIME) by adding edges!

Procedure: Let an undirected graph G = (V ,E) be given.

1. While V 6= {} do

1.1 Select a vertex v from V

1.2 Add E ′(v) := {(u,w) | (u, v), (v ,w) ∈ E , (u,w) 6∈ E} to E

1.3 Remove v and all edges containing v from G

2. Return original G extended by all edges added in 1.2

☞ Result depends on the elimination ordering for vertices

v2, v3, v4
v2

v3 v4

v1, v3, v4
v1

v3 v4

53 / 59

An algorithm for making a graph chordal

Any graph can be made chordal (in PTIME) by adding edges!

Procedure: Let an undirected graph G = (V ,E) be given.

1. While V 6= {} do

1.1 Select a vertex v from V

1.2 Add E ′(v) := {(u,w) | (u, v), (v ,w) ∈ E , (u,w) 6∈ E} to E

1.3 Remove v and all edges containing v from G

2. Return original G extended by all edges added in 1.2

☞ Result depends on the elimination ordering for vertices

v1 v2

v3 v4

v2v1

v3 v4

The two alternative chordal graphs are given above.
54 / 59

What do we win with chordal graphs?

We have argued that using cycles in non-chordal graphs
GE

NP(ϕE) makes Bt exponential.

The number of simple chord-free cycles (triangles) is
polynomial (cubic) in the size of GE

NP(ϕE).

We know that triangles are sufficient for the generation of
transitivity constraints (in Bt).

Consequently, the size of Bt is polynomial in the size of ϕE

(because the size of GE
NP(ϕE) is polynomial in the size of ϕE).

Bt may have new variables (from newly introduced edges).

55 / 59

The reduction algorithm
From equality logic to propositional logic

Input: An already simplified equality formula ϕE (in NNF)
Output: A propositional formula equi-satisfiable with ϕE

1. Construct a Boolean formula e(ϕE) by replacing any xi
.
= xj in ϕE

by a Boolean variable ei,j .

2. Construct the non-polar equality graph GE
NP(ϕE).

3. Make GE
NP(ϕE) chordal.

4. Set Bt to true.

5. For each triangle (ei,j , ej,k , ek,i) in GE
NP(ϕE) do

Bt := (ei,j ∧ ej,k → ei,k) ∧

(ei,j ∧ ei,k → ej,k) ∧

(ei,k ∧ ej,k → ei,j) ∧ Bt

6. Return e(ϕE) ∧ Bt .

56 / 59

The reduction algorithm
From equality logic to propositional logic

Input: An already simplified equality formula ϕE (in NNF)
Output: A propositional formula equi-satisfiable with ϕE

1. Construct a Boolean formula e(ϕE) by replacing any xi
.
= xj in ϕE

by a Boolean variable ei,j .

2. Construct the non-polar equality graph GE
NP(ϕE).

3. Make GE
NP(ϕE) chordal.

4. Set Bt to true.

5. For each triangle (ei,j , ej,k , ek,i) in GE
NP(ϕE) do

Bt := (ei,j ∧ ej,k → ei,k) ∧

(ei,j ∧ ei,k → ej,k) ∧

(ei,k ∧ ej,k → ei,j) ∧ Bt

6. Return e(ϕE) ∧ Bt .

Im
provem

ent

Use
G
E (ϕ

E) for
the analy

sis
and ob-

tai
n les

s tra
nsiti

vit
y constr

ain
ts!

57 / 59

Literature

Different kinds of reduction have been developed

1. R. Bryant, M. Velev: Boolean Satisfiability with Transitivity
Constraints. CAV 2000, 85-98

2. R. Bryant, M. Velev: Boolean satisfiability with transitivity
constraints. ACM Trans. Comput. Log., 3(4):604-627. 2002

3. O. Meir, O. Strichman: Yet Another Decision Procedure for
Equality Logic. CAV 2005, 307-320

4. M. Rozanov, O. Strichman: Generating Minimum Transiti-
vity Constraints in P-time for Deciding Equality Logic. Electr.
Notes Theor. Comput. Sci. 198(2):3-17. 2008

58 / 59

Learning objectives

You should be able to

explain the concepts of equality graphs, non-polar equality
graphs and chordal graphs and their use in the reduction,

construct such graphs from given E-formulas,

identify different kind of cycles in graphs,

simplify formulas,

perform correctness proofs for the simplification methods,

make a graph chordal,

apply the reduction.

59 / 59

	Basic Concepts
	Simplifying E-formulas
	Reduction of E-formulas to Propositional Formulas

