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Complexity Theory

Complexity theory focuses on analyzing the computational complexity of
problems. In other words, how much time (number of operations) or
space (storage) do we need to solve a given problem?

Recall:

A problem: an infinite set of possible instances with a question

A decision problem: the question has a yes/no answer

Example

REACHABILITY:
INSTANCE: A graph (V ,E ) and nodes u, v ∈ V .
QUESTION: Is there a path in the graph from u to v?

Other kinds of problems:
• function problems
• optimization problems
• enumeration problems
• counting problems
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Algorithm for REACHABILITY

S := {u};
repeat

S ′ := S ;
for all i ∈ S ′ do {

for all j ∈ V do {
if (i , j) ∈ E then S := S ∪ {j};

}
}

until S = S ′;
if v ∈ S then return true
else return false;
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Questions

How efficient is the algorithm?

How is it affected by

Programming language?

Computer architecture?

Representation of the input?

Efficiency of the REACHABILITY algorithm

A naive implementation requires cubic time.

Given certain assumptions, the problem is solvable in linear time
w.r.t. the number of edges.
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Time and Space

We measure the complexity of problems and efficiency of algorithms in
terms of time and space:

Time

Given a program Π and an input I for Π, the running time of Π on I is the
number of atomic operations performed during the run of Π on input I .

The notion of “atomic operation” depends on the programming
language and the computer architecture.

Space

Given a program Π and an input I , the space required by Π on I is the
number of bits of storage that is used during the run of Π on I .
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Time and Space (2)

Question

Does a specific programming language or architecture affect the
time/space performance of an algorithm implementation?

Affects only marginally: a specific choice of a language/architecture
gives only a minor improvement in time/space performance.

Intuitively, “minor improvement” means that:

An efficient program can be translated into any other language
(including SIMPLE) or architecture without loosing efficiency.

Thus to analyze existence/nonexistence of efficient algorithms it is
fine to choose SIMPLE as our programming language.

More formally, “minor” in this context means polynomial.
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Church-Turing Thesis Revisited

Church-Turing Thesis

Any algorithm can be programmed in SIMPLE.

Alternative formulation: Any “reasonable” mathematical model of
computer algorithms ends up with a model of computation that is
equivalent to the SIMPLE programming language.

Strengthening of the Church-Turing Thesis

Any “reasonable” mathematical model of computer algorithms and their
time/space performance ends up with a model of computation and
associated time/space cost that is equivalent to the SIMPLE
programming language within a polynomial.
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Complexity of an Algorithm

Our notion of complexity

We are interested in the asymptotic, worst-case complexity of an
algorithm, i.e., a function f ( ), s.t. for every problem instance of size n,
the answer can be computed in time/space O(f (n)).

Consequences

We are not interested in, e.g.

average case complexity

best case complexity

complexity of “instances that typically occur in practice”

complexity of a finite number of instances

. . .
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Discussion

Our notion of complexity often leads to useful, practically applicable
results like, e.g. “This algorithm is only suitable for very small
problem sizes, and improved hardware will not help a lot.”

However, there are examples in practice, where a different notion of
complexity would be more appropriate.

Example

Linear Programming = optimization problem of a linear function of
variables whose domain is restricted by means of linear inequalities.

There exist algorithms with polynomial worst-case time complexity.

Experience shows that the Simplex method (with exponential
worst-case complexity) works well in practice.
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Rates of Growth

Let f , g : N 7→ N.

f (n) = O(g(n)) (f grows as g or slower), if there are positive
integers c and n0 such that for all n ≥ n0, f (n) ≤ c · g(n)

f (n) = Ω(g(n)), if g(n) = O(f (n))

f (n) = Θ(g(n)), if g(n) = O(f (n)) and f (n) = O(g(n)).

Example

If p(n) is a polynomial of degree d , then p(n) = Θ(nd).

If c > 1 is an integer and p(n) a polynomial, then p(n) = O(cn) but
p(n) 6= Ω(cn), i.e.,

any polynomial grows strictly slower than any exponential.

If k > 1 is an integer, then logk n = O(n)
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Complexity of a Problem

Complexity of a problem =
worst-case complexity of the best possible algorithm for this problem

Complexity Theory

analyzes the complexity of problems

classifies problems according to their complexity

analyzes properties of complexity classes

analyzes relations between complexity classes

. . .

Negative results (like “you will never find an efficient algorithm for this
problem”) require formal methods.

Pichler 9 October, 2013 Page 12



Formale Methoden der Informatik 2. Complexity of Problems and Algorithms 2.4. Fundamental Complexity Classes

The Class P (Problems Solvable in Polynomial Time)

Informally, the class P is the collection of all problems that can be solved
in polynomial time in the size of the instance.

Definition

The class P consists of all decision problems P satisfying the following:

1 there is a program Π that decides P, and Π is such that

2 for all instances I of P, the run time of Π on I is polynomial in |I |,
i.e. the run time is O(|I |k), where k is a constant.

Many problems are in P:

Recall REACHABILITY is solvable in cubic time, and hence is in P.

Checking if a string matches a context-free grammar is in P.
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Some Problems in P

We recall first Boolean circuits:

Boolean circuits

A k-ary Boolean circuit consists of:

k input gates in1, . . . , ink ,

1 output gate, and

AND gates, OR gates and NOT gates such that
• an AND gate outputs true iff all its inputs have value true,
• an OR gate outputs true iff some of its inputs has value true, and
• a NOT gate outputs true iff its single input has value false.

CIRCUIT-EVAL

INSTANCE: A Boolean circuit C and a function µ that assigns to each
input gate of C the value true or false.

QUESTION: Does C output true given the assignment µ?
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Example Circuit

∨

∨ ¬∧

in in in

out
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Example Circuit with an Assignment

∨

∨ ¬∧

in in in

out

true false false
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Example Circuit Evaluated

∨

∨ ¬∧

in1 in2 in3

out

true false false

true false true

true

true

Pichler 9 October, 2013 Page 17



Formale Methoden der Informatik 2. Complexity of Problems and Algorithms 2.4. Fundamental Complexity Classes

CIRCUIT-EVAL is in P

Algorithm evaluateCircuit

Input: k-ary Boolean circuit C , and assignment µ
Output: true iff C outputs true under µ

1 Let A := {(in1, µ(in1)), . . . , (ink , µ(ink))}; /* make a copy of µ */

2 Let G be the set of all gates in C ;

The nodes g ∈ G that occur in A will be called value-assigned

3 while exists g ∈ G such that g is not value-assigned do

(i) select one g ∈ G such that g is not value-assigned but all its input
gates are value-assigned (such a gate must exist because C forms a
directed acyclic graph where input gates are the only source nodes)

(ii) add to A the tuple (g , v), where v is the Boolean value determined
according to the type of g and the values assigned by A to the input
gates of g .

4 if (out, true) ∈ A then return true else return false
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CIRCUIT-EVAL is in P (2)

We verify that the algorithm evaluateCircuit runs in polynomial time in
the size of the input:

1 At all times the relation A is of linear size in the size of C .

2 Since each iteration of the steps (i-ii) results in a fresh value-assigned
gate, there may only be |G | iterations of the while loop.

3 Given a gate g ∈ G , checking whether g is not value-assigned and
all its input gates are value-assigned is feasible in quadratic time in
the size of G (we may need |G | lookups to A).

4 Due to the observation (3), the step (i) is feasible in cubic time
(simply traverse G and make the check described above).

5 Step (ii) is linear in the size of C .

6 Thus overall the algorithm runs in O(n4).

Actually, one can devise a linear algorithm, i.e. O(n) instead of O(n4).
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Propositional Logic
There is a close relationship between Boolean circuits and formulas of
propositional logic (also referred to as Boolean logic).

Symbols

The syntax of propositional logic (= Boolean logic) ( i.e. the set of
well-formed propositional formulae) is based on the following symbols:

Boolean variables (or atoms): X = {x1, x2, . . .}.
Boolean connectives: ∨, ∧ , and ¬.

Definition

The set of propositional formulae is the smallest set such that

all Boolean variables are propositional formulae

if ϕ1 and ϕ2 are propositional formulae, so are ¬ϕ1, (ϕ1 ∧ ϕ2), and
(ϕ1 ∨ ϕ2).

An expression of the form xi or ¬xi is called a literal.
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Semantics of Propositional Logic

Motivation

How to interpret Boolean formulas?
Observation: Boolean formulas are propositions that are either true or
false. They speak about a world where certain atomic propositions
(Boolean variables) are either true or false.

Definition

A truth assignment T is a mapping T : X → {true, false}.
T is appropriate to a formula ϕ if Var(ϕ) ⊆ X .

T (·) can be inductively extended from variables to arbitrary formulas:

If ϕ = ¬ϕ1, then T (ϕ) = true iff T (ϕ1) = false.

If ϕ = ϕ1 ∧ ϕ2, then T (ϕ) = true iff T (ϕ1) = true = T (ϕ2).

If ϕ = ϕ1 ∨ϕ2, then T (ϕ) = true iff T (ϕ1) = true or T (ϕ2) = true.

Computing T (ϕ) (i.e., given ϕ and truth assignment T appropriate to it,
check if T (ϕ) = true holds), can be done in polynomial time.
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Correspondence between Boolean Formulas and Circuits

∨∨

¬¬

∧

out

in1 in2 in3gx gy gz

g¬y∨¬zgx∨y

g¬y g¬z

g(x∨y)∧(¬y∨¬z)

C (ϕ)

Example:
ϕ = (x ∨ y) ∧ (¬y ∨ ¬z)
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Discussion

A problem is considered efficiently solvable if it is in the class P.
Recall that this means that there is an algorithm solving the problem
such that the rate of growth of the solution time is polynomial w.r.t.
the size n of the input, i.e., O(nd).

If there is no polynomial time algorithm available for the problem,
then the problem is considered intractable. There is a distinction
between

• intractability (i.e., no efficient algorithm is known and the existence
of an efficient algorithm is unlikely – but not formally excluded)
−→ the class NP defined next

• provable intractability (i.e., the existence of an efficient algorithm is
formally excluded) −→ the class EXPTIME

Recall that we consider the asymptotic, worst-case performance.
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Possible criticism

Not all polynomial-time algorithms are efficient in practice.
There are efficient computations that are not polynomial.
For instance, consider n80 vs 2

n
100 .

Average case analysis may be more informative than worst-case.

Conclusion. “Adopting polynomial time worst-case performance as our
criterion of efficiency results in an elegant and useful theory that says
something meaningful about practical computation, and would be
impossible without this simplification.”
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Satisfiability and Validity

Definition

A Boolean formula ϕ is satisfiable iff
there is a truth assignment T appropriate to ϕ with T (ϕ) = true.

A Boolean formula ϕ is valid iff
for every truth assignment T appropriate to ϕ , T (ϕ) = true.

SAT

INSTANCE: Boolean formula ϕ.

QUESTION: Is ϕ satisfiable?

VALIDITY

INSTANCE: Boolean formula ϕ.

QUESTION: Is ϕ valid?
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Towards the Class NP

Many problems can be analyzed in terms of solutions, proofs, certificates,
or witnesses. For example, consider the SAT problem:

If ϕ is satisfiable (i.e. is a positive instance of SAT), then there is a
variable assignment (a solution) that proves the satisfiability of ϕ.

If ϕ is unsatisfiable (i.e. is a negative instance of SAT), then a proof
of satisfiability cannot be found.

Note that proofs in the case of SAT are succinct (i.e. short):

any assignment can be represented as a subset A of the variables in
ϕ (variables in A are set to true; the remaining ones are set to false).

thus an assignment for a formula ϕ can be encoded in a string of
length polynomial (even linear) in the size of ϕ.
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Towards the Class NP

Observe that given a formula ϕ and a variable assignment A, it is
computationally easy to check if ϕ evaluates to true under A.

• recall that the evaluation of propositional formulas is in P

We can decide satisfiability of ϕ by going through the possible
assignments A and efficiently checking whether an assignment
makes ϕ true.

What is the strategy to go through the assignments? Hard to say.

Naive traversing of all possible assignments would take exponential
time:

• 2n possible assignments, where n is the number of variables in ϕ.

If we are lucky and hit the right assignment soon, the algorithm may
terminate within polynomially many steps.
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Towards the Class NP

SAT is just an example of a problem belonging to the class NP

Intuitively, NP is the class of problems P such that:

positive instances I of P have short solutions (we will call them
certificates), and

given an instance I of P and a candidate certificate C , it is
computationally cheap to check if C certifies that I is a positive
instance of P.

“short” and “cheap” means “polynomial in the size of the instance”!
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Certificates

Definition (Certificate relation)

Let P be a decision problem, let INSTANCES(P) denote the set of all
instances of P.

A certificate relation for P is a relation R ⊆ INSTANCES(P)× CERT ,
where CERT is a set of finite objects, such that

I ∈ INSTANCES(P) is a positive instance of P

iff

there exists C ∈ CERT such that (I ,C ) ∈ R.
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The Class NP

We formalize the notion of certificates that are short and easy to verify:

Definition

Assume a binary relation R.

We say R is polynomially decidable if there is a polynomial-time
algorithm that checks, given a pair v1, v2 of objects, whether (v1, v2) ∈ R.

We say R is polynomially balanced if (v1, v2) ∈ R implies |v2| ≤ |v1|k for
some fixed k ≥ 1.

Definition (The Class NP)

A decision problem P is in the class NP if there exists a polynomially
balanced and polynomially decidable certificate relation for P.
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Example: SAT is in NP
Theorem

SAT ∈ NP.

Proof.

To prove that SAT ∈ NP we have to define a polynomially balanced and
polynomially decidable certificate relation for SAT. Simply let

R = {(ϕ, µ) | formula ϕ evaluates to true under assignment µ}.

R is a certificate relation by construction: ϕ is a positive instance of
SAT ⇔ there exists an assignment µ with makes ϕ evaluate to true
⇔ (ϕ, µ) ∈ R.

R is polynomially balanced because each assignment µ for ϕ can be
represented as a subset of variables in ϕ.

R is polynomially decidable, because, as we have seen, evaluating
the propositional formula ϕ under µ takes only polynomial time.
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NP and Guess & Check Procedures

Each problem in NP can be seen in terms of a guess & check
procedure.

Assume P ∈ NP and let R be the polynomially balanced and
polynomially decidable certificate relation for P.

Intuitively, I is a positive instance of P iff we can guess a correct
certificate for I .

Since R is polynomially balanced, each guess of a candidate
certificate for I is of polynomial size (certainly, there may be
exponentially many candidates). Since R is polynomially decidable,
a guess can be verified for correctness in polynomial time.

Observation: there is an interesting discrepancy between the positive
and the negative instances of NP problems:

• A positive instance can be solved in polynomial time if we guess
right. ⇒ Heuristics are helpful (to navigate in the big search space).

• A good guessing strategy does not help to solve negative instances.
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Decision Problems vs Optimization

In this lecture we concentrate on decision problems.

However, the results on decision problem can be transferred to other
problems as well.

Example: Traveling Salesman Problem.
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Example: Traveling Salesman Problem

Optimization Problem

TSP
INSTANCE: n cities 1, . . . , n and a nonnegative integer distance dij

between any two cities i and j (such that dij = dji ).
QUESTION:
What is the length of the shortest tour of the cities, i.e.,
there exists a permutation π such that

n∑
i=1

dπ(i)π(i+1)

is as small as possible (where π(n + 1) = π(1))?
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Optimization vs. Decision Problem

Decision Problem

TSP(D)
INSTANCE: n cities 1, . . . , n and a nonnegative integer distance dij

between any two cities i and j (such that dij = dji ), and a “budget” B.
QUESTION: Is there a tour of length at most B?

Binary search for solving the optimization problem

compute B = n ·max({dij | 1 ≤ i , j ≤ n})
search for solution in interval [0,B]:
Does there exist a tour of length at most B/2?

if ’yes’, then continue search in interval [0,B/2]

if ’no’, then continue search in interval [B/2,B]

. . .
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TSP(D) in NP

TSP(D) is another example of a problem in NP:
• we can guess a candidate tour
• and check whether the tour visits all the cities and is within the

budget.

All tours are of polynomial length and the verification step is also
feasible in polynomial time.

To see this more formally, we need to define a polynomially balanced
and decidable certificate relation for TSP(D).

For the certificate relation, we simply let R be the set of all pairs
(I ,T ) such that I is an instance of TSP(D) and T is a tour that
visits all the cities of I and is within the budget of I .

R is polynomially balanced because each tour T for an instance I is
of size linear in |I |.
R is polynomially decidable. Indeed, to check whether (I ,T ) is
included in R it suffices to sum-up the distances in the tour T and
check if the result is within the budget of I .
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Discussion

Optimization vs. decision problems

Complexity Theory mostly deals with decision problems: All
complexity classes that we encounter in this lecture (and also in the
Complexity Theory lecture) are classes of decision problems.

Every optimization problem has a natural “corresponding” decision
problem, i.e.: just introduce an upper bound (for minimization) or a
lower bound (for maximization) on the target function.

Complexity results for decision problems are highly relevant for the
corresponding optimization problem: in particular negative results.

Often (e.g., through the idea of binary search) we may conclude that
the decision problem and the optimization problem are either both
tractable or both intractable.
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Learning Objectives

Asymptotic, worst-case complexity vs. other notions of complexity

Basic understanding of growth rates (polynomial vs. exponential)

The class P

The class NP

Tractability vs. intractability

Optimization vs. decision problem
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