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Exercise 1

Consider the following problem:

VARIABLE-VALUE (VV)

INSTANCE: A tuple (Π, I , x), where

a) Π is a program that takes as input a string,

b) I is a string,

c) x is a global variable in Π of type Boolean.

QUESTION: In the run of Π on I , does x ever get assigned the
value true?

By providing a reduction from HALTING to VARIABLE-VALUE, prove
that VARIABLE-VALUE is undecidable.
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Solution to Exercise 1

The reduction is defined as follows. Let (Π, I ) be an arbitrary instance of
HALTING. We build an instance (Π′, I ′, x) of VV as follows. We let
I ′ = I , and build Π′ as follows:

String Π′ (String S)
x := false // x is a global variable not used in Π
Π(S); // Π is hardcoded
x := true
return 0;

In other words, for an instance Y = (Π, I ), the instance R(Y ) resulting
from the reduction is (Π′, I ′, x). To prove the correctness of the
reduction we have to show:

(Π, I ) is a positive instance of HALTING ⇔ (Π′, I ′, x) is a positive
instance of VV.
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Solution to Exercise 1 (continued)

“⇒” Assume (Π, I ) is a positive instance of HALTING, i.e. Π terminates
on I . Then the call Π(S) in program Π′ terminates on input I and also
on input I ′ since I ′ = I by the definition of the reduction. Thus the
statement “x := true” is reached with the input I ′ to Π′. Hence,
(Π′, I ′, x) is a positive instance of VV.

“⇐” Assume (Π′, I ′, x) is a positive instance of VV. That is, at some
point in the run of Π′ on I ′ the variable x gets assigned the value true. In
Π′ the only way to assign true to x is by executing “x := true” which
comes after the call Π(I ′). Thus, it must be the case that Π terminates
on I ′ and thus also on input I since I ′ = I . Hence, (Π, I ) is a positive
instance of HALTING.
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Solution to Exercise 1: Why does it work?

Why does the reduction R prove the undecidability of
VARIABLE-VALUE?

Towards a contradiction, suppose VARIABLE-VALUE is decidable.
Then there is an algorithm Πvv (·) such that Πvv (x) returns true if x is a
positive instance of VARIABLE-VALUE, and returns false otherwise.

Build a procedure Πh, which takes instances of HALTING, as follows:

Bool Πh(String Π,String I )
return Πvv (R((Π, I )));

It is easy to see that Πh is a decision procedure for HALTING:

Πh(Π, I ) returns true if Π terminates on I

Πh(Π, I ) returns false if Π does not terminate on I

We arrive at a contradiction: we know from the lecture that HALTING
is undecidable.

Šimkus WS 2013 Page 5



Formale Methoden der Informatik 1. Sample Solutions 1.1. Exercise 1

Sanity test

Check that the problem instances that you are using in your solutions are
compatible with the definition of a given problem:

INSTANCE: A pair (Π, I ), where Π is a program that takes one
string as input and returns a string, and I is a string.

In a proof:

• (Π, I ), (Π′, I ′), (Π, ”hello”) are O.K.
• (Π, I , I ′), (Π, I , k), Π are not O.K.

INSTANCE: A program Π that takes one string as input and returns
a string.

In a proof:
• Π, Π′, Π1, Π2, are O.K.
• (Π, I ), (Π′, I ′), (Π, I , I ′), (Π, I , k) are not O.K.

Šimkus WS 2013 Page 6



Formale Methoden der Informatik 1. Sample Solutions 1.2. Exercise 2

Exercise 2

By providing a semi-decision procedure, prove that VARIABLE-VALUE
is semi-decidable.

Solution to Exercise 2

We can write an interpreter Πint that takes as input (Π, I , x), i.e. an
instance of VARIABLE-VALUE, and simulates the run of Π on I :

- If the simulation reaches the point where the variable x gets value true,
then Πint returns true.

- If the simulation ends without ever assigning true to x , then Πint

returns false.
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Solution to Exercise 2 (continued)

It can be seen as follows that such an interpreter Πint is a semi-decision
procedure for VARIABLE-VALUE. We distinguish the following cases:

Case 1. Suppose that (Π, I , x) is a positive instance, i.e., in the run
of Π on I , the variable gets assigned true. Then the simulation in
Πint will encounter this and return true by the construction of Πint .

Case 2.1. Suppose that (Π, I , x) is a negative instance and that Π
halts on input I . Then Π halts without ever assigning true to x .
Hence, the simulation in Πint will terminate and conclude that x was
never assigned true. Thus, Πint returns false by the construction of
Πint .

Case 2.2. Suppose that (Π, I , x) is a negative instance and that Π
does not halt on input I . Then the simulation of this computation of
Π on I by the interpreter Πint will not terminate either. Hence, Πint

will run forever on the negative instance (Π, I , x), which is a correct
behavior for a semi-decision procedure.
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Exercise 3

Consider the following problem:

EXIST-PAIR

INSTANCE: A program Π that takes as input a pair of natural num-
bers, and returns true or false. It is guaranteed that Π terminates
on any input.

QUESTION: Do there exist n1, n2 such that Π(n1, n2) = true?

By providing a semi-decision procedure, prove that EXIST-PAIR is
semi-decidable.

Šimkus WS 2013 Page 9



Formale Methoden der Informatik 1. Sample Solutions 1.3. Exercise 3

Solution to Exercise 3

We define a procedure Πep, which enumerates all pairs n1, n2 and checks
whether Π(n1, n2) = true for the input program Π. If such a pair exists,
the procedure outputs true.

String Πep (String Π)
n1 := 0
while (true) do {

for n2 from 0 to n1 do
if Π(n1, n2) = true then return true

n1 := n1 + 1
}
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Solution to Exercise 3 (continued)

The described procedure is a semi-decision procedure for EXIST-PAIR:

Indeed, assume a pair n1, n2 such that Π(n1, n2) = true. Since Π is
guaranteed to terminate on any input, and since the enumeration covers
all pairs of integers, our procedure will terminate with output true.

On the other hard, on negative instances of EXIST-PAIR the procedure
will not terminate, which is an acceptable behavior of a semi-decision
procedure.
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Exercise 4

Prove that EXIST-PAIR is undecidable.

Hint: For your proof you may assume the availability of an interpreter for
instances of HALTING. In particular, you have available a procedure
Πint that does the following:

1 Πint takes as input a program Π, a string I , and a natural number n.

2 Πint emulates the first n steps of the run of Π on I . If Π terminates
on I within n steps, then Πint returns true. Otherwise, Πint returns
false.
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Solution to Exercise 4

We provide a reduction from HALTING, which is known to be
undecidable. Let (Π, I ) be an arbitrary instance of HALTING. We build
an instance Π′ of EXIST-PAIR by constructing Π′ as follows:

String Π′ (Int n1,Int n2)
return Πint(Π, I , n1) // Π and I are ’hard-coded’ in Π′

To prove the correctness of the reduction we have to show:

(Π, I ) is a positive instance of HALTING ⇔ Π′ is a positive instance of
EXIST-PAIR.
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Solution to Exercise 4 (continued)

“⇒” Assume (Π, I ) is a positive instance of HALTING, i.e. Π terminates
on I . In particular, there is a number n, such that Π terminates on I
within n steps. Hence, for such n, Πint(Π, I , n) = true by definition of
Πint and Π′(n, 0) = true by definition of Π′. Clearly, here 0 can be
replaced by any number. It follows that there exist n1, n2 (namely, n1 = n
and n2 = 0) such that Π′(n1, n2) = true. Thus Π′ is a positive instance
of EXIST-PAIR.

“⇐” Assume Π′ is a positive instance of EXIST-PAIR, i.e.
Π′(n1, n2) = true for some n1, n2. By definition of Π′, it must be the case
that Πint(Π, I , n1) = true. Due to the definition of Πint , Π terminates on
I within n1 steps. Thus (Π, I ) is a positive instance of HALTING.
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Reduction from REACHABILITY to 2-UNSAT

Recall that the complement of 2-SAT is as follows:

2-UNSAT

INSTANCE: Boolean formula ϕ in 2-CNF.

QUESTION: Is ϕ unsatisfiable?

We consider a polynomial-time reduction from REACHABILITY to
2-UNSAT. Let an arbitrary instance of REACHABILITY be given by
the undirected graph G = (V ,E ) and two vertices a, b ∈ V . In the
reduction we use a propositional variable Rv for each vertex v ∈ V . The
resulting instance ϕG ,a,b of 2-UNSAT is as follows:

ϕG ,a,b = Ra︸︷︷︸
(1)

∧¬Rb︸︷︷︸
(2)

∧
∧

[c,d ]∈E

(¬Rc ∨ Rd)

︸ ︷︷ ︸
(3)

.
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Exercise 5

Prove formally the “⇒” direction of the correctness of the reduction, i.e.
prove the following statement: if b is reachable from a in G , then ϕG ,a,b

is unsatisfiable.

Solution to Exercise 5

Suppose b is reachable from a in G . Then, by the definition of
reachability, there is a sequence v1, . . . , vn of vertices from G with:

(a) v1 = a, vn = b, and

(b) [vi , vi+1] ∈ E for all 1 ≤ i < n.

We apply induction to show that for all 1 ≤ i ≤ n, the proposition Rvi

must be set to true in any model of ϕG ,a,b (in other words, ϕG ,a,b |= Rvi ).

Base case: Suppose i = 1. By (1) in ϕG ,a,b, trivially ϕG ,a,b |= Rvi holds.
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Solution to Exercise 5 (continued)

Induction step. Assume i = n and ϕG ,a,b |= Rvi holds for all i ≤ n. We
have to show that ϕG ,a,b |= Rvi+1 holds. Since [vi , vi+1] ∈ E , we have the
clause ¬Rvi ∨ Rvi+1 in (3). Assume a model M of ϕG ,a,b. By the
induction hypothesis, Rvi is set true in M. Since, M must make
¬Rvi ∨ Rvi+1 true, it must make Rvi+1 true. That is, ϕG ,a,b |= Rvi+1 .

To conclude the proof, assume that ϕG ,a,b is satisfiable. Then it has
some model M. By the above argument, Rvn is set to true in M.
However, ϕG ,a,b has the clause ¬Rb and vn = b. Thus, in order for M to
be a model of ϕG ,a,b , Rn must be set to false in M. Contradiction.
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Exercise 6

Prove the “⇐” direction of the correctness of the reduction, i.e. prove
the following statement: if ϕG ,a,b is unsatisfiable, then b is reachable
from a in G .

Hint: the above is equivalent to proving the following statement: if b is
not reachable from a in G , then ϕG ,a,b is satisfiable.
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Solution to Exercise 6

We show: if b is not reachable from a in G , then ϕG ,a,b is satisfiable.

Assume b is not reachable from a in G . Let Vr be the set of all vertices
that are reachable from a in G . Note that a ∈ Vr .

We define a truth assignment for ϕG ,a,b. For all propositions Rv of
ϕG ,a,b, we set T (Rv ) = true iff v ∈ Vr .

It remains to see that ϕG ,a,b evaluates to true under the assignment T :

1 Clearly, (1) and (2) evaluate to true because a ∈ Vr and b 6∈ Vr ,
respectively. The latter is because, by the assumption, b is not
reachable from a.

2 To show that (3) evaluates to true, assume any [c , d ] ∈ E . We must
show that the clause (¬Rc ∨ Rd) evaluates to true in T . There are
two possibilities:

- c 6∈ Vr . Then T (Rc) = false by the definition of T and the clause
trivially evaluates to true.

- c ∈ Vr . Since [c, d ] ∈ E and c is reachable from a, d is also reachable
from a, and thus d ∈ Vr . Thus T (Rd) = true and the clause evaluates
to true.
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Problem: a bank robber on the loose!

Suppose we are in a country that has cities connected by roads. We
know that the robber is in city a and will try to run to city b.

There are n police cars available, and they have to be used to block the
roads so that the robber cannot reach the city b. Your problem is to
assign the available police cars to roads so that all possible paths from a
to b are blocked.

The above problem can be formalized as follows:

EDGE-REMOVAL

INSTANCE: A tuple (G , a, b, n), where

- G = (V ,E ) is an undirected graph,

- a, b ∈ V , and

- n is an integer.

QUESTION: Is it possible to remove n edges from G so that the
resulting graph does not have a path from a to b?
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Exercise 7

Give a proof that EDGE-REMOVAL is in NP, i.e. define a certificate
relation and briefly discuss that it is polynomially balanced and
polynomial-time decidable.
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Solution to Exercise 7

We define a binary relation R such that:

(e1, e2) ∈ R iff e1 = (G , a, b, n) is an instance of EDGE-REMOVAL and
e2 is a set of at most n edges from G whose removal from G makes b
unreachable from a.

Clearly, R is a certificate relation for EDGE-REMOVAL, since the
following equivalences hold: e1 = (G , a, b, n) is a positive instance of
EDGE-REMOVAL ⇔ there exists a set e2 of at most n edges whose
removal from G makes b unreachable from a ⇔ (e1, e2) ∈ R.

R is polynomially balanced because a subset of edges of a graph can be
represented in space that is linear in the size of the considered graph.

Finally R is decidable in polynomial time because, given a graph G , a
pair of vertices a, b and a set of edges D to be removed from G , one can
check in polynomial time if the deletion makes b unreachable from a.
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Exercise 8

Provide a reduction from 3-COLORABILITY to 4-COLORABILITY,
and argue that your reduction is correct.

Hint: for the reduction it suffices to introduce one additional node to the
input graph.

It is known that 3-COLORABILITY is NP-hard. Thus, your reduction
shows that 4-COLORABILITY is NP-hard as well.
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Solution to Exercise 8

Assume an arbitrary instance G = (V ,E ) of 3-COLORABILITY. We
create a new graph G ′ = (V ′,E ′), where

V ′ = V ∪ {v} where v is a fresh vertex, and

E ′ = E ∪ {[v , v ′] | v ′ ∈ V }.
Intuitively, we add to G a new vertex v and connect it to each original
vertex of G .

It is easy to see that G is a positive instance of 3-COLORABILITY iff
G ′ is a positive instance of 4-COLORABILITY.

(⇒) Suppose G can be properly colored with 3 colors (say, red,blue and
green). Then the existing coloring can be extended to G ′ by coloring v
with the additionally available color (say, yellow).

(⇐) Suppose G ′ can be properly colored with 4 colors. Since e has an
edge to every original node of G , all the original nodes must be properly
colored with 3 colors only.
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Exercise 9

Argue that the following problem is solvable in logarithmic space:

PREFIX

INSTANCE: A list L = 〈s1, . . . , sn〉, where each si is either 0 or 1.

QUESTION: Does there exist 1 ≤ j ≤ n such that 〈s1, . . . , sj〉 has
the same number of 0s and 1s.
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Solution to Exercise 9

We present next a procedure that decides PREFIX:

Boolean solvePREFIX (List L)

Integer i //pointer in the list
Integer c0, c1; //counters

c0 = 0; c1 = 0
for i from 1 to length(L) do {

if L(i) = 0 then c0 := c0 + 1
if L(i) = 1 then c1 := c1 + 1
if c0 = c1 then return true

}

return false
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Solution to Exercise 9

The procedure uses 3 variables i , c1, c2. For a list L = (s1, . . . , sn), the
variable i needs at most dlog ne bits to be represented in binary. Observe
that for a very large L, the size of i may well exceed any constant bound
(in particular, 32- or 64-bit integers are not sufficient in general). The
variables c1, c2 also only need logarithmic space. Indeed, the maximal
value that we can encounter during summing is bounded by n. Thus to
represent c1, c2 we need 2× dlog(n)e bits.
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Exercise 10

Let L = {w ∈ {0, 1}∗ | w has the form 0∗1∗}, i.e. L is the set of all
strings w that can be split into 2 words w = w1w2 such that (a) w1 is a
sequence of 0s, and (b) w2 is a sequence of 1s. Define a Turing machine
M that decides L, i.e. define a tuple M = (K ,Σ, δ, s) such that, for all
w ∈ {0, 1}∗, we have:

if w ∈ L, then M(w) = ”yes”;

if w 6∈ L, then M(w) = ”no”.

Additionally, provide a high-level description of M.
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Solution to Exercise 10

M = (K ,Σ, δ, s0) with K = {s0, s1}, Σ = {0, 1,t, .} and a transition
function δ defined as follows:

p ∈ K σ ∈ Σ δ(p, σ)

s0 . (s0, .,→)
s0 0 (s0, 0,→)
s0 1 (s1, 1,→)
s0 t (“yes”,t,−)
s1 1 (s1, 1,→)
s1 0 (“no”, 0,−)
s1 t (“yes”,t,−)

(note: δ(s1, .) can be arbitrary)
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Solution to Exercise 10 (continued)

High-level description of M: As long as the machine is in state s0, it
scans the word from left to right. If it reaches the end of the word, it
outputs “yes” (it has scanned a word of the form 0∗). If it reads the
symbol 1, it switches the state from s0 to s1. In state s1 the machine
ensures that the remainder of the word has no occurrences of 0s.
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