
Formale Methoden der Informatik

Block 2: Satisfiability Problems

5. Equality Logic and Uninterpreted Function Symbols

Uwe Egly

Knowledge-Based Systems Group
Institute of Information Systems
Vienna University of Technology

1 / 35

The overall procedure again

Goal of the SAT part

Provide necessary tools and background info to construct a decision
procedure for equality logic with uninterpreted functions (EUF).

Overall procedure

The problem of deciding a EUF -formula ϕEUF is reduced to the
SAT problem of a propositional formula ϕP such that

ϕEUF is E -valid iff ϕE is E -valid iff ϕP is unsat

Then a model of ϕP provides a counterexample to the E-validity of
ϕEUF !

2 / 35

The task for today

Given an input formula ϕEUF . We want to construct an
E-formula ϕE such that

ϕEUF is E -valid if and only if ϕE is E -valid

The construction of ϕE from ϕEUF (reduction) requires run
time polynomial in the size of ϕEUF .

An overview of the translation can be found in:
D. Kroening, O. Strichman. Decision Procedures, Springer, 2008

3 / 35

Outline

Equality logic with uninterpreted function symbols

Reduction of uninterpreted functions to equality logic
Ackermann’s reduction

Learning Objectives

4 / 35

Interpreted functions

Every function is a mapping from a domain to a range.

Example: + over N0 is a mapping from N0 × N0 to N0.

For interpreted functions, theory reasoning is involved,

e.g., Presburger arithmetic [link] or Peano arithmetic [link]

What if this reasoning is computationally too demanding for
(practical) use?

☞ Try to make reasoning simpler by dumping the theory
underlying the function!

5 / 35

http://en.wikipedia.org/wiki/Presburger_arithmetic
http://en.wikipedia.org/wiki/Peano_arithmetic

Uninterpreted functions (UFs)

Basic idea
Neglect basic properties of a function (except being a function).

Example

Consider ϕ : x + 0
.
= x which is valid in Presburger arithmetic. We

replace the interpreted binary function + by an uninterpreted
binary function F resulting in the formula ϕ′ : F (x , 0)

.
= x .

Contrary to ϕ, ϕ′ is not valid. The binary function symbol F can
represent any binary function. It is not restricted by any theory
axiom and the only property of F is: it is a function.

6 / 35

Uninterpreted functions cont’d

☞ Uninterpreted functions can be used for abstracting away
certain properties and for generalizing theorems.

☞ The introduction of uninterpreted functions into ϕ makes the
resulting formula ϕ′ weaker:

If ϕ′ is T -valid then ϕ is T -valid. Why?

7 / 35

Functional consistency

The basic axiom for any function is functional consistency.
(functional congruence, substitution axiom schemes for functions)

Meaning: If you put the same argument(s) to a function, then
the same function value is returned.

The functional consistency axiom schema is

x1
.
= x ′1 ∧ · · · ∧ xn

.
= x ′n → F (x1, . . . , xn)

.
= F (x ′1, . . . , x

′
n)

Sometimes functional consistency is all what we need for a
proof. (The hope is that the use of UFs simplifies the proof!)

Applications and limitations will be discussed later.

8 / 35

The syntax of equality logic with UFs (EUF)

Definition (The syntax of equality logic with UFs (EUF -logic))

formula ::= atom | (formula) |¬formula | formula ∧ formula |

formula ∨ formula | formula→ formula

atom ::= term
.
= term | predicate-symbol(list of terms)

term ::= identifier | function-symbol(list of terms)

Remarks

1. PSs (except
.
=) and function symbols are uninterpreted.

2. Uninterpreted function symbols are denoted by capital letters.

3. list of terms: a possibly empty list of terms
(F () is often identified with F)

4. Identifiers are often called (term) variables.

5. ϕEUF denotes an EUF -formula.

9 / 35

The removal of uninterpreted predicates (UPs)

Definition (Removal of UPs from an EUF -formula ϕEUF)

Replace in ϕEUF any occurrence of the UP of the form p(t1, . . . , tn)
by Fp(t1, . . . , tn)

.
= xp, where Fp is the new UF symbol for p and

xp is the new term variable for p.

The resulting formula is ψEUF and does not contain any UP
symbol. We have:

ϕEUF is E -satisfiable iff ψEUF is E -satisfiable

From now on, we consider only EUF -formulas without UPs.

10 / 35

A motivating example for equality logic with UFs

int power3 (int in) {

int i, out_a;

out_a = in;

for(i=0; i<2; i++)

out_a = out_a * in;

return out_a;

}

int power3_n (int in) {

int out_b;

out_b = (in * in) * in;

return out_b;

}

Prove equivalence of the two programs (i.e., they return, for
every identical input, exactly the same value).

Proving equivalence of programs is undecidable in general!

It is possible here because the loop is bounded.

11 / 35

Compute the programs’ input/output relation (1)

1. Remove variable declarations and return statements.

2. Unroll the for loop.

3. Replace each left-hand side variable in each assignment by a
new auxiliary variable and . . .

4. propagate the change through the program.

5. Conjoin all program statements.

Resulting formulas: ϕ for power3 and ϕn for power3_n

12 / 35

Compute the programs’ input/output relation (2)

int power3 (int in) {

int i, out_a;

out_a = in;

for(i=0; i<2; i++)

out_a = out_a * in;

return out_a;

}

ϕ : o0a
.
= in ∧

o1a
.
= o0a ∗ in ∧

o2a
.
= o1a ∗ in

int power3_n (int in) {

int out_b;

out_b = (in * in) * in;

return out_b;

}

ϕn : o0b
.
= (in ∗ in) ∗ in

We have to show the validity of ϕ ∧ ϕn → o2a
.
= o0b!

13 / 35

The introduction of UFs

Problem

The proof of validity has to take machine arithmetic into account.
Reasoning about 32 or 64 bit machine arithmetic is hard.

Idea

Skip nasty details by replacing multiplication by an “abstract func-
tion” G satisfying less properties.

We obtain from ϕ and ϕn the formulas

ϕEUF : o0a
.
= in ∧ o1a

.
= G(o0a, in) ∧ o2a

.
= G(o1a, in)

ϕEUF
n : o0b

.
= G(G(in, in), in)

Attempt to validate ϕEUF ∧ ϕEUF
n → o2a

.
= o0b

☞ See extra-sheet5-1.pdf in TUWEL for a detailed proof!

If successful, then ϕ ∧ ϕn → o2a
.
= o0b is also valid!

(The converse does not hold in general!)

14 / 35

Outline

Equality logic with uninterpreted function symbols

Reduction of uninterpreted functions to equality logic
Ackermann’s reduction

Learning Objectives

15 / 35

How to prove a EUF -formula valid?

We want to know whether a EUF -formula is valid.

Instead of developing a separate algorithm for validity, we
reduce it to equality logic in a validity-preserving way.

There are two main approaches for such a reduction:

Ackermann’s reduction (AR)

Bryant’s reduction (BR) (not discussed in the lecture)

We discuss the first approach in detail.

Algorithms for both can be found on p. 67 and p. 70 in D. Kroening,
O. Strichman. Decision Procedures. A slightly modified version is
available in TUWEL as an additional hand-out.

16 / 35

The key idea of the reductions

The main steps in the construction

1. Represent the propositional structure of the input
EUF -formula ϕEUF by an E -formula flatE (ϕEUF).

2. Construct an E -formula FCE (ϕEUF) which re-introduces the
effects of functional constraints.

3. The resulting E -formula ϕE is FCE (ϕEUF)→ flatE (ϕEUF).

Q: For which FS do we need functional constraints?

☞ For all FS with arity > 0! (Not for constant symbols)

☞ Define F(ϕEUF): the set of all FS from ϕEUF with arity > 0!

17 / 35

The basic principle of Ackermann’s reduction (1)

Given a formula ϕEUF with mF instances F1, . . . ,FmF
of an UF F

(generalizations to more FSs are discussed later)

1. Number the function instances (e.g., from inside out):

F (F (x))
.
= 0 =⇒ F2(F1(x))

.
= 0

2. Associate to each function instance Fi a new term variable fi :

F2(F1(x))
.
= 0 =⇒ F2(

f1
︷ ︸︸ ︷

F1(x))
︸ ︷︷ ︸

f2

.
= 0

Remarks:

A constant or a variable is always associated to itself.

Different occurrences of the same instance are associated with
the same term variable.

We use T (t) to denote the symbol associated to t.

18 / 35

The basic principle of Ackermann’s reduction (2)

3. Compute flatE (ϕEUF) by replacing top-level instances Fi by
the associated term variable fi .

F2(

f1
︷ ︸︸ ︷

F1(x))
︸ ︷︷ ︸

f2

.
= 0 =⇒ f2

.
= 0

4. Let arg(Fi) denote the argument(s) of a function instance Fi .
Compute, for every FS F ∈ F(ϕEUF), the formula FCE

F (ϕEUF)
∧mF−1

i=1

∧mF

j=i+1

(
T (arg(Fi))

.
= T (arg(Fj))→ fi

.
= fj
)
.

Then the result is FCE (ϕEUF) :
∧

F∈F(ϕEUF)
FCE

F (ϕEUF).

☞ For the example formula, we get FCE (ϕEUF) : x
.
= f1 → f1

.
= f2.

☞ Then ϕE : (x
.
= f1 → f1

.
= f2)→ f2

.
= 0.

19 / 35

Ackermann’s reduction: An example

Consider ϕEUF : x1 6
.
= x2 ∨ F (x1)

.
= F (x2) ∨ F (x1) 6

.
= F (x3).

First we number the instances of the only (proper) UF (different
occurrences of the same instance get the same number).

x1 6
.
= x2 ∨ F1(x1)

.
= F2(x2) ∨ F1(x1) 6

.
= F3(x3)

Compute flatE (ϕEUF) by replacing top-level instances Fi by the
associated term variable fi .

x1 6
.
= x2 ∨ f1

.
= f2 ∨ f1 6

.
= f3

Add functionality constraints for F , i.e., compute FCE
F (ϕEUF):

(x1
.
= x2 → f1

.
= f2) ∧ (x1

.
= x3 → f1

.
= f3) ∧ (x2

.
= x3 → f2

.
= f3)

With FCE
F (ϕEUF) = FCE (ϕEUF), we have

ϕE : FCE
F (ϕEUF)→ (x1 6

.
= x2 ∨ f1

.
= f2 ∨ f1 6

.
= f3)

20 / 35

Ackermann’s reduction: An example with more UFs (1)

Consider ϕEUF : x1
.
= x2 → F (F (G(x1)))

.
= F (F (G(x2))).

Number the instances of the UFs separately for each FS and
associate term variables.

x1
.
= x2 → F2(F1(

g1
︷ ︸︸ ︷

G1(x1))
︸ ︷︷ ︸

f1

)

︸ ︷︷ ︸

f2

.
= F4(F3(

g2
︷ ︸︸ ︷

G2(x2))
︸ ︷︷ ︸

f3

)

︸ ︷︷ ︸

f4

Compute flatE (ϕEUF) by replacing top-level instances of
functions by the associated term variables resulting in

x1
.
= x2 → f2

.
= f4.

21 / 35

Ackermann’s reduction: An example with more UFs (2)

Add functionality constraints, i.e., compute FCE
F (ϕEUF) and

FCE
G(ϕEUF) independently and conjoin the results:

g1
.
= f1 → f1

.
= f2 ∧

g1
.
= g2 → f1

.
= f3 ∧

g1
.
= f3 → f1

.
= f4 ∧

f1
.
= g2 → f2

.
= f3 ∧

f1
.
= f3 → f2

.
= f4 ∧

g2
.
= f3 → f3

.
= f4 ∧

x1
.
= x2 → g1

.
= g2

Then we have ϕE :

FCE
F (ϕEUF) ∧ FCE

G(ϕEUF)→ (x1
.
= x2 → f2

.
= f4)

22 / 35

The program equivalence example again (1)

Apply AR to ψEUF : ϕEUF ∧ ϕEUF
n → o2a

.
= o0b with

ϕEUF : o0a
.
= in ∧ o1a

.
= G(o0a, in) ∧ o2a

.
= G(o1a, in)

ϕEUF
n : o0b

.
= G(G(in, in), in)

Number the occurrences of G starting with 1 in the order

G(o0a, in), G(o1a, in), G(in, in), G(G(in, in), in).

We compute flatE (ψEUF) which is

o0a
.
= in ∧ o1a

.
= g1 ∧ o2a

.
= g2 ∧ o0b

.
= g4 → o2a

.
= o0b.

23 / 35

The program equivalence example again (2)

Problem
So far, we dealt only with unary function symbols. What if the
arity n is bigger than 1?

Solution
Simply read

T (arg(Fi))
.
= T (arg(Fj)) → fi

.
= fj which is

T ((s1, . . . , sn))
.
= T ((t1, . . . , tn))) → fi

.
= fj as

(T (s1)
.
= T (t1) ∧ · · · ∧ T (sn)

.
= T (tn)) → fi

.
= fj

24 / 35

The program equivalence example again (3)

We compute FCE
G(ψEUF) which is

(o0a
.
= o1a ∧ in

.
= in → g1

.
= g2) ∧

(o0a
.
= in ∧ in

.
= in → g1

.
= g3) ∧

(o0a
.
= g3 ∧ in

.
= in → g1

.
= g4) ∧

(o1a
.
= in ∧ in

.
= in → g2

.
= g3) ∧

(o1a
.
= g3 ∧ in

.
= in → g2

.
= g4) ∧

(in
.
= g3 ∧ in

.
= in → g3

.
= g4)

Remark: FCE
G(ψEUF) can be simplified!

We get ϕE : FCE
G(ψEUF)→ flatE (ψEUF)

How can we decide ϕE ?

25 / 35

Homework

Show the following:

ϕEUF is satisfiable iff FCE (ϕEUF) ∧ flatE (ϕEUF) is satisfiable.

FCE (ϕEUF) and flatE (ϕEUF) are obtained from ϕEUF by
Ackermann’s reduction.

(Hint: FCE (ϕEUF) = FCE (¬ϕEUF))

26 / 35

The big picture again

1. Given a formula ϕEUF : Try to prove it E -valid.

27 / 35

The big picture again

1. Given a formula ϕEUF : Try to prove it E -valid.

2. Translate it to ϕE by AR (it preserves E -validity).

28 / 35

The big picture again

1. Given a formula ϕEUF : Try to prove it E -valid.

2. Translate it to ϕE by AR (it preserves E -validity).

3. ϕE : FCE (ϕEUF)→ flatE (ϕEUF) and ϕEUF is E -valid iff ϕE is
E -valid.

29 / 35

The big picture again

1. Given a formula ϕEUF : Try to prove it E -valid.

2. Translate it to ϕE by AR (it preserves E -validity).

3. ϕE : FCE (ϕEUF)→ flatE (ϕEUF) and ϕEUF is E -valid iff ϕE is
E -valid.

4. Translate to SAT:
ϕEUF is E -valid iff ϕE

1 : FCE (ϕEUF)∧¬flatE (ϕEUF) is E -unsatisfiable

30 / 35

The big picture again

1. Given a formula ϕEUF : Try to prove it E -valid.

2. Translate it to ϕE by AR (it preserves E -validity).

3. ϕE : FCE (ϕEUF)→ flatE (ϕEUF) and ϕEUF is E -valid iff ϕE is
E -valid.

4. Translate to SAT:
ϕEUF is E -valid iff ϕE

1 : FCE (ϕEUF)∧¬flatE (ϕEUF) is E -unsatisfiable

ϕEUF E -valid iff ϕE E -valid
iff ¬ϕE E -unsatisfiable

iff ¬
(
FCE (ϕEUF)→ flatE (ϕEUF)

)
E -unsatisfiable

iff FCE (ϕEUF) ∧ ¬flatE (ϕEUF) E -unsatisfiable

31 / 35

The big picture again

1. Given a formula ϕEUF : Try to prove it E -valid.

2. Translate it to ϕE by AR (it preserves E -validity).

3. ϕE : FCE (ϕEUF)→ flatE (ϕEUF) and ϕEUF is E -valid iff ϕE is
E -valid.

4. Translate to SAT:
ϕEUF is E -valid iff ϕE

1 : FCE (ϕEUF)∧¬flatE (ϕEUF) is E -unsatisfiable

5. Simplification yields ϕE
2 with ϕE

2 is E -sat iff ϕE
1 is E -sat.

Therefore ϕEUF is E -valid iff ϕE
2 is E -unsatisfiable.

32 / 35

The big picture again (cont’d)

6. Generate from ϕE
2 the propositional formula ϕP with

ϕP is satisfiable iff ϕE
2 is E -satisfiable.

Therefore ϕEUF is E -valid iff ϕP is unsatisfiable.

33 / 35

The big picture again (cont’d)

6. Generate from ϕE
2 the propositional formula ϕP with

ϕP is satisfiable iff ϕE
2 is E -satisfiable.

Therefore ϕEUF is E -valid iff ϕP is unsatisfiable.

7. Give ϕP to a SAT solver. Possible results are:

UNSAT Then ϕEUF is E -valid.

SAT Then ϕEUF is not E -valid. A counter-example to the E -validity
of ϕEUF can be constructed from a model of ϕP .

34 / 35

Learning objectives

You should be able to

explain the syntax of equality logic with UFs,

show (using semantics) an EUF -formula valid,

explain how uninterpreted predicates can be eliminated from
an EUF -formula (including the correctness proof),

explain the essence of uninterpreted functions,

translate an EUF -formula to an E-formula,

define AR for more than one FS and for FSs with arity > 1,

explain in detail and prove the logical connections (e.g., wrt
validity and satisfiability) between ϕEUF , ϕE and ϕP .

35 / 35

	Equality logic with uninterpreted function symbols
	Reduction of uninterpreted functions to equality logic
	Ackermann's reduction

	Learning Objectives

