
Formale Methoden der Informatik

Block 2: Satisfiability Problems

1. Preparatory Concepts

Uwe Egly

Knowledge-Based Systems Group
Institute of Information Systems
Vienna University of Technology

1 / 67

General goal of Block 2 (SAT)

Provide the necessary tools and background info to construct a
decision procedure for equality logic with uninterpreted functions
(EUF), which has various application in hardware and software
verification, e.g.:

proving equivalence of two hardware designs, or

proving correctness of a compiler by checking equivalence
between the source and the target program.

Other decision procedures (related to verification) are the ones for
linear arithmetic, bit vectors, arrays, pointer arithmetic, . . .

2 / 67

General goal of Block 2 (cont’d)

Overall procedure

The problem of deciding a EUF-formula ϕEUF is stepwisely reduced
to the SAT problem of a propositional formula ϕP , such that (s.t.)

ϕEUF is valid iff ϕP is unsatisfiable

Models of ϕP provide counterexamples for the validity of ϕEUF . As
we will see, the reduction is PTIME-computable.

3 / 67

General goal of Block 2 (cont’d)

The main steps of the procedure

1. Reduce ϕEUF to a validity-equivalent formula ϕE with equality
but without function symbols

2. Reduce ϕE to ϕP such that ϕE is valid iff ϕP is unsatisfiable

Q: Why do we use SAT as a target formalism for the reduction?

☞ Because of huge improvements of SAT solvers over the last
decade!

4 / 67

Results of the SAT 2009 application benchmarks
for leading solvers from 2002 to 2010

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180

C
P

U
 T

im
e

(i
n

 s
ec

o
n

d
s)

Number of problems solved

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Limmat 02
Zchaff 02
Berkmin 561 02
Forklift 03
Siege 03
Zchaff 04
SatELite 05
Minisat 2.0 06
Picosat 07
Rsat 07
Minisat 2.1 08
Precosat 09
Glucose 09
Clasp 09
Cryptominisat 10
Lingeling 10
Minisat 2.2 10

?0I�&IVVI���A

5 / 67

The topics of this block
Or what do we need in order to achieve our goal?

1. Preparatory concepts

2. Techniques for modern SAT solvers

3. First-order theories

4. Equality logic

5. Equality logic and uninterpreted function symbols

6 / 67

Background reading
Decision Procedures–an Algorithmic Point of View, Springer, 2008

Daniel Kroening

Ofer Strichman

7 / 67

Background reading
The Calculus of Computation, Springer, 2007

Aaron R. Bradley

Zohar Manna

8 / 67

Background reading
The Calculus of Computation, Springer, 2007

Aaron R. Bradley

Zohar Manna

Furth
er

mate
ria

l ava
ilab

le
for

fre
e!

See
TUWEL for

links to
furth

er
(dow

n-

loadable)
mate

ria
l inclu

ding art
icle

s and

a PDP document rel
ati

ng the mate
ria

l to

differe
nt topics

.

9 / 67

Connections to other blocks of this lecture

From Block 1, we get

the definition of the SAT problem and

the principle of faithful PTIME computable reductions.

For Block 4, we provide

the basics of SAT solving for, e.g., bounded model checking, and

a fully worked-out example of a reduction of an interesting
theory to SAT.

10 / 67

Outline

General information on Block 2

Introduction
Motivation
Examples

Equivalence checking of if-then-else statements
The circuit example

Syntax of propositional logic

Semantics of propositional logic
Notations
Entailment

Different normal forms and translation procedures

Learning Objectives

11 / 67

Why logic and formal methods in CS studies?

Programming
PROLOG, Boolean expressions in if-then, assertions, . . .

Languages for and reasoning about specifications,
dynamic behavior (temporal logics), consistency, . . .

Reasoning about properties of SW, e.g., dependencies
between packages
http://old-de.opensuse.org/Paketverwaltung/SAT_Solver/Grundlagen

http://files.opensuse.org/opensuse/en/b/b9/Fosdem2008-solver.pdf

Knowledge representation
Web ontologies, description logics, reasoning under
incomplete/uncertain information, . . .

Hardware
circuit specification, (automated) verification of circuits, . . .

and much more!!!

12 / 67

Why logic and formal methods in CS studies? (cont’d)

Systems engineering for HW/SW is extremely error-prone

There are many examples for disasters like the Ariane 5 Flight
501 which crashed due to an integer overflow, or the launch
failure of a Mariner 1 rocket due to a missing hyphen.
Consider the two links for more info.

[link to a wiki article on software engineering disasters]

[link to a wiki article on programming bugs]

There is a strong demand to improve the product quality of
both software and hardware (especially in safety-critical
applications like embedded systems)

☞ Formal methods allow to define (1) what you want (spec) and
(2) what you have (implementation). You can

verify that (1) and (2) are “identical” or

synthesize (2) from (1)

13 / 67

http://top-topics.thefullwiki.org/Software_engineering_disasters
http://top-topics.thefullwiki.org/Programming_bugs

Types of logics interesting for CS

There is not the logic for CS, but many of them

Besides classical logic, there are non-classical logics

minimal and intuitionistic logic (“constructive” logics)

modal logics, temporal logics like LTL (☞ Block 4), . . .

many-valued logics, fuzzy logics

Many of these logics come in different “levels”

Propositional logics (PL0)

First-order logics (PL1): (quantifiers over object variables)

Second-order (quantifiers over function/predicate symbols)

and even higher-order logics

14 / 67

Example: Optimization of if-then-else statements

original C code optimized C code

i f (! a && ! b) h () ;
e l s e i f (! a) g () ;
e l s e f () ;

i f (a) f () ;
e l s e i f (b) g () ;
e l s e h () ;

↓ ↑
i f (! a) {

i f (! b) h () ;
e l s e g () ;

} e l s e f () ;

→
i f (a) f () ;
e l s e {

i f (! b) h () ;
e l s e g () ; }

15 / 67

Example: Optimization of if-then-else statements

original C code optimized C code

i f (! a && ! b) h () ;
e l s e i f (! a) g () ;
e l s e f () ;

i f (a) f () ;
e l s e i f (b) g () ;
e l s e h () ;

↓ ↑
i f (! a) {

i f (! b) h () ;
e l s e g () ;

} e l s e f () ;

→
i f (a) f () ;
e l s e {

i f (! b) h () ;
e l s e g () ; }

Q: Is the optimized code equivalent to the original code?

16 / 67

Example: Optimization of if-then-else statements

original C code optimized C code

i f (! a && ! b) h () ;
e l s e i f (! a) g () ;
e l s e f () ;

i f (a) f () ;
e l s e i f (b) g () ;
e l s e h () ;

↓ ↑
i f (! a) {

i f (! b) h () ;
e l s e g () ;

} e l s e f () ;

→
i f (a) f () ;
e l s e {

i f (! b) h () ;
e l s e g () ; }

Q: Is the optimized code equivalent to the original code?

Prove it!

17 / 67

Translation of if-then-else statements

Represent procedures as independent Boolean variables

original optimized
if ¬a ∧ ¬b then h

else if ¬a then g

else f

if a then f

else if b then g

else h

Recursively compile if-then-else into a propositional formula

compile(if x then y else z) ≡ (x ∧ y) ∨ (¬x ∧ z)

Check equivalence between original and optimized version

compile(original) ↔ compile(optimized)

18 / 67

How to check equivalence?

Compilation (+ simple manipulations) result in:

¬a∧¬b∧h∨ (a∨b)∧ (¬a∧g ∨a∧ f)↔ a∧ f ∨¬a∧ (b∧g ∨¬b∧h)

Reformulate the problem as a SAT problem:

Is there an assignment to a, b, f , g , h, which results in
different evaluations of original and optimized?

Or equivalently:

Is the propositional formula

compile(original) = compile(optimized)

satisfiable?

A model provides a comprehensible counterexample

19 / 67

Example: Is the implementation of a circuit correct?

Does the implemented circuit compute the specified function?

Spec : ((p ∧ q) ∨ r) ∧ (¬(p ∧ q) ∨ s)

&

A1

p

q

≥1

O1
r

1

N1

≥1

O2
s

&

A2

The definition of the gate symbols can be found at:
[Definition of gates (English)] [Definition of gates (German)]

20 / 67

http://en.wikipedia.org/wiki/Logic_gate
http://de.wikipedia.org/wiki/Logikgatter

Example: Is the implementation of a circuit correct?

Does the implemented circuit compute the specified function?

Spec : ((p ∧ q) ∨ r) ∧ (¬(p ∧ q) ∨ s)

&

A1

p

q

A1↔ p ∧ q
≥1

O1

O1↔ A1 ∨ r

r

1

N1

N1↔ ¬A1

≥1

O2
s O2↔ N1 ∨ s

&

A2

A2↔ O1 ∧ O2

Name each gate’s output with a new variable and set the variable
equivalent to the gate’s input(s) and the gate’s function!

21 / 67

How to model and solve the problem?

Modeling: Abstract a given problem P into logic PL0 (P ′)

Is the implementation correct (does Impl comply w. Spec)?

Take the circuit for Impl with output A2

Take Spec as a circuit with output B

Connect A2 and B to the 2 inputs of an XOR with output C

Check whether C = 0 for all input values of p, q, r , s

P ′ is now a reasoning problem, not a test problem!

Proof: Use automatic decision procedures to determine the
solution of P, i.e., compute satisfiability of P ′

SAT solvers and BDDs

Model checkers

Theorem provers

22 / 67

Outline

General information on Block 2

Introduction
Motivation
Examples

Equivalence checking of if-then-else statements
The circuit example

Syntax of propositional logic

Semantics of propositional logic
Notations
Entailment

Different normal forms and translation procedures

Learning Objectives

23 / 67

The syntax of propositional logic (alternative 1)

Given a countable set, BV, of Boolean variables

Boolean variables like p, q, r , p1, . . . represent facts:
e.g., r represents “it is raining”

Use p, q, . . . as metavariables for BVs and ϕ,ψ, . . . as
metavariables for formulas

Inductive definition of the set L of propositional formulas

B1: Every p ∈ BV is a formula (called atomic formula or atom)

B2: ⊤ (verum) and ⊥ (falsum) are formulas

S1: If ϕ is a formula, then so is (¬ϕ) (negation)

S2: If ϕ1, ϕ2 are formulas, then so are (ϕ1 ∧ ϕ2) (conjunction),
(ϕ1 ∨ ϕ2) (disjunction), (ϕ1 → ϕ2) (implication), (ϕ1 ↔ ϕ2)
(equivalence) and (ϕ1 ⊕ ϕ2) (exclusive-or)

NB: Bi is the ith base case, Si is the ith step case

24 / 67

The syntax of propositional logic (alternative 2)

L ::= ⊤ |⊥ |BV | (¬L) | (L ∧ L) | (L ∨ L) | (L → L) |
(L ↔ L) | (L ⊕ L)

Read this as: L is the smallest set such that 1. and 2. hold:

1. If p ∈ BV, p is ⊤ or p is ⊥, then p ∈ L

2. If ϕ,ψ ∈ L then

(¬ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ), (ϕ↔ ψ), (ϕ⊕ ψ) ∈ L

To save parenthesis, use the following ranking of binding
strength: ¬, ∧, ∨, →, ↔, ⊕ (¬ binds stronger than ∧, etc.)

Example: ¬p ∧ q → r ∨ s means (((¬p) ∧ q)→ (r ∨ s))

25 / 67

The syntax of propositional logic cont’d

Definition

1. A literal is ⊤, ⊥, an atom or the negation thereof

2. A clause is a disjunction of literals

3. Immediate subformula (relation)

ϕ is an immediate subformula (isf) of ¬ϕ

ϕ1 and ϕ2 are isfs of (ϕ1 ◦ ϕ2) for ◦ ∈ {∧,∨,→,↔,⊕}

4. Subformula relation: reflexive-transitive closure of the
immediate subformula relation

Example

Compute all subformulas of ¬p ∧ q → r ∨ s:

¬p ∧ q → r ∨ s,

26 / 67

The syntax of propositional logic cont’d

Definition

1. A literal is ⊤, ⊥, an atom or the negation thereof

2. A clause is a disjunction of literals

3. Immediate subformula (relation)

ϕ is an immediate subformula (isf) of ¬ϕ

ϕ1 and ϕ2 are isfs of (ϕ1 ◦ ϕ2) for ◦ ∈ {∧,∨,→,↔,⊕}

4. Subformula relation: reflexive-transitive closure of the
immediate subformula relation

Example

Compute all subformulas of ¬p ∧ q → r ∨ s:

¬p ∧ q → r ∨ s, ¬p ∧ q, r ∨ s,

27 / 67

The syntax of propositional logic cont’d

Definition

1. A literal is ⊤, ⊥, an atom or the negation thereof

2. A clause is a disjunction of literals

3. Immediate subformula (relation)

ϕ is an immediate subformula (isf) of ¬ϕ

ϕ1 and ϕ2 are isfs of (ϕ1 ◦ ϕ2) for ◦ ∈ {∧,∨,→,↔,⊕}

4. Subformula relation: reflexive-transitive closure of the
immediate subformula relation

Example

Compute all subformulas of ¬p ∧ q → r ∨ s:

¬p ∧ q → r ∨ s, ¬p ∧ q, r ∨ s, ¬p, q,

28 / 67

The syntax of propositional logic cont’d

Definition

1. A literal is ⊤, ⊥, an atom or the negation thereof

2. A clause is a disjunction of literals

3. Immediate subformula (relation)

ϕ is an immediate subformula (isf) of ¬ϕ

ϕ1 and ϕ2 are isfs of (ϕ1 ◦ ϕ2) for ◦ ∈ {∧,∨,→,↔,⊕}

4. Subformula relation: reflexive-transitive closure of the
immediate subformula relation

Example

Compute all subformulas of ¬p ∧ q → r ∨ s:

¬p ∧ q → r ∨ s, ¬p ∧ q, r ∨ s, ¬p, q, r , s,

29 / 67

The syntax of propositional logic cont’d

Definition

1. A literal is ⊤, ⊥, an atom or the negation thereof

2. A clause is a disjunction of literals

3. Immediate subformula (relation)

ϕ is an immediate subformula (isf) of ¬ϕ

ϕ1 and ϕ2 are isfs of (ϕ1 ◦ ϕ2) for ◦ ∈ {∧,∨,→,↔,⊕}

4. Subformula relation: reflexive-transitive closure of the
immediate subformula relation

Example

Compute all subformulas of ¬p ∧ q → r ∨ s:

¬p ∧ q → r ∨ s, ¬p ∧ q, r ∨ s, ¬p, q, r , s, p

30 / 67

Propositional formulas as trees

Formulas can be depicted as formula trees

Example: ((p ∧ q)→ r)↔ (p → (q → r))

↔

→

∧

p q

r

→

p →

q r

31 / 67

Outline

General information on Block 2

Introduction
Motivation
Examples

Equivalence checking of if-then-else statements
The circuit example

Syntax of propositional logic

Semantics of propositional logic
Notations
Entailment

Different normal forms and translation procedures

Learning Objectives

32 / 67

The semantics of propositional logic

Definition

1. A Boolean value (or truth value) is either 0 (false) or 1 (true)

2. An interpretation function for a set P of Boolean variables:

mapping I : P 7→ {0, 1}

Interpretation functions are often called truth assignments, e.g.,
I assigns 1 to p ∈ P, i.e., I(p) = 1

Since we want to “evaluate” formulas under I, we have to extend I

to formulas

33 / 67

The extension of I to formulas

I(⊤) = 1 and I(⊥) = 0

I(¬ϕ) = 1 iff I(ϕ) = 0

I(ϕ ∧ ψ) = 1 iff I(ϕ) = I(ψ) = 1

I(ϕ ∨ ψ) = 1 iff I(ϕ) = 1 or I(ψ) = 1

I(ϕ→ ψ) = 1 iff I(ϕ) = 0 or I(ψ) = 1

I(ϕ↔ ψ) = 1 iff I(ϕ) = I(ψ)

I(ϕ⊕ ψ) = 1 iff I(ϕ) 6= I(ψ)

Equivalent notations:

ϕ is true under I iff I satisfies ϕ iff I(ϕ) = 1 iff I |= ϕ

ϕ is false under I iff I does not satisfy ϕ iff I(ϕ) = 0 iff I 6|= ϕ

34 / 67

Some notations

If I satisfies ϕ, then we call I a model of ϕ

Mod(ψ) is the class of all models of ψ

ϕ is satisfiable (valid) if ϕ is true in some (all) interpretations

ϕ is unsatisfiable if ϕ is false in all interpretations

Formulas ϕ and ψ are equivalent, denoted by ϕ ≡ ψ, iff they
have exactly the same models, i.e., Mod(ϕ) = Mod(ψ)

Example: (ϕ→ ψ) ≡ (¬ψ → ¬ϕ): Take I ∈ Mod(ϕ→ ψ)
I(ϕ→ ψ) = 1 iff I(ϕ) = 0 or I(ψ) = 1

iff I(¬ϕ) = 1 or I(ψ) = 1
iff I(¬ϕ) = 1 or I(¬ψ) = 0
iff I(¬ψ → ¬ϕ) = 1

35 / 67

Some notations

If I satisfies ϕ, then we call I a model of ϕ

Mod(ψ) is the class of all models of ψ

ϕ is satisfiable (valid) if ϕ is true in some (all) interpretations

ϕ is unsatisfiable if ϕ is false in all interpretations

Formulas ϕ and ψ are equivalent, denoted by ϕ ≡ ψ, iff they
have exactly the same models, i.e., Mod(ϕ) = Mod(ψ)

Example: (ϕ→ ψ) ≡ (¬ψ → ¬ϕ): Take I ∈ Mod(ϕ→ ψ)
I(ϕ→ ψ) = 1 iff I(ϕ) = 0 or I(ψ) = 1

iff I(¬ϕ) = 1 or I(ψ) = 1
iff I(¬ϕ) = 1 or I(¬ψ) = 0
iff I(¬ψ → ¬ϕ) = 1

Did we prove it for all
I ∈ Mod(ϕ→ ψ)?
Explain in detail!

36 / 67

Entailment (or logical implication)

So far, |= relates an interpretation and a formula

Allow also a set of formulas on the left side

Important: a set of formulas coincides with the conjunction of
its elements, i.e., {ϕ1, . . . , ϕn} is

∧

n

i=1 ϕi

Important: an empty conjunction is 1 in all interpretations
i.e., it is equivalent to ⊤

W entails ϕ, W |= ϕ, iff Mod(W) ⊆ Mod(ϕ)

W |= ϕ iff I |= ϕ for all models I of W (for all I ∈ Mod(W))

Entailment becomes important when we consider theories

37 / 67

Reduction to satisfiability

Reduce validity, entailment, equivalence to satisfiability

1 Validity

¬ϕ is unsatisfiable iff ϕ is valid

2 Entailment

ϕ entails ψ (ϕ |= ψ) iff ϕ→ ψ is valid (apply Deduction Thm)

Hence, ϕ |= ψ iff ϕ ∧ ¬ψ (i.e., ¬(ϕ→ ψ)) is unsatisfiable

3 Equivalence

ϕ is equivalent to ψ (ϕ ≡ ψ) iff ϕ↔ ψ is valid

Hence, ϕ ≡ ψ iff ϕ |= ψ and ψ |= ϕ hold

Consequently, ϕ ≡ ψ iff ϕ ∧ ¬ψ and ψ ∧ ¬ϕ are unsatisfiable

A sound and complete procedure for satisfiability is sufficient!

38 / 67

Recap: The SAT problem

Given a propositional formula ϕ over n propositional variables
V = {x1, . . . , xn}.
Is there an assignment I : V 7→ {0, 1} with I(ϕ) = 1?

SAT belongs to NP, i.e., there is a non-deterministic Turing
machine deciding SAT in PTIME

which guesses an assignment I (linear in n) and

calculates I(ϕ) (linear in |ϕ|)

SAT is complete for NP (see the complexity part of this lecture)

General SAT algorithms are exponential in time in the worst
case (unless P=NP), but they work well in practice!

39 / 67

Outline

General information on Block 2

Introduction
Motivation
Examples

Equivalence checking of if-then-else statements
The circuit example

Syntax of propositional logic

Semantics of propositional logic
Notations
Entailment

Different normal forms and translation procedures

Learning Objectives

40 / 67

Normal forms: NNF and CNF

Restricted syntax, but retain the important properties
(application-dependent, e.g., provability or satisfiability)

Definition

Negation Normal Form (NNF): A formula in NNF has

1. negation signs only in front of atoms and

2. the only connectives are ∧ and ∨.

Conjunctive Normal Form (CNF): A formula in CNF consists
of a conjuction of clauses (=disjunction of literals). A CNF
is often represented as a set of clauses.

Fact: Every propositional formula has an equivalent formula in
NNF/CNF! But how do we construct them?

41 / 67

Preparatory concept: Tree replacements

Let ϕ[ψ] denote that ψ occurs in ϕ

This means that ψ occurs as zero, one or more subtree(s) in
the formula tree of ϕ

Possibility to perform subtree replacements

Example: ϕ : ¬(p ∧ q) ∨ r and ψ1 : ¬(p ∧ q)

Then ϕ[ψ1] indicates occurrence(s) of ψ1 in ϕ

Construct ϕ[ψ2] with ψ2 : ¬p ∨ ¬q by a tree replacement

∨

¬

∧

p q

r
=⇒

∨

∨

¬

p

¬

q

r

42 / 67

Equivalent replacement

Q: Under which condition(s) does ϕ[ψ1] ≡ ϕ[ψ2] hold?

Lemma (Equivalent Replacement Lemma)

Let I be an assignment and I |= ψ1 ↔ ψ2. Then

I |= ϕ[ψ1]↔ ϕ[ψ2].

Theorem (Equivalent Replacement Theorem (ERT))

Let ψ1 ≡ ψ2. Then ϕ[ψ1] ≡ ϕ[ψ2].

43 / 67

Basics of the NNF translation

Definition (Translation of a propositional formula to NNF)

Perform the following steps:

1. Replace all ↔ by → using (ϕ↔ ψ) ≡ ((ϕ→ ψ) ∧ (ψ → ϕ))

2. Replace all ⊕ using (ϕ⊕ ψ) ≡ ((ϕ ∨ ψ) ∧ (¬ϕ ∨ ¬ψ)) (why?)

3. Replace all → using (ϕ→ ψ) ≡ (¬ϕ ∨ ψ)

4. Replace the left side of the following equivalences by the right
side (order does not matter!)

¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ ¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ
ϕ ∨ ⊤ ≡ ⊤ ⊤ ∨ ϕ ≡ ⊤
ϕ ∧ ⊥ ≡ ⊥ ⊥ ∧ ϕ ≡ ⊥
ϕ ∧ ⊤ ≡ ϕ ⊤ ∧ ϕ ≡ ϕ

ϕ ∨ ⊥ ≡ ϕ ⊥ ∨ ϕ ≡ ϕ

¬¬ϕ ≡ ϕ

44 / 67

Basics of the NNF translation

Fact: The translation process terminates and produces the NNF. A
proof can be found in A. Leitsch: The resolution calculus.
Springer, 1997. [link to Springer]

By employing the Equivalent Replacement Theorem, we obtain:

For any propositional formula λ, nnf(λ) ≡ λ holds.

45 / 67

http://www.springer.com/mathematics/computational+science+%26+engineering/book/978-3-642-64473-3

Basics of the CNF translation

Based on the application of distributivity laws

Start with the formula λ and translate it to NNF

Take nnf(λ) and replace the left side of the following
equivalences by the right side (order does not matter!)

1 ϕ ∨ (ψ ∧ χ) ≡ (ϕ ∨ ψ) ∧ (ϕ ∨ χ)

2 (ψ ∧ χ) ∨ ϕ ≡ (ψ ∨ ϕ) ∧ (χ ∨ ϕ)

Observe that nnf(λ) ≡ cnf(λ) ≡ λ holds Why?

46 / 67

Exa: Transform ϕ : (p ∧ q → r)→ (q → r) to CNF

nnf(ϕ) : (p ∧ q ∧ ¬r) ∨ (¬q ∨ r) (why?)

Formula Rule
(p ∧ q ∧ ¬r) ∨ (¬q ∨ r) 2
(p ∨ ¬q ∨ r) ∧ (q ∧ ¬r ∨ (¬q ∨ r)) 2
(p ∨ ¬q ∨ r) ∧ (q ∨ ¬q ∨ r) ∧ (¬r ∨ ¬q ∨ r)

This transformation has two disadvantages:

1. Disruption of the formula’s structure

2. cnf(ϕ) can be exponentially longer than ϕ
Take a formula in disjunctive NF and translate it to CNF!

Can be avoided: use definitional translation (circuit exa)

47 / 67

Structure-preserving (or definitional) NFTs
The basic idea

Well known in logic
(occurred relatively late in ATP and theory (Tseitin 1968))

Consider the input formula ϕ as a tree or a dag (as before)

Label each subformula occurrence (SFO) with a new atom
(atom neither occurs in ϕ nor is it introduced before)

Construct equivalences of the form
ℓϕ ↔ (ℓϕ1

◦ ℓϕ2
) for SFOs ϕ1 ◦ ϕ2

where ℓψ is the label for SF(O) ψ.

Translate each ℓϕ ↔ (ℓϕ1
◦ ℓϕ2

) to CNF

Such an NFT is called a Tseitin translation

48 / 67

Example for a translation: ϕ : (p ∧ q → r)→ (q → r)
Step 1: Annotate the formula tree and generate equivalences for SFOs

Tree of ϕ

→

→

∧

p q

r

→

q r

49 / 67

Example for a translation: ϕ : (p ∧ q → r)→ (q → r)
Step 1: Annotate the formula tree and generate equivalences for SFOs

Tree of ϕ

→

→

∧

p

ℓ1

q

r

→

q r

D1 : ℓ1 ↔ p

50 / 67

Example for a translation: ϕ : (p ∧ q → r)→ (q → r)
Step 1: Annotate the formula tree and generate equivalences for SFOs

Tree of ϕ

→

→

∧

p

ℓ1

q

ℓ2

r

→

q r

D1 : ℓ1 ↔ p

D2 : ℓ2 ↔ q

51 / 67

Example for a translation: ϕ : (p ∧ q → r)→ (q → r)
Step 1: Annotate the formula tree and generate equivalences for SFOs

Tree of ϕ

→

→

∧

p

ℓ1

q

ℓ2

r

ℓ3

→

q r

D1 : ℓ1 ↔ p

D2 : ℓ2 ↔ q

D3 : ℓ3 ↔ r

52 / 67

Example for a translation: ϕ : (p ∧ q → r)→ (q → r)
Step 1: Annotate the formula tree and generate equivalences for SFOs

Tree of ϕ

→

→

∧

p

ℓ1

q

ℓ2

r

ℓ3

→

q

ℓ4

r

D1 : ℓ1 ↔ p

D2 : ℓ2 ↔ q

D3 : ℓ3 ↔ r

D4 : ℓ4 ↔ q

53 / 67

Example for a translation: ϕ : (p ∧ q → r)→ (q → r)
Step 1: Annotate the formula tree and generate equivalences for SFOs

Tree of ϕ

→

→

∧

p

ℓ1

q

ℓ2

r

ℓ3

→

q

ℓ4

r

ℓ5

D1 : ℓ1 ↔ p

D2 : ℓ2 ↔ q

D3 : ℓ3 ↔ r

D4 : ℓ4 ↔ q

D5 : ℓ5 ↔ r

54 / 67

Example for a translation: ϕ : (p ∧ q → r)→ (q → r)
Step 1: Annotate the formula tree and generate equivalences for SFOs

Tree of ϕ

→

→

ℓ6 ∧

p

ℓ1

q

ℓ2

r

ℓ3

→

q

ℓ4

r

ℓ5

D1 : ℓ1 ↔ p

D2 : ℓ2 ↔ q

D3 : ℓ3 ↔ r

D4 : ℓ4 ↔ q

D5 : ℓ5 ↔ r

D6 : ℓ6 ↔ p ∧ q

55 / 67

Example for a translation: ϕ : (p ∧ q → r)→ (q → r)
Step 1: Annotate the formula tree and generate equivalences for SFOs

Tree of ϕ

→

→

ℓ6 ∧

p

ℓ1

q

ℓ2

r

ℓ3

→

q

ℓ4

r

ℓ5

D1 : ℓ1 ↔ p

D2 : ℓ2 ↔ q

D3 : ℓ3 ↔ r

D4 : ℓ4 ↔ q

D5 : ℓ5 ↔ r

D6 : ℓ6 ↔ ℓ1 ∧ ℓ2

56 / 67

Example for a translation: ϕ : (p ∧ q → r)→ (q → r)
Step 1: Annotate the formula tree and generate equivalences for SFOs

Tree of ϕ

→

ℓ7 →

ℓ6 ∧

p

ℓ1

q

ℓ2

r

ℓ3

→

q

ℓ4

r

ℓ5

D1 : ℓ1 ↔ p

D2 : ℓ2 ↔ q

D3 : ℓ3 ↔ r

D4 : ℓ4 ↔ q

D5 : ℓ5 ↔ r

D6 : ℓ6 ↔ ℓ1 ∧ ℓ2

D7 : ℓ7 ↔ p ∧ q → r

57 / 67

Example for a translation: ϕ : (p ∧ q → r)→ (q → r)
Step 1: Annotate the formula tree and generate equivalences for SFOs

Tree of ϕ

→

ℓ7 →

ℓ6 ∧

p

ℓ1

q

ℓ2

r

ℓ3

→

q

ℓ4

r

ℓ5

D1 : ℓ1 ↔ p

D2 : ℓ2 ↔ q

D3 : ℓ3 ↔ r

D4 : ℓ4 ↔ q

D5 : ℓ5 ↔ r

D6 : ℓ6 ↔ ℓ1 ∧ ℓ2

D7 : ℓ7 ↔ ℓ6→ ℓ3

58 / 67

Example for a translation: ϕ : (p ∧ q → r)→ (q → r)
Step 1: Annotate the formula tree and generate equivalences for SFOs

Tree of ϕ

→

ℓ7 →

ℓ6 ∧

p

ℓ1

q

ℓ2

r

ℓ3

→ ℓ8

q

ℓ4

r

ℓ5

D1 : ℓ1 ↔ p

D2 : ℓ2 ↔ q

D3 : ℓ3 ↔ r

D4 : ℓ4 ↔ q

D5 : ℓ5 ↔ r

D6 : ℓ6 ↔ ℓ1 ∧ ℓ2

D7 : ℓ7 ↔ ℓ6→ ℓ3

D8 : ℓ8 ↔ ℓ4→ ℓ5

59 / 67

Example for a translation: ϕ : (p ∧ q → r)→ (q → r)
Step 1: Annotate the formula tree and generate equivalences for SFOs

Tree of ϕ

→
ℓ9

ℓ7 →

ℓ6 ∧

p

ℓ1

q

ℓ2

r

ℓ3

→ ℓ8

q

ℓ4

r

ℓ5

D1 : ℓ1 ↔ p

D2 : ℓ2 ↔ q

D3 : ℓ3 ↔ r

D4 : ℓ4 ↔ q

D5 : ℓ5 ↔ r

D6 : ℓ6 ↔ ℓ1 ∧ ℓ2

D7 : ℓ7 ↔ ℓ6→ ℓ3

D8 : ℓ8 ↔ ℓ4→ ℓ5

D9 : ℓ9 ↔ ℓ7→ ℓ8

60 / 67

The original formula and results of the translation

ϕ is valid iff

(9
∧

i=1

Di

)

→ ℓ9 is valid iff
9
∧

i=1

Di ∧ ¬ℓ9 is unsatisfiable

ϕ is satisfiable iff
9
∧

i=1

Di ∧ ℓ9 is satisfiable

Some proofs will be discussed in the exercise part.

61 / 67

Example for a translation: ϕ : (p ∧ q → r)→ (q → r)
Step 2: Translate the “labeling formulas” to clauses

Equivalences Associated Clauses
for SFOs in ϕ C1(ϕ) C2(ϕ) C3(ϕ)

ℓ1 ↔ p ¬ℓ1 ∨ p ℓ1 ∨ ¬p ⊤
ℓ2 ↔ q ¬ℓ2 ∨ q ℓ2 ∨ ¬q ⊤
ℓ3 ↔ r ¬ℓ3 ∨ r ℓ3 ∨ ¬r ⊤
ℓ4 ↔ q ¬ℓ4 ∨ q ℓ4 ∨ ¬q ⊤
ℓ5 ↔ r ¬ℓ5 ∨ r ℓ5 ∨ ¬r ⊤
ℓ6 ↔ ℓ1 ∧ ℓ2 ¬ℓ6 ∨ ℓ1 ¬ℓ6 ∨ ℓ2 ℓ6 ∨ ¬ℓ1 ∨ ¬ℓ2

ℓ7 ↔ ℓ6→ ℓ3 ¬ℓ7 ∨ ¬ℓ6 ∨ ℓ3 ℓ7 ∨ ℓ6 ℓ7 ∨ ¬ℓ3

ℓ8 ↔ ℓ4→ ℓ5 ¬ℓ8 ∨ ¬ℓ4 ∨ ℓ5 ℓ8 ∨ ℓ4 ℓ8 ∨ ¬ℓ5

ℓ9 ↔ ℓ7→ ℓ8 ¬ℓ9 ∨ ¬ℓ7 ∨ ℓ8 ℓ9 ∨ ℓ7 ℓ9 ∨ ¬ℓ8

62 / 67

The structure-preserving normal forms

The definitional form, δ(ϕ), of ϕ is δ̂(ϕ) ∪ {ℓϕ} with

δ̂(ϕ) : {C1(ψ),C2(ψ) | ψ ∈ Σ(ϕ)} ∪

{C3(ψ) | ψ ∈ Σ(ϕ) ∧ C3(ψ) 6= ⊤} T
se

it
in

Σ(ϕ): Set of all SFOs of ϕ

Sat-equivalence: ϕ has a model iff δ(ϕ) has a model

Several variants and optimizations available, e.g.,

no label for atoms or negations,

don’t translate clauses,

only one implication instead of an equivalence depending on
the polarity of the subformula occurrence, etc.
☞ results in the translation of Plaisted and Greenbaum

63 / 67

Properties of the definitional translation

Retains the structure of the formula (by labels for SFOs)

For each SFOs, there are at most four clauses

Each clause has at most three literals

Normal form is linear-time computable

ϕ and its definitional translation not logically equivalent
(new labels change signature logical equivalence lost)

ϕ has a model iff its definitional translation has one holds
(this is the important prop.; cf 1st order ATP and Skolemization)

Models of ϕ and its def. translation can be translated

Generalizations used to extend calculi by extensions
(resulting in stronger calculi which p-simulate, e.g., the cut rule)

64 / 67

The DIMACS CNF input format

Standard input format for most SAT solver

Plain text file of the form:

p cnf <no_of_variables> <no_of_clauses>

<clause> 0

<clause> 0

...

One or more lines per clause

65 / 67

The DIMACS CNF input format: Clauses

A clause is a list of non-zero numbers separated by spaces

Each clause is terminated by 0

A positive number correspond to a variable
(propositional variables have to be mapped to positive integers)

A negative number correspond to a negated variable

If you would like to try a SAT solver, consider

minisat [link] or

lingeling and plingeling [link]

66 / 67

http://minisat.se/
http://fmv.jku.at/lingeling/

Learning objectives

Ability to discuss the overall procedure and motivate the use
of SAT

Ability to discuss connections to the other parts of the lecture

Ability to model simple problems in PL0

Ability to reduce reasoning problems to others

Ability to convert PL0 formulas/circuits to different NFs

Ability to generate the DIMACS format from a CNF

Ability to prove basic properties about NFs (ex part)

Ability to explain in detail and perform proofs using models
(e.g., equivalences or entailments)

67 / 67

	General information on Block 2
	Introduction
	Motivation
	Examples

	Syntax of propositional logic
	Semantics of propositional logic
	Notations
	Entailment

	Different normal forms and translation procedures
	Learning Objectives

