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Why do we need first-order logic?

Goal of the SAT part

Provide necessary tools and background info to construct a decision
procedure for equality logic with uninterpreted functions (EUF).

EUF is a restricted variant (or a fragment) of first-order logic. It
uses the theory of equality.

Therefore, we need some definitions and notions from first-order
logic extended by theories.

Disclaimer: The first slides recapitulate known material about first-
order logic which you know from “Theoretische Informatik und Logik”.
The theory handling is new for (most of) you.




Outline

Syntax of First-order Logic

Semantics of First-order Logic

First-order Theories



Signatures

m Signature X: countably infinite set of function symbols (FSs)
or predicate symbols (PSs) together with their arity

m In propositional logic: ¥ is the set of Boolean variables

m Elements from X are the building blocks for formulas.

Y = (Func, Pred)  m Func: set of function symbols (4 arity)

m With arity 0: constant symbols (CSs)
m With arity > 0: for building terms

m Pred: set of predicate symbols (+ arity)

m For building atomic formulas

m Elements of ¥ are often called the “non-logical symbols”.



Terms
The definition of Terms(X, Var)

m Given a signature ¥ = (Func, Pred) and a set Var of (object)
variables

m Variables are often denoted by x, y, z, x1, X/, ...
Definition

The set of terms, Terms(X, Var), for given ¥ and Var is de-
fined inductively as follows:

B1l: Every x € Varis a term.
B2: Every constant symbol from Funcin ¥ is a term.

S1: If ty,...,t, are terms and f is a FS from Funcin X
with arity n > 0, then f(t1,...,t,) is a term.




Terms: Some examples

Example
Given Var= {x} and Func= {c/0,f/1}

Terms(¥x, Var) = {x, c, f(x), f(c), f(f(x)), f(f(c)),...}
[0 The set of terms is infinite since there is a FS of arity > 0 in X.

Definition

A ground term is a term without variables.

Example

Given Var = {x} and Func = {c/0,f/1} as above. The set of
ground terms from Terms(X, Var) is

{e, f(c), £(F(c)), F(£(£(c))),- -}



First-order (FO) formulas

m Given a signature ¥ = (Func, Pred) and Var

m Let p be a PS from ¥ with arity n > 0 and ty, ..., t, terms.
Then p(t1,...,t,) is an atomic formula or atom.

m Ground atoms are atoms without variables.

Inductive definition of the set of FO formulas for given ¥, Var
B1:
B2:
S1:
S2:

Every atom is a formula.
T (verum) and L (falsum) are formulas.
For =, A, V, —, <, ®: same as for propositional logic.

If x € Var and ¢ is a formula, then so are Vx ¢ and 3x .

m V is the universal quantifier, 3 is the existential quantifier

m In S2, ¢ is called the scope of the quantifier.



Formulas as trees

m First-order formulas can be depicted as formula trees.

m Example: (Vx p(x, f(x))) A q(x,y)

A m Var. occurrences can be free or bound.

/7 \
Vx  a(xy)

I
p(x, f(x))

m Occurrences x are bound (Vx above!).

m Occurrence x is free (no Vx, dx above).

m Formulas without free vars are called closed or sentences.



The free variables of a formula

Definition

The set of free variables of a term t, free(t), is defined inductively:

Bl: free(t) = {x} if t is a variable x
B2: free(t) = {} if t is a constant a
S1: free(t) = |JI_, free(t;) if t is a term f(ty,...,t,)
Definition
The set of free variables of a formula A, free(\), is defined inductively:
B1: free(\) = Ji_, free(t;) if X is an atom p(t1,...,t,)
S1: free(X\) = free(p) if Xis -
S2: free()\) = free( YU free(w)) if Xis o1 and o € {V, A, —, <, @}
S3: free(N\) = free(p) \ {x} if Xis Qx ¢ and Q € {V,3}




Outline

Semantics of First-order Logic
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The semantics of first-order logic

m Semantics of first-order logic more difficult than for
propositional logic because of

m the term structure,
m the quantifiers, and
m the free variables which can occur in formulas.

® | A first-order (interpretation) structure wrt X consists of
m a domain U, i.e., a nonempty set of symbols and

m the interpretation function /().

® | /(-) has to satisfy the following conditions:
1. For CS (0-ary FS) c € Func: I(c) e U

2. For n-ary FS f € Func (n>0): I(f): U" — U
3. For n-ary PS p € Pred: I(p) CU"
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How to handle free variables?

m Free variables in a formula cause problems.
What is the meaning of a free x?

m Two solutions possible:

m Close a formula by V (universal closure), or

m interpret the formula modulo a variable assignment
a: Var— U

m We use variable assignments in the following.

12 / AA



The evaluation of a term

Definition (Evaluation of a term under / and «)

The evaluation of a term t under an interpretation structure U, /

and a variable assignment o (modulo the signature X), ks o(t),
is defined inductively as follows:

Bl: Iy(x) = a(x) for x € Var
B2: I,(c) = I(c) for a constant symbol ¢ (recall: /(c) € U)
(

SL: In(f(t1, ..., tn)) = I(F)(la(t1), -, la(ts)) for f/n € Func
and ti,...,t, are terms

m We often write [, instead of /5 o(t) to improve readability!

12/ 44



The evaluation of a formula

Definition (Evaluation of a formula under / and «)

The evaluation of a formula under an interpretation structure U, /

and a variable assignment a (modulo the signature ¥) is defined
inductively as follows:

Bl: In(p(t1,...,tn)) = 1iff (Io(t1),..., la(tn)) € I(p) where
p/n € Pred and ty,...,t, are terms

S1: The connectives are handled like in propositional logic
S2: Io(Vx ) = 1iff Iyy(xcy(p) = 1 for each c € U
S3: la(3x @) = L iff Iyypx—cy(w) = 1 for at least one c € U

m The evaluation of a first-order formula is undecidable.

m Notions like tautology, valid, (un)satisfiable, model, etc.
remain essentially unchanged.
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Example for an evaluation of a closed formula

Let ¢ be Vx (p(x) — p(f(f(x))))-

m Llet/ =N.

Informally, the symbols f, p have the following meaning:

m /1 € Func with the intended meaning “successor of”
m p/1 € Pred with the intended meaning “is odd number”

©'s intended reading: for every odd no x, x + 2 is also odd
Let /(f): U — U with f(u) =u+1

Moreover, I(p) = {(1),(3),(5),...} cU

m Since @ is closed, a = {} at the beginning
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Example for an evaluation of a closed formula (cont'd)

m In(p) = Liff, for each c € U,
lix—cy(p(x) = p(f(f(x)))) = Iy (p(c) — p(f(f(c)))) =1
m Case distinction for c:
1: cisodd (i.e., (c) € I(p)):
> I (p(c) — p(F(f(c)))) = 1iff (c) & I(p) or I(f(f(c))) € I(p)
> Since I(f(f(c))) = I(c) + 2, (c) € I(p) implies I(f(f(c))) € I(p)
» Since (c) € I(p), I(f(f(c))) € I(p) and the implication is true

2: ciseven (i.e., (c) € I(p)):
> Then p(c) — p(f(f(c))) is true under | because (c) & I(p)

m Hence, ¢ is true under the chosen interpretation

16 / AA



Recall the notations

Mod(v)) is the class of all models of .

@ is satisfiable if there is some U, I, that satisfies (.

 is falsifiable if there is some U, I, that does not satisfy .

@ is valid if every U, I, is a model of ¢.

m This means: for all U, for all | and for all «!

@ is unsatisfiable if ¢ is not satisfiable.

Formulas ¢ and ) are equivalent, denoted by ¢ = ¢, iff they
have exactly the same models, i.e., Mod(y) = Mod(v). In
other words, for all U, I,, we have I, E ¢ iff I, =9

Note: p(x) # p(y) why?

17 / AA



Construct a counter-example to p(x) = p(y)

(Slide added on students’ request)

We know from the definition of = that

p(x)=p(y) ifandonlyif  Mod(p(x)) = Mod(p(y))
We construct U, I, such that I, = p(x) but I, = p(y)
Let ¢/ = {0,1}, let /(p) = {(0)} and let &« map x to 0 and y to 1.

Then I, = p(x) iff I = p(0) iff (0) € I(p). Therefore I, = p(x).
Then I, = p(y) iff I = p(1) iff (1) € I(p). Therefore I, ¥~ p(y).

We have constructed U, I, which is a model of p(x) but not of
p(y). Therefore, Mod(p(x)) # Mod(p(y)). Consequently, the
equivalence does not hold.

12 / AA



Example

m Let ¥ ={{a/0,b/0,0/2},{~ /2}}
m Let p: Ix(xo0a~ b) or Ix (~ (o(x, a), b)))
m Q: Can ¢ be satisfied over U = Ny?

10 / AA



Example

Let X = {{a/0,b/0,0/2},{~ /2}}

Let p: Ix(xo0a~ b) or 3x (~ (o(x, a), b)))
Q: Can ¢ be satisfied over U = Ny?

A: It depends on the interpretation (function)!

270 / AA



Example

Let = = {{/0,b/0,0/2}, {~ /2}}
Let p: Ix(xo0a~ b) or Ix (~ (o(x, a), b)))
Q: Can ¢ be satisfied over U = Ny?

A: It depends on the interpretation (function)!

Possibility 1: Let /(a) =0,/(b) =1

Interpret o as multiplication and ~ as equality, i.e.,
/(O) = {((nlv n2)7 n) | ny,ng,ne NO An=nq- n2}
I(~) = {(n,n)[ne€No}

O ¢« is false under the above interpretation! (Why?)

21 / AA



Example

Let = = {{/0,b/0,0/2}, {~ /2}}
Let p: Ix(xo0a~ b) or Ix (~ (o(x, a), b)))
Q: Can ¢ be satisfied over U = Ny?

A: It depends on the interpretation (function)!

Possibility 2: Let /(a) =0,/(b) =1

Interpret o as addition and ~ as equality

I(0) = {((m,n2),n)[ny1,n2,n€NoAn=ny+ny}
I(~) = {(n,n)|neNo}

O ¢ is true under the above interpretation! (Why?)

27 / AA



Entailment (or logical implication)

m So far, |= relates an interpretation and a formula.
m We want to allow a set of formulas on the left side.

m Important: a set of formulas coincides with the conjunction of
its elements, i.e., {¢1,...,0n} is Al_q @i

m Important: an empty conjunction is 1 in all interpretations
i.e., it is equivalent to T.

B | Let W be a set of closed formulas. Then W entails ¢,
W= o, if and only if  Mod(W) C Mod(p)

Entailment is a very important concept, when we consider theories! |

27 /A4



Check of an entailment

Show: ¢ |= ¥ with ¢: 3x (p(x) A (p(x) — q(x))) and 4= Ty q(y)

m We show that each model of ¢ is also a model of .

m Take an arbitrary domain U/ and let / be a model of ¢.

m Then thereis c € U, s.t. I, (p(x) A (p(x) — q(x))) = 1.
Moreover, (c¢) € I(p) and (c) € I(q). why?

Evaluate % under the model of .
I3y q(y)) = 1iff Iy, _g3(q(y)) = 1 for some d € U

m Let d = c and observe that / is then also a model of .
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Construction of a counter-example to an entailment
(Slide added on students’ request)

Show: ¢ =9 with ¢: p(c) A (p(c) — g(c)) and ¥: Vy q(y)
m Let ¢ be a constant. Then ¢ is closed.

m We construct a counter-example, i.e., we present an
interpretation U, /, such that | = ¢, but | [~ 1.

m Take U = {0, 1} as the domain.

m Let /(c) =0 and let /| make exactly p(0) and g(0) true, i.e.,
I(p) = {(0)} and I(g) = {(0)}. Consequently, / = ¢ holds.

m Evaluate ¢ under the model of ¢:
I(Vy q(y)) = 1iff Iy,_q1(q(y)) = Lforall d e U

m Since g(1) is false under /, so is 1.

[0 We have found U, I, such that | = ¢, but | = 1. Hence,
Mod(p) € Mod(v)) and therefore o [~ 1.

9% / AA



Outline

First-order Theories
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Motivation

m Reasoning about application domains like software or

hardware requires structures to formalize important properties.

m E.g., programs manipulate numbers, lists, arrays, pointers, etc.

[0 First-order theories can be used for the formalization.

® Reasoning with theories is undecidable in general.

© Reasoning with “restricted” theories is often decidable!

7
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The definition of a theory

Definition
A first-order theory, 7 = (X, .A), is defined by its components:

1. its signature X,

2. its axioms as a set A of closed first-order formulas with
function symbols (FSs) and predicate symbols (PSs) from X.

A theory is often identified

1. by its axioms (when X is clear from the context), or

2. by the set of all ¥-formulas, valid in the theory.

A Y -formula is constructed from FSs and PSs from X, as well as
variables, connectives and quantifiers. We often use formula
instead of ¥ -formula when X is clear from the context.

279 / AA



Some definitions

Definition
Given a theory 7 = (X, A).

1. A 7-interpretation / is an interpretation which satisfies 7's
axioms, i.e.,

= forallp e A

2. A X-formula ¢ is valid in the theory 7, or 7-valid, if every
7 -interpretation satisfies ¢. Notation: 7 = ¢

3. A Y-formula ¢ is satisfiable in the theory 7, or 7 -satisfiable,
if some 7 -interpretation satisfies ¢.

When 7 is clear from the context, we often use interpretation,
valid, satisfiable instead of 7 -interpretation, 7 -valid, 7 -satisfiable

What is the connection to entailment, i.e., to W = ¢?

20 / AA



Properties of theories

Definition
A theory 7 = (X, A) is
1. complete, if for every closed X-formula ¢, 7 = p or 7 | —¢;

2. consistent, if there is at least one 7 -interpretation;

3. decidable, if 7 |= ¢ is decidable for every Y -formula ¢.

Formulas ¢1 and ¢, are equivalent in 7 or 7-equivalent if 7 =
©1 < o, i.e., | |E 1 iff I |= o holds for all 7-interpretations /.

Example of a complete theory: Presburger arithmetic [link]

Example of an incomplete theory: group theory [link]

20 / AA


http://en.wikipedia.org/wiki/Presburger_arithmetic
http://en.wikipedia.org/wiki/Group_%28mathematics%29

Incompleteness of group theory
(Slide added on students’ request)

Q: Why is group theory incomplete?
A: Because for the formula ¢: VxVy (x -y = y - x), it holds that

T W —p and T = .

The sentence =VxVy (x -y = y - x) is not valid for groups. Take
the abelian group (Z,+), i.e., use U = Z and define | appropriately.
Since addition in Z is commutative, VxVy (x -y = y - x) is true
under U, | and therefore the negation is false. We have identified a
model of the theory which is not a model of =VxVy (x -y =y - x).

The sentence VxVy (x -y =y - x) is not valid for groups. Simply

take a non-commutative group (like the symmetric group S, of
degree n > 3) and proceed similarly.

21 / AA



Fragments of theories

A fragment of a theory 7 is a syntactically restricted subset of
formulas of 7. A fragment of 7 is decidable if 7 |= ¢ is decidable
for every ¥-formula ¢ from the fragment.

Example

1. The quantifier-free fragment of a theory 7 is the set of
T -valid formulas without quantifiers.
NB Technically speaking, the “quantifier-free fragment” consists of

valid formulas in which all variables are considered to be
universally quantified!

2. The fragment of prenex conjunctive normal forms consists of
valid formulas which have a quantifier prefix and a matrix in
conjunctive normal form (CNF).

27 / AA



Combinations of theories

m The union 73 U 75 of two theories 77 and 7, with signatures
Y1 and ¥, and axioms A; and A5 has

1. signature X3 U ¥5 and
2. axioms A; U A,.

m We restrict our attention here to combinations for which
YiNY, = {:} holds.

m A (77 U Tp)-interpretation is both a 7;-interpretation and a
Tr-interpretation, since it satisfies A1 U A».

O A formula which is 73-valid or 7-valid is (73 U 73)-valid.

O A formula which is (77 U 7;)-satisfiable is both 7;-satisfiable
and 7»-satisfiable.

2° /44



The theory of equality

m Y £ consists of = together with FSs and other PSs.

m = is an interpreted symbol: the meaning is defined by the

axioms of 7g (V¥xy, ..., X, abbreviates Vx; - - - Vxp):

1. Vx (x =x) (reflexivity)
2. Vx,y (x=y) = (y =x)) (symmetry)
3.V, v,z ((x=y)A(y =2) = (x =2)) (transitivity)
4. Substitution axioms for each function symbol f of arity n:

vXla_yla” s Xny Yn </\XI yl_>ley"'aXn);f(yla"'ayn)>

Substitution axioms for each predicate symbol p of arity n:

VX17Y17~- s Xny Yn (/\XI Yi Xl,---,Xn)<—>P(}/17~-~7}’n)))

W/ AA



The theory of equality cont'd

m The axioms 1. to 3. state that = is an equivalence relation.
m The axioms 4. and 5. assert that = is a congruence relation.

Functions (predicates) evaluate always to the same value
(truth value) provided the same arguments are given.

7e is undecidable, but its quantifier-free fragment is decidable.

28 / AA



Example

Show: p:a=bAb=c— g(f(a),b) = g(f(c),a) is Tg-valid

The proof is by contradiction. Suppose there exists a
Te-interpretation | with / = ¢.

1. 1K assumption

2. IFa=bAb=c 1., semantics of —

3. I}~ g(f(a),b) =g(f(c),a) 1., semantics of —

4. |IEa=b 2., semantics of A

5. IEb=c 2., semantics of A

6. IEFa=c 4., 5., transitivity of =

7. ITEf(a)=f(c) 6., substitution axiom for f

8. IEb=a 4., symmetry of =

9. Ik g(f(a),b) =g(f(c),a) 7., 8., substitution axiom for g
10 IEL 3., 9., contradiction

The assumption is false: ¢ is therefore 7g-valid!

26

AA



The theory of LISP-like lists: 7¢ons

LISP-like lists have signature X cons = {{cons, car, cdr}, {atom, =}}

1.

5.

cons is a binary function called the list constructor. cons(a, b)
represents the list constructed from a and b.

. car is a unary function called the left projector.

car(cons(a, b)) = a

cdr is a unary function called the right projector.
cdr(cons(a, b)) = b

. atom is a unary predicate. atom(x) is true iff x is a

single-element list.

= is the binary predicate equality.

27 / AA



Examples of LISP-like lists

In the intended interpretations

m atoms are individual elements,

m while lists are functional structures with binary FS cons.

cons(a, cons(b, c))
m represents a list of three elements,
m ais its head and cons(b, c) is its tail
m Examples:
1. car(cons(a, cons(b, c))) — a
2. cdr(cons(a, cons(b, c))) +— cons(b, c)

3. cdr(cdr(cons(a, cons(b, c)))) — ¢

29 / AA



The axioms of 7 ons

1. The axioms of reflexivity, symmetry, and transitivity

2. Substitution axioms (functional congruence) for cons, car, cdr
3. Substitution axioms (predicate congruence) for atom

4. Vx,y car(cons(x,y)) = x (left projection)
5. Vx, y cdr(cons(x,y)) =y (right projection)
6. Vx —~atom(x) — cons(car(x), cdr(x)) = x (construction)
7. Vx,y —atom(cons(x,y)) (atom)

20/ A4



The theory 7.0,s: Some remarks

m There is no NIL value representing the empty list.
m The behavior of car and cdr on atoms is unspecified.

m 7Tcons is undecidable, but its quantifier-free fragment is
decidable.

A0 / AA



The theory 7L = Tions U T

cons

m Let Teops = (Zcon57 -Acons) and 7g = (zEa AE)
m The signature of ’Tc’gns IS Y cons UXE.
m The set of axioms of 7L _ is Acons U AE.

TE

cons

has uninterpreted CSs, FSs, and PSs from X g.

TE

cons Is undecidable, but its quantifier-free fragment is
decidable.

Prove the following formula ¢

car(a) = car(b) A cdr(a) = cdr(b) A —atom(a) A —~atom(b)
— f(a) = f(b)

TE

cons-valid.
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The theory 7£ : The proof of ¢

cons-

The proof is by contradiction. Suppose there exists a

TE

cons

1.

NoosrwN

8.
9.
10.
11.
10.

-interpretation [ with [ }= ¢.

I @ assumption

I = car(a) = car(b) 1., semantics of —, A
I = cdr(a) = cdr(b) 1., semantics of —, A
| = —atom(a) 1., semantics of —, A
I = —atom(b) 1., semantics of —, A
I} f(a) = f(b) 1., semantics of —

I |= cons(car(a), cdr(a)) = cons(car(b), cdr(b))

2., 3., functional congruence
I |= cons(car(a), cdr(a)) 4., construction

=23
I |= cons(car(b), cdr(b)) = b 5., construction

IEa=b 7., 8., 9., symmetry + transitivity
I'l=f(a) = f(b) 10., functional congruence
=1L 6., 11., contradiction

The assumption is false: ¢ is therefore 7.£ _-valid!

cons

A0 / AA



Further examples for theories

Presburger arithmetic (X = ({0/0,1/0,+/2},{=/2}))
m Peano arithmetic (X = ({0/0,1/0,+/2,x/2},{=/2}))

Theory of integers

Theory of reals

Theory of arrays

Theory of pointers

Theory of recursive data structures

and many more

AR / AA



Learning objectives

You should be able to
m explain the syntax and semantics of first-order logic,
m evaluate formulas under a given first-order structure,
m find models/falsifying interpretations for first-order formulas,
m evaluate entailments and provide proofs or counter-examples,
m motivate the use of theories,
m explain 7-validity and 7 -satisfiability in detail,

m check them for a formula and a theory
(including providing proofs or counter-examples for the answers),

m discuss the notion of decidability of a theory or one of its
fragments.

A4 / AA
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