
Integer Division in Logarithmic Time
Course on Formal Methods in Computer Science

Gernot Salzer

May 9, 2011

The example is inspired by those in [2]. The programming language and the specific
form of the Hoare calculus used here are described in [3]. The following presentation is
rather lengthy, giving all intermediate steps and additional explanations. At the exam
it is sufficient to describe the main steps.

1 Statement of the problem

The following program computes the integer quotient n/m for positive integers m and n,
with the final result in a. It takes time logarithmic in the quotient a, if we assign unit
cost to the integer operations. Show that the program is totally correct.

c := 1;
while c ∗m ≤ n do
c := 2 ∗ c

od;
a := 0;
while c 6= 1 do
c := c/2;
if (a+ c) ∗m > n then

skip
else
a := a+ c

fi
od

(Note that in a real implementation, division by 2 can be implemented as a shift opera-
tion, i.e., the program does not need division to compute division.)

2 Solution

We divide the correctness proof into two parts, which correspond to the two loops, i.e.,
we prove the correctness of the two assertions

1

Initialisation loop
{ 1: Pre }
c := 1;
while c ∗m ≤ n do
c := 2 ∗ c

od;
{ 2: Inv1 ∧ c ∗m > n }

Division by adding powers of two
{ 2: Inv1 ∧ c ∗m > n }
a := 0;
while c 6= 1 do
c := c/2;
if (a+ c) ∗m > n then

skip
else
a := a+ c

fi
od
{ 3: Post }

Pre and Post denote the pre- and postcondition of the original program, Inv1 and Inv2
are the invariants of the two loops. We will determine these four formulas later on.

Note that the postcondition of the first correctness assertion is equal to the precondi-
tion of the second one. By the rule for sequential composition, the correctness of these
two assertions implies the correctness of the original problem.

2.1 Initialisation loop

The first loop initialises the variable c to the smallest power of two that is greater than
the quotient n/m.

Partial correctness

We start by annotating the program with conditions (assertions) according to the rules
of the Hoare calculus for partial correctness; termination will be discussed separately.
The formulas are numbered in the order in which they are added.

{ 1: Pre }
{ 7: Inv1[c/1] }
c := 1;
{ 4: Inv1 }
while c ∗m ≤ n do
{ 5: Inv1 ∧ c ∗m ≤ n }
{ 8: Inv1[c/2∗c] }
c := 2 ∗ c
{ 6: Inv1 }

od;
{ 2: Inv1 ∧ c ∗m > n }

To complete the proof we have to find appropriate formulas Pre and Inv1 such that the
implications 1⇒ 7 and 5⇒ 8 are valid.

The precondition has to constrain the values of the input variables to those, for which
the algorithm works. The condition c ∗ m ≤ n properly terminates the loop only for

2

non-negative values of m and n. Moreover, since the program computes integer division,
the divisor m may not be null. So our guess for an appropriate precondition is the
formula Pre ≡ n ≥ 0 ∧m > 0.

The loop initialises the variable c to a power of 2 that is greater than the quotient. The
property of being greater than the quotient (c > n/m or equivalently c ∗m > n) holds
after the loop due to the negated while-condition, hence the invariant has to specify only
the fact that c is a power of 2. We choose the formula power2 (c)∧Pre as invariant Inv1,
where power2 (c) is an abbreviation for the formula ∃x(x ≥ 0 ∧ c = 2x).1 Pre is part of
the invariant to propagate this information also to the second loop.

It remains to prove the validity of the implications derived above.

1⇒ 7: Pre ⇒ Inv1[c/1]

Pre ⇒ (power2 (c) ∧ Pre)[c/1]

Pre ⇒ power2(1) ∧ Pre

This implication is valid since 1 = 20 is indeed a power of 2.

5⇒ 8: Inv1 ∧ c ∗m ≤ n⇒ Inv1[c/2 ∗ c]
power2 (c) ∧ Pre ∧ c ∗m ≤ n⇒ (power2 (c) ∧ Pre)[c/2 ∗ c]

power2(c) ∧ Pre ∧ c ∗m ≤ n⇒ power2(2 ∗ c) ∧ Pre

This implication is valid since 2∗c is indeed a power of 2 provided that c itself is a power
of 2.

Termination

As variant (bound function) t we need an integer expression that decreases in each
iteration and that is bounded by zero. Since termination is tied to the loop condition,
the latter is a good starting point. It can be rewritten as 0 ≤ n − cm, hence n − cm
might be a suitable variant: The expression decreases in each iteration and its value is
obviously bounded by zero as long as the loop continues. To prove this in a formal way
we have to show that the assertion

{ Inv1 ∧ c ∗m ≤ n ∧ t = t0 } c := 2 ∗ c { c ∗m ≤ n⇒ 0 ≤ t < t0 }

is correct (see rule wht′′′ on the slides).

{ 9: Inv1 ∧ c ∗m ≤ n ∧ 0 ≤ t = t0 }
{ 11: (c ∗m ≤ n⇒ 0 ≤ t < t0)[c/2 ∗ c] }
c := 2 ∗ c
{ 10: c ∗m ≤ n⇒ 0 ≤ t < t0 }
1You may object that 2x is no proper expression of our toy language, since it does not contain an

exponentiation operator. Of course we can define the function recursively, but our type of first-order
formulas does not admit recursive definitions. However, it can be shown that every recursive function
can be defined as a first-order formula [1, Chapter 16].

3

9⇒ 11:

Inv1 ∧ cm ≤ n ∧ t = t0 ⇒ (cm ≤ n⇒ 0 ≤ t < t0)[c/2c]

Inv1 ∧ cm ≤ n ∧ n− cm = t0 ⇒ (cm ≤ n⇒ 0 ≤ n− cm < t0)[c/2c]

Inv1 ∧ cm ≤ n ∧ n− cm = t0 ⇒ (2cm ≤ n⇒ 0 ≤ n− 2cm < t0)

Inv1 ∧ cm ≤ n ∧ n− cm = t0 ∧ 2cm ≤ n⇒ 0 ≤ n− 2cm < n− cm
power2 (c) ∧ n ≥ 0 ∧m > 0 ∧ cm ≤ n ∧ n− cm = t0 ∧ 2cm ≤ n⇒ n ≥ 2cm > cm

The conclusion consists of two inequalities. The first one, n ≥ 2cm, holds because it also
occurs in the premise. The second one, 2cm > cm, is true since m is greater than zero
and c being a power of two implies 2c > c.

2.2 Division by adding powers of two

We now turn to the second loop, which computes the result of the division.

Partial correctness

We start again by annotating the program with further assertions following the rules of
the Hoare calculus. We use B as an abbreviation for the if-condition (a+ c) ∗m > n.

{ 2: Inv1 ∧ c ∗m > n }
{ 16: Inv2[a/0] }
a := 0;
{ 12: Inv2 }
while c 6= 1 do
{ 13: Inv2 ∧ c 6= 1 }
{ 22:

(
(B ⇒ Inv2) ∧ (¬B ⇒ Inv2[a/a+ c])

)
[c/(c/2)] }

c := c/2;
{ 21: (B ⇒ Inv2) ∧ (¬B ⇒ Inv2[a/a+ c]) }
if (a+ c) ∗m > n then
{ 19: Inv2 }
skip
{ 17: Inv2 }

else
{ 20: Inv2[a/a+ c] }
a := a+ c
{ 18: Inv2 }

fi
{ 14: Inv2 }

od
{ 15: Inv2 ∧ c = 1 }
{ 3: Post }

4

As postcondition we could use the formula a = n/m, which uses the integer division
operator of our toy language. Because of truncation, integer division is not the inverse
of integer multiplication, and simplifying formulas using this operator may be tricky.
Therefore we use the formula Post ≡ a∗m ≤ n < (a+1)∗m instead. (Convince yourself
that for positive integers, this condition is indeed equivalent to a = n/m!)

For the invariant we choose Inv2 ≡ a∗m ≤ n < (a+c)∗m∧power2 (c). This invariant
is obtained by weakening the postcondition: the constant 1 is replaced by the variable c,
which is required to be a power of 2.2

To complete the proof of partial correctness we have to prove the validity of three
implications.

2⇒ 16:

Inv1 ∧ c ∗m > n⇒ Inv2[a/0]

power2 (c) ∧ n ≥ 0 ∧m > 0 ∧ c ∗m > n⇒ (a ∗m ≤ n < (a+ c) ∗m ∧ power2 (c))[a/0]

power2 (c) ∧ n ≥ 0 ∧m > 0 ∧ c ∗m > n⇒ 0 ∗m ≤ n < (0 + c) ∗m ∧ power2 (c)

power2 (c) ∧ n ≥ 0 ∧m > 0 ∧ c ∗m > n⇒ 0 ≤ n < c ∗m ∧ power2 (c)

power2(c) ∧ 0 ≤ n < c ∗m ∧m > 0⇒ power2(c) ∧ 0 ≤ n < c ∗m

13⇒ 22:

Inv2 ∧ c 6= 1⇒
(
(B ⇒ Inv2) ∧ (¬B ⇒ Inv2[a/a+ c])

)
[c/(c/2)]

Inv2 ∧ c 6= 1⇒ (B[c/(c/2)]⇒ Inv2[c/(c/2)]) ∧ (¬B[c/(c/2)]⇒ Inv2[a/a+ c][c/(c/2)]

The formula is of the form α ⇒ ((β ⇒ γ) ∧ (δ ⇒ ε)). It is valid if and only if the two
implications (α ∧ β) ⇒ γ and (α ∧ δ) ⇒ ε are valid.3 Hence we may split the formula
and prove the two implications separately; they correspond to the two branches of the
if-statement.

13⇒ 22, then-branch:

Inv2 ∧ c 6= 1 ∧ (a+ c/2) ∗m > n⇒ Inv2[c/(c/2)]

Inv2 ∧ c 6= 1 ∧ (a+ c/2) ∗m > n⇒ (a ∗m ≤ n < (a+ c) ∗m ∧ power2 (c))[c/(c/2)]

Inv2 ∧ c 6= 1 ∧ (a+ c/2) ∗m > n⇒ a ∗m ≤ n < (a+ c/2) ∗m ∧ power2 (c/2)

a ∗m ≤ n < (a+ c) ∗m ∧ power2 (c) ∧ c 6= 1 ∧ n < (a+ c/2) ∗m
⇒ a ∗m ≤ n < (a+ c/2) ∗m ∧ power2 (c/2)

a ∗m ≤ n < (a+ c/2) ∗m ∧ power2(c) ∧ c 6= 1

⇒ a ∗m ≤ n < (a+ c/2) ∗m ∧ power2(c/2)

2This explanation is by no means sufficient to understand how to obtain invariants in general or how
to come up with this particular one. Finding invariants needs experience and is beyond the scope of
this course.

3Verify this fact using a truth table or algebraic laws!

5

13⇒ 22, else-branch:

Inv2 ∧ c 6= 1 ∧ (a+ c/2) ∗m ≤ n⇒ Inv2[a/a+ c][c/(c/2)]

Inv2 ∧ c 6= 1 ∧ (a+ c/2) ∗m ≤ n⇒ (a ∗m ≤ n < (a+ c) ∗m ∧ power2 (c))[a/a+ c][c/(c/2)]

Inv2 ∧ c 6= 1 ∧ (a+ c/2) ∗m ≤ n⇒ ((a+ c) ∗m ≤ n < (a+ c+ c) ∗m ∧ power2 (c))[c/(c/2)]

Inv2 ∧ c 6= 1 ∧ (a+ c/2) ∗m ≤ n⇒ (a+ c/2) ∗m ≤ n < (a+ 2(c/2)) ∗m ∧ power2 (c/2)

a ∗m ≤ n < (a+ c) ∗m ∧ power2 (c) ∧ c 6= 1 ∧ (a+ c/2) ∗m ≤ n
⇒ (a+ c/2) ∗m ≤ n < (a+ c) ∗m ∧ power2 (c/2)

(a+ c/2) ∗m ≤ n < (a+ c) ∗m ∧ power2(c) ∧ c 6= 1

⇒ (a+ c/2) ∗m ≤ n < (a+ c) ∗m ∧ power2(c/2)

In both cases we observe that c/2 is a power of 2, since according to the premise c is
a power of 2 different from 1, i.e., c is a power of 2 that is at least 2. The rest of the
conclusion occurs identically in the premise of the implication.

15⇒ 3:

Inv2 ∧ c = 1⇒ Post

a ∗m ≤ n < (a+ c) ∗m ∧ power2 (c) ∧ c = 1⇒ a ∗m ≤ n < (a+ 1) ∗m
a ∗m ≤ n < (a + 1) ∗m ∧ power2 (1) ∧ c = 1⇒ a ∗m ≤ n < (a + 1) ∗m

Termination

We choose c as variant for the second loop and thus have to show the correctness of the
assertion { Inv2 ∧ c 6= 1 ∧ c = t0 } loop body { 0 ≤ c < t0 }.

{ 23: Inv2 ∧ c 6= 1 ∧ c = t0 }
{ 30: 0 ≤ c/2 < t0 }
c := c/2;
{ 29:

(
(B ⇒ 0 ≤ c < t0) ∧ (¬B ⇒ 0 ≤ c < t0)

)
≡ 0 ≤ c < t0 }

if (a+ c) ∗m > n then
{ 27: 0 ≤ c < t0 }
skip
{ 25: 0 ≤ c < t0 }

else
{ 28: 0 ≤ c < t0 }
a := a+ c
{ 26: 0 ≤ c < t0 }

fi
{ 24: 0 ≤ c < t0 }

6

23⇒ 30:

Inv2 ∧ c 6= 1 ∧ c = t0 ⇒ 0 ≤ c/2 < t0

a ∗m ≤ n < (a+ c) ∗m ∧ power2(c) ∧ c 6= 1 ∧ c = t0 ⇒ 0 ≤ c/2 < c

According to the premise c is a power of two, hence c/2 is non-negative as well as less
than c.

3 Automatising the Hoare calculus

As we see above, a small program gives already rise to numerous formulas. In fact, real-
world programming languages with their type systems generate even more verification
conditions, since type compatibility has to be checked at each step. Most validity proofs
are straight-forward, but require careful thinking to make sure that all conditions are in-
deed met. Doing the proofs by hand is tedious and error-prone, therefore automatisation
is an important issue to make formal verification of software work in practice.

One particular system for verifying software is Perfect Developer4, which uses its own
object-oriented language for specifying algorithms (called Perfect) and which generates
Java, Ada, or C++ code from the verified program. As an example, the program
above takes the following form in Perfect (the keywords keep and decreases introduce
the invariant and variant, respectively).

ghost function power2(c: int): bool

decrease max(c,0)

^= c>0

& ([c=1]: true,

[c%2=0]: power2(c/2),

[c%2=1]: false

);

function div(m,n: int): int

pre n>=0, m>0

satisfy result*m <= n < (result+1)*m

var a,c: int;

c! = 1;

loop

change c

keep power2(c’), (c’/2)*m < c’*m

until c’*m > n

decrease n-c’*m;

c! = 2*c

end;

a! = 0;

4Escher Technologies, www.eschertech.com

7

www.eschertech.com

loop

change a,c

keep power2(c’), a’*m <= n < (a’+c’)*m

until c’ = 1

decrease c’;

c! = c/2;

if [(a+c)*m > n]:

pass;

[]:

a! = a+c;

fi;

end;

value a;

end;

Perfect Developer generates 26 verification conditions and (in this case) proves all of
them fully automatically.

References

[1] George S. Boolos, John P. Burgess, and Richard C. Jeffrey. Computability and Logic.
Cambridge University Press, 2003.

[2] David Gries. The Science of Programming. Springer, 1981.

[3] Gernot Salzer. Formal verification of software. Lecture notes, Technische Universität
Wien, http://www.logic.at/lvas/fminf/, April 2010.

8

http://www.logic.at/lvas/fminf/

	Statement of the problem
	Solution
	Initialisation loop
	Division by adding powers of two

	Automatising the Hoare calculus

