
Formal Methods in Computer Science

Block 2: Satisfiability problems

From Uninterpreted Functions to Equality Logic

WS 2013

Ackermann’s Reduction

(on page 67 in D.Kroening, O. Strichman. Decision Procedures, Springer, 2008)

Algorithm: ACKERMANN’S-REDUCTION

Input: An EUF-formula ϕEUF with k uninterpreted functions F (1), . . . , F (k) of arity > 0. For
each F (l) (1 ≤ l ≤ k), ml instances occur in ϕEUF .

Output: An equality logic formula ϕE such that ϕE is valid if and only if ϕEUF is valid.

1. Assign indices to the uninterpreted function instances from subexpressions outwards (sepa-
rately for each function symbol). Denote by F

(l)
i the instance F (l) that is given the index i.

Denote by arg(F (l)
i ) the argument(s) of F

(l)
i .

2. Let flatE(ϕEUF ) := T (ϕEUF ), where T is a function that takes an EUF-formula (or term)
as input and transforms it to an equality formula (or term respectively) by replacing each
uninterpreted function instance F

(l)
i with a new term variable f

(l)
i . In the case of nested

functions, only the variable corresponding to the most external instance remains. Constants
and variables remain unchanged under T .

3. Let FCE
F (l)(ϕEUF ) denote the following conjunction of functional consistency constraints for

a function symbol F (l):

FCE
F (l)(ϕEUF ) :=

ml−1∧
i=1

ml∧
j=i+1

(T (arg(F (l)
i )) .= T (arg(F (l)

j ))) → f
(l)
i

.= f
(l)
j .

If the arity of F (l) is > 1, then read (s1, . . . , sn) .= (t1, . . . , tn) as
∧n

p=1(sp
.= tp).

4. Let FCE(ϕEUF ) be
∧k

l=1 FCE
F (l)(ϕEUF ). Moreover, let

ϕE := FCE(ϕEUF ) → flatE(ϕEUF ).

Return ϕE .



Bryant’s Reduction

(on page 70 in D.Kroening, O. Strichman. Decision Procedures, Springer, 2008)

Algorithm: BRYANT’S-REDUCTION

Input: An EUF-formula ϕEUF with m instances of an uninterpreted function F .

Output: An equality logic formula ϕE such that ϕE is valid if and only if ϕEUF is valid.

1. Assign indices to the uninterpreted function instances from subexpressions outwards. Denote
by Fi the instance F that is given the index i, and by arg(Fi) its argument(s).

2. Let flatE(ϕEUF ) := T ∗(ϕEUF ), where T ∗ is a function that takes an EUF-formula (or term)
as input and transforms it to an equality formula (or term respectively) by replacing each
uninterpreted function instance Fi with a new term variable F ∗

i (in the case of nested functi-
ons, only the variable corresponding to the most external instance remains). Constants and
variables remain unchanged under T ∗.

3. For i ∈ {1, ...,m}, let fi be a new variable. Let

F ∗
i

.=


case T ∗(arg(F1))

.= T ∗(arg(Fi)) : f1
...

...
...

T ∗(arg(Fi−1))
.= T ∗(arg(Fi)) : fi−1

TRUE : fi


be a case statement (as defined in the lecture slides) and let

C(F ∗
i ) :=

i∨
j=1

(
F ∗

i
.= fj ∧ T ∗(arg(Fj))

.= T ∗(arg(Fi)) ∧
j−1∧
k=1

T ∗(arg(Fk)) 6
.= T ∗(arg(Fi))

)
be the associated formula.

Finally, let

FCE(ϕEUF ) :=
m∧

i=1

C(F ∗
i ).

4. Let
ϕE := FCE(ϕEUF ) → flatE(ϕEUF ).

Return ϕE .

Remarks:

• The generalization to more function symbols and to function symbols with arity > 1 works
as in Ackermann’s reduction.

• In the aforementioned book, there are two small errors, which we corrected:

1. In the case statement we replaced the wrong statements of the form arg(F ∗
j ) by the

correct ones of the form arg(Fj).
2. In the definition of FCE(ϕEUF ) we replaced the wrong statement of the form F ∗

i by
the correct one of the form C(F ∗

i ).


