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Why formal methods?

Formal (= mathematical) methods . . .

allow us to guarantee (= prove) properties of programs/systems;

are necessary if the computer is expected to help us;

improve the quality of software by enforcing rigorous and structured
thinking.

Formal proofs require that all involved parts have been formalised before.
Parts: specification, semantics of program, machine architecture, . . .

This part of the course . . .

concentrates on functional requirements of sequential programs.

uses methods of deductive verification.

introduces
I operational semantics to define the meaning of imperative programs

and
I axiomatic semantics to verify properties of imperative programs.
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Toy Programming Language (TPL)

z := 0;
while y 6= 0 do

z := z + x ;
y := y − 1

od

Which character strings can be interpreted as programs?
=⇒ syntax of TPL

What do programs mean?
=⇒ semantics of TPL

What is the program supposed to do?
=⇒ formal specification of intended behaviour

Does the program do what it is supposed to do?
=⇒ formal verification of program
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TPL Syntax

P ::= “skip” | “abort” | V “:=” E | P “;”P programs

| “if ” E “then” P “else” P “fi”

| “while” E “do” P “od”

E ::= V | N | U E | “(” E B E “)” expressions

V ::= “x” | “y” | · · · | any word except key words | · · · variables

N ::= “0” | “1” | · · · | “9” | “10” | “11” | · · · numerals

U ::= “+” | “−” | “¬” | · · · unary operators

B ::= “+” | “−” | “∗” | “/” | “<” | “≤” | “=” | · · · binary operators

Overloading: P, E , V, N , U , B denote

grammar variables

the languages generated from these variables
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Programs as State Transformers

input states

x 7→ 3
y 7→ 2
z 7→ 1

output statesprogram

program

program

x 7→ 3
y 7→ 0
z 7→ 6

z := 0;
while y 6= 0 do

z := z + x ;
y := y − 1

od
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Program state:

Informally: memory snapshot

Formally: mapping from variables to values, V 7→ Z

Set of all states: S def
= {σ | σ : V 7→ Z }

Configuration:

Informally: system snapshot (“dump”) = remaining program + state

Formally: pair (p, σ) with program p ∈ P and state σ ∈ S,
or just a state σ (final configuration).

Set of all configurations: C def
= (P × S) ∪ S

Transition relation:

Informally: describes a single computation step

Formally: relation ⇒ ⊆ (P × S)× C
Program run: sequence of transitions
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Transition Relation for TPL

(skip, σ)⇒ σ

(v := e, σ)⇒ σ′ where
σ′(v) = [e]σ

σ′(x) = σ(x) for x 6= v

(p; q, σ)⇒

{
(p′; q, σ′) if (p, σ)⇒ (p′, σ′)

(q, σ′) if (p, σ)⇒ σ′

(if e then p else q fi, σ)⇒

{
(p, σ) if [e]σ 6= 0

(q, σ) if [e]σ = 0

(while e do p od, σ)⇒

{
(p; while e do p od, σ) if [e]σ 6= 0

σ if [e]σ = 0

Note that abort is missing.

Kind of abstract TPL interpreter. 10



Semantics of Expressions

[e] : S 7→ Z . . . function computed by expression e ∈ E

[v ]σ = σ(v) for v ∈ V
σ(v) . . . value of v in current state σ

[n]σ = [n] for n ∈ N
[n] ∈ Z . . . integer corresponding to numeral n
[0] = 0, [1] = 1, [2] = 2, . . .

[u e]σ = [u]([e]σ) for u ∈ U
[u] : Z 7→ Z . . . unary function corresponding to operator u
[¬] = boolean negation, [−] = unary minus

[e b e ′]σ = [b]([e]σ, [e ′]σ) for b ∈ B
[b] : Z2 7→ Z . . . binary function corresponding to operator b
[∧], [∨], [⇒] . . . binary boolean functions
[+], [−], [∗], [/] . . . binary integer functions
[<], [≤], [=], [≥], [>] . . . comparison of integers 11



Structural Operational Semantics (SOS) of TPL

The function [p] : S 7→ S computed by a program p is defined by

[p]σ = σ′ if and only if (p, σ)
∗⇒ σ′ for all states σ, σ′ ∈ S.

(
∗⇒ . . . reflexive and transitive closure of ⇒)

Semantic equivalence

Two programs p and q are semantically equivalent if [p] = [q].

This means:

If (p, σ)
∗⇒ σ′, then (q, σ)

∗⇒ σ′, and vice versa.

If (p, σ) loops or aborts, then so does (q, σ), and vice versa.

Note: The semantic function [p] does not distinguish between endless
loops and abortion, even though the transition relation does.
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Theorem

For all progams p, q, variables v , expressions e and all states σ,
the SOS of TPL has the following properties:

[skip]σ = σ

[v := e]σ = σ′, where
σ′(v) = [e]σ

σ′(x) = σ(x) for x 6= v

[p; q]σ = [q] [p]σ

[if e then p else q fi]σ =

{
[p]σ if [e]σ 6= 0

[q]σ if [e]σ = 0

[while e do p od]σ =

{
[while e do p od] [p]σ if [e]σ 6= 0

σ if [e]σ = 0
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[if e then p else q fi]σ =

{
[p]σ if [e]σ 6= 0

[q]σ if [e]σ = 0

Proof:

[if e then p else q fi]σ = σ′

⇐⇒ (if e then p else q fi, σ)
∗⇒ σ′ Def. of [p]

SOS: (if e then p else q fi, σ)⇒

{
(p, σ) if [e]σ 6= 0

(q, σ) if [e]σ = 0

⇐⇒

{
(p, σ)

∗⇒ σ′ if [e]σ 6= 0

(q, σ)
∗⇒ σ′ if [e]σ = 0

Def. SOS of if

⇐⇒

{
[p]σ = σ′ if [e]σ 6= 0

[q]σ = σ′ if [e]σ = 0
Def. of [p]
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Sequential composition is associative

[(p1; p2); p3] = [p1; (p2; p3)] for all programs p1, p2, and p3.

Proof: Let τ be an arbitrary state. We have:

[(p1; p2); p3] τ = [p3] ([p1; p2] τ) Theorem: [p; q]σ = [q] [p]σ

= [p3] ([p2] ([p1] τ)) Theorem: [p; q]σ = [q] [p]σ

= [p2; p3] ([p1] τ) Theorem: [q] [p]σ = [p; q]σ

= [p1; (p2; p3)] τ Theorem: [q] [p]σ = [p; q]σ

This result allows us to evaluate the first statement in a sequential
composition, regardless of its tree structure.
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Natural Semantics of TPL

Idea: Use theorem as definition of [p] : S 7→ S

Definition

For all progams p, q, variables v , expressions e and all states σ,
the natural semantics of TPL is defined by:

[skip]σ
def
= σ

[v := e]σ
def
= σ′, where

σ′(v) = [e]σ

σ′(x) = σ(x) for x 6= v

[p; q]σ
def
= [q] [p]σ

[if e then p else q fi]σ
def
=

{
[p]σ if [e]σ 6= 0

[q]σ if [e]σ = 0

[while e do p od]σ
def
=

{
[while e do p od] [p]σ if [e]σ 6= 0

σ if [e]σ = 0
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Natural Semantics: Example

[p]σ = [z := 0; while . . . ]σ
= [while . . . ] [z := 0]σ
= [while y 6= 0 do . . . od]σ1
= [while . . . ] [z := z + x ; y := y − 1]σ1
= [while . . . ] [y := y − 1] [z := z + x ]σ1
= [while . . . ] [y := y − 1]σ2
= [while y 6= 0 do . . . od]σ3
= [while . . . ] [z := z + x ; y := y − 1]σ3
= [while . . . ] [y := y − 1] [z := z + x ]σ3
= [while . . . ] [y := y − 1]σ4
= [while y 6= 0 do . . . od]σ5
= σ5

p : z := 0;
while y 6= 0 do

z := z + x ;
y := y − 1

od
σ : x 7→ 3, y 7→ 2, z 7→ 1

σ1 : z 7→ [0]σ = 0
x 7→ 3, y 7→ 2

[y 6= 0]σ1 = 1 (true)

σ2 : z 7→ [z + x ]σ1 = 3
x 7→ 3, y 7→ 2

σ3 : y 7→ [y − 1]σ2 = 1
x 7→ 3, z 7→ 3

[y 6= 0]σ3 = 1 (true)

σ4 : z 7→ [z + x ]σ3 = 6
x 7→ 3, y 7→ 1

σ5 : y 7→ [y − 1]σ4 = 0
x 7→ 3, z 7→ 6

[y 6= 0]σ5 = 0 (false)
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Compare to SOS:

(p, σ) = (z := 0; while . . . , σ)
(z := 0, σ)⇒ σ1

⇒ (while y 6= 0 do . . . od, σ1)
⇒ (z := z + x ; y := y − 1; while . . . , σ1)

(z := z + x ; y := y − 1, σ1)
(z := z + x, σ1)⇒ σ2

⇒ (y := y − 1, σ2)

⇒ (y := y − 1; while . . . , σ2)
(y := y − 1, σ2)⇒ σ3

⇒ (while y 6= 0 do . . . od, σ3)
⇒ (z := z + x ; y := y − 1; while . . . , σ3)

(z := z + x ; y := y − 1, σ3)
(z := z + x, σ3)⇒ σ4

⇒ (y := y − 1, σ4)

⇒ (y := y − 1; while . . . , σ4)
(y := y − 1, σ4)⇒ σ5

⇒ (while y 6= 0 do . . . od, σ5)
⇒ σ5

p : z := 0;
while y 6= 0 do

z := z + x ;
y := y − 1

od
σ : x 7→ 3, y 7→ 2, z 7→ 1

σ1 : z 7→ [0]σ = 0
x 7→ 3, y 7→ 2

[y 6= 0]σ1 = 1 (true)

σ2 : z 7→ [z + x ]σ1 = 3
x 7→ 3, y 7→ 2

σ3 : y 7→ [y − 1]σ2 = 1
x 7→ 3, z 7→ 3

[y 6= 0]σ3 = 1 (true)

σ4 : z 7→ [z + x ]σ3 = 6
x 7→ 3, y 7→ 1

σ5 : y 7→ [y − 1]σ4 = 0
x 7→ 3, z 7→ 6

[y 6= 0]σ5 = 0 (false)
19



Structural operational vs. natural semantics

Natural semantics:

no transitions, no program runs

just a recursive definition relating input to output states

more elegant, easier to use, more compact

Structural operational semantics:

distinguishes between infinite loops and abortion

allows us to model fine-grained parallelism properly
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Correctness Assertions

Correctness assertion: “Sin p Sout”
“Program p transforms the states in Sin to states in Sout.”

May be true or false =⇒ kind of logical formula

What about inputs with undefined outputs?

Assertion is true w.r.t. partial correctness (is “partially correct”/p.c.) if:
Whenever the input state is in Sin and the program terminates,
then the output state is in Sout.

Assertion is true w.r.t. total correctness (is “totally correct”/t.c.) if:
Whenever the input state is in Sin,
then the program terminates and the output state is in Sout.

total correctness = partial correctness + termination
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1 { (3, 2, 1) } p { (3, 0, 6) }
p.c. and t.c.

2 { (3, 2, 1), (3, 2, 0) } p { (3, 0, 6) }
p.c. and t.c.

3 { (3, 2, 1), (3,−1, 0) } p { (3, 0, 6) }
p.c. but not t.c.

4 { (3, 2, 1) } p { (3, 0, 6), (0, 0, 0) }
p.c. and t.c.

5 { (3, 3, 3) } p { (3, 0, 6) }
neither p.c. nor t.c.

6 { (3, 3, 3) } p { (3, 0, 9) }
p.c. and t.c.

7 { (3, 2, 1), (3, 3, 3) } p { (3, 0, 6), (3, 0, 9) }
p.c. and t.c.

(a, b, c): x 7→ a
y 7→ b
z 7→ c

p: z := 0;
while y 6= 0 do

z := z + x ;
y := y − 1

od
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Correlating Input and Output States

Single test cases can be combined:

{ (3, 2, 1) } p { (3, 0, 6) } is correct.

{ (3, 3, 3) } p { (3, 0, 9) } is correct.

Therefore:

{ (3, 2, 1), (3, 3, 3) } p { (3, 0, 6), (3, 0, 9) } is correct.

The opposite, however, is not true.
Which inputs correspond to which outputs?

Problem: We need the opposite.

Prove a combined correctness assertion with big sets.

And we want to conclude:

Each single test case is correct.

Solution: augment states with auxiliary variables.
(Also called “logical variables”, in contrast to program variables.)
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Input states are characterized by x and y .

Output states miss the original value of y .

Therefore we add the auxiliary variable y0 that
contains the original value of y .

Now we can reverse the argument:

{ (3, 2, 1, 2),
(3, 3, 3, 3)

} p { (3, 0, 6, 2),
(3, 0, 9, 3)

} is correct.

Therefore:

{ (3, 2, 1, 2) } p { (3, 0, 6, 2) } is correct.

{ (3, 3, 3, 3) } p { (3, 0, 9, 3) } is correct.

(a, b, c, d): x 7→ a
y 7→ b
z 7→ c
y0 7→ d

p: z := 0;
while y 6= 0 do

z := z + x ;
y := y − 1

od

25



Beyond Testing: Infinite Sets of States

How to prove assertions with infinite sets of input/output states?

Input states: Sin = { (a, b, c , b) | a, b, c ∈ Z }
Output states: Sout = { (a, 0, a · d , d) | a, d ∈ Z }

Proving Sin p Sout amounts to infinitely many test cases.

We need:

a language to specify infinite sets of states
=⇒ first-order logic

a method to handle assertions with infinite sets of states
=⇒ Hoare calculus & friends:

I Hoare calculus
I weakest (liberal) preconditions
I strongest postconditions
I annotation calculus

practical tool using all of the above
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First-Order Formulas

Syntax: F ::= V | N | U F | “(”F BF “)” | “∀”V F | “∃”V F

Semantics: The same as for E , except:

[∀v e]σ =

{
1 if [e]σ′ 6= 0 for all σ′ ∈ S such that σ′

v∼ σ
0 otherwise

[∃v e]σ =

{
1 if [e]σ′ 6= 0 for some σ′ ∈ S such that σ′

v∼ σ
0 otherwise

σ′
v∼ σ: σ′(x) = σ(x) for all variables x 6= v

“States σ and σ′ differ at most at variable v .”
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Is [∀x ∃y y > x ]σ true in an arbitrary state σ?

[∀x ∃y y > x ]σ = 1

if [∃y y > x ]σ′ = 1 for all σ′
x∼ σ

(i.e., σ′(x) = n for an arbitrary n ∈ Z)

if [y > x ]σ′′ = 1 for all σ′
x∼ σ and some σ′′

y∼ σ′

(i.e., σ′′(x) = n, and we choose σ′′(y) = n + 1)

[y > x ]σ′′ = [>]([y ]σ′′, [x ]σ′′)

= (σ′′(y) > σ′′(x))

= (n + 1 > n)

= 1

Therefore the formula is valid.
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Formulas vs. Sets of States

{F } . . . set of states defined by formula F “F -states”

{F } def
= {σ ∈ S | [F ]σ 6= 0 }

Sin = { (a, b, c , b) | a, b, c ∈ Z } = { y = y0 }
Sout = { (a, 0, a · d , d) | a, d ∈ Z } = { y = 0 ∧ z = x ∗ y0 }

Remember: (a, b, c, d) means x 7→ a, y 7→ b, z 7→ c , and y0 7→ d .

Some observations:

{F ∧ G } = {F } ∩ {G }
{F ∨ G } = {F } ∪ {G }
F ⇒ G is valid iff {F } ⊆ {G }

Can we define every set of states by a formula?
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Correctness Assertions and Formulas

{F } p {G } is true regarding partial correctness (is “partially correct”), if

. . . whenever p starts in an F -state and terminates,
then p stops in a G -state.

. . . for all states σ ∈ S,
if [F ]σ is true and [p]σ is defined,
then [G ] [p]σ is true.

{F } p {G } is true regarding total correctness (is “totally correct”), if

. . . whenever p starts in an F -state,
then p terminates and stops in a G -state.

. . . for all states σ ∈ S,
if [F ]σ is true,
then [p]σ is defined and [G ] [p]σ is true.

F . . . precondition
G . . . postcondition
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{ 1 } x := 2 { x = 2 }
Totally (and therefore also partially) correct.

{ 1 } x := 2 { x = 3 }
Neither totally nor partially correct.

{ 1 }while x > 2 do x := x − 1 { x = 2 }
Neither totally nor partially correct. Counterexample: σ(x) = 0

{ 1 }while x 6= 2 do x := x − 1 { x = 2 }
Partially but not totally correct. Counterexample: σ(x) = 0

{ x > 5 }while x 6= 2 do x := x − 1 { x = 2 }
Totally (and therefore also partially) correct.
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{ y = y0 }
z := 0;
while y 6= 0 do

z := z + x ;
y := y − 1

od
{ z = x ∗ y0 }
Partially correct? It seems so.

Terminating? No, not for y < 0.
=⇒ Add y ≥ 0 to the precondition.

But how to prove it?
We have to check infinitely many input states. Infeasible.
=⇒ Hoare calculus to the rescue
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{ x ≥ 1 }
while x > 1 do

if x = 2 ∗ (x/2) then
x := x/2

else
x := 3 ∗ x + 1

fi
od
{ x = 1 }

Number of iterations [Wikipedia]

Partially correct? Obviously.
x is always positive.
On termination we have x 6> 1, hence x must be equal to 1.

Terminating? Yes, if xn = 1 for some n, for every x0 ≥ 1.

xn+1 =

{
xn/2 if xn even

3xn + 1 if xn odd
Collatz conjecture, open problem
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{ x ≥ 2 }
y := 2
while y < x
∧ ¬(prime(y) ∧ prime(2x − y)) do
y := y + 1

od
{ prime(y) ∧ prime(2x − y) }

Number of decompositions [Wikip.]

Partially correct?
Yes, if every even integer greater than 2 is the sum of two primes.
Goldbach conjecture, notorious open problem.

Terminating? Obviously, at most x − 2 iterations.

Conclusion:

Some assertions will be hard for every verification tool.

Fortunately, assertions in practise are much easier.
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Weak and strong formulas

F , G . . . formulas

F is weaker than G , if F is implied by G (G ⇒ F is valid).
F is stronger than G , if F implies G (F ⇒ G is valid).

“weaker” = “less restrictive” = “more satisfying states”
“stronger” = “more restrictive” = “less satisfying states”

F ⇒ G is valid if and only if {F } ⊆ {G }.

x = y is stronger than x ≥ y .

x > y is weaker than x = y + 1.

1 (true) is the weakest formula: implied by everything, { 1 } = S.

0 (false) is the strongest formula: implies everything, { 0 } = ∅.

x = 2 and x > y are incomparable: neither is weaker than the other. 36



Three ways to prove correctness assertions

Task: Show that {F } p {G } is partially/totally correct.

Method 0: Use the definition.
Show that for all states σ ∈ S satisfying the precondition F , the state
after executing program p, [p]σ, satisfies the postcondition G .
Problem: S infinite, too many states to check.

Method 1: Hoare calculus.
Decompose correctness assertion into simpler ones (guided by rules)
until we obtain true assertions (instances of axioms) and valid formulas.

Method 2: Weakest (liberal) precondition.
Compute the weakest formula F ′ such that {F ′ } p {G } is true,
and show that F implies F ′.

Method 3: Strongest postcondition.
Compute the strongest formula G ′ such that {F } p {G ′ } is true,
and show that G ′ implies G .

Method 4: Annotation calculus.
No new method, just combines the above methods for practical usage. 37


