
Deductive Verification of Software
Examples discussed on 26 Nov 2013

(6.0 VU Formal Methods in Computer Science)

Gernot Salzer

WS 2013

Exercise 1

Determine the strongest postcondition of the weakest precondition of an assignment
statement, i.e., compute sp(wlp(v := e,G), v := e). Why is it different from G?

Solution

sp(wlp(v := e,G), v := e) = sp(G[v/e], v := e)

= ∃v′ (G[v/e][v/v′] ∧ v = e[v/v′])

G[v/e] contains only those occurrences of v that are introduced by e; all other occurrences
have been replaced by e. Therefore G[v/e][v/v′] is the same as G[v/e[v/v′]].

= ∃v′ (G[v/e[v/v′]] ∧ v = e[v/v′])

By the second conjunct we know that e[v/v′] equals v.

= ∃v′ (G[v/v] ∧ v = e[v/v′])

= ∃v′ (G ∧ v = e[v/v′])

= G ∧ ∃v′ (v = e[v/v′])

Why is the result different from G? G may admit states that cannot be obtained by
executing the assignment and therefore do not appear in the strongest postcondition.
The additional existential formula ensures that the value of v is the result of evaluating
the expression e for some input state. For example, the postcondition G = true after
the assignment x := 2x is also satisfied by states assigning an odd number to x; the
additional formula ∃x′(x = 2x′) (‘x is even’) excludes such states.

1



Exercise 2

Show that the following assertion is totally correct. Describe the function computed by
the program.

{Pre : x ≥ 1 ∧ y ≥ 2 }
u := y;
z := 0;
while u ≤ x do
u := u ∗ y;
z := z + 1

od
{Post : yz ≤ x < yz+1 }

Hint: Use the invariant Inv : u = yz+1 ∧ y ≤ u ≤ xy ∧ y ≥ 2.

Solution

We start by adding further assertions to the program, according to the rules of the
annotation calculus. The formulas are numbered in to the order in which they are
added.

{Pre : x ≥ 1 ∧ y ≥ 2 }
{F6 : Inv [z/0][u/y] }
u := y;
{F5 : Inv [z/0] }
z := 0;
{F1 : Inv }
while u ≤ x do
{F2 : Inv ∧ u ≤ x ∧ t = t0 }
{F8 : (Inv ∧ (u ≤ x⇒ 0 ≤ t < t0))[z/z + 1][u/uy] }
u := u ∗ y;
{F7 : (Inv ∧ (u ≤ x⇒ 0 ≤ t < t0))[z/z + 1] }
z := z + 1
{F3 : Inv ∧ (u ≤ x⇒ 0 ≤ t < t0) }

od
{F4 : Inv ∧ ¬(u ≤ x) }
{Post : yz ≤ x < yz+1 }

It remains to show the validity of the three implications Pre ⇒ F6, F4 ⇒ Post , and
F2 ⇒ F8.

Pre ⇒ F6:

(x ≥ 1 ∧ y ≥ 2)⇒ Inv [z/0][u/y]

(x ≥ 1 ∧ y ≥ 2)⇒ (y = y0+1 ∧ y ≤ y ≤ xy ∧ y ≥ 2)

2



We have to show that each conjunct in the conclusion is true (under the assumption
that the premises are true).

conclusion why it holds

y = y0+1 Equivalent to the valid formula y = y
y ≤ y Valid (reflexivity of ≤)
y ≤ xy Since y is positive (premise y ≥ 2), multiplying the premise

x ≥ 1 by y yields the conclusion y ≤ xy.
y ≥ 2 Is one of the premises.

F4 ⇒ Post :

Inv ∧ ¬(u ≤ x)⇒ Post

(u = yz+1 ∧ y ≤ u ≤ xy ∧ y ≥ 2 ∧ u > x)⇒ yz ≤ x < yz+1

conclusion why it holds

yz ≤ x From the premises u = yz+1 and u ≤ xy we obtain
yz+1 ≤ xy. Since y is positive (premise y ≥ 2), dividing
the inequality by y yields the conclusion yz ≤ x.

x < yz+1 Follows from the premises u = yz+1 and u > x.

F2 ⇒ F8:

(Inv ∧ u ≤ x ∧ t = t0)⇒ (Inv ∧ (u ≤ x⇒ 0 ≤ t < t0))[z/z + 1][u/uy]

(Inv ∧ u ≤ x ∧ t = t0)⇒ (Inv [z/z + 1][u/uy] ∧ (uy ≤ x⇒ 0 ≤ t[z/z + 1][u/uy] < t0))

Proving an implication F ⇒ (G ∧H) is equivalent to proving the implications F ⇒ G
and F ⇒ H separately. Here the first implication corresponds to partial correctness and
the second one to termination.

Partial correctness: We omit the premise t = t0 as it cannot contribute anything to the
proof; it just states that some term t equals a variable t0 that doesn’t occur anywhere
else in the formula.

(Inv ∧ u ≤ x)⇒ Inv [z/z + 1][u/uy]

(u = yz+1 ∧ y ≤ u ≤ xy ∧ y ≥ 2 ∧ u ≤ x)⇒ (uy = yz+2 ∧ y ≤ uy ≤ xy ∧ y ≥ 2)

conclusion why it holds

uy = yz+2 Obtained by multiplying the premise u = yz+1 by y.
y ≤ uy Since y is positive (premise y ≥ 2), its product with another

positive number (the premises y ≤ u and y ≥ 2 imply u ≥ 2)
is greater than or equal to y.

uy ≤ xy Since y is positive (premise y ≥ 2), multiplying the premise
u ≤ x by y yields the conclusion uy ≤ xy.

y ≥ 2 Is one of the premises.

3



Termination:

(Inv ∧ u ≤ x ∧ t = t0)⇒ (uy ≤ x⇒ 0 ≤ t[z/z + 1][u/uy] < t0)

(Inv ∧ u ≤ x)⇒ (uy ≤ x⇒ 0 ≤ t[z/z + 1][u/uy] < t)

(Inv ∧ u ≤ x ∧ uy ≤ x)⇒ (0 ≤ t[z/z + 1][u/uy] < t)

In the first step we use the equation t = t0 to eliminate t0 on the righthand side; after
that we don’t need the equation anymore and omit it. In the second step we use the
fact that F ⇒ (G⇒ H) is equivalent to (F ∧G)⇒ H.

To guess a suitable variant t we rewrite the loop condition u ≤ x to x−u ≥ 0 and choose

t
def
= x− u. The loop condition ensures that t ≥ 0 holds within the loop; moreover, since

the loop increases u we may expect that t decreases. It remains to prove these two
properties formally by showing the validity of the implication.

(Inv ∧ u ≤ x ∧ uy ≤ x)⇒ (0 ≤ t[z/z + 1][u/uy] < t)

(u = yz+1 ∧ y ≤ u ≤ xy ∧ y ≥ 2 ∧ u ≤ x ∧ uy ≤ x)⇒ (0 ≤ x− uy < x− u)

conclusion why it holds

0 ≤ x− uy Equivalent to the premise uy ≤ x.
x− uy < x− u This inequality is equivalent to u < uy. Since u is positive

(the premises y ≤ u and y ≥ 2 imply u ≥ 2) and y is greater
than one (premise y ≥ 2), the product uy is strictly greater
than u.

Therefore the given assertion is totally correct.

Function computed by the program: To see what the program does it suffices to analyse
the postcondition and to express z as a function of x and y.

yz ≤ x < yz+1

z ≤ logy(x) < z + 1 (Take the logarithm to base y.)

z = blogy(x)c (a = bbc is equivalent to a ≤ b < a+ 1.)

Thus the program computes the integer logarithm to base y of x.

Exercise 3

Let p be the program while i > j do i := j/2; j := i− 2 od. For each of the four
correctness assertions {φ } p { true }, {φ } p { false }, { true } p {φ }, and { false } p {φ }
find formulas φ that are neither equivalent to true nor to false such that the assertion
is partially correct, partially but not totally correct, totally correct, or totally but not
partially correct. In total, these may be up to 16 formulas. Note that in some cases the
required formula φ may not exist.

4



Solution

p
≡

w
h

ile
i
>
j

d
o
i

:=
j/

2;
j

:=
i
−

2
o

d
φ
6=

tr
u

e,
fa

ls
e

p
ar

ti
a
ll

y
co

rr
ec

t
p

ar
ti

a
ll

y
b

u
t

n
ot

to
ta

ll
y

co
r.

to
ta

ll
y

co
rr

ec
t

to
ta

ll
y

b
u

t
n

ot
p

ar
ti

al
ly

co
r.

{φ
}p
{t

ru
e
}

an
y

fo
rm

u
la

ex
-

ce
p

t
th

o
se

eq
u

iv
-

al
en

t
to

tr
u

e
or

fa
ls

e

e.
g.
i
>
j

or
i
6=
j

e.
g.
i
≤
j

d
o
es

n
ot

ex
is

t

{φ
}p
{f

al
se
}

e.
g.
i
>
j

e.
g.
i
>
j

d
o
es

n
ot

ex
is

t
d

o
es

n
ot

ex
is

t

{t
ru

e
}p
{φ
}

e.
g.
i
≤
j

i
≤
j

d
o
es

n
ot

ex
is

t
d

o
es

n
ot

ex
is

t

{f
a
ls

e
}p
{φ
}

an
y

fo
rm

u
la

ex
-

ce
p

t
th

o
se

eq
u

iv
-

al
en

t
to

tr
u

e
or

fa
ls

e

d
o
es

n
ot

ex
is

t

an
y

fo
rm

u
la

ex
-

ce
p

t
th

os
e

eq
u

iv
-

al
en

t
to

tr
u

e
or

fa
ls

e

d
o
es

n
ot

ex
is

t

5



Exercise 4

Consider the rule
{F } p {G }

{H ∧ F } p {G ∧H }
where F,G,H are formulas and p is a program.

(a) Show that the rule is not admissible in general.

(b) Show that the rule is admissible, if H does not contain any variable that occurs
on the lefthand side of an assignment in p. Can you think of situations where this
restricted rule might be useful?

Solution

(a) To show that the rule is not admissible it suffices to find a true correctness assertion,
where application of the rule leads to a false assertion.

Consider the assertion { true }x := 0 {x = 0 }, which is obviously true. If we apply
the rule for H = (x = 1) we obtain the assertion {x = 1 }x := 0 {x = 0∧x = 1 }, or
equivalently {x = 1 }x := 0 { false }. This assertion is false: For each state σ such
that σ(x) = 1 the program terminates in a state that does not satisfy false.

(b) We first show that {H } p {H } is partially correct, if the formula H does not con-
tain any variable that occurs as lefthand side of an assignment in program p. We
perform an induction on the structure of p; as induction hypothesis we assume that
{H } p′ {H } is partially correct for all proper sub-programs p′ of p.

p = skip: {H } skip {H } is an instance of the skip-axiom.

p = abort: {H } abort {H } is an instance of the abort-axiom.

p = v := e: {H } v := e {H } is an instance of the axiom {F [v/e] } p {F }, since
H[v/e] simplifies to H because H does not contain v. (Note that we need
here (and only here) the restriction regarding H and assignments.)

p = p1; p2: By induction hypothesis the assertions {H } p1 {H } and {H } p2 {H }
are partially correct. Applying the sequential composition rule (sc) we see that
{H } p {H } is also partially correct.

{H } p1 {H } {H } p2 {H }
{H } p1; p2 {H }

(sc)

p = if e then p1 else p2 fi: By induction hypothesis the assertions {H } p1 {H } and
{H } p2 {H } are partially correct. Applying the logical consequence rule and
the if-rule we obtain:

H ∧ e⇒ H {H } p1 {H }
{H ∧ e } p1 {H }

(lc)
H ∧ ¬e⇒ H {H } p2 {H }

{H ∧ ¬e } p2 {H }
(lc)

{H } if e then p1 else p2 fi {H }
(if)

6



The implications (H∧e)⇒ H and (H∧¬e)⇒ H are valid, therefore {H } p {H }
is partially correct.

p = while e do p1 od: By induction hypothesis the assertion {H } p1 {H } is partially
correct. Applying the logical consequence rule and the while-rule we obtain:

(H ∧ e)⇒ H {H } p1 {H }
{H ∧ e } p1 {H }

(lc)

{H }while e do p1 od {H ∧ ¬e }
(wh)

(H ∧ ¬e)⇒ H

{H }while e do p1 od {H }
(lc)

The implications (H∧e)⇒ H and (H∧¬e)⇒ H are valid, therefore {H } p {H }
is partially correct.

We now return to the original problem.

If {F } p {G } is partially correct, then {H ∧ F } p {G ∧H } is partially correct:
Let σ be an (H ∧ F )-state, i.e., σ is an H-state as well as an F -state. Suppose
σ′ = [p]σ is defined. Since {F } p {G } is true, we have that σ′ is a G-state. From
above we know that {H } p {H } is also true; hence σ′ is also an H-state. Therefore
σ′ is a (G ∧H)-state. We conclude that {H ∧ F } p {G ∧H } is partially correct.

If {F } p {G } is totally correct, then {H ∧ F } p {G ∧H } is totally correct:
Let σ be an (H ∧ F )-state, i.e., σ is an H-state as well as an F -state. Since
{F } p {G } is true, we know that σ′ = [p]σ is defined and that σ′ is a G-state.
From above we know that {H } p {H } is also true; hence σ′ is also an H-state.
Therefore σ′ is a (G ∧ H)-state. We conclude that {H ∧ F } p {G ∧ H } is totally
correct.

What is the rule good for? This rule is useful for proving properties of program
parts locally and adding the information about the global context (i.e., about the
other variables not relevant for the program part under consideration) afterwards.
As an example, suppose that under the precondition F1 the program p1 computes
some function f1, i.e., the assertion A1 = {F1 } p1 { z1 = f1(· · · ) } is true. Another
program, p2, computes function f2, i.e., the assertion A2 = {F2 } p2 { z2 = f2(· · · ) }
is true. Due to our new rule we may prove the correctness of A1 and A2 separately.
Afterwards we add the precondition of the second program, F2, to assertion A1, and
the postcondition of the first program, z1 = f1(. . . ), to assertion A2. By sequential
composition we obtain a true assertion about a program computing both functions:

{F1 } p1 { z1 = f1(· · · ) }
{F1 ∧ F2 } p1 { z1 = f1(· · · ) ∧ F2 }

{F2 } p2 { z2 = f2(· · · ) }
{ z1 = f1(· · · ) ∧ F2 } p2 { z1 = f1(· · · ) ∧ z2 = f2(· · · ) }

{F1 ∧ F2 } p1; p2 { z1 = f1(· · · ) ∧ z2 = f2(· · · ) }
(sc)

7


