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Structural Operational Semantics (SOS)

The stepwise execution of programs is specified by a transition relation ⇒.

(skip, σ)⇒ σ
...

(while e do p od, σ)⇒

{
(p; while e do p od, σ) if [e]σ 6= 0

σ if [e]σ = 0

⇒ is deterministic (in the case of TPL).
⇒ allows us to distinguish between aborted runs and endless loops.

The function [p] : S 7→ S computed by a TPL program p is defined by

[p]σ = σ′ if (p, σ)
∗⇒ σ′ (for all states σ).

[p] is a mathematical function. As such, [p]σ can be

defined: [p]σ is a state representing the result of the computation;

undefined: program p aborts or loops on input σ.

[p] does not distinguish between aborted runs and endless loops. 3



Natural Semantics

The function computed by a program is defined recursively without
reference to a transition relation.

[skip]σ = σ

[v := e]σ = σ′ where
σ′(v) = [e]σ

σ′(x) = σ(x) for x 6= v

[p; q]σ = [q] [p]σ

[if e then p else q fi]σ =

{
[p]σ if [e]σ 6= 0

[q]σ if [e]σ = 0

[while e do p od]σ =

{
[while e do p od] [p]σ if [e]σ 6= 0

σ if [e]σ = 0
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Correctness Assertions

{F } = {σ ∈ S | [F ]σ 6= 0 } . . . set of states defined by formula F
“F -states”

{F } p {G } is true regarding partial correctness (is “partially correct”), if

. . . whenever p starts in an F -state and terminates,
then p stops in a G -state.
. . . for all states σ ∈ S,
if [F ]σ is true and [p]σ is defined,
then [G ] [p]σ is true.

{F } p {G } is true regarding total correctness (is “totally correct”), if

. . . whenever p starts in an F -state,
then p terminates and stops in a G -state.
. . . for all states σ ∈ S,
if [F ]σ is true,
then [p]σ is defined and [G ] [p]σ is true.

F . . . precondition
G . . . postcondition 6



{ x = y } x := x + 1 { x = y + 1 }
Totally (and therefore also partially) correct.

{ x = y } x := x + 1 { x > y }
Totally (and therefore also partially) correct.

{ x ≥ y } x := x + 1 { x = y + 1 }
Neither totally nor partially correct. Counterexample: σ(x) = 1, σ(y) = 0

{ x ≥ y } x := x + 1 { x > y }
Totally (and therefore also partially) correct.

{ 1 } x := x + 1 { x > y }
Neither totally nor partially correct. Counterexample: σ(x) = 0, σ(y) = 1

{ 0 } x := x + 1 { x > y }
Totally (and therefore also partially) correct. 7



{ x = y } if x = y then x := x + 1 else abort fi { x = y + 1 }
Totally (and therefore also partially) correct.

{ x = y } if x = y then x := x + 1 else abort fi { x > y }
Totally (and therefore also partially) correct.

{ x ≥ y } if x = y then x := x + 1 else abort fi { x = y + 1 }
Partially but not totally correct. Counterexample: σ(x) = 1, σ(y) = 0

{ x ≥ y } if x = y then x := x + 1 else abort fi { x > y }
Partially but not totally correct. Counterexample: σ(x) = 1, σ(y) = 0

{ 1 } if x = y then x := x + 1 else abort fi { x > y }
Partially but not totally correct. Counterexample: σ(x) = 1, σ(y) = 0

{ 0 } if x = y then x := x + 1 else abort fi { x > y }
Totally (and therefore also partially) correct. 8
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Three ways to prove correctness assertions

Task: Show that {F } p {G } is partially/totally correct.

Method 1: Hoare calculus.
Decompose correctness assertion into simpler ones (guided by rules)
until we obtain true assertions (instances of axioms) and valid formulas.

Method 2: Weakest (liberal) precondition.
Compute the weakest formula F ′ such that {F ′ } p {G } is true,
and show that F implies F ′.

Method 3: Strongest postcondition.
Compute the strongest formula G ′ such that {F } p {G ′ } is true,
and show that G ′ implies G .

Annotation calculus.
No new method, just combines the above methods for practical usage.
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Hoare Calculus

finite collection of axioms and rules for deriving correctness assertions

two calculi: one for partial correctness, one for total correctness

is sound and complete (with restrictions)

“Sound” means: Every derivable correctness assertion is true.
“Complete” means: Every true correctness assertion is derivable.

Admissible (sound) axiom

Let F and G be formula schemas and p be a program schema.
{F } p {G } is an admissible axiom if all assertions of this form are true.

“of this form”: can be obtained by substitutions, is an instance

{ x = 1 } skip { x = 1 } is an admissible axiom, but very special.

{F } skip {F } is an admissible axiom (and quite general).

{F } skip {G } is not admissible. Not true e.g. for F = 1 and G = 0.
12



Admissible (sound) rule

Let X1, . . . ,Xn be schemas for formulas or correctness assertions.

X1 · · ·Xn

{F } p {G } is an admissible rule if for all valid/true instances

X̂1, . . . , X̂n, F̂ , p̂, Ĝ it holds that:

If X̂1, . . . , X̂n are valid/true then { F̂ } p̂ { Ĝ } is true.

“Whenever the premises hold, the conclusion has to hold.”

F ⇒ G
{F } skip {G } is admissible.

F ⇒ F ′ {F ′ } p {G ′ } G ′ ⇒ G
{F } p {G } (lc) is admissible.

Logical consequence rule: strengthens pre- and weakens postconditions.

F ′ ⇒ F {F ′ } p {G }
{F } p {G } is not admissible.

Counterexample: 0⇒ 1 is valid { 0 } skip { 0 } is true
{ 1 } skip { 0 } is false
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Weakest Precondition

wp(p,Sout) . . . maximal set of states such that
wp(p,Sout) p Sout is totally correct

wp(p,Sout) = {σ ∈ S | [p]σ defined and [p]σ ∈ Sout }
= [p]−1(Sout)

Sin p Sout totally correct⇐⇒ Sin ⊆ wp(p,Sout)

{F } p {G } totally correct⇐⇒ {F } ⊆ wp(p, {G })
F ⇒ wp(p, G )

wp(skip,G ) = G

wp can be used to define the semantics of TPL.
(“axiomatic semantics” for total correctness)
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Weakest Liberal Precondition

wlp(p,Sout) . . . maximal set of states such that
wlp(p,Sout) p Sout is partially correct

wlp(p,Sout) = {σ ∈ S | [p]σ undefined or [p]σ ∈ Sout }
= {σ ∈ S | [p]σ undefined } ∪ [p]−1(Sout)
= {σ ∈ S | [p]σ undefined } ∪ wp(p,Sout)

Sin p Sout partially correct⇐⇒ Sin ⊆ wlp(p,Sout)

{F } p {G } partially correct⇐⇒ {F } ⊆ wlp(p, {G })
F ⇒ wlp(p, G )

wlp(skip,G ) = G

wlp can be used to define the semantics of TPL.
(“axiomatic semantics” for partial correctness)
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Strongest Postcondition

sp(Sin, p) . . . minimal set of states such that
Sin p sp(Sin, p) is partially correct

sp(Sin, p) = { [p]σ | σ ∈ Sin and [p]σ defined }
= [p](Sin)

Sin p Sout partially correct⇐⇒ sp(Sin, p) ⊆ Sout

{F } p {G } partially correct⇐⇒ sp({F }, p) ⊆ {G }
sp( F , p)⇒ G

sp(F , skip) = F

sp can be used to define the semantics of TPL.
(“axiomatic semantics” for partial correctness)
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Verification of skip statements

Hoare calculus

{F } skip {F } (sk) is an admissible axiom.

Unless stated otherwise, the axioms and rules are admissible
for partial and total correctness.

Weakest (liberal) precondition

wp(skip,G ) = wlp(skip,G ) = G

Strongest postcondition

sp(F , skip) = F

17
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Assignment – Forward Reasoning (1)

{F } v := e { ? }

{ x = 2 } y := 3 { x = 2 ∧ y = 3 } X

Let’s generalise this observation:
{F } v := e {F ∧ v = e }

{ x = 2 } x := 3 { x = 2 ∧ x = 3 } ???
⇒ v must not occur in F !

{ x = 2 } y := y + 1 { x = 2 ∧ y = y + 1 } ???
⇒ v must not occur in e!

{F } v := e {F ∧ v = e } . . . axiom, if v occurs neither in F nor in e.

Useful for initialising local variables.
But how to verify the other assignments?
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Assignment – Forward Reasoning (2)

{ x = 2 } x := x + 5 { x − 5 = 2 }

If σ(x) = 2 and σ′(x) = σ(x) + 5
σ′(x)− 5 = σ(x)

then σ′(x)− 5 = 2.

Let’s generalise this observation:
{F } v := e(v) {F [v/e−1(v)] }

e−1 . . . ‘inverse’ of expression e
F [v/e−1(v)] . . . formula F with every v replaced by e−1(v)

{ y = 4x } x := 2x { y = 4(x/2) } e(x) = 2x e−1(x) = x/2
{ y = 4x } x := 2x { y = 2x } X

{ y = 4x } x := x/2 { }

What is the inverse of x/2? Is it 2x? Or 2x + 1?
What if the inverse cannot be expressed concisely by an expression?
What is the inverse of a constant?

20



Assignment – Forward Reasoning (3)

{F } v := e { ? }

What do we know about the state after the assignment?

There is an old value of v (now lost). ∃v ′

F is true, but for the old value of v . F [v/v ′]

The new value of v equals the value of e
(but evaluated with old value of v). v = e[v/v ′]

{F } v := e { ∃v ′ (F [v/v ′] ∧ v = e[v/v ′]) } . . . axiom
(v ′ is a fresh variable not occurring in F and e)

{ y = 4x } x := 2x { ∃x ′ (y = 4x ′ ∧ x = 2x ′) }
∃x ′ (y = 2x ∧ x = 2x ′)
y = 2x ∧ ∃x ′ x = 2x ′

y = 2x ∧ x is even

{ y = 4x } x := x/2 { ∃x ′ (y = 4x ′ ∧ x = x ′/2) }
21



Assignment – Backward Reasoning

{ x + 5 = 7 } x := x + 5 { x = 7 }

If σ(x) + 5 = 7 and σ′(x) = σ(x) + 5 then σ′(x) = 7.

Let’s generalise this observation:
{F [v/e] } v := e {F }

F [v/e] . . . formula F , where every v has been replaced by e
No inverse of e needed!

{ y = 2(2x) } x := 2x { y = 2x } X

{ y = 8(x/2) } x := x/2 { y = 8x } X

x = 2⇒ 3 = 3 { 3 = 3 } x := 3 { x = 3 }
{ x = 2 } x := 3 { x = 3 }

(lc)

X

{F [v/e] } v := e {F } . . . axiom

22



Verification of assignments

Hoare calculus

{G [v/e] } v := e {G } (as) is an admissible axiom.

{F } v := e { ∃v ′ (F [v/v ′] ∧ v = e[v/v ′]) } (as′) is an admissible axiom
provided v ′ does not occur in F and e.

{F } v := e {F ∧ v = e } (as′′) is an admissible axiom
provided v does not occur in F and e.

Weakest (liberal) precondition

wp(v := e,G ) = wlp(v := e,G ) = G [v/e]

Strongest postcondition

sp(F , v := e) = ∃v ′ (F [v/v ′] ∧ v = e[v/v ′])
where v ′ does not occur in F and e. 23



Forward vs. Backward Reasoning (1)

Precondition: Weak condition on input variables, like x > 0.

Postcondition: Complex formula describing the property we are interested
in, like z = x ∗ y0. Ignores auxiliary variables.

Forward reasoning: Given a precondition F and a program p, compute a
(strongest) postcondition G ′ and show that it implies the desired
property G .

{F } p {G ′ } G ′ ⇒ G

{F } p {G }
(lc)

Disadvantage: For deriving G ′ we do not use the postcondition. Hence G ′

usually specifies much more of the program’s behaviour than is really
needed to prove G .
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Forward vs. Backward Reasoning (2)

Backward reasoning: Given a program property G and a program p,
compute a (weakest) precondition F ′ and show that it is implied by the
given precondition F .

F ⇒ F ′ {F ′ } p {G }
{F } p {G }

(lc)

Alternatively, given the postcondition G and the program p,
characterise the input data for which the program works.

{ ??? } p {G } ⇒ {F ′ } p {G }

Advantages:

Goal-oriented: We only care about variables and properties necessary
for proving the postcondition.

Meshes well with the assignment axiom (as) and the weakest
precondition of assignments.
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Verifying sequential compositions – Hoare calculus

Suppose we know that

{F } p {G } is (partially or totally) correct,
i.e., executing p in an F -state yields a G -state, and

{G } q {H } is (partially or totally) correct,
i.e., executing q in a G -state yields an H-state.

Then we have that

{F } p; q {H } is (partially or totally) correct,
i.e., executing p followed by q in an F -state yields an H-state.

{F } p {G } {G } q {H }
{F } p; q {H }

(sc) is an admissible rule.

Problem: How can we determine the interpolant G?
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Example: Swapping values (Hoare calculus)

F ⇒ G [x/y ]

(as)

{G [x/y ] } x := y {G }
(lc)

{F } x := y {G }
G ⇒ Q[y/t]

(as)

{Q[y/t] } y := t {Q }
(lc)

{G } y := t {Q }
(sc)

{F } x := y ; y := t {Q }

P ⇒ F [t/x ]

(as)

{F [t/x ] } t := x {F }
(lc)

{P } t := x {F } {F } x := y ; y := t {Q }
(sc)

{P : x = x0 ∧ y = y0 } t := x ; x := y ; y := t {Q : x = y0 ∧ y = x0 }

To do: Find F and G such that the formulas P ⇒ F [t/x ], F ⇒ G [x/y ],
and G ⇒ Q[y/t] become valid.

We choose F ≡ G [x/y ] and G ≡ Q[y/t].

It remains to prove P ⇒ F [t/x ], i.e., P ⇒ Q[y/t][x/y ][t/x ].
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P ⇒ Q[y/t][x/y ][t/x ]

(x = x0 ∧ y = y0)⇒ (x = y0 ∧ y = x0)[y/t][x/y ][t/x ]

(x = x0 ∧ y = y0)⇒ (x = y0 ∧ t = x0)[x/y ][t/x ]

(x = x0 ∧ y = y0)⇒ (y = y0 ∧ t = x0)[t/x ]

(x = x0 ∧ y = y0)⇒ (y = y0 ∧ x = x0)

This implication is valid, therefore the assertion

{P } t := x ; x := y ; y := t {Q }

is partially/totally correct.
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Example: Swapping values (Hoare simplified)

Decompose sequential compositions in reverse order.

“Guess” suitable interpolants leading directly to axioms.

P ⇒ F [t/x ]

(as)

{F [t/x ] } t := x {F }
(lc)

{P } t := x {F }

Choose F = G [x/y ]

(as)

{F } x := y {G }
(sc)

{P } t := x ; x := y {G }

Choose G = Q[y/t]

(as)

{G } y := t {Q }
(sc)

{P : x = x0 ∧ y = y0 } t := x ; x := y ; y := t {Q : x = y0 ∧ y = x0 }

Prove P ⇒ F [t/x ]

P ⇒ G [x/y ][t/x ]

P ⇒ Q[y/t][x/y ][t/x ]

(Already done above.)

Still: 3 assignments in the program, but 9 in the proof. 30



Verifying sequential compositions – wp, wlp, and sp

Weakest (liberal) precondition

wp(p; q,G ) = wp(p,wp(q,G ))
wlp(p; q,G ) = wlp(p,wlp(q,G ))

wp(q,G ) is the maximal set of states such that q yields an G -state.

wp(p,wp(q,G )) is the maximal set of states such that p yields a
wp(q,G )-state.

Strongest postcondition

sp(F , p; q) = sp(sp(F , p), q)

sp(F , p) is the minimal set of states obtained by executing p in an
F -state.

sp(sp(F , p), q) is the minimal set of states obtained by executing q in
an sp(F , p)-state.
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Example: Swapping values (proof by wp)

To show: {P } t := x ; x := y ; y := t {Q } is totally correct, where

P : x = x0 ∧ y = y0
Q : x = y0 ∧ y = x0

wp(t := x ; x := y ; y := t, Q) = wp(t := x ; x := y , wp(y := t, Q))
= wp(t := x ; x := y , Q[y/t])
= wp(t := x , wp(x := y , Q[y/t]))
= wp(t := x , Q[y/t][x/y ])
= Q[y/t][x/y ][t/x ]

It remains to prove P ⇒ Q[y/t][x/y ][t/x ]. (Already done above.)

{F } p {G } totally correct iff F ⇒ wp(p,G).

wp(v := e,G) = G [v/e]
wp(p; q, G) = wp(p, wp(q, G)) 32



Example: Swapping values (proof by sp)

To show: {P } t := x ; x := y ; y := t {Q } is partially correct, where

P : x = x0 ∧ y = y0
Q : x = y0 ∧ y = x0

sp(P, t := x ; x := y ; y := t)
= sp(sp(P, t := x), x := y ; y := t)

= sp(∃t ′ (P[t/t ′] ∧ t = x [t/t ′]), x := y ; y := t)
= sp(∃t ′ (P ∧ t = x), x := y ; y := t)
= sp(P ∧ t = x , x := y ; y := t)

{F } p {G } partially correct iff sp(F , p) ⇒ G .

sp(F , v := e) = ∃v ′ (F [v/v ′] ∧ v = e[v/v ′])
sp(F , p; q) = sp(sp(F , p), q) 33
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Hoare calculus:

clear separation between premises and conclusions

cumbersome for manual proofs:
programs and formulas have to be copied many times

wp/wlp/sp:

recursive evaluation leads to duplications

Idea:

use only one copy of program

add assertions to the program step by step,
which characterise the states at each point

collect all useful ideas from wp, wlp, sp, and Hoare calculus

⇒ Annotation calculus

Nothing new, just a practical tool!
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Example: Swapping values (proof by annotations)

{P : x = x0 ∧ y = y0 }
{ 3: Q[y/t][x/y ][t/x ] } as ↑
t := x ;

{ 2: Q[y/t][x/y ] } as ↑
x := y ;

{ 1: Q[y/t] } as ↑
y := t

{Q : x = y0 ∧ y = x0 }

It remains to prove the implication

P ⇒ 3: (x = x0 ∧ y = y0)⇒ Q[y/t][x/y ][t/x ]
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Annotation rules so far

Assignments

v := e
{F }

7→
{F [v/e] } as ↑
v := e
{F }

{F }
v := e 7→

{F }
v := e
{ ∃v ′(F [v/v ′] ∧ v = e[v/v ′]) } as ↓

{F }
v := e 7→

{F }
v := e
{F ∧ v = e } as′ ↓

(if v does not occur free in F and e)

37



Annotation rules so far

Skip statements

skip
{F }

7→
{F } sk ↑
skip
{F }

{F }
skip 7→

{F }
skip
{F } sk ↓

Logical consequence

{F }
{G } 7→ {F }

{G } Prove F ⇒ G lc

Sequential composition

;
{F }

7→
{F } sc ↑
;
{F }

{F }
; 7→

{F }
;
{F } sc ↓

These rules are applied implicitly. 38



Topics today

1. Why formal methods?

2. Syntax of TPL(toy programming language)

3. Operational Semantics of TPL

4. Correctness assertions

5. How to prove correctness assertions

6. Assignments

7. Sequential Composition

8. Annotation calculus

9. Conditionals

10. Abort statements
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Conditionals (1)

Hoare calculus

{F ∧ e } p {G } {F ∧ ¬e } q {G }
{F } if e then p else q fi {G }

(if) is an admissible rule.

Annotation rules

{F }
if e then

. . .
else

7→

{F }
if e then
{F ∧ e } if ↓
. . .

else
{F ∧ ¬e } if ↓

else
. . .

fi
{G }

7→

{G } fi ↑
else
. . .
{G } fi ↑

fi
{G }

What about rules “if ↑” and “fi ↓” as duals of “if ↓” and “fi ↑”?

40



Example: Maximum (1)

{ true }
if x ≤ y then
{ true ∧ x ≤ y } if ↓
{ y = max(x , y) } as ↑
z := y
{ z = max(x , y) } fi ↑

else
{ true ∧ x 6≤ y } if ↓
{ x = max(x , y) } as ↑
z := x
{ z = max(x , y) } fi ↑

fi
{ z = max(x , y) }

It remains to prove
true ∧ x ≤ y
⇒ y = max(x , y) lc

and
true ∧ x 6≤ y
⇒ x = max(x , y) lc
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Conditionals (2)

Strongest postcondition

sp(F , if e then p else q fi) = sp(F ∧ e, p) ∨ sp(F ∧ ¬e, q)

Annotation rules

{F }
if e then

. . .
else

7→

{F }
if e then
{F ∧ e } if ↓
. . .

else
{F ∧ ¬e } if ↓

{G1 }
else
. . .
{G2 }

fi

7→

{G1 }
else
. . .
{G2 }

fi
{G1 ∨ G2 } fi ↓
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Conditionals (3)

Hoare calculus (an alternative)

{F } p {H } {G } q {H }
{ (e ⇒ F ) ∧ (¬e ⇒ G ) } if e then p else q fi {H }

(if′) is an admissible rule.

Weakest (liberal) precondition

wp(if e then p else q fi,H) = (e ⇒ wp(p,H)) ∧ (¬e ⇒ wp(q,H))
wlp(if e then p else q fi,H) = (e ⇒ wlp(p,H)) ∧ (¬e ⇒ wlp(q,H))

Annotation rules

if e then
{F }
. . .

else
{G }

7→

{ (e ⇒ F ) ∧ (¬e ⇒ G ) } if ↑
if e then
{F }
. . .

else
{G }

else
. . .

fi
{G }

7→

{G } fi ↑
else
. . .
{G } fi ↑

fi
{G }

Note: (e ⇒ F ) ∧ (¬e ⇒ G ) is logically equivalent to (e ∧ F ) ∨ (¬e ∧ G ). 43



Example: Maximum (2)

{ true }
{ (x ≤ y ⇒ y = max(x , y)) ∧ (x 6≤ y ⇒ x = max(x , y)) } if ↑
if x ≤ y then
{ y = max(x , y) } as ↑
z := y
{ z = max(x , y) } fi ↑

else
{ x = max(x , y) } as ↑
z := x
{ z = max(x , y) } fi ↑

fi
{ z = max(x , y) }

It remains to prove

true⇒ ((x ≤ y ⇒ y = max(x , y)) ∧ (x 6≤ y ⇒ x = max(x , y)))

(logic consequence rule). 44



true⇒ (x ≤ y ⇒ y = max(x , y)) ∧ (x 6≤ y ⇒ x = max(x , y))

is of the form

A⇒ ((B ⇒ C ) ∧ (D ⇒ E ))

which can be rewritten as

(A⇒ (B ⇒ C )) ∧
(A⇒ (D ⇒ E ))

(A ∧ B ⇒ C ) ∧
(A ∧ D ⇒ E )

Hence proving the single implication above is the same as
proving the two implications from before.
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Topics today

1. Why formal methods?

2. Syntax of TPL(toy programming language)

3. Operational Semantics of TPL

4. Correctness assertions

5. How to prove correctness assertions

6. Assignments

7. Sequential Composition

8. Annotation calculus

9. Conditionals

10. Abort statements
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Abort-Statement – Partial Correctness

{F } abort {G } being partially correct means:

For all states σ,
If [F ]σ is true and [abort]σ is defined, then [G ] [abort]σ is true.

Since [abort]σ is undefined for all σ ∈ S,
the implication is always true, regardless of F and G .

Hoare calculus

{F } abort {G } (ab) is an axiom admissible for partial correctness.

Weakest liberal precondition

wlp(abort,G ) = true

Strongest postcondition

sp(F , abort) = false

Annotation rule

abort 7→
{ true } ab
abort
{ false } ab
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Abort-Statement – Total Correctness

{F } abort {G } being totally correct means:

For all states σ,
If [F ]σ is true, then [abort]σ is defined and [G ] [abort]σ is true.

Since [abort]σ is always undefined,
the implication is true only if [F ]σ is always false.

Hoare calculus

{ false } abort {G } (abt) is an admissible axiom.

Weakest precondition

wp(abort,G ) = false

Annotation rule

abort 7→
{ false } abt
abort
{ false } abt
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wp(if x ≥ 0 then skip else abort fi, x > 2)

= (x ≥ 0 ∧ wp(skip, x > 2)) ∨ (x < 0 ∧ wp(abort, x > 2)
= (x ≥ 0 ∧ x > 2) ∨ (x < 0 ∧ false)
= x > 2 ∨ false
= x > 2

wlp(if x ≥ 0 then skip else abort fi, x > 2)

= (x ≥ 0 ∧ wlp(skip, x > 2)) ∨ (x < 0 ∧ wlp(abort, x > 2))
= (x ≥ 0 ∧ x > 2) ∨ (x < 0 ∧ true)
= x > 2 ∨ x < 0

sp(true, if x ≥ 0 then skip else abort fi)

= sp(true ∧ x ≥ 0, skip) ∨ sp(true ∧ x < 0, abort)
= (true ∧ x ≥ 0) ∨ false
= x ≥ 0
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{ x > 2 } if x ≥ 0 then skip else abort fi { x > 2 } is totally correct.

{ x > 2 }
if x ≥ 0 then
{ x > 2 ∧ x ≥ 0 } if ↓
{ x > 2 } sk ↑
skip
{ x > 2 } fi ↑

else
{ x > 2 ∧ x 6≥ 0 } if ↓
{ false } abt
abort
{ false } abt
{ x > 2 } fi ↑

fi
{ x > 2 }

It remains to prove
x > 2 ∧ x ≥ 0
⇒ x > 2 lc

and
x > 2 ∧ x 6≥ 0
⇒ false lc

and
false
⇒ x > 2 lc
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{ x > 2 } if x ≥ 0 then skip else abort fi { x > 2 } is partially correct.

{ x > 2 }
if x ≥ 0 then
{ x > 2 ∧ x ≥ 0 } if ↓
{ x > 2 } sk ↑
skip
{ x > 2 } fi ↑

else
{ x > 2 ∧ x 6≥ 0 } if ↓
{ true } ab
abort
{ false } ab
{ x > 2 } fi ↑

fi
{ x > 2 }

It remains to prove
x > 2 ∧ x ≥ 0
⇒ x > 2 lc

and
x > 2 ∧ x 6≥ 0
⇒ true lc

and
false
⇒ x > 2 lc
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