
Deductive Verification of Software
Examples

(6.0 VU Formal Methods in Computer Science)

Gernot Salzer

May 17, 2013

Example 1 (Semantic equivalence). Prove that the two programs

while e do p od

and if e then p; while e do p od else skip fi

are semantically equivalent, for all expressions e ∈ E and all programs p ∈ P.

Solution. Let p1 be the first program and p2 be the second one. We have to prove [p1] =
[p2], i.e., for every state σ either [p1]σ and [p2]σ both are undefined, or [p1]σ = [p2]σ.

Proof via structural operational semantics. Let σ be an arbitrary state. We have to show
that either (p1, σ) and (p2, σ) both loop/abort, or (p1, σ)

∗⇒ τ and (p2, σ)
∗⇒ τ for some

state τ . Note that to ensure that both programs behave identical it is sufficient to find
a configuration (q, τ) such that we have (p1, σ)

∗⇒ (q, τ) and (p2, σ)
∗⇒ (q, τ).

We distinguish two cases depending on the value of e.

[e]σ = 0:

(p1, σ) = (while e do p od, σ)

⇒ σ

(p2, σ) = (if e then p; while e do p od else skip fi, σ)

⇒ (skip, σ)

⇒ σ

[e]σ 6= 0:

(p1, σ) = (while e do p od, σ)

⇒ (p; while e do p od, σ)

(p2, σ) = (if e then p; while e do p od else skip fi, σ)

⇒ (p; while e do p od, σ)

1



In both cases the evaluation of the programs leads to the same configuration (σ and
(p; while e do p od, σ), respectively). Therefore the programs p1 and p2 are equivalent.

Proof via natural semantics. Let σ be an arbitrary state. We use the theorem on slide 32
and distinguish again two cases.

[p2]σ = [if e then p; while e do p od else skip fi]σ

=

{
[p; while e do p od] if [e]σ 6= 0

[skip]σ if [e]σ = 0

=

{
[while e do p od] [p]σ if [e]σ 6= 0

σ if [e]σ = 0

= [while e do p od]σ

= [p1]σ

Therefore we have [p1] = [p2], i.e., the programs p1 and p2 are equivalent.

Example 2 (Comparison of verification methods). Show that the program

p = x := x− y; y := x+ y; x := y − x

swaps the values of the variables x and y, using

(a) the Hoare calculus,

(b) the annotation calculus,

(c) weakest preconditions, and

(d) strongest postconditions.

This means: Find a suitable precondition F and postcondition G and prove the correct-
ness of {F } p {G } with each of the four methods.

Solution. We choose F = (x = x0 ∧ y = y0) and G = (x = y0 ∧ y = x0).

(a) Hoare calculus:

F ⇒ C
(as)

{C }x := x− y {B }
{F }x := x− y {B }

(lc)

(as)

{B } y := x+ y {A }
(as)

{A }x := y − x {G }
{B } y := x+ y; x := y − x {G }

(sc)

{F } p {G }
(sc)

where A = G[x/y− x], B = A[y/x+ y], and C = B[x/x− y]. The three correctness
assertions occurring as premises are axioms. It remains to prove the implication
F ⇒ C.

F ⇒ C

2



F ⇒ B[x/x− y]

F ⇒ A[y/x+ y][x/x− y]

F ⇒ G[x/y − x][y/x+ y][x/x− y]

F ⇒ (x = y0 ∧ y = x0)[x/y − x][y/x+ y][x/x− y]

F ⇒ (y − x = y0 ∧ y = x0)[y/x+ y][x/x− y]

F ⇒ ((x+ y)− x = y0 ∧ x+ y = x0)[x/x− y]

F ⇒ (((x− y) + y)− (x− y) = y0 ∧ (x− y) + y = x0)

By elementary arithmetic and the commutativity of conjunction we see that the
right-hand side is equivalent to F .

Alternative derivation: If we assume the second semicolon to be the outermost
sequential composition, we obtain a different derivation, but the same axioms and
implication:

F ⇒ C
(as)

{C }x := x− y {B }
{F }x := x− y {B }

(lc)
(as)

{B } y := x+ y {A }
{F }x := x− y; y := x+ y {A }

(sc)
(as)

{A }x := y − x {G }
{F } p {G }

(sc)

(b) Annotation calculus:

{F : x = x0 ∧ y = y0 }
{G[x/y − x][y/x+ y][x/x− y] } as ↑
x := x− y;
{G[x/y − x][y/x+ y] } as ↑
y := x+ y;
{G[x/y − x] } as ↑
x := y − x
{G : x = y0 ∧ y = x0 }

For the proof of the implication F ⇒ G[x/y−x][y/x+y][x/x−y] (logical consequence
rule) see above.

(c) Weakest precondition: To prove {F } p {G } via weakest preconditions, we have to
prove F ⇒ wp(p,G).

wp(p,G) = wp(x := x− y; y := x+ y; x := y − x, G)

= wp(x := x− y, wp(y := x+ y; x := y − x, G))

= wp(x := x− y, wp(y := x+ y, wp(x := y − x, G)))

= wp(x := x− y, wp(y := x+ y, G[x/y − x]))

= wp(x := x− y, G[x/y − x][y/x+ y])

3



= G[x/y − x][y/x+ y][x/x− y]

For the proof of the implication F ⇒ wp(p,G) see above.

Alternative calculation: If we assume the second semicolon to be the outermost
sequential composition, we obtain a different calculation, but the same weakest
precondition:

wp(p,G) = wp(x := x− y; y := x+ y; x := y − x, G)

= wp(x := x− y; y := x+ y, wp(x := y − x, G))

= wp(x := x− y, wp(y := x+ y, wp(x := y − x, G)))

= · · · see above · · ·

(d) Strongest postcondition: To prove {F } p {G } via strongest postconditions, we have
to prove sp(F, p)⇒ G.

sp(F, p) = sp(F, x := x− y; y := x+ y; x := y − x)

= sp(sp(F, x := x− y), y := x+ y; x := y − x)

= sp(sp(sp(F, x := x− y), y := x+ y), x := y − x)

= sp(sp(∃x′((x = x0 ∧ y = y0)[x/x
′] ∧ x = x′ − y), y := x+ y), x := y − x)

= sp(sp(∃x′(x′ = x0 ∧ y = y0 ∧ x = x′ − y), y := x+ y), x := y − x)

= sp(sp(∃x′(x′ = x0) ∧ y = y0 ∧ x = x0 − y), y := x+ y), x := y − x)

= sp(sp(true ∧ y = y0 ∧ x = x0 − y), y := x+ y), x := y − x)

= sp(sp(y = y0 ∧ x = x0 − y), y := x+ y), x := y − x)

= sp(∃y′((y = y0 ∧ x = x0 − y)[y/y′] ∧ y = x+ y′), x := y − x)

= sp(∃y′(y′ = y0 ∧ x = x0 − y′ ∧ y = x+ y′), x := y − x)

= sp(∃y′(y′ = y0 ∧ x = x0 − y0 ∧ y = x+ y0), x := y − x)

= sp(∃y′(y′ = y0) ∧ x = x0 − y0 ∧ y = x+ y0, x := y − x)

= sp(true ∧ x = x0 − y0 ∧ y = x+ y0, x := y − x)

= sp(x = x0 − y0 ∧ y = x+ y0, x := y − x)

= ∃x′((x = x0 − y0 ∧ y = x+ y0)[x/x
′] ∧ x = y − x′)

= ∃x′(x′ = x0 − y0 ∧ y = x′ + y0 ∧ x = y − x′)
= ∃x′(x′ = x0 − y0 ∧ y = (x0 − y0) + y0 ∧ x = y − (x0 − y0))
= ∃x′(x′ = x0 − y0) ∧ y = x0 ∧ x = y − (x0 − y0)
= true ∧ y = x0 ∧ x = x0 − (x0 − y0)
= (y = x0 ∧ x = y0)

The implication sp(F, p)⇒ G is obviously valid.

Alternative calculation: If we assume the second semicolon to be the outermost
sequential composition, we obtain a different calculation, but the same strongest

4



postcondition:

sp(F, p) = sp(F, x := x− y; y := x+ y; x := y − x)

= sp(sp(F, x := x− y; y := x+ y), x := y − x)

= sp(sp(sp(F, x := x− y), y := x+ y), x := y − x)

= · · · see above · · ·

Example 3 (Integer division). Show that the following assertion is totally correct.

{F : m > 0 ∧ n ≥ 0 }
a := 0;
b := n+ 1;
while a+ 1 6= b do
d := (a+ b)/2;
if d ∗m ≤ n then
a := d;

else
b := d

fi
od
{G : a ∗m ≤ n < (a+ 1) ∗m }

Describe the function computed by the program.

Solution. We prove partial correctness and termination separately. We start by adding
intermediate conditions following the rules of the annotation calculus for partial correct-
ness; see figure 1.

By the logical consequence rule, we have to prove the implications F ⇒ 6, 8 ⇒ 12,
9⇒ 13, and 4⇒ G. To this end we have first to determine a suitable invariant. G itself
is too rigid: the value of a is tightly coupled to the value of n, since a occurs in the lower
as well as in the upper bound for n. Guided by the implication 4⇒ G, we rewrite G as
am ≤ n < bm ∧ a+ 1 = b and try the first part as invariant: Inv ≡ am ≤ n < bm.

Now we are able to prove the four implications.

F ⇒ 6
F ⇒ Inv [b/n+ 1][a/0]
F ⇒ am ≤ n < bm [b/n+ 1][a/0]
F ⇒ am ≤ n < (n+ 1)m [a/0]

m > 0 ∧ n ≥ 0⇒ 0m ≤ n < (n+ 1)m

We have to show that each formula in the conclusion is true, i.e., we have to prove
0m ≤ n and n < (n + 1)m. The first is true because of the premise n ≥ 0, whereas
the second is a consequence of the premise m > 0. (Note that the condition m > 0 is
essential.)

8⇒ 12

Inv ∧ a+ 1 6= b ∧ d = a+b
2 ∧ dm ≤ n⇒ Inv [a/d]

am ≤ n < bm ∧ a+ 1 6= b ∧ d = a+b
2 ∧ dm ≤ n⇒ dm ≤ n < bm

5



{F : m > 0 ∧ n ≥ 0 }
{ 6: Inv [b/n+ 1][a/0] } as ↑
a := 0;
{ 5: Inv [b/n+ 1] } as ↑
b := n+ 1;
{ 1: Inv }
while a+ 1 6= b do
{ 2: Inv ∧ a+ 1 6= b } wh
d := (a+ b)/2;

{ 7: Inv ∧ a+ 1 6= b ∧ d = a+b
2 } as′ ↓

if d ∗m ≤ n then

{ 8: Inv ∧ a+ 1 6= b ∧ d = a+b
2 ∧ dm ≤ n } if ↓

{ 12: Inv [a/d] } as ↑
a := d;
{ 10: Inv } fi ↑

else

{ 9: Inv ∧ a+ 1 6= b ∧ d = a+b
2 ∧ dm > n } if ↓

{ 13: Inv [b/d] } as ↑
b := d
{ 11: Inv } fi ↑

fi
{ 3: Inv } wh

od
{ 4: Inv ∧ a+ 1 = b } wh
{G : am ≤ n < (a+ 1)m }

Figure 1: Partial correctness of a program for integer division

6



Both conclusions, dm ≤ n and n < bm, occur among the premises on the left-hand side,
therefore the implication is valid.

9⇒ 13

Inv ∧ a+ 1 6= b ∧ d = a+b)
2 ∧ dm > n⇒ Inv [b/d]

am ≤ n < bm ∧ a+ 1 6= b ∧ d = a+b)
2 ∧ dm > n⇒ am ≤ n < dm

Both conclusions, am ≤ n and n < dm, occur among the premises on the left-hand side,
therefore the implication is valid.

4⇒ G
Inv ∧ a+ 1 = b⇒ G

am ≤ n < bm ∧ a+ 1 = b⇒ G
am ≤ n < (a+ 1)m ∧ a+ 1 = b⇒ G

G ∧ a+ 1 = b⇒ G

After replacing b by a + 1 (because of b = a + 1) the conclusion is part of the premise,
therefore the formula is valid.

Termination. The bound function (also called variant) is usually related to the loop
condition, which controls termination of the loop. The condition a + 1 6= b can be
rewritten as a + 1 > b ∨ a + 1 < b. Looking at the program, in particular at the
initialisation of the variables, we see that a approximates the result from below and b
from above, hence a + 1 > b will probably never occur. This leaves us with a + 1 < b,
which is the same as b − a > 1. Therefore we choose b − a as bound function t, since
this way the loop condition ensures the property t ≥ 0 required for bound functions.

By rule (wht) we have to show { Inv ∧ e ∧ t = t0 } p { t < t0 } and Inv ⇒ t ≥ 0, where
e is the loop condition and p is the loop body. Starting with the implication, we see
that Inv is too weak: If m is negative, the invariant implies a > b and therefore t < 0.
According to the precondition we may assume m > 0, hence we construct the stronger
invariant Inv ′ ≡ Inv ∧m > 0. Now we succeed:

Inv ′ ≡ (am ≤ n < bm ∧m > 0)⇒ (am < bm ∧m > 0)⇒ a < b ≡ b− a > 0 ≡ t ≥ 0 .

Note that we have to redo our proof above for partial correctness using the new invari-
ant Inv ′ instead of Inv . There is not much to do, however: If an assertion {F } p {G } is
correct and A is a formula whose variables are not modified by program p, then the asser-
tion {F ∧A } p {G∧A } is also correct. Therefore the correctness of { Inv ∧ e } p { Inv }
implies the correctness of { Inv ′ ∧ e } p { Inv ′ }, as m > 0 is not modified by the loop
body p. Moreover, if Inv ∧ ¬e implies the postcondition, then the stronger condition
Inv ′ ∧ ¬e also does. Finally, the implication F ⇒ 6 becomes F ⇒ (6 ∧m > 0), since m
is not modified by the initialisation statements; obviously this implication is also valid.

It remains to show that t decreases with each iteration:

7



{ 14: Inv ′ ∧ a+ 1 6= b ∧ t = t0 } wht
d := (a+ b)/2;

{ 16: Inv ′ ∧ a+ 1 6= b ∧ b− a = t0 ∧ d = a+b
2 } as′ ↓

if d ∗m ≤ n then

{ 17: Inv ′ ∧ a+ 1 6= b ∧ b− a = t0 ∧ d = a+b
2 ∧ dm ≤ n } if ↓

{ 21: b− d < t0 } as ↑
a := d;
{ 19: b− a < t0 } fi ↑

else

{ 18: Inv ′ ∧ a+ 1 6= b ∧ b− a = t0 ∧ d = a+b
2 ∧ dm > n } if ↓

{ 22: d− a < t0 } as ↑
b := d
{ 20: b− a < t0 } fi ↑

fi
{ 15: t < t0 } wht

We have to prove two implications.

17⇒ 21

Inv ′ ∧ a+ 1 6= b ∧ b− a = t0 ∧ d = a+b
2 ∧ dm ≤ n⇒ b− d < t0

a < b ∧ a+ 1 6= b⇒ b− a+b
2 < b− a

a < b ∧ a+ 1 6= b⇒ a < a+b
2

From the second to the third line we use the fact Inv ′ ⇒ a < b (see above), replace t0
and d by the equivalent expressions and omit all irrelevant premises. The two premises
a < b and a+1 6= b together imply a+2 ≤ b, hence we obtain a < a+1 = a+(a+2)

2 ≤ a+b
2 .

18⇒ 22

Inv ′ ∧ a+ 1 6= b ∧ b− a = t0 ∧ d = a+b
2 ∧ dm > n⇒ d− a < t0

a < b⇒ a+b
2 − a < b− a

a < b⇒ a+b
2 < b

This implication holds, since a+b
2 < b+b

2 = b
Note that this careful analysis is necessary in the context of integer division. E.g.,

a < b does not imply a < a+b
2 , the additional premise a + 1 6= b is indeed needed: We

have 1 < 2 but 1 6< 1+2
2 .

Function computed by the program. It is sufficient to analyse the postcondition, which
expresses exactly those properties of the program we are interested in. Dividing by m,
we obtain a ≤ n/m < a + 1, which is the same as a = bn/mc. Hence the program
computes integer division.

Remark. The two annotated programs above (one for partial and one for total correct-
ness) can be combined into a single one by applying annotation rules derived from the
Hoare rules wht′′ or wht′′′.

8



Example 4 (Strongest postcondition of if). Prove that the strongest postcondition of
a program if e then p else q fi with respect to a precondition F is given by sp(F ∧
e, p) ∨ sp(F ∧ ¬e, q). (Assume that e is a total function.)

Solution. Using the definition of sp:

sp({F }, p) = { [p]σ | σ ∈ {F } and [p]σ defined } = [p] ({F })

and the (natural) semantics of the if-statement:

[if e then p else q fi]σ =

{
[p]σ if [e]σ 6= 0

[q]σ if [e]σ = 0

we obtain the strongest postcondition for the if-statement as follows:

sp({F }, if e then p else q fi)
= [if e then p else q fi] ({F }) definition of sp
= [if e then p else q fi] ({F ∧ e } ∪ {F ∧ ¬e }) propositional logic and sets
= [if e then p else q fi] ({F ∧ e }) property of functions and sets:
∪ [if e then p else q fi] ({F ∧ ¬e }) f(A ∪B) = f(A) ∪ f(B)

= [p] ({F ∧ e }) ∪ [q] ({F ∧ ¬e }) semantics of the if-statement
= sp({F ∧ e }, p) ∪ sp({F ∧ ¬e }, q) definition of sp

If sp({F ∧ e }, p) and sp({F ∧ ¬e }, q) are given as formulas, we have

sp(F, if e then p else q fi) = sp(F ∧ e, p) ∨ sp(F ∧ ¬e, q) .

Annotation calculus. Another way of deriving the strongest postcondition is to use the
annotation rules if ↓ and fi ↓:

{ 1: F }
if e then
{ 2: F ∧ e } if ↓
p
{ 4: sp(F ∧ e, p) }

else
{ 3: F ∧ ¬e } if ↓
q
{ 5: sp(F ∧ ¬e, q) }

fi
{ 6: sp(F ∧ e, p) ∨ sp(F ∧ ¬e, q) } fi ↓

This approach can be used to compute a candidate for the strongest postcondition, but
it is no complete proof, since it relies on the assumption that the annotation rules yield
strongest conditions. This is the case but has been neither stated nor proved in the
lecture. Proving it essentially amounts to the calculation above.

9



Example 5 (Partial vs. total correctness). Let p be the program

while x 6= 0 do
if x > 0 then
x := x− 2

else
x := x+ 2

fi
od

For each of the four correctness assertions

{F } p { true }, {F } p { false }, { true } p {F }, and { false } p {F }

find formulas F neither equivalent to true nor to false such that the assertion is

(a) partially but not totally correct,

(b) totally correct.

In total, these may be up to eight formulas. The formulas need not be different from
each other. Some of the required formulas may not exist; in this case argue why this is
so.

Solution. The program terminates if the inital value of x is an even number, and loops
otherwise. If it terminates, the final state satisfies the condition x = 0.

partially but not totally correct totally correct

{F } p { true } x 6= 0, x = 1, . . . (any formula
satisfied by at least one odd num-
ber, except formulas equivalent to
true)

x = 0, x = 2, “x is even” (or x/2∗
2 = x or ∃y(x = 2y) or x mod 2 =
0), . . . (any formula implying “x is
even”, except formulas equivalent
to false)

{F } p { false } x = 1, “x is odd”, . . . (any for-
mula only satisfied by odd num-
bers, except formulas equivalent
to false)

F does not exist: For even num-
bers, p terminates, but no final
state can satisfy false. For odd
numbers, p does not terminate.
The only remaining choice is F ≡
false, which is excluded by the
specification of the example.

{ true } p {F } x = 0, x ≥ 0, . . . (any formula
implied by x = 0, except formulas
equivalent to true)

F does not exist, since the pro-
gram does not terminate for at
least one input (e.g. if x has
value 1).

{ false } p {F } F does not exist, since the as-
sertion is totally correct for arbi-
trary F

any formula F except those equiv-
alent to true or false

10



Example 6 (Correctness of if-rule). Prove that the rule

{F ∧ e } p {G } {F ∧ ¬e } q {G }
{F } if e then p else q fi {G }

(if)

of Hoare calculus is correct, i.e., show that the conclusion of the rule is totally correct,
if both premises are totally correct. The proof should only refer to the operational
semantics of Tpl and to the semantics of correctness assertions, but should not use
the notion of weakest pre- or strongest postcondition, and it should not assume the
correctness of the alternative if-rule.

Solution. Short argument. Let τ be a state satisfying the precondition F . We distinguish
two cases depending on the truth value of e.

Suppose that τ satisfies e. Then τ satisfies F ∧ e, and by the total correctness of the
premise {F ∧ e } p {G } we have that

• τ ′ = [p] τ is defined, i.e., (p, τ)
∗⇒ τ ′ for some state τ ′.

• τ ′ satisfies the postcondition G.

By the semantics of Tpl we obtain

(if e then p else q fi, τ)⇒ (p, τ)
∗⇒ τ ′ .

Hence [if e then p else q fi] τ = τ ′ is defined and satisfies the postcondition.
For the dual case of τ not satisfying e we use the second premise and conclude in an

analogous manner that the result of the if-statement is defined and satisfies G, too.
Therefore {F } if e then p else q fi {G } is totally correct, provided the two premises

are totally correct.

Detailed proof. Let r be an abbreviation for the program “if e then p else q fi”. By the
definition of total correctness, we have to prove

For all states σ ∈ S,
if [F ]σ is true, then [r]σ is defined and [G] [r]σ is true.

This universally quantified statement holds if we can prove for a fixed state τ that

if [F ] τ is true, then [r] τ is defined and [G] [r] τ is true.

This implication is valid if we can prove

[r] τ is defined (1)

and
[G] [r] τ is true (2)

assuming that
[F ] τ is true. (3)

We distinguish two cases.

11



[e] τ is true: By assumption, the assertion {F ∧ e } p {G } (first premise of the rule) is
totally correct, i.e.:

For all states σ ∈ S,
if [F ∧ e]σ is true, then [p]σ is defined and [G] [p]σ is true.

This universally quantified statement holds in particular for the fixed state τ from
above, i.e.,

if [F ∧ e] τ is true, then [p] τ is defined and [G] [p] τ is true.

By assumption 3 and the assumption that [e] τ is true we obtain that [F ∧ e] τ is
true (semantics of propositional logic). Hence we conclude that

[p] τ is defined (4)

and
[G] [p] τ is true. (5)

[p] τ being defined means (p, τ)
∗⇒ τ ′ and [p] τ = τ ′ for some state τ ′. Since [e] τ is

true, we have
(r, τ)⇒ (p, τ)

∗⇒ τ ′ and [r] τ = τ ′

(structural operational semantics of Tpl), i.e., the result of the if-statement is
defined. Moreover, from statement 5 we may conclude that the postcondition of r
is satisfied:

[G] [r] τ = [G] τ ′ = [G] [p] τ is true.

Thus we have proved the statements 1 and 2 for the case that e evaluates to true.

[e] τ is false: By a similar line of reasoning we conclude from the total correctness of the
second premise {F ∧¬e } q {G } that the statements 1 and 2 also hold in the case
where [e] τ evaluates to false.

Therefore [r] τ is defined and [G] [r] τ is true regardless of the value of e, i.e., {F } r {G }
is totally correct.

To make the structure of the proof clearer we rewrite it in the style of natural deduc-
tion. Expressions like [F ∧ e] τ and [G] [p]σ are to be interpreted as “τ is a defined state
satisfying F ∧ e” and “[p]σ is a defined state satisfying [G] ”, respectively.

∗[F ] τ

{F ∧ e } p {G }

∀σ : [F ∧ e]σ ⇒ [G] [p]σ

[F ∧ e] τ ⇒ [G] [p] τ
∀e

[F ] τ ⇒ [e] τ ⇒ [G] [p] τ
PL0

[e] τ ⇒ [G] [p] τ
⇒e

∗[F ] τ

{F ∧ ¬e } q {G }
∀σ : [F ∧ ¬e]σ ⇒ [G] [q]σ

[F ∧ ¬e] τ ⇒ [G] [q] τ
∀e

[F ] τ ⇒ [¬e] τ ⇒ [G] [q] τ
PL0

[¬e] τ ⇒ [G] [q] τ
⇒e

[G] [if e then p else q fi] τ
TPL

∗[F ] τ ⇒ [G] [if e then p else q fi] τ
⇒i

∀σ : [F ]σ ⇒ [G] [if e then p else q fi]σ
∀i

{F } if e then p else q fi {G }

12



A short proof using two properties. In the proof below we use the following properties
of correctness assertions:

• Let p and p′ be programs such that [p]σ = [p′]σ for all states σ satisfying a
formula F . (This means that p and p′ are semantically equivalent for the states
in {F }.) Then {F } p {G } is partially/totally correct if and only if {F } p′ {G }
is.

• Let F , F1, and F2 be formulas such that {F } = {F1 } ∪ {F2 }, i.e., F is logically
equivalent to F1 ∨ F2. Then the assertion {F } p {G } is partially/totally correct
if and only if both assertions {F1 } p {G } and {F2 } p {G } are.

Now observe that by the Tpl-semantics of the if-statement,

• [if e then p else q fi]σ = [p]σ for all states σ satisfying F ∧ e and

• [if e then p else q fi]σ = [q]σ for all states σ satisfying F ∧ ¬e.

Since F is equivalent to (F ∧e)∨(F ∧¬e), we conclude by the properties and observations
above that

{F } if e then p else q fi {G } is totally correct

if and only if

{F ∧ e } if e then p else q fi {G } and
{F ∧ ¬e } if e then p else q fi {G } are totally correct,

if and only if

{F ∧ e } p {G } and
{F ∧ ¬e } q {G } are totally correct.

Example 7 (Square root). Suppose we want to write a program for computing y = b
√
xc,

the integer square root of x. This can be specified by the postcondition

{ 0 ≤ y2 ≤ x < (y + 1)2 } .

Derive an invariant by deleting some conjunct, and construct a correct program in a
systematic way.

Solution. Given the postcondition G (=specification of the result), a program computing
the result can sometimes be constructed systematically by the following steps:

1. Choose an invariant by weakening the postcondition. After the loop, the invariant
and the negated loop condition should imply the postcondition (Inv∧¬e⇒ G). To
obtain Inv from G, we ‘split’ G into Inv and ¬e, which amounts to weakening G.
This can be done for instance by deleting some conjunct from G, maybe after
rewriting the postcondition (e.g. by replacing constants by variables).

13



2. Make sure the invariant holds before the loop. Find some state that satisfies the
invariant. Put statements in front of the loop that establish this state before
entering the loop. If it is difficult to find such a state or if establishing the state
requires complex computations, then look for a simpler state or choose a weaker
invariant.

3. Choose the loop condition. Since Inv is weaker than G, the negated loop condition
has to provide the missing information to conclude G from Inv . If Inv was obtained
from G by deleting some conjunct, then the negation of this conjunct may serve
as loop condition.

4. Make sure the loop body advances the loop towards termination. Determine the
variables in the loop condition that may be modified within the loop. Put state-
ments into the loop that modify one or more of the variables such that it becomes
more likely that the loop condition fails.

5. Make sure the invariant stays invariant. After modifying some variables to make
the loop eventually terminate (see previous step), the invariant will usually no
longer hold. Put some more statements into the loop balancing the effect of the
statements from the last step such that the invariant holds again at the end of an
iteration.

Regarding this example, we observe that the postcondition can be simplified, since y2 ≥ 0
holds for all values of y. Hence the postcondition consists of two conjuncts, y2 ≤ x and
x < (y + 1)2, giving rise to two different programs.

Solution 1.

1. We delete the conjunct y2 ≤ x and obtain the invariant Inv = x < (y + 1)2.

2. Since x is the input, we have to find some initial value for y such that Inv is
satisfied. One possibility is to set y to the value of x, by executing the statement
y := x.

3. As loop condition we choose the negation of the deleted conjunct, which results in
the program y := x; while y2 > x do · · · od.

4. Since x is the input, the loop body has to modify y to influence the loop condition.
Obviously the value of y has to be decreased within the loop to let y2 eventually
drop below the value of x. The easiest way to do this is to decrement y by one,
resulting in the program y := x; while y2 > x do y := y − 1; · · · od.

5. For the invariant x < (y + 1)2 to hold at the end of an iteration (after decre-
menting y) we have to make sure that x < y2 holds at the start of the iteration.
Incidentally, this coincides with the loop condition, so we don’t have to add further
statements to the loop. Hence the final program is

y := x; while y2 > x do y := y − 1 od .

14



Solution 2.

1. We delete the conjunct x < (y + 1)2 and obtain the invariant Inv = y2 ≤ x.

2. Since x is the input, we have to find some initial value for y such that Inv is
satisfied. One possibility is to set y to zero, by executing the statement y := 0.

3. As loop condition we choose the negation of the deleted conjunct, which results in
the program y := 0; while x ≥ (y + 1)2 do · · · od.

4. Since x is the input, the loop body has to modify y to influence the loop condition.
Obviously the value of y has to be increased within the loop to let (y+1)2 eventually
exceed the value of x. The easiest way to do this is to increment y by one, resulting
in the program y := 0; while x ≥ (y + 1)2 do y := y + 1; · · · od.

5. For the invariant y2 ≤ x to hold at the end of an iteration (after incrementing y) we
have to make sure that (y+1)2 ≤ x holds at the start of the iteration. Incidentally,
this coincides with the loop condition, so we don’t have to add further statements
to the loop. Hence the final program is

y := 0; while x ≥ (y + 1)2 do y := y + 1 od .

Correctness proofs

The programs constructed above are correct (as we will prove below) provided that we
add x ≥ 0 as precondition. Moreover, to show termination we have to strengthen the
invariants by the conjuncts y ≥ 0 and x ≥ 0. This is no restriction, since the square root
is only defined for nonnegative numbers and is a nonnegative number itself. To make
the proofs less boring we use the rule wht′′′ for the while-loop.

15



Solution 1.

{ 1: x ≥ 0 }
{ 7: Inv [y/x] } as ↑
y := x;
{ Inv : x < (y + 1)2 ∧ y ≥ 0 ∧ x ≥ 0 } wht′′′

while y2 > x do
{ 3: Inv ∧ y2 > x ∧ t = t0 } wht′′′

{ 6: (Inv ∧ (y2 > x⇒ 0 ≤ t < t0))[y/y − 1] } as ↑
y := y − 1
{ 4: Inv ∧ (y2 > x⇒ 0 ≤ t < t0) } wht′′′

od
{ 5: Inv ∧ y2 ≤ x } wht′′′

{ 2: y2 ≤ x < (y + 1)2 }

Implication 1⇒ 7:

x ≥ 0⇒ Inv [y/x]

x ≥ 0⇒ x < (x+ 1)2 ∧ x ≥ 0 ∧ x ≥ 0

The conjunct x < (x+ 1)2 is valid over the integers, and x ≥ 0 occurs as premise.

Implication 5⇒ 2:

Inv ∧ y2 ≤ x⇒ y2 ≤ x < (y + 1)2

x < (y + 1)2 ∧ y ≥ 0 ∧ x ≥ 0 ∧ y2 ≤ x⇒ y2 ≤ x < (y + 1)2

The conjuncts of the conclusion are part of the premise.

Implication 3⇒ 6: The implication is of the form

Inv ∧ e ∧ t = t0 ⇒ Inv ′ ∧ (e′ ⇒ 0 ≤ t′ < t0) .

where Inv ′, e′, and t′ denote the invariant, loop condition, and variant after applying the
substitution [y/y − 1]. The validity of the formula can be shown by proving the three
implications

Inv ∧ e⇒ Inv ′ (invariance of Inv)

Inv ∧ e ∧ e′ ⇒ t′ ≥ 0 (t is bounded)

Inv ∧ e ∧ e′ ⇒ t′ < t (t decreases)

This transformation is justified by the following basic equivalences:

A⇒ (B ∧ C) ≡ (A⇒ B) ∧ (A⇒ C)

A⇒ (B ⇒ C) ≡ (A ∧B)⇒ C

A ∧ x = t⇒ B ≡ A[x/t]⇒ B[x/t]

16



We use t = y2−x as bound function, which corresponds to the loop condition. We could
also use t = y2 or t = y.

Inv ∧ e⇒ Inv ′

x < (y + 1)2 ∧ y ≥ 0 ∧ x ≥ 0 ∧ y2 > x⇒ x < y2 ∧ y − 1 ≥ 0 ∧ x ≥ 0

y − 1 ≥ 0 follows from x ≥ 0, y ≥ 0, and y2 > x; the other conjuncts of the conclusion
are part of the premise.

Inv ∧ e ∧ e′ ⇒ t′ ≥ 0

Inv ∧ e ∧ (y − 1)2 > x⇒ (y − 1)2 − x ≥ 0

(y − 1)2 − x ≥ 0 follows from (y − 1)2 > x.

Inv ∧ e ∧ e′ ⇒ t′ < t

Inv ∧ e ∧ e′ ⇒ (y − 1)2 − x < y2 − x
Inv ∧ e ∧ e′ ⇒ (y − 1)2 < y2

x < (y + 1)2 ∧ y ≥ 0 ∧ x ≥ 0 ∧ y2 > x ∧ e′ ⇒ y ≥ 1

The conclusion can be simplified to y ≥ 1, which follows from x ≥ 0, y ≥ 0, and y2 > x.

Solution 2.

{ 1: x ≥ 0 }
{ 7: Inv [y/0] } as ↑
y := 0;
{ Inv : y2 ≤ x ∧ y ≥ 0 ∧ x ≥ 0 } wht′′′

while x ≥ (y + 1)2 do
{ 3: Inv ∧ x ≥ (y + 1)2 ∧ t = t0 } wht′′′

{ 6: (Inv ∧ (x ≥ (y + 1)2 ⇒ 0 ≤ t < t0))[y/y + 1] } as ↑
y := y + 1
{ 4: Inv ∧ (x ≥ (y + 1)2 ⇒ 0 ≤ t < t0) } wht′′′

od
{ 5: Inv ∧ x < (y + 1)2 } wht′′′

{ 2: y2 ≤ x < (y + 1)2 }

Implication 1⇒ 7:

x ≥ 0⇒ Inv [y/0]

x ≥ 0⇒ 02 ≤ x ∧ 0 ≥ 0 ∧ x ≥ 0

Obviously valid.

Implication 5⇒ 2:

Inv ∧ x < (y + 1)2 ⇒ y2 ≤ x < (y + 1)2

y2 ≤ x ∧ y ≥ 0 ∧ x ≥ 0 ∧ x < (y + 1)2 ⇒ y2 ≤ x < (y + 1)2

17



The conjuncts of the conclusion are part of the premise.

Implication 3 ⇒ 6: We split the implication again into three parts (see above). As
bound function we use t = x− (y+ 1)2 obtained from the loop condition; another choice
would be t = x− y.

Inv ∧ e⇒ Inv ′

y2 ≤ x ∧ y ≥ 0 ∧ x ≥ 0 ∧ x ≥ (y + 1)2 ⇒ (y + 1)2 ≤ x ∧ (y + 1) ≥ 0 ∧ x ≥ 0

y + 1 ≥ 0 follows from y ≥ 0; the other conjuncts of the conclusion are part of the
premise.

Inv ∧ e ∧ e′ ⇒ t′ ≥ 0

Inv ∧ e ∧ x ≥ (y + 2)2 ⇒ x− (y + 2)2 ≥ 0

x− (y + 2)2 ≥ 0 follows from x ≥ (y + 2)2.

Inv ∧ e ∧ e′ ⇒ t′ < t

Inv ∧ e ∧ e′ ⇒ x− (y + 2)2 < x− (y + 1)2

Inv ∧ e ∧ e′ ⇒ (y + 2)2 > (y + 1)2

y2 ≤ x ∧ y ≥ 0 ∧ x ≥ 0 ∧ e ∧ e′ ⇒ y ≥ −1

The conclusion can be simplified to y ≥ −1, which follows from y ≥ 0.

18


