
Deductive Verification of Software
Exercises

(6.0 VU Formal Methods in Computer Science)

Gernot Salzer

WS 2013

If you want to have your solutions corrected until December 9 (discussion
of solutions), please hand them in via Tuwel until Sunday, December 1.

Exercise 1 Let p be the following program:

x := x+ y;
if x < 0 then

abort
else

while x 6= y do
x := x+ 1;
y := y + 2

od
fi

(a) Show that p is syntactically correct with respect to the definition of Tpl.

(b) Let σ be a state such that σ(x) = 1 and σ(y) = 5. Compute [p]σ, using

• the structural operational semantics

• the natural semantics

of Tpl.

(c) Show that {x = 2y ∧ y > 2 } p {x = y } is totally correct

• by computing the weakest precondition of the program;

• using the Hoare calculus;

• using annotation rules.

Exercise 2 Prove that [p; q]σ = [q] [p]σ holds for all programs p and q and all states σ.
Note that we have defined [p; q] , [q] and [p] via transition systems (structural operational
semantics).

1



Exercise 3 Show that the two if-rules

{F ∧ e } p {G } {F ∧ ¬e } q {G }
{F } if e then p else q fi {G }

(if)

{F } p {H } {G } q {H }
{ (e⇒ F ) ∧ (¬e⇒ G) } if e then p else q fi {H }

(if′)

are equivalent, i.e., that a complete calculus needs only one of the rules.

Hint: Show that each rule can be derived from the other one.

Exercise 4 Consider the following modified if-rule:

{F } p {G } {F } q {G }
{F } if e then p else q fi {G }

(if′′)

(a) Show that the rule is admissible (for partial and total correctness).

Hint: Derive the new rule using rules that we alreay know to be admissible.

(b) Show that the Hoare calculus is no longer complete, if the regular if-rules (if) and
(if′) are replaced by the rule (if′′).

Hint: Find a correctness assertion that is correct (argue why it is!) but that cannot
be derived in the modified calculus (explain why it can’t!).

Exercise 5 Determine the strongest postcondition of while-loops, i.e., find a formula
equivalent to sp(F,while e do p od) similar to the weakest precondition in the course.

Exercise 6 Show that wp and wlp are dual to each other, i.e., show that wlp(p,G) =
¬wp(p,¬G) holds. Use this relationship to find a formula for wlp(while e do p od, G)
similar to the weakest precondition in the course.

Use your formula to compute the weakest liberal precondition of the program

z := 0; while y 6= 0 do z := z + x; y := y − 1 od

with respect to the postcondition z = x ∗ y0. Compare the result to the weakest precon-
dition computed in the course and explain the differences.

Exercise 7 Verify that the following program doubles the value of x. For which inputs
does it terminate? Choose appropriate pre- and postconditions and show that the as-
sertion is totally correct. Use y = 2x0 +x as a starting point for the invariant, where x0
denotes the initial value of x.

2



y := 3x;
while 2x 6= y do
x := x+ 1;
y := y + 1;

od

Exercise 8 Prove the total correctness of the following assertion. Describe the function
computed by the program.

{x ≥ 0 }
y := 0;
z := x+ 1;
while y + 1 6= z do
t := (y + z)/2;
if t2 ≤ x then
y := t;

else
z := t

fi
od
{ y2 ≤ x < (y + 1)2 }

Hint: Use the invariant y < z ≤ x+ 1 ∧ y2 ≤ x < z2.

Exercise 9 Prove that the rule

{ Inv ∧ e } p { Inv }
{ Inv }while e do p od { Inv ∧ ¬e }

(wh)

is correct regarding partial correctness, i.e., show that { Inv }while e do p od { Inv ∧¬e }
is partially correct whenever { Inv ∧ e } p { Inv } is partially correct.

Exercise 10 Extend Tpl by statements of the form “assert e”. When the condition e
evaluates to true, the program continues, otherwise the program aborts.

Specify the syntax and semantics of the extended language. Determine the weakest
precondition, the weakest liberal precondition, the strongest postcondition, and Hoare
rules (partial and total correctness) for assert-statements. Show that they are correct.

Treat the assert-statement as a first-class citizen, i.e., do not refer to other program
statements in the final result. However, you may use other statements as intermediate
steps when deriving the rules.

3


