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Exercises on Formal Methods in Computer Science

If you would like to receive feedback in the exercise sessions, you should submit your
solutions to TUWEL no later than November 11th 2013. You will get feedback in elec-
tronic form if you upload you exercises no later than November 29th 2013.

This exercise sheet is divided into two parts: first algorithms and techniques, second
proofs and properties. Note that the questions of Block 2 in the final exam are going
to have a strong emphasis on understanding and proofs. All exercises are relevant for
the final exam. We strongly recommend solving at least the following exercises until the
presentation of the solutions: Exercise 2 (a), Exercise 3 (a), (b), Exercise 6, Exercise 7
(b), Exercise 8 (a), (c), and Exercise 9 (a).

1 Algorithms and Techniques

Exercise 1 First-Order Theories

To get an intuition, what a formula means, it often helps to visualize an example instan-
tiation of the occuring relations. That is, one visualizes a model (or interpretation) of
the formula by drawing the respective relations. Binary relations can be visualized very
easily as directed graphs: let R ⊆ U ×U be a relation on the universe (domain) U , then
the corresponding directed graph G is G = (U,R). So, whenever two elements u1 and
u2 of the universe of an interpretation are related by R, then the corresponding graph
contains an edge between u1 and u2.
Consider the formula ∀x∀y∀z : xRy∧yRz → xRz and an interpretation I on the universe
U = {u, v, w, t} such that I(R) = {(u, v), (v, w), (u,w), (v, t), (u, t)}. Now I(R) can be
seen as a directed graph over U and this graph is shown in Figure 1. Since I is a model
of the above formula, the shown graph is a visualization of this model.
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Figure 1: A graph visualizing a model of the formula ∀x∀y∀z : xRy ∧ yRz → xRz.



(a) Let T1 be a theory consisting of the following fomulae:

∀x : xRx

∀x∀y : xRy → yRx

i) Pick a domain of size at least 5, pick any model of T1 based on your chosen
domain, and visualize R.

ii) Consider the following graph, and extend it such that it corresponds to a
model of T1.
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iii) Visualize a relation, which violates T1.

(b) Visualize the theory T2, which consists of the formula:

∀x∃y : xRy

i) Pick a domain of size at least 5 and visualize a chosen model of T2.

ii) Consider the following graph, and extend it such that it corresponds to a
model of T2.

u v w t r

Solution:

This exercise shall provide students with a way to develop an intuitive understanding of
formulas, as such it is not part of the subject matter.

Exercise 2 Tseitin Transformation

(a) For the formula ψ =
(
a → (b → ¬a)

)
use Tseitin translation to compute a sat-

equivalent CNF.

Solution:
The formula tree and the assigned labels for ψ are given in Figure 2.

The resulting equivalences are:

l1 ↔ a

l2 ↔ b

l3 ↔ a

l4 ↔ ¬l3
l5 ↔ (l2 → l4)

l6 ↔ (l1 → l5)



→
l6

al1 → l5

bl2 ¬ l4

a l3

Figure 2: Formula tree for ψ and assigned labels in red.

Transforming those to CNF yields:

¬l1 ∨ a l1 ∨ ¬a
¬l2 ∨ b l2 ∨ ¬b
¬l3 ∨ a l3 ∨ ¬a
¬l4 ∨ ¬l3 l4 ∨ l3
¬l5 ∨ ¬l2 ∨ l4 l5 ∨ l2 l5 ∨ ¬l4
¬l6 ∨ ¬l1 ∨ l5 l6 ∨ l1 l6 ∨ ¬l5

If we add the single clause l6 to the above set of clauses, then the resulting set of
clauses is sat-equivalent to ψ.

(b) Given the circuit below with AND, NAND, and OR gates, use Tseitin translation
to obtain a linear-size (and sat-equivalent) CNF.
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Solution:

We directly label the circuit dag with labels as in Figure 3. Observe that we do
not assign labels to input lines here and use NAND-gates directly (instead of
decomposing them into AND followed by NOT).
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Figure 3: Labelled circuit.

So the corresponding equivalences are:

l1 ↔ x ↑ y
l2 ↔ y ∧ z
l3 ↔ l1 ∨ l2
l4 ↔ l3 ↑ l2

where ↑ is the Sheffer stroke, a binary logical connective that is equivalent to a
NAND gate, i.e., x ↑ y ≡ ¬(x ∧ y).

Corresponding to those equivalences are the following clauses:

¬l1 ∨ ¬x ∨ ¬y l1 ∨ x l1 ∨ y
¬l2 ∨ y ¬l2 ∨ z l2 ∨ ¬y ∨ ¬z
¬l3 ∨ l1 ∨ l2 l3 ∨ ¬l1 l3 ∨ ¬l2
¬l4 ∨ ¬l3 ∨ ¬l2 l4 ∨ l3 l4 ∨ l2

We add the single clause l4 to the above set and obtain a set of clauses correspond-
ing to the above circuit, whose size is linear in the size of the circuit.



Exercise 3 Implication Graphs

Let C be a clause set consisting of the following clauses:

c1 : (¬A ∨B)

c2 : (¬A ∨ ¬B ∨ C)

c3 : (A ∨B)

c4 : (¬F ∨ ¬B ∨ ¬G)

c5 : (G ∨ ¬E)

c6 : (G ∨D)

c7 : (C ∨ E ∨ ¬D)

c8 : (¬A ∨ C)

(a) Draw an implication graph for C. Use the decision C = 0@1, and F = 1@2 until
you reach a conflict.

Solution:
The resulting conflict graph is given in Figure 5.
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Figure 4: Implication Graph for C with decisions C = 0@1 and F = 1@2.

(b) Determine all UIPs in the implication graph, find the first UIP and use resolution
to learn a conflict clause corresponding to the first UIP.

Solution:
UIPs (nodes through which all paths from the current decision to the conflict go
through) are the nodes F = 1@2 and G = 0@2 where the latter is the first UIP
(closest to the conflict).

We resolve c7, c5, and c6 and obtain:

r1 := res(c7, c5, E) =(C ∨G ∨ ¬D)

r2 := res(r1, c6, D) =(C ∨G ∨G)

fac(r2) =(C ∨G)



So the learned clause according to the first UIP scheme is c9 : (C ∨G).

(c) Add the learned clause, apply conflict-driven backtracking and draw the resulting
implication graph.

Solution:
For conflict-driven backtracking, we backtrack to the second highest DL in the
learned clause, i.e., we backtrack to DL = 1. For this kind of backtracking, we
keep all decisions on DL = 1 but delete all others with DL > 1. After BCP the
resulting implication graph is as in Figure 5.
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Figure 5: Implication Graph for C with learned clause c9 after conflict-driven backtrack-
ing and BCP.

Exercise 4 Sparse Method

Apply the Sparse Method including preprocessing on the formula ϕ below to obtain a
propositional formula. Note that ϕ is not yet in NNF (Negation Normal Form).

(x1 = x2 → x2 = x3)∧
[
¬(x2 = x4 ∨x3 6= x4 ∨x4 6= x5)∨ (x6 6= x5 ∧x6 = x7 ∧x7 = x3)

]
Solution:
In the first step, we transform ϕ into NNF. We substitute → and apply DeMorgan to
obtain ϕE , which now is in NNF:

(x1 6= x2 ∨ x2 = x3) ∧
[
(x2 6= x4 ∧ x3 = x4 ∧ x4 = x5) ∨ (x6 6= x5 ∧ x6 = x7 ∧ x7 = x3)

]
Then, we draw the equality graph GE(ϕE) of ϕE , given in Figure 6. Dashed lines rep-
resent equality edges while solid lines represent disequality edges.
The edge (x1, x2) is not part of a simple contradictory cycle, therefore we set (x1 6= x2)
to true and obtain ϕE2 :

(true ∨ x2 = x3) ∧
[
(x2 6= x4 ∧ x3 = x4 ∧ x4 = x5) ∨ (x6 6= x5 ∧ x6 = x7 ∧ x7 = x3)

]
Propositional simplification yields ϕE3 :[

(x2 6= x4 ∧ x3 = x4 ∧ x4 = x5) ∨ (x6 6= x5 ∧ x6 = x7 ∧ x7 = x3)
]

The equality graph GE(ϕE3 ) then is as shown in Figure 7.
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Figure 6: Equality graph GE(ϕE), dashed lines represent equality, solid lines disequality.
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Figure 7: Equality graph GE(ϕE3 ), dashed lines represent equality, solid lines disequality.

Edge (x2, x4) now is not in a simple contradictory cycle, therefore we set (x2 6= x4) to
true and apply propositional simplification to obtain ϕE4 :[

(x3 = x4 ∧ x4 = x5) ∨ (x6 6= x5 ∧ x6 = x7 ∧ x7 = x3)
]

The equality graph GE(ϕE4 ) is given in Figure 8.
All edges of GE(ϕE4 ) are part of a simple contradictory cycle, so we stop with prepro-
cessing and build the propositional skeleton e(ϕE4 ):

(e3,4 ∧ e4,5) ∨ (¬e5,6 ∧ e6,7 ∧ e3,7)

For transitivity contraints Bt we make the nonpolar equality graph GENP (ϕE4 ) chordal as
shown in Figure 9. Observe that edges (x4, x7) and (x5, x7) are introduced.
The according transitivity constraints Bt are then:

(e3,4 ∧ e4,7 → e3,7) ∧ (e4,7 ∧ e3,7 → e3,4) ∧ (e3,7 ∧ e3,4 → e4,7)∧
(e4,5 ∧ e5,7 → e4,7) ∧ (e5,7 ∧ e4,7 → e4,5) ∧ (e4,7 ∧ e4,5 → e5,7)∧
(e5,6 ∧ e6,7 → e5,7) ∧ (e6,7 ∧ e5,7 → e5,6) ∧ (e5,7 ∧ e5,6 → e6,7)

The resulting formula in propositional logic then is e(ϕE4 ) ∧Bt.
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Figure 8: Equality graph GE(ϕE4 ), dashed lines represent equality, solid lines disequality.
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Figure 9: Nonpolar equality graph GENP (ϕE4 ), made chordal by additional edges (in red).

Exercise 5 Ackermann’s Reduction

Apply Ackermann’s reduction on the following EUF-formula ϕ to obtain an E-formula:

F (F (x1)) 6= F (x1) ∧G(x1, x2) = F (x2) ∧ F (G(x2, F (x2))) 6= F (F (x1))

Solution:
We first number the instances of the UFs inwards-to-outwards, left-to-right:

F2(F1(x1)) 6= F1(x1) ∧G1(x1, x2) = F3(x2) ∧ F4(G2(x2, F3(x2))) 6= F2(F1(x1))

This already gives T for the numbered instances. For example:

T (F1(x1)) = f1

T (F2(F1(x1))) = f2

T (F3(x2)) = f3

T (F4(G2(x2, F3(x2)))) = f4

T (G1(x1, x2)) = g1

T (G2(x2, F3(x2))) = g2



So flatE := f2 6= f1 ∧ g1 = f3 ∧ f4 6= f2.
Based on T we construct FCE :=

(x1 = f1 →f1 = f2)∧
(x1 = x2 →f1 = f3)∧
(x1 = g2 →f1 = f4)∧
(f1 = x2 →f2 = f3)∧
(f1 = g2 →f2 = f4)∧
(x2 = g2 →f3 = f4)∧

((x1 = x2 ∧ x2 = f3)→g1 = g2)

Finally ϕE := FCE → flatE .



2 Proofs and Properties

Exercise 6 First-Order Theories

In the lecture, we discussed reasoning under different theories. Here we are concerned
with LISP-like lists and the theory T Econs = Tcons ∪ TE . In a verification attempt of some
program, we have to prove the following:

For non-atomic lists `1, `2, if the “car” of both lists are equal and the
“cdr” of both lists are equal, then `1 is equal to `2.

We formalize the above statement as follows:

ϕ :
[
¬atom(`1) ∧ ¬atom(`2) ∧ car(`1)

.
= car(`2) ∧ cdr(`1)

.
= cdr(`2)

]
→ `1

.
= `2

Prove the statement T Econs -valid, i.e., show that T Econs |= ϕ.

Hint: Besides the equality axioms reflexivity, symmetry and transitivity, the following
axioms from T Econs are sufficient for a proof:

(1) Substitution axioms (functional congruence) for cons:

∀x1∀x2∀y1∀y2 [(x1
.
= x2 ∧ y1

.
= y2)→ cons(x1, y1)

.
= cons(x2, y2)]

(2) Construction:
∀x [¬atom(x)→ cons(car(x), cdr(x))

.
= x]

Solution:
The proof is by contradiction. Suppose there exists a T Econs -interpretation I with I 6|= ϕ.

1. I 6|= ϕ assumption
2. I |= car(`1)

.
= car(`2) 1., →, ∧

3. I |= cdr(`1)
.
= cdr(`2) 1., →, ∧

4. I |= ¬atom(`1) 1., →, ∧
5. I |= ¬atom(`2) 1., →, ∧
6. I 6|= `1

.
= `2 1., →

7. I |= cons(car(`1), cdr(`1))
.
= cons(car(`2), cdr(`2))

2., 3., functional congruence
8. I |= cons(car(`1), cdr(`1))

.
= `1 4., construction

9. I |= cons(car(`2), cdr(`2))
.
= `2 5., construction

10. I |= `1
.
= `2 7., 8., 9., symmetry + transitivity

11. I |= ⊥ 6., 10.

The assumption is false: ϕ is therefore T Econs -valid.

Exercise 7 Tseitin Transformation

In the first part of this exercise, we consider a restriction of the Tseitin transformation
where the input formula is only composed of propositional variables, negation, and con-
junction. In the second part, we consider a simplified transformation whose output is
not in CNF.



(a) Let ψ be a propositional formula and let δ(ψ) be the set of clauses resulting from
Tseitin’s transformation on ψ. Prove that the following holds:

If ψ is satisfiable then δ(ψ) is satisfiable.

You only need to prove this for the connectives ∧ and ¬. Use the below clause
schemes, which introduce a new label for every boolean variable.

La ↔ a (¬La ∨ a) (La ∨ ¬a)

Lφ ↔ (L1 ∧ L2) (¬Lφ ∨ L1) (¬Lφ ∨ L2) (Lφ ∨ ¬L1 ∨ ¬L2)

Lφ ↔ ¬L1 (¬Lφ ∨ ¬L1) (Lφ ∨ L1)

Solution:
Let δ(ψ) be the set of all clauses from the labelling of ψ and the additional clause
(Lψ), i.e., δ(ψ) = δ̂(ψ) ∪ {(Lψ)}.
We have to show: If ψ is satisfiable then δ(ψ) is satisfiable. In other words: If there
exists I ∈ Mod(ψ) then there exists I ′ ∈ Mod(δ(ψ)), that is for every C ∈ δ(ψ)
holds I ′(C) = 1.

To prove this statement, we assume that ψ is satisfiable. Then we have to show
that for some interpretation I ′ of δ(ψ) it holds that all clauses C ∈ δ(ψ) evaluate
to true, i.e., ∀C ∈ δ(ψ) : I ′(C) = 1.

As we assumed ψ to be satisfiable, there exists a model I of ψ. We extend I to an
interpretation I ′ for δ(ψ) as follows:

i) I ′(a) = I(a) for every propositional variable a occuring in ψ.

ii) I ′(Lφ) = I(φ) for every subformula occurrence φ of ψ, i.e., φ ∈ Σ(ψ), where
Lφ is the label assigned to φ.

It remains to show that I ′ is also a model of δ(ψ).

For the following proof we assume without further notice that φ is a subformula
occurrence of ψ, i.e., φ ∈ Σ(ψ).

As every clause in δ(ψ) \ {(Lψ)} results from the translation of one subformula
occurrence φ of ψ, we first show by structural induction on ψ that, for all C ∈
δ(ψ) \ {(Lψ)}, it that holds I ′(C) = 1. The Induction Hypothesis (IH) which we
use is as follows:

IH: If φ′ is a proper subformula of φ (i.e, φ′ 6= φ) then I ′ satisfies all clauses in
δ̂(ψ) = δ(ψ) \ {(Lψ)} that stem from the translation of φ′.

• Base case: φ = a where a is propositional variable. The clauses in δ(ψ) steming
from the translation of φ are (¬La ∨ a) and (La ∨ ¬a). To show that they
evaluate to true under I ′ consider all cases for I(a):

– I(a) = 1: then I ′(a) = 1 by i) and I ′(La) = 1 by ii), thus I ′(¬La ∨ a) = 1
and I ′(La ∨ ¬a) = 1.



– I(a) = 0: then I ′(a) = 0 by i) and I ′(La) = 0 by ii), thus I ′(¬La ∨ a) = 1
and I ′(La ∨ ¬a) = 1.

Therefore all clauses for φ = a are satisfied by I ′.

• Induction step: case φ = φ1 ∧ φ2. The clauses are (¬Lφ ∨ L1), (¬Lφ ∨ L2),
(Lφ ∨ ¬L1 ∨ ¬L2) where the label for φ1 is L1, respectively for φ2 is L2.
We consider all cases for I(φ):

– I(φ) = 1 : thus I(φ1) = I(φ2) = 1 by the semantics of ∧, so I ′(L1) =
I ′(L2) = 1 by ii) as well as I ′(Lφ) = 1. Therefore I ′(¬Lφ∨L1) = I ′(¬Lφ∨
L2) = I ′(Lφ ∨ ¬L1 ∨ ¬L2) = 1.

– I(φ) = 0 : thus I(φ1) = 0 or I(φ2) = 0. Without loss of generality we
assume I(φ1) = 0. Thus I ′(Lφ) = I ′(L2) = 0. Therefore I ′(¬Lφ ∨ L1) =
I ′(¬Lφ ∨ L2) = I ′(Lφ ∨ ¬L1 ∨ ¬L2) = 1.

As all clauses for φ1 and φ2 are satisfied by I ′ according IH, it follows that
all clauses for φ = φ1 ∧ φ2 are satisfied by I ′.

• Induction step: case φ = ¬φ1. The clauses are (¬Lφ ∨ ¬L1), (Lφ ∨ L1) where
L1 is the label for φ1.
We consider all cases for I(φ):

– I(φ) = 1 : thus I(φ1) = 0 and by ii) is I ′(Lφ) = 1 and I ′(L1) = 0.
Therefore I ′(¬Lφ ∨ ¬L1) = I ′(Lφ ∨ L1) = 1.

– I(φ) = 0 : thus I(φ1) = 1 and by ii) is I ′(Lφ) = 0 and I ′(L1) = 1.
Therefore I ′(¬Lφ ∨ ¬L1) = I ′(Lφ ∨ L1) = 1.

As all clauses for φ1 are satisfied by I ′ according to IH, all clauses for φ = ¬φ1

are satisfied by I ′.

The only remaining clause not covered by structural induction is (Lψ) where Lψ
is the label assigned to ψ. As I ∈ Mod(ψ) holds I(ψ) = 1 and thus by ii) holds
I ′(Lψ) = 1.

Therefore all clauses are satisfied by I ′ and we have proven: if ψ is satisfiable then
δ(ψ) is satisfiable.

Shorter Alternative: One can show that the clauses for the cases φ = a and
φ = ¬φ1 evaluate to true in shorter terms. Instead of the case distinction for I(φ),
directly use the relationship between φ and its assigned label, as shown in the
following:

• Case φ = a: by ii) I ′(a) = I ′(La) therefore I ′(¬La∨a) = 1−I ′(La)+I ′(La) = 1
and I ′(La ∨ ¬a) = I ′(La) + 1− I ′(La) = 1, so all clauses are satisfied.

• Case φ = ¬φ1: by ii) and the semantics of negation it holds that I ′(Lφ) =
1 − I ′(L1) therefore I ′(¬Lφ ∨ ¬L1) = 1 − (1 − I ′(L1)) + 1 − I ′(L1) = 1 and
I ′(Lφ ∨ L1) = 1 − I ′(L1) + I ′(L1) = 1. As the clauses for φ1 are satisfied by
IH, all clauses for φ are satisfied.



Notice: The rest of the proof (assumption I that is a model, induction hypothesis,
etc.) remains the same.

(b) Consider a simplified variant of Tseitin’s transformation: let ϕ be a propositional
formula, let Σ(ϕ) be the set of all subformulas of ϕ, and let `ϕ be the label for ϕ.
Then, the result of simplified Tseitin’s transformation is the formula:

λ =

 ∧
ψ∈Σ(ϕ)

(`ψ ↔ ψ)

→ `ϕ

Prove: λ is valid if and only if ϕ is valid.

Solution:

“ϕ⇒ λ”: We show, if ϕ is valid then λ is valid. If ϕ is valid, then for every interpretation
I holds that I(ϕ) = 1.

Assume for contradiction that there exists an interpretation I ′ such that
I ′(λ) = 0. By the semantics of → it follows that I ′(

∧
ψ∈Σ(ϕ) (`ψ ↔ ψ)) = 1

and I ′(`ϕ) = 0. By the semantics of ∧ it holds for every ψ ∈ Σ(ϕ) that
I ′(`ψ ↔ ψ) = 1, specifically for ψ = ϕ. Hence, I ′(`ϕ) = 0 = I ′(ϕ).

Consider the projection I ′′ of I ′ to those propositional variables occurring
only in ϕ, then I ′′(ϕ) = 0. This contradicts that ϕ is valid. Therefore, no such
interpretation I ′ with I ′(λ) = 0 exists, i.e., λ is valid.

“λ⇒ ϕ”: We show, if λ is valid then ϕ is valid.

Assume for contradiction that there exists an interpretation I such that
I(ϕ) = 0. Consider the extension of I ′ of I such that I ′(ψ) = I ′(`ψ) for
all ψ ∈ Σ(ϕ). Obviously, I ′ is an interpretation over λ, hence I ′(λ) = 1. Since
I(ϕ) = 0, it holds that I ′(`ϕ) = 0, therefore by the semantics of → it must
hold that I ′(

∧
ψ∈Σ(ϕ) (`ψ ↔ ψ)) = 0.

Since I ′(ψ) = I ′(`ψ) for all ψ ∈ Σ(ϕ), it holds that I ′(
∧
ψ∈Σ(ϕ) (`ψ ↔ ψ)) = 1,

which is a contradiction. Therefore, no such interpretation I with I(ϕ) = 0
exists, i.e., ϕ is valid.

Exercise 8 Implication Graphs

(a) Show that in a conflict graph the first UIP is uniquely defined, i.e., there is exactly
one node in the implication graph which is a first UIP.

Solution:
Proof by contradiction: Assume there are two nodes v, v′ where both v and v′ are
first-UIPs. Let d be the node of the last decision and k the conflict node.

A UIP is by definition a node where all paths from d to k go through. As v and v′

are first-UIPs, they both are UIPs, so all paths from d to k go through v and also
through v′.



Therefore there either is a path d, . . . , v, . . . , v′, . . . , k from v to v′ or there is a
path from v′ to v. Without loss of generality, let the path be from v to v′. As all
paths from d to k go through v and v′, all paths are of form d, . . . , v, . . . , v′, . . . , k,
because the implication graph is acyclic.

As v 6= v′ the distance d(v′, k) between v′ and k is smaller than the distance d(v, k),
i.e., d(v′, k) < d(v, k). But this contradicts the assumption that v is a first-UIP,
because v′ is closer to the conflict k than v.

Therefore there can be only one first UIP.

As d, the current decision node, is always a UIP, there always exists a at least one
UIP, hence there also exists a UIP closest to the conflict, i.e., there exists a first
UIP.

(b) Let C be a set of clauses and G a conflict graph with respect to C. Prove: if Cl is the
first clause that is learned following the first-UIP scheme, then Cl is a consequence
of C.
Bonus questions: how can this statement be used to show that all clauses that are
learned (following the first-UIP scheme) are a consequence of C?
Solution:
Consider how a new clause is learnt: Find the first-UIP u and resolve with clauses
from the conflict k to u. Let S ⊆ C denote those clauses that occur as edge-labels
in the implication graph G from the first UIP u to the conflict node k.

As Cl is learnt following the first UIP schema, there is a resolution derivation
K1,K2, . . . ,Kn of Cl from S where Kn = Cl and for each K` holds: either K` ∈ S
or K` is the resolvent of two Ki and Kj with i, j < ` and 1 ≤ ` ≤ n. As resolution
is correct it follows that S |= Cl.

By monotonicity of propositional logic it then follows that F ∪ S |= Cl for any set
of formulas F , specifically C ∪ S |= Cl. And as S ⊆ C it follows that C |= Cl.

Bonus question: For a sequence C1, . . . , Cn of learned clauses, we can inductively
apply the statement as follows. C1 is a consequence of C by the above proof. C2

is a consequence of C ∪ {C1} again by the above proof; since C1 is a consequence
of C it therefore holds by transitivity of the consequence relation that C2 also is a
consequence of C. The proof sketch for C3 to Cn then is analogous. Note that this
is not a full inductive proof, but just a quick and incomplete proof sketch.

(c) Prove: During the run of a SAT solver, the implication graph Gk at step k is
acyclic.

Hints:

1) Perform a proof by induction over k.

2) Consider the following events that can occur:

(i) making a decision,



(ii) unit propagation (one step of BCP),

(iii) a clause is unsatisfiable,

(iv) backtracking.

Solution:
Let P (n) be the property that Gn is acyclic.

Base case, n = 0: G0 is the empty graph, hence it is acyclic. Therefore P (0) holds.

Induction Hypothesis: Let n be an integer ≥ 0 and suppose P (0), . . . P (n) is
true.

Step: Consider P (n+ 1) which we have to show to be true. By (IH) it holds that
Gi = (Vi, Ei) is acyclic (0 ≤ i ≤ n). We continue by a case distinction wrt. all
possible steps of the SAT solver.

(i) “Making a decision”: wlog. let the decision be X = f@d. Then Vn+1 = Vn ∪
{X} and En+1 = En. Since Gn is acyclic, Gn+1 = (Vn+1, En+1) also is acyclic.

(ii) “A clause is unsatisfiable”: wlog. let the unsatisfiable clause be (`1∨ . . .∨ `m),
then Vn+1 = Vn ∪ {κ} and En+1 = En ∪ {(`j , κ) | 1 ≤ j ≤ m}. Note that
no new edge has been added other than those going to κ. Hence Gn+1 only
contains a cycle, if Gn contains a cycle. Therefore it follows by (IH) that Gn+1

is acyclic.

(iii) “Unit propagation”: wlog. let the unit clause be (`1 ∨ . . .∨ `m) and let `m be
the unassigned variable. Then Vn+1 = Vn ∪ {`i} and En+1 = En ∪ {(`j , `m) |
1 ≤ j ≤ m − 1}. Since all added edges go to the newly added node `m, it
follows by (IH) that Gn+1 is acyclic.

(iv) “Backtracking”: since backtracking only removes a part of the implication
graph Gn = (Vn, En), we have that Gn+1 = (Vn \ V ′, En \ E′) for some sets
V ′ ⊂ Vn, E

′ ⊂ En. Removing edges can not make a graph cyclic. Therefore,
by (IH) follows that Gn+1 is acyclic.

Since P (n+1) holds for any step under the assumption that (IH) holds, it therefore
follows that P (n) holds for any n ≥ 0. Consequently, the implication graph Gk at
step k is acyclic.

Exercise 9 Ackermann’s Reduction

(a) The removal of Boolean variables from an E-formula is defined as follows:

Definition. Let ϕE be any E-formula with Boolean variables b1, . . . , bn. Construct
an E-formula ψE without any Boolean variable by replacing each bi by vbi,1

.
= vbi,2

where vbi,1 , vbi,2 are two new term variables (identifiers).

Prove that ϕE is E-satisfiable iff ψE is E-satisfiable.



Solution:
For a full proof see the extra sheet (extra-sheet4-1a.pdf) in the BACKGROUND
directory in TUWEL. In the exam, a proof sketch as follows is also sufficient:

Let NV =
⋃n
i=1{vbi,1 , vbi,2} be the set of term variables in ψE that do not occur

in ϕE .

(ϕE → ψE): Let M ∈ Mod(ϕE). Consider the interpretation M ′ where M ′(x
.
=

y) = M(x
.
= y) if x, y /∈ NV , and M ′(vbi,1

.
= vbi,2) = M(bi) otherwise. Observe

that ψE contains no x
.
= y where x ∈ NV and y /∈ NV or where x /∈ NV

and y ∈ NV , since vbi,1 and vbi,2 are new term variables. Then, it follows by the

Equivalent Replacement Lemma that M ′ ∈Mod(ψE).

(ϕE ← ψE): Let M ′ ∈ Mod(ψE), consider the interpretation M where M ′(x
.
=

y) = M(x
.
= y) if x, y /∈ NV and M(bi) = M ′(vbi,1

.
= vbi,2). Again, by the

Equivalent Replacement Theorem, we conclude that M ∈Mod(ϕE).

(b) Transform the EUF-formula ϕEUF below to an E-formula ϕE using Ackermann’s
reduction. Note that ϕEUF contains an uninterpreted predicate, which requires
special treatment first.

ϕEUF : F (F (x1))
.
= G(x2, G(x1, x3, x4), F (x2))→ p(x1, y).

Solution:
First, we replace the predicate and obtain:

ϕ′ : F (F (x1))
.
= G(x2, G(x1, x3, x4), F (x2))→ Hp(x1, y)

.
= xp.

Labelling function occurrences inside-out yields:

ϕ′′ : F2(F1(x1))
.
= G2(x2, G1(x1, x3, x4), F3(x2))→ Hp(x1, y)

.
= xp.

The propositional skeleton is:

flatE : f2
.
= g2 → hp

.
= xp.

The functional constraints FCE are:

x1
.
= f1 → f1

.
= f2

x1
.
= x2 → f1

.
= f3

f1
.
= x2 → f2

.
= f3

(x2
.
= x1 ∧ g1

.
= x3 ∧ f3

.
= x4)→ g1

.
= g2

Note that there are no constraints for hp since it only occurs once in ϕ′. Finally,
ϕE is FCE → flatE .


