
Deductive Verification of Software
Exercises and Solutions

(6.0 VU Formal Methods in Computer Science)

Gernot Salzer

WS 2013

Exercise 1

Let p be the following program:

x := x+ y;
if x < 0 then

abort
else

while x 6= y do
x := x+ 1;
y := y + 2

od
fi

(a) Show that p is syntactically correct with respect to the definition of TPL.

(b) Let σ be a state such that σ(x) = 1 and σ(y) = 5. Compute [p]σ, using

• the structural operational semantics

• the natural semantics

of TPL.

(c) Show that {x = 2y ∧ y > 2 } p {x = y } is totally correct

• by computing the weakest precondition of the program;

• using the Hoare calculus;

• using annotation rules.

1

Solution

(a) Syntax check: We give a parallel derivation1 for the program, using the productions
of the context-free grammar for TPL (see slides).

P ⇒p P “;”P
⇒p V “:=” E“; if” E “then” P “else” P “fi”

⇒p “x := (” E B E “); if” “(” E B E “) then abort else while” E “do” P “od fi”

⇒p “x := (”V “+”V “); if (”V “<”N “) then abort else while (” E B E “) do” P “;”P “od fi”

⇒p “x := (x+ y); if (x < 0) then abort else while (”V “6=”V “) do” V “:=” E “;”V “:=” E “od fi”

⇒p “x := (x+ y); if (x < 0) then abort else while (x 6= y) do x := (” E B E “); y := (” E B E “) od fi”

⇒p “x := (x+ y); if (x < 0) then abort else while (x 6= y) do x := (”V “+”N “); y := (”V “+”N “) od fi”

⇒p “x := (x+ y); if (x < 0) then abort else while (x 6= y) do x := (x+ 1); y := (y + 2) od fi”

(b) Structural operational semantics: We compute a complete program run. The final
state is, by the definition of the semantics, the result of [p]σ.

(p, σ) = (x := x+ y; if · · · fi, σ)[
(x := x+ y, σ)
⇒ σ1 where σ1(x) = [x+ y]σ = 6 and σ1(y) = σ(y) = 5

⇒ (if x < 0 then abort else while x 6= y do · · · od fi, σ1)

⇒ (while x 6= y do x := x+ 1; y := y + 2 od, σ1)

since [x < 0]σ1 = (σ1(x) < 0) = (6 < 0) = 0

⇒ (x := x+ 1; y := y + 2; while x 6= y do x := x+ 1; y := y + 2 od, σ1)

since [x 6= y]σ1 = (σ1(x) 6= σ1(y)) = (6 6= 5) = 1
(x := x+ 1; y := y + 2, σ1)[

(x := x+ 1, σ1)
⇒ σ2 where σ2(x) = [x+ 1]σ1 = 7 and σ2(y) = σ1(y) = 5

⇒ (y := y + 2, σ2)

⇒ (y := y + 2; while x 6= y do x := x+ 1; y := y + 2 od, σ2)[
(y := y + 2, σ2)
⇒ σ3 where σ3(y) = [y + 2]σ2 = 7 and σ3(x) = σ2(x) = 7

⇒ (while x 6= y do x := x+ 1; y := y + 2 od, σ3)

⇒ σ3

since [x 6= y]σ3 = (σ3(x) 6= σ3(y)) = (7 6= 7) = 0

Therefore we have [p]σ = σ3.

1In a parallel derivation a derivation step consists in replacing all variables in the expression simulta-
neously (in parallel) by the right-hand side of some production.

2

Natural semantics:

[p]σ = [x := x+ y; if · · · fi]σ

= [if · · · fi] [x := x+ y]σ

= [if x < 0 then abort else while x 6= y do · · · od fi]σ1

where σ1(x) = [x+ y]σ = 6 and σ1(y) = σ(y) = 5

= [while x 6= y do x := x+ 1; y := y + 2 od]σ1

since [x < 0]σ1 = (σ1(x) < 0) = (6 < 0) = 0

= [x := x+ 1; y := y + 2; while x 6= y do x := x+ 1; y := y + 2 od]σ1

since [x 6= y]σ1 = (σ1(x) 6= σ1(y)) = (6 6= 5) = 1

= [while x 6= y do x := x+ 1; y := y + 2 od] [x := x+ 1; y := y + 2]σ1

= [while x 6= y do x := x+ 1; y := y + 2 od] [y := y + 2] [x := x+ 1]σ1

= [while x 6= y do x := x+ 1; y := y + 2 od] [y := y + 2]σ2

where σ2(x) = [x+ 1]σ1 = 7 and σ2(y) = σ1(y) = 5

= [while x 6= y do x := x+ 1; y := y + 2 od]σ3

where σ3(y) = [y + 2]σ2 = 7 and σ3(x) = σ2(x) = 7

= σ3

since [x 6= y]σ3 = (σ3(x) 6= σ3(y)) = (7 6= 7) = 0

(c) Correctness proof via weakest preconditions: We show that the precondition im-
plies the weakest precondition of the program with respect to the postcondition.

wp(x := x+ y; if · · · , x = y) = wp(x := x+ y, wp(if · · · , x = y))

wp(if · · · , x = y)
= ((x < 0 ∧ wp(abort, x = y)) ∨ (x ≥ 0 ∧ wp(while · · · , x = y)))
= ((x < 0 ∧ false) ∨ (x ≥ 0 ∧ wp(while · · · , x = y)))
= (false ∨ (x ≥ 0 ∧ wp(while · · · , x = y)))
= (x ≥ 0 ∧ wp(while · · · , x = y))

wp(while · · · , x = y) = ∃i ≥ 0Fi

F0 : ¬(x 6= y) ∧ x = y
F1 : x 6= y ∧ wp(x := x+ 1; y := y + 2, x = y)

= (x 6= y ∧ x+ 1 = y + 2)
= (x = y + 1)

Fi : x = y + i (guess)
Fi+1 : x 6= y ∧ wp(x := x+ 1; y := y + 2, Fi)

= x 6= y ∧ (x+ 1) = (y + 2) + i
= x 6= y ∧ x = y + i+ 1
= (x = y + i+ 1) (proof)

= ∃i ≥ 0 (x = y + i)
= x ≥ y

= (x ≥ 0 ∧ x ≥ y)

3

= wp(x := x+ y, x ≥ 0 ∧ x ≥ y)
= (x+ y) ≥ 0 ∧ (x+ y) ≥ y
= (x+ y) ≥ 0 ∧ x ≥ 0

It remains to show that the precondition implies the weakest precondition.

x = 2y ∧ y > 2⇒ wp(p, x = y)

⇒ (x+ y) ≥ 0 ∧ x ≥ 0

The two conjuncts of the conclusion can be proven separately:

x = 2y ∧ y > 2⇒ (x+ y) ≥ 0

x = 2y ∧ y > 2⇒ x ≥ 0

The first implication is valid, since x = 2y and y > 2 imply (x + y) = 3y > 6 ≥ 0.
The second implication holds since x = 2y and y > 2 imply x > 4, which implies
the conclusion x ≥ 0.

Correctness proof via the Hoare calculus: The Hoare derivation is shown in figure 1.
It remains to find formulas F and Inv and an expression t such that the implications
1, 2, 4, 6 and 7 are valid.

We guess a suitable formula F by forward reasoning. The new value of x is the old
one plus the value of y, hence the old value can be obtained after the assignment by
evaluating x− y. We obtain x− y = 2y ∧ y > 2 as description of the states after the
assignment, therefore we choose F = (x = 3y ∧ y > 2). Now we are able to prove
implications 1 and 2.

Validity of implication 1:

(x = 2y ∧ y > 2)⇒ F [x/x+ y]

(x = 2y ∧ y > 2)⇒ (x+ y = 3y ∧ y > 2)

The first conjunct of the conclusion, x + y = 3y, is implied by the first conjunct of
the premise, and the second conjunct of the conclusion, y > 2, is part of the premise.

Validity of implication 2:

(F ∧ x < 0)⇒ false

(x = 3y ∧ y > 2 ∧ x < 0)⇒ false

The premise is contradictory: y > 2 implies 3y > 6, while x = 3y and x < 0 imply
3y < 0. Therefore the implication holds in every state.

To obtain a suitable variant t we rewrite the loop condition x 6= y as x− y 6= 0. We
observe that the expression x − y decreases in each iteration and equals zero when
the loop terminates. Therefore we guess t = x− y.

The main purpose of invariant Inv is to guarantee the partial correctness of the
loop: It has to be strong enough to imply the postcondition (implication 6), while

4

(7
)

(I
n
v
∧
x
6=

y
∧
t
=

z
)
⇒

(I
n
v
∧
0
≤

t
<

z
)[
y
/
y
+

2
][
x
/
x
+

1
]

(a
s)

{
(I
n
v
∧
0
≤

t
<

z
)[
y
/
y
+

2
][
x
/
x
+

1
]}

x
:=

x
+

1
{
(I
n
v
∧
0
≤

t
<

z
)[
y
/
y
+

2
]}

{
In

v
∧
x
6=

y
∧
t
=

z
}
x
:=

x
+

1
{
(I
n
v
∧
0
≤

t
<

z
)[
y
/
y
+

2
]}

(l
c
)

(5
,
fr
o
m

b
el
o
w
)

(4
)

(F
∧
x
6<

0
)
⇒

In
v

(5
,
se

e
a
b
o
v
e
)

{
In

v
∧
x
6=

y
∧
t
=

z
}
x
:=

x
+

1
{
(I
n
v
∧
0
≤

t
<

z
)[
y
/
y
+

2
]}

(a
s)

{
(I
n
v
∧
0
≤

t
<

z
)[
y
/
y
+

2
]}

y
:=

y
+

2
{
In

v
∧
0
≤

t
<

z
}

{
In

v
∧
x
6=

y
∧
t
=

z
}
x
:=

x
+

1
;y

:=
y
+

2
{
In

v
∧
0
≤

t
<

z
}

(s
c
)

{
In

v
}

w
h

il
e
x
6=

y
d

o
x
:=

x
+

1
;y

:=
y
+

2
o

d
{
In

v
∧
¬
x
6=

y
}

(w
h
t′

′)
(6

)

(I
n
v
∧
¬
x
6=

y
)
⇒

x
=

y

{
F
∧
x
6<

0
}

w
h

il
e
x
6=

y
d

o
x
:=

x
+

1
;y

:=
y
+

2
o

d
{
x
=

y
}

(l
c
)

(3
,
fr
o
m

b
el
o
w
)

(1
)

(x
=

2
y
∧
y
>

2
)
⇒

F
[x
/
x
+

y
]

(a
s)

{
F
[x
/
x
+

y
]}

x
:=

x
+

y
{
F
}

{
x
=

2
y
∧
y
>

2
}
x
:=

x
+

y
{
F
}

(l
c
)

(2
)

(F
∧
x
<

0
)
⇒

fa
ls
e

(a
b
t)

{
fa
ls
e
}

a
b

or
t
{
x
=

y
}

{
F
∧
x
<

0
}

a
b

or
t
{
x
=

y
}

(l
c
)

(3
,
se

e
a
b
o
v
e
)

{
F
∧
x
6<

0
}

w
h

il
e
··
·

o
d
{
x
=

y
}

{
F
}

if
x
<

0
th

en
a

b
or

t
el

se
w

h
il
e
··
·

o
d

fi
{
x
=

y
}

(i
f)

{
x
=

2
y
∧
y
>

2
}
x
:=

x
+

y
;i

f
x
<

0
th

en
a

b
or

t
el

se
w

h
il
e
x
6=

y
d

o
x
:=

x
+

1
;y

:=
y
+

2
o

d
fi
{
x
=

y
}

(s
c
)

It
re

m
a
in

s
to

fi
n

d
fo

rm
u

la
s
F

an
d
In
v

an
d

an
ex

p
re

ss
io

n
t

su
ch

th
at

th
e

fo
ll

ow
in

g
im

p
li
ca

ti
on

s
b

ec
om

e
va

li
d

:

(1
)

(x
=

2y
∧
y
>

2)
⇒
F

[x
/x

+
y
]

(2
)

(F
∧
x
<

0
)
⇒

fa
ls

e

(4
)

(F
∧
x
6<

0)
⇒

In
v

(6
)

(I
n
v
∧
¬x
6=
y
)
⇒
x

=
y

(7
)

(I
n
v
∧
x
6=
y
∧
t

=
z
)
⇒

(I
n
v
∧

0
≤
t
<
z
)[
y
/y

+
2]

[x
/x

+
1]

T
h

e
au

x
il

a
ry

va
ri

a
b

le
z

is
n

ot
u

se
d

an
y
w

h
er

e
ou

ts
id

e
of

th
e

lo
op

an
d

‘s
to

re
s’

th
e

va
lu

e
o
f

th
e

va
ri

a
n
t
t

a
t

th
e

b
eg

in
n

in
g

o
f

th
e

lo
op

,
so

th
a
t

w
e

ca
n

co
m

p
ar

e
it

to
th

e
va

lu
e

of
t

at
th

e
en

d
o
f

th
e

lo
o
p

.
N

ot
e

th
at

w
e

n
ee

d
d

iff
er

en
t

va
ri

a
n
ts

,
in

va
ri

an
ts

an
d

au
x
il

ia
ry

va
ri

ab
le

s
fo

r
ea

ch
lo

op
.

Figure 1: Derivation of {x = 2y ∧ y > 2 } p {x = y } in the Hoare calculus, where p is
the program of exercise 1.

5

being at the same time weak enough to be implied by the precondition of the loop
(implication 4) and being maintained throughout the iterations (first conclusion in
implication 7). In this example implication 6 is valid for any choice of Inv , since
the negated loop condition already implies the postcondition. Hence we choose
the weakest possible invariant, Inv = true, which obviously also satisfies the other
implications.

The second purpose of the invariant is to ensure properties of the variables needed
for showing that t is a variant. To prove t ≥ 0 we need to assume x ≥ y; obviously
the loop only terminates for such states. This property has to be guaranteed at the
start of the loop and after each iteration. Therefore we add it to the invariant and
obtain Inv = (true ∧ x ≥ y) = x ≥ y.

Validity of implication 4:

(F ∧ x 6< 0)⇒ Inv

(x = 3y ∧ y > 2 ∧ x ≥ 0)⇒ x ≥ y

x ≥ y follows from x = 3y and the fact that y is non-negative (because of y > 2).

Validity of implication 6:

(Inv ∧ ¬x 6= y)⇒ x = y

(Inv ∧ x = y)⇒ x = y

The conclusion is part of the premise.

Validity of implication 7:

(Inv ∧ x 6= y ∧ t = z)⇒ (Inv ∧ 0 ≤ t < z)[y/y + 2][x/x+ 1]

(x ≥ y ∧ x 6= y ∧ x− y = z)⇒ (x ≥ y ∧ 0 ≤ x− y < z)[y/y + 2][x/x+ 1]

(x ≥ y ∧ x 6= y ∧ x− y = z)⇒ (x ≥ (y+2) ∧ 0 ≤ x− (y+2) < z)[x/x+ 1]

(x ≥ y ∧ x 6= y ∧ x− y = z)⇒ (x+1 ≥ y+2 ∧ 0 ≤ (x+1)− (y+2) < z)

(x ≥ y ∧ x 6= y ∧ x− y = z)⇒ (x ≥ y + 1 ∧ 0 ≤ x− y − 1 < z)

(x > y ∧ x− y = z)⇒ 0 ≤ x− y − 1 < z

(Note that x ≥ y+1 is the same as 0 ≤ x−y−1.) The condition x > y in the premise
is equivalent to 0 ≤ x− y − 1, and the condition x− y = z implies x− y − 1 < z.

Since all implications obtained by the Hoare calculus are valid, this initial correctness
assertion is totally correct.

Correctness proof using annotation rules: We annotate the program with additional
assertions. The order of rule applications is indicated by the numbering of formulas.
The order as well as the kind of rules is not uniquely determined; other annotations are
possible.

6

{F1 : x = 2y ∧ y > 2 }
x := x+ y;
{F3 : ∃x′(x′ = 2y ∧ y > 2 ∧ x = x′ + y) } as↓
if x < 0 then
{F4 : F3 ∧ x < 0 } if↓
{F6 : false } abt
abort
{F7 : false } abt
{F8 : x = y } fi↑

else
{F5 : F3 ∧ x 6< 0 } if↓
{F10 : Inv } wht′′

while x 6= y do
{F11 : Inv ∧ x 6= y ∧ t = z } wht′′

{F15 : (Inv ∧ 0 ≤ t < z)[y/y + 2][x/x+ 1] } as↑
x := x+ 1;
{F14 : (Inv ∧ 0 ≤ t < z)[y/y + 2] } as↑
y := y + 2
{F12 : Inv ∧ 0 ≤ t < z } wht′′

od
{F13 : Inv ∧ ¬(x 6= y) } wht′′

{F9 : x = y } fi↑
fi
{F2 : x = y }

We start by simplifying formula F3:

∃x′(x′ = 2y ∧ y > 2 ∧ x = x′ + y) = ∃x′(x′ = 2y ∧ y > 2 ∧ x = 2y + y)

= y > 2 ∧ x = 3y ∧ ∃x′(x′ = 2y)

= y > 2 ∧ x = 3y

For Inv and t we choose the same invariant and variant as above. It remains to prove the
validity of five implications: F4 ⇒ F6, F7 ⇒ F8, F5 ⇒ F10, F11 ⇒ F15, and F13 ⇒ F9.
The implication F7 ⇒ F8 is trivially true (false implies everything). The other four
implications are the same as derived by the Hoare calculus above.

7

Exercise 2

Prove that [p; q]σ = [q] [p]σ holds for all programs p and q and all states σ. Note that we
have defined [p; q] , [q] and [p] via transition systems (structural operational semantics).

Solution

[p; q]σ = [q] [p]σ means that

[p; q]σ = φ holds if and only if [p]σ = τ and [q] τ = φ hold for some state τ .

By the semantics of TPL this is the same as

(p; q, σ)⇒∗ φ holds if and only if (p, σ)⇒∗ τ and (q, τ)⇒∗ φ hold for some state τ .

Only-if direction: We show by induction that the following assertion holds for all n ≥ 2.

A(n): If (p; q, σ)⇒n φ, then (p, σ)⇒∗ τ and (q, τ)⇒∗ φ for some state τ .

Base case n = 2: Every program needs at least one transition for a complete run, so
the only run with two steps is (p; q, σ) ⇒ (q, σ′) ⇒ φ. By the semantics of sequential
composition the first step implies (p, σ) ⇒ σ′. Choosing τ = σ′ we obtain (p, σ) ⇒ τ
and (q, τ)⇒ φ, hence we have (p, σ)⇒∗ τ and (q, τ)⇒∗ φ.

Inductive step: Using A(n) as induction hypothesis we show that A(n + 1) also holds.
Suppose we have (p; q, σ)⇒n+1 φ. According to the semantics of sequential composition
there are two possibilities for the first step.

If (p, σ) ⇒ σ′, then we have (p; q, σ) ⇒ (q, σ′) ⇒n φ. Choosing τ = σ′ we obtain
(p, σ)⇒ τ and (q, τ)⇒n φ, hence we have (p, σ)⇒∗ τ and (q, τ)⇒∗ φ.

If (p, σ) ⇒ (p′, σ′), then we have (p; q, σ) ⇒ (p′; q, σ′) ⇒n φ. By induction hypothesis
there is a state τ such that (p′, σ′) ⇒∗ τ and (q, τ) ⇒∗ φ. Combining (p, σ) ⇒ (p′, σ′)
and (p′, σ′)⇒∗ τ we obtain (p, σ)⇒∗ τ .

If direction: We show by induction that the following assertion holds for all n ≥ 1.

B(n): If (p, σ)⇒n τ and (q, τ)⇒∗ φ for some state τ , then (p; q, σ)⇒∗ φ.

Base case n = 1: By the semantics of sequential composition, (p, σ) ⇒ τ implies
(p; q, σ)⇒ (q, τ). Combining it with (q, τ)⇒∗ φ we obtain (p; q, σ)⇒∗ φ.

Inductive step: Using B(n) as induction hypothesis we show that B(n + 1) also holds.
Suppose we have (p, σ) ⇒n+1 τ and (q, τ) ⇒∗ φ for some state τ . The first part can
be written as (p, σ) ⇒ (p′, σ′) ⇒n τ for some state σ′. By the semantics of sequential
composition, (p, σ) ⇒ (p′, σ′) implies (p; q, σ) ⇒ (p′; q, σ′). By induction hypothesis,
(p′, σ′) ⇒n τ and (q, τ) ⇒∗ φ together imply (p′; q, σ′) ⇒∗ φ. Combining the former
with the latter we obtain (p; q, σ)⇒∗ φ.

8

Exercise 3

Show that the two if-rules

{F ∧ e } p {G } {F ∧ ¬e } q {G }
{F } if e then p else q fi {G }

(if)

{F } p {H } {G } q {H }
{ (e⇒ F) ∧ (¬e⇒ G) } if e then p else q fi {H }

(if′)

are equivalent, i.e., that a complete calculus needs only one of the rules.

Hint: Show that each rule can be derived from the other one.

Solution

Rule (if′) implies rule (if) We show that the conclusion of rule (if) can be derived from
its premises using rule (if′). We apply (if′) to the premises and then show that the result
is in fact equivalent to the conclusion of rule (if).

{F ∧ e } p {G } {F ∧ ¬e } q {G }
{ (e⇒ (F ∧ e)) ∧ (¬e⇒ (F ∧ ¬e)) } if e then p else q fi {G }

(if′)

It remains to show that the formula (e ⇒ (F ∧ e)) ∧ (¬e ⇒ (F ∧ ¬e)) is logically
equivalent to F . If this is the case, the correctness assertion in the conclusion above is
equivalent to {F } if e then p else q fi {G }. We use the equivalence X ⇒ Y = ¬X ∨ Y
and distributivity.

(e⇒ (F ∧ e)) ∧ (¬e⇒ (F ∧ ¬e)) = (¬e ∨ (F ∧ e)) ∧ (e ∨ (F ∧ ¬e))
= ((¬e ∨ F) ∧ (¬e ∨ e)) ∧ ((e ∨ F) ∧ (e ∨ ¬e))
= ((¬e ∨ F) ∧ true) ∧ ((e ∨ F) ∧ true)

= (¬e ∨ F) ∧ (e ∨ F)

= (¬e ∧ e) ∨ F
= false ∨ F
= F

Rule (if) implies rule (if′) We show that the conclusion of rule (if′) can be derived from
its premises using rule (if). We construct the derivation backwards by applying (if) to
the conclusion of (if′). Then we show that the premises of this rule application are true
correctness assertions themselves, where we may assume the correctness of the premises
of rule (if′).

(1)

((e⇒F) ∧ (¬e⇒G) ∧ e)⇒ F {F } p {H }
{ (e⇒ F) ∧ (¬e⇒ G) ∧ e } p {H }

(lc)

(2)

((e⇒F) ∧ (¬e⇒G) ∧ ¬e)⇒ G {G } q {H }
{ (e⇒ F) ∧ (¬e⇒ G) ∧ ¬e } q {H }

(lc)

{ (e⇒ F) ∧ (¬e⇒ G) } if e then p else q fi {H }
(if)

9

It remains to show that the formulas (1) and (2) are valid implications. We discuss
only the first formula, the second one being similar. We use the equivalences X ⇒ Y =
¬X ∨ Y , (X ∨ Y) ∧X = X (absorption law), de Morgan’s law, and distributivity:

((e⇒ F) ∧ (¬e⇒ G) ∧ e)⇒ F = ((¬e ∨ F) ∧ (e ∨G) ∧ e)⇒ F

= ((¬e ∨ F) ∧ e)⇒ F

= ((¬e ∧ e) ∨ (F ∧ e))⇒ F

= (false ∨ (F ∧ e))⇒ F

= (F ∧ e)⇒ F

= ¬(F ∧ e) ∨ F
= ¬F ∨ ¬e ∨ F
= ¬F ∨ F ∨ ¬e
= true ∨ ¬e
= true

Exercise 4

Consider the following modified if-rule:

{F } p {G } {F } q {G }
{F } if e then p else q fi {G }

(if′′)

(a) Show that the rule is admissible (for partial and total correctness).

Hint: Derive the new rule using rules that we alreay know to be admissible.

(b) Show that the Hoare calculus is no longer complete, if the regular if-rules (if) and
(if′) are replaced by the rule (if′′).

Hint: Find a correctness assertion that is correct (argue why it is!) but that cannot
be derived in the modified calculus (explain why it can’t!).

Solution

Admissibility: We show that the conclusion of the rule (if′′) can be derived from its
premises using the rules (if) and (lc). Since the latter rules are correct for proving
(partial and total) correctness, the former is also correct.

F ∧ e⇒ F {F } p {G }
{F ∧ e } p {G }

(lc)
F ∧ ¬e⇒ F {F } q {G }

{F ∧ ¬e } p {G }
(lc)

{F } if e then p else q fi {G }
(if)

The premises F ∧ e ⇒ F and F ∧ ¬e ⇒ F are tautologies, hence the partial (or total)
correctness of {F } p {G } and {F } q {G } implies the partial (or total) correctness of
{F } if e then p else q fi {G }.

10

Incompleteness: Consider the correctness assertion

{ true } if x = y then x := x+ 1 else skip fi {x 6= y } .

The assertion is partially and totally correct, since we have:

{F1 : true }
if x = y then
{F7 : true ∧ x = y } if↓
{F6 : x+ 1 6= y } as↑
x := x+ 1
{F4 : x 6= y } fi↑

else
{F8 : true ∧ x 6= y } if↓
{F5 : x 6= y } sk↑
skip
{F3 : x 6= y } fi↑

fi
{F2 : x 6= y }

and the two implications true∧ x = y ⇒ x+ 1 6= y (F7 ⇒ F6) and true∧ x 6= y ⇒ x 6= y
(F8 ⇒ F5) are valid.

In the modified calculus only two rules are applicable to the assertion above: if′′ and
lc. Rule lc weakens the pre- and strengthens the postcondition. The precondition
true cannot be weakened any further; the postcondition can be strengthened to a for-
mula G such that G ⇒ x 6= y. Then if′′ has to be applied, resulting in the premises
{ true } x := x+ 1 {G } and { true } skip {G }. The only choice for G that makes the
second assertion true is G = true. But then the implication G⇒ x 6= y is not valid.

Summarising, the assertion above is correct, but cannot be derived in the modified Hoare
calculus. Therefore the calculus is not complete.

Exercise 5

Determine the strongest postcondition of while-loops, i.e., find a formula equivalent to
sp(F,while e do p od) similar to the weakest precondition in the course.

Solution

sp(F,while e do p od) = ¬e ∧ ∃i ≥ 0Gi, where Gi is defined recursively by

G0 = F

Gi+1 = sp(e ∧Gi, p)

11

This formula can be derived e.g. by loop unrolling, making use of the equivalence

[while e do p od] = [if e then p; while e do p od else skip fi]

(see example 1 in the document “Some examples with solutions” in Tuwel). We obtain:

sp(F,while e do p od)

= sp(F, if e then p; while e do p od else skip fi)

= (¬e ∧ F) ∨ sp(sp(e ∧ F, p),while e do p od)

= (¬e ∧ F) ∨ sp(sp(e ∧ F, p), if e then p; while e do p od else skip fi)

= (¬e ∧ F) ∨ (¬e ∧ sp(e ∧ F, p)) ∨ sp(sp(e ∧ sp(e ∧ F, p), p),while e do p od)

= · · ·

The general scheme of this calculation is

sp(Gi,while e do p od) = (¬e ∧Gi) ∨ sp(Gi+1,while e do p od)

where Gi+1 = sp(e ∧Gi, p)

Starting from G0 = F we obtain

sp(F,while e do p od) = (¬e ∧G0) ∨ (¬e ∧G1) ∨ (¬e ∧G2) ∨ · · ·
= ¬e ∧ (G0 ∨G1 ∨G2 ∨ · · ·)
= ¬e ∧ ∃i ≥ 0Gi

Exercise 6

Show that wp and wlp are dual to each other, i.e., show that wlp(p,G) = ¬wp(p,¬G)
holds. Use this relationship to find a formula for wlp(while e do p od, G) similar to the
weakest precondition in the course.

Use your formula to compute the weakest liberal precondition of the program

z := 0; while y 6= 0 do z := z + x; y := y − 1 od

with respect to the postcondition z = x ∗ y0. Compare the result to the weakest precon-
dition computed in the course and explain the differences.

Solution

Given a program p and a postcondition G, there are three disjoint types of states: those
states, for which p does not terminate; those states, for which p terminates in a G-state;
and those states, for which p terminates in a ¬G-state.

S = {σ ∈ S | [p]σ undefined }
∪̇ {σ ∈ S | [p]σ defined and [G] [p]σ = true }
∪̇ {σ ∈ S | [p]σ defined and [¬G] [p]σ = true }

12

where ∪̇ denotes disjoint union. The first two sets can be interpreted as the weakest lib-
eral precondition of p with respect to G, whereas the third one is the weakest preconditon
of p with respect to ¬G.

S = wlp(p, {G }) ∪̇ wp(p, {¬G })

Subtracting the set wp(p, {¬G }) on both sides results in:

S − wp(p, {¬G }) = wlp(p, {G })

If we represent these state sets as formulas, the complement of a set with respect to the
set of all states corresponds to negation. Hence we obtain:

¬wp(p,¬G) = wlp(p,G)

i.e., wp and wlp are indeed dual operators.

Applying this relationship to while-loops gives us a formula for computing wlp for while-
loops.

wlp(while e do p od, G) = ¬wp(while e do p od,¬G)

= ¬∃i (i ≥ 0 ∧ Fi)

= ∀i (i ≥ 0⇒ ¬Fi)

where F0 = ¬e ∧ ¬G
Fi+1 = e ∧ wp(p, Fi) = e ∧ ¬wlp(p,¬Fi)

Since Fi occurs in negated form only, we rewrite the recursion such that it defines ¬Fi.

¬F0 = e ∨G
¬Fi+1 = ¬e ∨ wlp(p,¬Fi)

After renaming ¬Fi to Ei we obtain the following compact definition of the weakest
liberal precondition:

wlp(while e do p od, G) = ∀i ≥ 0Ei = ∀i (i ≥ 0⇒ Ei) = ∀i (i < 0 ∨ Ei)

where E0 = e ∨G
Ei+1 = ¬e ∨ wlp(p,Ei)

As an example, the weakest liberal precondition of the multiplication program can be
computed as follows.

wlp(z := 0; while y 6= 0 do z := z + x; y := y − 1 od, z = xy0)
= wlp(z := 0, wlp(while y 6= 0 do z := z + x; y := y − 1 od, z = xy0))
= wlp(z := 0, ∀i (i < 0 ∨ Ei))

13

∀i (i < 0∨Ei): We compute Ei for some values of i, guess Ei = (y 6= i∨z = x(y0−i))
and prove the guess by induction.

Base case: E0 = (y 6= 0 ∨ z = xy0) = e ∨G X

Induction hypothesis: Ei = (y 6= i ∨ z = x(y0 − i)) holds.

Induction step (i ≥ 0):

Ei+1 = ¬e ∨ wlp(p,Ei)
= (y = 0 ∨ wlp(z := z + x; y := y − 1, (y 6= i ∨ z = x(y0 − i)))
= (y = 0 ∨ (y − 1) 6= i ∨ (z + x) = x(y0 − i))
= (y = 0 ∨ y 6= (i+ 1) ∨ z = x(y0 − (i+ 1)))
= (y 6= (i+ 1) ∨ z = x(y0 − (i+ 1))) X

∀i ≥ 0 (i < 0 ∨ Ei) = ∀i (i < 0 ∨ y 6= i ∨ z = x(y0 − i))
= ∀i (y < 0 ∨ y 6= i ∨ z = x(y0 − y))
= y < 0 ∨ ∀i (y 6= i) ∨ z = x(y0 − y)
= y < 0 ∨ false ∨ z = x(y0 − y)
= y < 0 ∨ z = x(y0 − y)

wlp(z := 0, ∀i (i < 0 ∨ Ei))
= wlp(z := 0, (y < 0 ∨ z = x(y0 − y)))
= (y < 0 ∨ 0 = x(y0 − y))
= (y < 0 ∨ x = 0 ∨ y = y0)

Comparison of weakest and weakest liberal precondition: In the course we obtained
as weakest precondition of the given program

wp(q, z = xy0) = y ≥ 0 ∧ (x = 0 ∨ y = y0)

We use this formula to rewrite the weakest liberal precondition:

wlp(q, z = xy0) = y < 0 ∨ x = 0 ∨ y = y0

= y < 0⊕ (y ≥ 0 ∧ (x = 0 ∨ y = y0))

= y < 0⊕ wp(q, z = xy0)

(⊕ denotes exclusive disjunction.) As we see, the two preconditions differ by the formula
y < 0, which characterises exactly the states for which the result of q is undefined.

Exercise 7

Verify that the following program doubles the value of x. For which inputs does it
terminate? Choose appropriate pre- and postconditions and show that the assertion is
totally correct. Use y = 2x0 + x as a starting point for the invariant, where x0 denotes
the initial value of x.

14

y := 3x;
while 2x 6= y do
x := x+ 1;
y := y + 1;

od

Solution

{F1 : x = x0 ∧ x ≥ 0 }
{F7 : Inv [y/3x] } as↑
y := 3x;
{F3 : Inv } wht′′

while 2x 6= y do
{F4 : Inv ∧ 2x 6= y ∧ t = t0 } wht′′

{F9 : (Inv ∧ 0 ≤ t < t0)[y/y + 1][x/x+ 1] } as↑
x := x+ 1;
{F8 : (Inv ∧ 0 ≤ t < t0)[y/y + 1] } as↑
y := y + 1;
{F5 : Inv ∧ 0 ≤ t < t0 } wht′′

od
{F6 : Inv ∧ 2x = y } wht′′

{F2 : x = 2x0 }

We choose y = 2x0 + x ∧ 2x ≤ y as invariant Inv and y − 2x as variant t. It remains to
show that the three implications F1 ⇒ F7, F4 ⇒ F9, and F6 ⇒ F2 are valid.

F1 ⇒ F7

x = x0 ∧ x ≥ 0⇒ Inv [y/3x]

x = x0 ∧ x ≥ 0⇒ 3x = 2x0 + x ∧ 2x ≤ 3x

3x = 2x0 + x holds because of the first premise and 2x ≤ 3x because of the second one.

F4 ⇒ F9

Inv ∧ 2x 6= y ∧ t = t0 ⇒ (Inv ∧ 0 ≤ t < t0)[y/y + 1][x/x+ 1]

Inv ∧ 2x 6= y ∧ t = t0 ⇒ (y = 2x0 + x ∧ 2x ≤ y ∧ 0 ≤ y − 2x < t0)[y/y + 1][x/x+ 1]

Inv ∧ 2x 6= y ∧ t = t0 ⇒ y + 1 = 2x0 + x+ 1 ∧ 2(x+ 1) ≤ y + 1 ∧ 0 ≤ y + 1− 2(x+ 1) < t0

Inv ∧ 2x 6= y ∧ t = t0 ⇒ y = 2x0 + x ∧ 2x+ 1 ≤ y ∧ 0 ≤ y − 2x− 1 < t0

15

y = 2x0 + x is part of the invariant (first premise). 2x + 1 ≤ y holds since 2x ≤ y is
part of the invariant (first premise) and 2x 6= y holds because of the second premise.
0 ≤ y−2x−1 is the same as 2x+1 ≤ y, which we just showed to be true. y−2x−1 < t0
is true since t0 is the same as y− 2x (third premise) and t0− 1 is obviously smaller than
t0.

F6 ⇒ F2

Inv ∧ 2x = y ⇒ x = 2x0

Solving the two equalities y = 2x0 + x (from Inv) and 2x = y for x we obtain the
conclusion x = 2x0.

Exercise 8

Prove the total correctness of the following assertion. Describe the function computed
by the program.

{x ≥ 0 }
y := 0;
z := x+ 1;
while y + 1 6= z do
t := (y + z)/2;
if t2 ≤ x then
y := t;

else
z := t

fi
od
{ y2 ≤ x < (y + 1)2 }

Hint: Use the invariant y < z ≤ x+ 1 ∧ y2 ≤ x < z2.

16

Solution

{F1 : x ≥ 0 }
{F15 : Inv [z/x+ 1][y/0] } (as↑)
y := 0;
{F14 : Inv [z/x+ 1] } (as↑)
z := x+ 1;
{F3 : Inv } (wht′′)
while y + 1 6= z do
{F4 : Inv ∧ y + 1 6= z ∧ s = s0 } (wht′′)
t := (y + z)/2;
{F11 : Inv ∧ y + 1 6= z ∧ s = s0 ∧ t = (y + z)/2 } (as↓)
if t2 ≤ x then
{F12 : Inv ∧ y + 1 6= z ∧ s = s0 ∧ t = (y + z)/2 ∧ t2 ≤ x } (if↓)
{F9 : (Inv ∧ 0 ≤ s < s0)[y/t] } (as↑)
y := t;
{F7 : Inv ∧ 0 ≤ s < s0 } (fi↑)

else
{F13 : Inv ∧ y + 1 6= z ∧ s = s0 ∧ t = (y + z)/2 ∧ t2 > x } (if↓)
{F10 : (Inv ∧ 0 ≤ s < s0)[z/t] } (as↑)
z := t
{F8 : Inv ∧ 0 ≤ s < s0 } (fi↑)

fi
{F5 : Inv ∧ 0 ≤ s < s0 } (wht′′)

od
{F6 : Inv ∧ y + 1 = z } (wht′′)
{F2 : y2 ≤ x < (y + 1)2 }

We choose the invariant Inv ≡ y < z ≤ x + 1 ∧ y2 ≤ x < z2 and the bound function
s := z − y. We have to prove the following implications:

F1 : x ≥ 0⇒ F15 : Inv [z/x+ 1][y/0]

F12 : Inv ∧ y + 1 6= z ∧ t = (y + z)/2 ∧ t2 ≤ x⇒ F9a : Inv [y/t]

F12 : Inv ∧ y + 1 6= z ∧ t = (y + z)/2 ∧ t2 ≤ x⇒ F9b : 0 ≤ s[y/t] < s

F13 : Inv ∧ y + 1 6= z ∧ t = (y + z)/2 ∧ t2 > x⇒ F10a : Inv [z/t]

F13 : Inv ∧ y + 1 6= z ∧ t = (y + z)/2 ∧ t2 > x⇒ F10b : 0 ≤ s[z/t] < s

F6 : Inv ∧ y + 1 = z ⇒ F2 : y2 ≤ x < (y + 1)2

F1 ⇒ F15:

x ≥ 0⇒ Inv [z/x+ 1][y/0]

x ≥ 0⇒ 0 < x+ 1 ≤ x+ 1 ∧ 02 ≤ x < (x+ 1)2

17

The conditions on the right-hand side are obviously true. Note that 0 < x+ 1 and
02 ≤ x hold because of x ≥ 0.

F12 ⇒ F9a:

Inv ∧ y + 1 6= z ∧ t = (y + z)/2 ∧ t2 ≤ x
⇒ Inv [y/t]

y < z ≤ x+ 1 ∧ y2 ≤ x < z2 ∧ y + 1 6= z ∧ t = (y + z)/2 ∧ t2 ≤ x
⇒ t < z ≤ x+ 1 ∧ t2 ≤ x < z2

The conditions on the right-hand side also occur on the left-hand side except t < z,
which we therefore have to prove. Since y < z (first condition on the left-hand
side) holds, the value of t = (y+ z)/2 is at most (z− 1 + z)/2 = z− 1, hence t < z
holds.

F12 ⇒ F9b:

Inv ∧ y + 1 6= z ∧ t = (y + z)/2 ∧ t2 ≤ x
⇒ 0 ≤ s[y/t] < s

y < z ≤ x+ 1 ∧ y2 ≤ x < z2 ∧ y + 1 6= z ∧ t = (y + z)/2 ∧ t2 ≤ x
⇒ 0 ≤ z − t < z − y

The conclusion can be written as y < t ≤ z. In the proof of the implication
12 ⇒ 9a we show t < z, hence we also have t ≤ z. Moreover, in the proof of
implication 13⇒ 10a we show y < t using only premises also occurring in formula
12.

F13 ⇒ F10a:

Inv ∧ y + 1 6= z ∧ t = (y + z)/2 ∧ t2 > x

⇒ Inv [z/t]

y < z ≤ x+ 1 ∧ y2 ≤ x < z2 ∧ y + 1 6= z ∧ t = (y + z)/2 ∧ t2 > x

⇒ y < t ≤ x+ 1 ∧ y2 ≤ x < t2

The conditions on the right-hand side also occur on the left-hand side except
y < t ≤ x + 1, which we therefore have to prove. The condition t ≤ x + 1 holds,
since t < z (see argument above) and z ≤ x+ 1 (second condition on the left-hand
side). To show y < t, note that y < z and y + 1 6= z, i.e., z ≥ y + 2. Therefore the
value of (y + z)/2 is at least (y + y + 2)/2 = y + 1, hence y < t.

F13 ⇒ F10b:

Inv ∧ y + 1 6= z ∧ t = (y + z)/2 ∧ t2 > x

⇒ Inv [z/t]

y < z ≤ x+ 1 ∧ y2 ≤ x < z2 ∧ y + 1 6= z ∧ t = (y + z)/2 ∧ t2 > x

⇒ 0 ≤ t− y < z − y

18

The conclusion can be written as y ≤ t < z. In the proof of the implication
12 ⇒ 9a we show t < z. Moreover, in the proof of implication 13 ⇒ 10a we show
y < t, hence we also have y ≤ t.

F6 ⇒ F2: The right-hand side of

Inv ∧ y + 1 = z ⇒ y2 ≤ x < (y + 1)2

is part of the invariant if we replace z by y + 1.

Exercise 9

Prove that the rule

{ Inv ∧ e } p { Inv }
{ Inv }while e do p od { Inv ∧ ¬e }

(wh)

is correct regarding partial correctness, i.e., show that { Inv }while e do p od { Inv ∧¬e }
is partially correct whenever { Inv ∧ e } p { Inv } is partially correct.

Solution

The assertion { Inv }while e do p od { Inv ∧ ¬e } is partially correct, if we can show the
statement

For all states σ:
If [Inv]σ = true and τ = [while e do p od]σ is defined
then [Inv ∧ ¬e] τ = true.

The natural semantics of while is specified recursively as

[while e do p od]σ =

{
[while e do p od] [p]σ if [e]σ = true

σ if [e]σ = false

Therefore [while e do p od]σ being defined means that there is a number n ≥ 0 (the
number of loop iterations) such that

• [p] iσ is defined for 1 ≤ i ≤ n (the loop body terminates in each iteration),

• [e] [p] nσ = false (the loop terminates after n iterations), and

• [e] [p] iσ = true for 0 ≤ i < n (. . . but not earlier)

In this case we have [while e do p od]σ = [p] nσ. The statement to be proven can thus
be written as “A(n) for all n”, where A(n) is the statement

For all states σ:
If [Inv]σ = true, [p] iσ is defined for 1 ≤ i ≤ n, [e] [p] iσ = true for 0 ≤ i < n,

and [e] [p] nσ = false
then [Inv ∧ ¬e] [p] nσ = true.

19

We prove “A(n) for all n” by induction on n.

Base case n = 0: Let σ be a state such that [Inv]σ = true and [e] [p] 0σ = false. Because
of [p] 0σ = σ we have [Inv] [p] 0σ = [Inv]σ = true. Moreover, [e] [p] 0σ = false implies
[¬e] [p] 0σ = true, therefore we obtain [Inv ∧ ¬e] [p] 0σ = true.

Induction step: We show A(n+ 1) using A(n) as induction hypothesis; additionally we
may use the premise, i.e., we may assume that { Inv ∧ e } p { Inv } is partially correct.

Let σ be a state such that [Inv]σ = true, [p] iσ is defined for 1 ≤ i ≤ n+1, [e] [p] iσ = true
for 0 ≤ i < n+ 1, and [e] [p] n+1σ = false.

Since n+ 1 ≥ 1, the state σ′ = [p]σ is defined and [e]σ = [e] [p] 0σ = true, which implies
[Inv ∧e]σ = true. By the correctness of the premise { Inv ∧e } p { Inv } we conclude that
[Inv]σ′ = true, i.e., the invariant still holds after the first loop iteration.

Now observe that the state σ′ = [p]σ inherits the following properties from σ: [p] iσ′ is
defined for 1 ≤ i ≤ n, [e] [p] iσ′ = true for 0 ≤ i < n, and [e] [p] nσ′ = false. Therefore,
by the induction hypothesis A(n), we may conclude that [Inv ∧ ¬e] [p] nσ′ = true. But
since σ′ = [p]σ, we obtain [Inv ∧ ¬e] [p] n+1 = true.

Exercise 10

Extend TPL by statements of the form “assert e”. When the condition e evaluates to
true, the program continues, otherwise the program aborts.

Specify the syntax and semantics of the extended language. Determine the weakest
precondition, the weakest liberal precondition, the strongest postcondition, and Hoare
rules (partial and total correctness) for assert-statements. Show that they are correct.

Treat the assert-statement as a first-class citizen, i.e., do not refer to other program
statements in the final result. However, you may use other statements as intermediate
steps when deriving the rules.

Solution

Syntax: P ::= skip | abort | V := E | P;P | if E then P else P fi | while E do P od | assert E
Structural operational semantics: (assert e, σ)⇒ σ if [e]σ 6= 0

Natural semantics (alternative to SOS): [assert e]σ = σ if [e]σ 6= 0

Regarding verification we observe that assert e is equivalent to if e then skip else abort fi.

Weakest precondition:

wp(assert e, G) = wp(if e then skip else abort fi, G)

= (e ∧ wp(skip, G)) ∨ (¬e ∧ wp(abort, G))

= (e ∧G) ∨ (¬e ∧ false)

= (e ∧G)

20

Weakest liberal precondition:

wlp(assert e, G) = wlp(if e then skip else abort fi, G)

= (e ∧ wlp(skip, G)) ∨ (¬e ∧ wlp(abort, G))

= (e ∧G) ∨ (¬e ∧ true)

= (e ∧G) ∨ ¬e
= (G ∨ ¬e)
= (e⇒ G)

(It is a matter of taste, which of the last two formulas is the more natural one and
therefore should be considered to be the result.)

Strongest postcondition:

sp(assert e, F) = sp(if e then skip else abort fi, F)

= sp(skip, F ∧ e) ∨ sp(abort, F ∧ ¬e)
= (F ∧ e) ∨ false

= (F ∧ e)

Hoare calculus for partial correctness: We have three possibilities to derive a rule.

Method 1: Use the equivalence of assert and if e then skip else abort fi and apply the rules
of Hoare calculus to determine the open premises (i.e. those that remain to be proven).

(F ∧ e)⇒ G {G } skip {G }
{F ∧ e } skip {G } {F ∧ ¬e } abort {G }

{F } if e then skip else abort fi {G }
{F } assert e {G }

The assertions {G } skip {G } and {F ∧¬e } abort {G } are axioms. Therefore we obtain
the rule

(F ∧ e)⇒ G

{F } assert e {G }

Method 2: For every program p and formula G, the assertion {wlp(p,G) } p {G } is
partially correct. Using the wlp of assert from above we obtain the axiom

{ e⇒ G } assert e {G }

If we prefer a rule that is able to handle arbitrary preconditions of assert, we use the
fact that {F } p {G } is partially correct if and only if F ⇒ wlp(p,G).

F ⇒ (e⇒ G)

{F } assert e {G }

The premise is equivalent to (F ∧ e)⇒ G, i.e., the rule is equivalent to the rule obtained
by method 1.

21

Method 3: For every program p and formula F , the assertion {F } p { sp(F, p) } is par-
tially correct. Using the sp of assert from above we obtain the axiom

{F } assert e {F ∧ e }

If we prefer a rule that is able to handle arbitrary postconditions of assert, we use the
fact that {F } p {G } is partially correct if and only if sp(F, p)⇒ G.

(F ∧ e)⇒ G

{F } assert e {G }

This rule is again the same as obtained by the other methods.

Hoare calculus for total correctness: We have two possibilities to derive a rule.

Method 1: Use the equivalence of assert and if e then skip else abort fi and apply the rules
of Hoare calculus to determine the open premises (i.e. those that remain to be proven).

(F ∧ e)⇒ G {G } skip {G }
{F ∧ e } skip {G }

(F ∧ ¬e)⇒ false { false } abort {G }
{F ∧ ¬e } abort {G }

{F } if e then skip else abort fi {G }
{F } assert e {G }

The assertions {G } skip {G } and { false } abort {G } are axioms. Therefore we obtain
the rule

(F ∧ e)⇒ G (F ∧ ¬e)⇒ false

{F } assert e {G }

Simplifying the propositional formula ((F ∧e)⇒ G)∧ ((F ∧¬e)⇒ false) yields the more
elegant rule

F ⇒ (e ∧G)

{F } assert e {G }

Method 2: For every program p and formula G, the assertion {wp(p,G) } p {G } is totally
correct. Using the wp of assert from above we obtain the axiom

{ e ∧G } assert e {G }

If we prefer a rule that is able to handle arbitrary preconditions of assert, we use the
fact that {F } p {G } is totally correct if and only if F ⇒ wp(p,G).

F ⇒ (e ∧G)

{F } assert e {G }

This rule is the same as obtained by method 1.

22

Annotation rules for partial correctness: Based on wlp and sp from above one can
define the following rules for annotating programs containing assert statements:

assert e {G} 7→ {G ∨ ¬e} assert e {G} (assert↑)
{F} assert e 7→ {F} assert e {F ∧ e} (assert↓)

Annotation rules for total correctness: Based on wp from above one can define the
following rule for annotating programs containing assert statements:

assert e {G} 7→ {G ∧ e} assert e {G} (assert↑)

23

