
Formale Methoden der Informatik

Block 2: Satisfiability Problems

2. Techniques for Modern SAT Solvers

Uwe Egly

Knowledge-Based Systems Group
Institute of Information Systems
Vienna University of Technology

1 / 70

Results of the SAT 2009 application benchmarks
for leading solvers from 2002 to 2010

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180

C
P

U
 T

im
e

(i
n

 s
ec

o
n

d
s)

Number of problems solved

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Limmat 02
Zchaff 02
Berkmin 561 02
Forklift 03
Siege 03
Zchaff 04
SatELite 05
Minisat 2.0 06
Picosat 07
Rsat 07
Minisat 2.1 08
Precosat 09
Glucose 09
Clasp 09
Cryptominisat 10
Lingeling 10
Minisat 2.2 10

?0I�&IVVI���A

2 / 70

Results of the SAT 2009 application benchmarks
for leading solvers from 2002 to 2010

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180

C
P

U
 T

im
e

(i
n

 s
ec

o
n

d
s)

Number of problems solved

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Limmat 02
Zchaff 02
Berkmin 561 02
Forklift 03
Siege 03
Zchaff 04
SatELite 05
Minisat 2.0 06
Picosat 07
Rsat 07
Minisat 2.1 08
Precosat 09
Glucose 09
Clasp 09
Cryptominisat 10
Lingeling 10
Minisat 2.2 10

?0I�&IVVI���A

What are the reasons for such tremendous
improvements?

3 / 70

Results of the SAT 2009 application benchmarks
for leading solvers from 2002 to 2010

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180

C
P

U
 T

im
e

(i
n

 s
ec

o
n

d
s)

Number of problems solved

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Limmat 02
Zchaff 02
Berkmin 561 02
Forklift 03
Siege 03
Zchaff 04
SatELite 05
Minisat 2.0 06
Picosat 07
Rsat 07
Minisat 2.1 08
Precosat 09
Glucose 09
Clasp 09
Cryptominisat 10
Lingeling 10
Minisat 2.2 10

?0I�&IVVI���A

What are the reasons for such tremendous
improvements?

Three possible answers

Sophisticated data structures

Better understanding /
implementation of clause learning

Non-chronological backtracking (BT)

4 / 70

The goal and program for this lecture

Goal
The goal of this lecture is to understand how a modern SAT solver
based on DLL works and why the performance for many practically
relevant application-oriented examples is so high.

Program

Start with a basic “traditional” method and refine it stepwisely
towards its modern version. We will focus on a data structure
called implication graph which supports clause learning. We
discuss how learned clauses can prune the search space resulting in
an improved performance and how learned clauses influence
backtracking.

5 / 70

Outline

Basic DLL
Basic DLL by example
A first look at heuristics
A basic SAT algorithm

Extensions to the basic algorithm: Towards CDCL solvers
The definition and construction of implication graphs
The first approach: Clause learning and backtracking in GRASP
Conflict clause generation by 1st UIPs and conflict-driven BT

6 / 70

The method of Davis, Logeman and Loveland

M. Davis, G. Logeman, D. Loveland A machine program for

theorem proving, CACM, Vol. 5, No. 7, pp. 394-397, 1962
(A copy is available in TUWEL)

Basic framework for all modern SAT solvers
(require additional features like clause learning and
non-chronological backtracking to be competitive)

The procedure, nowadays called DLL, is search-based

Basic Idea: Given a clause set C

Try all (partial) assignments and test whether C is sat

Stop enlarging the current partial assignment I when there is a
conflict (i.e., C cannot be satisfied with extensions of I)

Stop if I satisfying C is found or all possible I have been tried

7 / 70

The basic DLL procedure: An example

a′ ∨ b ∨ c

a ∨ c ∨ d

a ∨ c ∨ d ′

a ∨ c ′ ∨ d

a ∨ c ′ ∨ d ′

b′ ∨ c ′ ∨ d

a′ ∨ b ∨ c ′

a′ ∨ b′ ∨ c

p′ means ¬p

8 / 70

The basic DLL procedure: An example

a′ ∨ b ∨ c

a ∨ c ∨ d

a ∨ c ∨ d ′

a ∨ c ′ ∨ d

a ∨ c ′ ∨ d ′

b′ ∨ c ′ ∨ d

a′ ∨ b ∨ c ′

a′ ∨ b′ ∨ c

a

9 / 70

The basic DLL procedure: An example

a′ ∨ b ∨ c ←
a ∨ c ∨ d

a ∨ c ∨ d ′

a ∨ c ′ ∨ d

a ∨ c ′ ∨ d ′

b′ ∨ c ′ ∨ d

a′ ∨ b ∨ c ′ ←
a′ ∨ b′ ∨ c ←

a
0

A decision (at level 1): choose var and value

← indicates clauses satisfied by current partial assignment

10 / 70

The basic DLL procedure: An example

a′ ∨ b ∨ c ←
a ∨ c ∨ d

a ∨ c ∨ d ′

a ∨ c ′ ∨ d

a ∨ c ′ ∨ d ′

b′ ∨ c ′ ∨ d

a′ ∨ b ∨ c ′ ←
a′ ∨ b′ ∨ c ←

a

b
0

← indicates clauses satisfied by current partial assignment

11 / 70

The basic DLL procedure: An example

a′ ∨ b ∨ c ←
a ∨ c ∨ d

a ∨ c ∨ d ′

a ∨ c ′ ∨ d

a ∨ c ′ ∨ d ′

b′ ∨ c ′ ∨ d ←
a′ ∨ b ∨ c ′ ←
a′ ∨ b′ ∨ c ←

a

b
0

0

Another decision now at level 2

← indicates clauses satisfied by current partial assignment

12 / 70

The basic DLL procedure: An example

a′ ∨ b ∨ c ←
a ∨ c ∨ d

a ∨ c ∨ d ′

a ∨ c ′ ∨ d

a ∨ c ′ ∨ d ′

b′ ∨ c ′ ∨ d ←
a′ ∨ b ∨ c ′ ←
a′ ∨ b′ ∨ c ←

a

b
0

c
0

← indicates clauses satisfied by current partial assignment

13 / 70

The basic DLL procedure: An example

a′ ∨ b ∨ c ←
a ∨ c ∨ d ←
a ∨ c ∨ d ′ ←
a ∨ c ′ ∨ d ←
a ∨ c ′ ∨ d ′ ←
b′ ∨ c ′ ∨ d ←
a′ ∨ b ∨ c ′ ←
a′ ∨ b′ ∨ c ←

a

b
0

c
0

0

Conflict between ← clauses wrt d and d ′

(d and d ′ become unit under σ : a, b, c 7→ 0, i.e.,
applying σ to the clauses and simplifying them
result in unit clauses d and d ′)

← indicates clauses satisfied by current partial assignment

14 / 70

The basic DLL procedure: An example

a′ ∨ b ∨ c ←
a ∨ c ∨ d

a ∨ c ∨ d ′

a ∨ c ′ ∨ d ←
a ∨ c ′ ∨ d ′ ←
b′ ∨ c ′ ∨ d ←
a′ ∨ b ∨ c ′ ←
a′ ∨ b′ ∨ c ←

a

b
0

c
0

�

0

Resolve conflict: choose other value for c

Backtrack chronologically

← indicates clauses satisfied by current partial assignment

15 / 70

The basic DLL procedure: An example

a′ ∨ b ∨ c ←
a ∨ c ∨ d

a ∨ c ∨ d ′

a ∨ c ′ ∨ d ←
a ∨ c ′ ∨ d ′ ←
b′ ∨ c ′ ∨ d ←
a′ ∨ b ∨ c ′ ←
a′ ∨ b′ ∨ c ←

a

b
0

c
0

�

0 1

Conflict between ← clauses wrt d and d ′

(d and d ′ become unit under a, b 7→ 0, c 7→ 1)

← indicates clauses satisfied by current partial assignment

16 / 70

The basic DLL procedure: An example

a′ ∨ b ∨ c ←
a ∨ c ∨ d

a ∨ c ∨ d ′

a ∨ c ′ ∨ d

a ∨ c ′ ∨ d ′

b′ ∨ c ′ ∨ d ←
a′ ∨ b ∨ c ′ ←
a′ ∨ b′ ∨ c ←

a

b
0

c
0

�

0
�

1

Resolve conflict: choose other value for b

← indicates clauses satisfied by current partial assignment

17 / 70

The basic DLL procedure: An example

a′ ∨ b ∨ c

a ∨ c ∨ d

a ∨ c ∨ d ′

a ∨ c ′ ∨ d

a ∨ c ′ ∨ d ′

b′ ∨ c ′ ∨ d

a′ ∨ b ∨ c ′

a′ ∨ b′ ∨ c

a

b
0

c
0

�

0
�

1
c
1

�

0
�

1

b
1

�

0
�

1

I(c) = I(d) = 1 forced by I(a) = I(b) = 1 by UNIT

UNIT: Set the only remaining literal in the clause to 1
Boolean Constraint Propagation (BCP):

Iterate the application of UNIT until no longer possible

18 / 70

The basic DLL procedure: An example

a′ ∨ b ∨ c

a ∨ c ∨ d

a ∨ c ∨ d ′

a ∨ c ′ ∨ d

a ∨ c ′ ∨ d ′

b′ ∨ c ′ ∨ d

a′ ∨ b ∨ c ′

a′ ∨ b′ ∨ c

a

b
0

c
0

�

0
�

1
c
1

�

0
�

1

b
1

�

0
�

1

Easy to check: I(a) = I(b) = I(c) = I(d) = 1 is a model

19 / 70

Status of a clause

In the example we saw that the status of a clause can change.
Under a (partial) assignment, a clause can be

satisfied: at least one of its literals is assigned to true,

unsatisfied: all its literals are assigned to false

unit: all but one of its literals are assigned to false

unresolved: otherwise.

Example (C : x1 ∨ x2 ∨ x3)

x1 x2 x3 C is
1 0 satisfied
0 0 0 unsatisfied
0 0 unit

0 unresolved

20 / 70

Partial assignments, unit clauses and antecedents

Definition
For a unit clause D with the unassigned literal ℓ under the current
partial assignment, D is called the antecedent of ℓ.

Example

Let C : ¬x1 ∨ x4 ∨ x3 be a clause and let σ = {x1 7→ 1, x4 7→ 0} be
a partial assignment. Then C is unit under σ (because applying σ
to C and simplifying the clause result x3). The partial assignment
σ then implies x3 7→ 1 by UNIT and antecedent(x3) = C .

21 / 70

The features of the basic DLL procedure

Polynomial memory requirement (exponential in DP!)

Exponential time requirement remains
(except for restricted inputs like 2-CNF or Horn clauses)

Chronological backtracking (BT)
Ok for random instances, bad for practical problems w. structure

Need extensions to be of practical value

Heuristics to select variables to branch next
(including the assignment to consider first)

“Intelligent” (e.g., non-chronological) backtracking

Learning from successful and unsuccessful decisions

Integration of all these extensions in one procedure

22 / 70

A first look at heuristics

We have seen the selection of a variable and a truth value!

Heuristics are used to perform “good” selections

We discuss two old ones first

DLIS: Dynamic Largest Individual Sum

The heuristic of Jeroslov and Wang (JW heuristic)

Later, a more elaborated heuristic will be discussed which is
“tailored” for the clause learning procedure!

23 / 70

Decision heuristics
DLIS: Dynamic Largest Individual Sum

Objective: Maximize the number of satisfied clauses

Choose assignment with highest increase of satisfied clauses

For each variable p, let

C+
p , the no of unresolved clauses in which p occurs positively

(i.e., p occurs unnegated in the clause)

C−p , the no of unresolved clauses in which p occurs negatively
(i.e., ¬p occurs in the clause)

Let p (q) be the atom for which C+
p (C−q) is maximal

If C+
p > C−q , choose p and assign it to true

Otherwise, choose q and assign it to false

Expensive! Requires O(nbr of literals) queries for each decision

24 / 70

Decision heuristics: Jeroslov-Wang (JW)

Objective: Try to get unit clauses soon

Given a CNF C, compute for every literal ℓ

J(ℓ) =
∑

ℓ∈c,c∈C

2−|c| (|c|: nbr of literals in c)

Choose a (yet unasserted) literal ℓ that maximizes J(ℓ)

Literals occurring frequently in short clauses have
exponentially higher weight (Try to get unit clauses soon!)

What truth value is tried first?

25 / 70

The basic SAT algorithm

while (true)

{

if (!Decide()) return (SAT);

while (!BCP())

if (!Resolve_Conflict()) return (UNSAT);

}

Choose next variable
and value. Return
false if all variables are
assigned.

Apply repeatedly the unit
rule. Return false if a
conflict is reached.

Backtrack until no conflict
occurs any more. Return
false, if this is impossible.

26 / 70

The components of a modern SAT algorithm

Decision: Choose a variable and a truth value

Boolean Constraint Propagation (BCP): Propagate
consequences (implications) of a decision through the formula,
thereby changing the status of clauses. The implication graph
is used to keep track of the changes.
NB: Since 80–90% of the run time is spent in BCP, an efficient

implementation is vital for a good overall performance of a solver.

Resolve conflicts and organize backtracking: Depending on
conflict resolution, backtrack non-chronologically

27 / 70

Outline

Basic DLL
Basic DLL by example
A first look at heuristics
A basic SAT algorithm

Extensions to the basic algorithm: Towards CDCL solvers
The definition and construction of implication graphs
The first approach: Clause learning and backtracking in GRASP
Conflict clause generation by 1st UIPs and conflict-driven BT

28 / 70

What is next?

Describe extensions which make SAT solvers practically useful

Implication graphs, clause learning and non-chronological BT

Different ways for finding clauses which can be learned

Use of learned clauses

An example of a conflict-driven branching heuristic

What is not topic of this lecture?

Sophisticated data structures (for efficient implementations)

Restarts and randomization of search

Deletion schemes for learned clauses

29 / 70

The organization of the search

The search is organized in form of an implication graph (IG)

Each node corresponds to a variable assignment (either from a
decision or implied by BCP)

Each decision is made at some decision level (dl)

dl ranges from −1 (unassigned variables), 0 (unit clauses in
the input clause set C), up to the number of variables in C

Notation: x = v@d means that x is assigned to v at dl d

We often write x@d for x = 1@d and ¬x@d for x = 0@d

We often identify a node and its label of the form ℓ@d

Notation: The dual of a literal ℓ, ℓd , is defined as follows:
ℓd is 1 if ℓ is 0 and ℓd is 0 if ℓ is 1

30 / 70

The implication graph (IG)

Definition (Implication graph, conflict graph)

An implication graph is a labeled directed acyclic graph (dag)
G = (V ,E), where the following holds:

Each node has a label of the form ℓ@d (for a literal ℓ).

E = {(vi , vj) | vi , vj ∈ V ,¬vi ∈ Antecedent(vj)} denotes the
set of directed edges where each edge (vi , vj) is labeled with
Antecedent(vj).

In case G is a conflict graph, it also contains a single conflict
node labeled with κ and incoming edges {(v , κ) | ¬v ∈ c}
labeled with clause c.

Warning: IGs are hard to understand, even for winners of a SAT Race

(cf the example IG at the home page of M. Soos at Link)

31 / 70

http://www.msoos.org/understanding-implication-graphs

How to construct an implication graph?

Proposal for the construction of IG G

S1: Create a node for each decision literal ℓ and label it with ℓ@dl .

S2: While there is a clause (either from the input formula or a learned
one) of the form C : ℓ1 ∨ · · · ∨ ℓk ∨ ℓ such that ℓd1@dl1, . . . , ℓ

d
k @dlk

label nodes in G and dl = max{dl1, . . . , dlk},

1. add a node labeled ℓ@dl if not already present, and

2. add edges (ℓdi , ℓ) (1 ≤ i ≤ k) labeled C if not already present.

S3: If there exists a clause of the form C : ℓ1 ∨ · · · ∨ ℓk such that
ℓd1@dl1, . . . , ℓ

d
k @dlk label nodes in G , then add a conflict node κ and

perform 2. with κ instead of ℓ.

IGs are dynamic. A new decision or backtracking force changes. Often
only a part of the IG (a partial IG) with the conflict node and its
“responsible” decisions/implications is of interest.

32 / 70

Example: Construct an implication graph

c1 : x ∨ y

c2 : x ∨ z

c3 : ¬y ∨ ¬z

33 / 70

Example: Construct an implication graph

c1 : x ∨ y

c2 : x ∨ z

c3 : ¬y ∨ ¬z

Set x = 0@1 (decision!)
x = 0@1

34 / 70

Example: Construct an implication graph

c1 : x ∨ y

c2 : x ∨ z

c3 : ¬y ∨ ¬z

Set x = 0@1 (decision!)

Applying BCP results in

y = 1@1 (antecedent(y) = c1)

x = 0@1

y = 1@1

c1

35 / 70

Example: Construct an implication graph

c1 : x ∨ y

c2 : x ∨ z

c3 : ¬y ∨ ¬z

Set x = 0@1 (decision!)

Applying BCP results in

y = 1@1 (antecedent(y) = c1)
z = 1@1 (antecedent(z) = c2)

x = 0@1

y = 1@1

z = 1@1

c1

c2

36 / 70

Example: Construct an implication graph

c1 : x ∨ y

c2 : x ∨ z

c3 : ¬y ∨ ¬z

Set x = 0@1 (decision!)

Applying BCP results in

y = 1@1 (antecedent(y) = c1)
z = 1@1 (antecedent(z) = c2)

With c3, we obtain a conflict

x = 0@1

y = 1@1

z = 1@1

κ
Conflict

c1

c2

c3

c3

37 / 70

Example: Construct an implication graph

c1 : x ∨ y

c2 : x ∨ z

c3 : ¬y ∨ ¬z

Set x = 0@1 (decision!)

Applying BCP results in

y = 1@1 (antecedent(y) = c1)
z = 1@1 (antecedent(z) = c2)

With c3, we obtain a conflict

x = 0@1

y = 1@1

z = 1@1

κ
Conflict

c1

c2

c3

c3

How can we avoid this conflict in other parts of the search space?

38 / 70

Example: Construct an implication graph

c1 : x ∨ y

c2 : x ∨ z

c3 : ¬y ∨ ¬z

Set x = 0@1 (decision!)

Applying BCP results in

y = 1@1 (antecedent(y) = c1)
z = 1@1 (antecedent(z) = c2)

With c3, we obtain a conflict

x = 0@1

y = 1@1

z = 1@1

κ
Conflict

c1

c2

c3

c3

How can we avoid this conflict in other parts of the search space?

Add a clause which becomes false =⇒ conflict-driven clause learning

39 / 70

Example: Construct an implication graph

c1 : x ∨ y

c2 : x ∨ z

c3 : ¬y ∨ ¬z

Set x = 0@1 (decision!)

Applying BCP results in

y = 1@1 (antecedent(y) = c1)
z = 1@1 (antecedent(z) = c2)

With c3, we obtain a conflict

x = 0@1

y = 1@1

z = 1@1

κ
Conflict

c1

c2

c3

c3

How can we avoid this conflict in other parts of the search space?

Add a clause which becomes false =⇒ conflict-driven clause learning

Which clause do we add in this case?

40 / 70

The first approach
Clause learning and backtracking in GRASP

We discuss clause learning in combination with dependency-
directed backtracking. The discussion is based on the paper:

J. P. Marques Silva and K. A. Sakallah.
GRASP: A Search Algorithm for Propositional Satisfiability.
IEEE Trans. Computers, 48:5 1999, pp. 506–521.

We continue afterwards with more modern features like clause
learning according to the first UIP scheme, conflict-driven
backtracking and conflict-driven heuristics.

41 / 70

Example: Learning a clause from an implication graph

Current truth assignment: {¬x9@1,¬x10@3,¬x11@3, x12@2, x13@2}

Current decision assignment: {x1@6}

c1 : ¬x1 ∨ x2

c2 : ¬x1 ∨ x3 ∨ x9

c3 : ¬x2 ∨ ¬x3 ∨ x4

c4 : ¬x4 ∨ x5 ∨ x10

c5 : ¬x4 ∨ x6 ∨ x11

c6 : ¬x5 ∨ ¬x6

c7 : x1 ∨ x7 ∨ ¬x12

c8 : x1 ∨ x8

c9 : ¬x7 ∨ ¬x8 ∨ ¬x13

Construct the implication graph!

indicates an assignment by a decision

indicates an assignment by BCP

indicates an assignment by a decision or BCP

42 / 70

Example: Learning a clause from an implication graph

Current truth assignment: {¬x9@1,¬x10@3,¬x11@3, x12@2, x13@2}

Current decision assignment: {x1@6}

c1 : ¬x1 ∨ x2

c2 : ¬x1 ∨ x3 ∨ x9

c3 : ¬x2 ∨ ¬x3 ∨ x4

c4 : ¬x4 ∨ x5 ∨ x10

c5 : ¬x4 ∨ x6 ∨ x11

c6 : ¬x5 ∨ ¬x6

c7 : x1 ∨ x7 ∨ ¬x12

c8 : x1 ∨ x8

c9 : ¬x7 ∨ ¬x8 ∨ ¬x13

x10 = 0@3

x2 = 1@6 x5 = 1@6

x1 = 1@6 x4 = 1@6 κ

Conflict

x3 = 1@6 x6 = 1@6

x9 = 0@1 x11 = 0@3

c1

c2

c2

c3

c3

c4

c4

c5

c5

c6

c6

Next: Separate the “roots” from the “conflict”!
(We will see later how to do this systematically)

43 / 70

Example: Learning a clause from an implication graph

Current truth assignment: {¬x9@1,¬x10@3,¬x11@3, x12@2, x13@2}

Current decision assignment: {x1@6}

c1 : ¬x1 ∨ x2

c2 : ¬x1 ∨ x3 ∨ x9

c3 : ¬x2 ∨ ¬x3 ∨ x4

c4 : ¬x4 ∨ x5 ∨ x10

c5 : ¬x4 ∨ x6 ∨ x11

c6 : ¬x5 ∨ ¬x6

c7 : x1 ∨ x7 ∨ ¬x12

c8 : x1 ∨ x8

c9 : ¬x7 ∨ ¬x8 ∨ ¬x13

x10 = 0@3

x2 = 1@6 x5 = 1@6

x1 = 1@6 x4 = 1@6 κ

Conflict

x3 = 1@6 x6 = 1@6

x9 = 0@1 x11 = 0@3

c1

c2

c2

c3

c3

c4

c4

c5

c5

c6

c6

We learn the conflict clause c10 : ¬x1 ∨ x9 ∨ x11 ∨ x10

The partial assignment (with the indicated literals) makes c10 false
We backtrack to dl 6, undo the decision and flip x1! Why?

44 / 70

The impact of learned clauses

c1 : ¬x1 ∨ x2

c2 : ¬x1 ∨ x3 ∨ x9

c3 : ¬x2 ∨ ¬x3 ∨ x4

c4 : ¬x4 ∨ x5 ∨ x10

c5 : ¬x4 ∨ x6 ∨ x11

c6 : ¬x5 ∨ ¬x6

c7 : x1 ∨ x7 ∨ ¬x12

c8 : x1 ∨ x8

c9 : ¬x7 ∨ ¬x8 ∨ ¬x13

c10 : ¬x1 ∨ x9 ∨ x10 ∨ x11

Due to the
conflict clause

x9 = 0@1

x10 = 0@3

x11 = 0@3

x1 = 0@6

c10

c10

c10

At dl=6, ¬x1 becomes unit and is asserted to 0. We construct the IG.

45 / 70

The impact of learned clauses

c1 : ¬x1 ∨ x2

c2 : ¬x1 ∨ x3 ∨ x9

c3 : ¬x2 ∨ ¬x3 ∨ x4

c4 : ¬x4 ∨ x5 ∨ x10

c5 : ¬x4 ∨ x6 ∨ x11

c6 : ¬x5 ∨ ¬x6

c7 : x1 ∨ x7 ∨ ¬x12

c8 : x1 ∨ x8

c9 : ¬x7 ∨ ¬x8 ∨ ¬x13

c10 : ¬x1 ∨ x9 ∨ x10 ∨ x11

Due to the
conflict clause

x9 = 0@1

x10 = 0@3

x11 = 0@3

x1 = 0@6

x12 = 1@2

x8 = 1@6

x7 = 1@6

x13 = 1@2

κ
′

c10

c10

c10

c8

c7

c7

c9

c9

c9

46 / 70

The impact of learned clauses

c1 : ¬x1 ∨ x2

c2 : ¬x1 ∨ x3 ∨ x9

c3 : ¬x2 ∨ ¬x3 ∨ x4

c4 : ¬x4 ∨ x5 ∨ x10

c5 : ¬x4 ∨ x6 ∨ x11

c6 : ¬x5 ∨ ¬x6

c7 : x1 ∨ x7 ∨ ¬x12

c8 : x1 ∨ x8

c9 : ¬x7 ∨ ¬x8 ∨ ¬x13

c10 : ¬x1 ∨ x9 ∨ x10 ∨ x11

Due to the
conflict clause

x9 = 0@1

x10 = 0@3

x11 = 0@3

x1 = 0@6

x12 = 1@2

x8 = 1@6

x7 = 1@6

x13 = 1@2

κ
′

c10

c10

c10

c8

c7

c7

c9

c9

c9

Then we learn the new conflict clause c11 : ¬x13 ∨ ¬x12 ∨ x11 ∨ x10 ∨ x9

No decision is involved! Where do we backtrack to?

47 / 70

Dependency-directed backtracking

Which assignments caused
the conflicts?

x9 = 0@1
x10 = 0@3
x11 = 0@3
x12 = 1@2
x13 = 1@2 V

ar
ia

b
le

s
in

le
ar

n
ed

cl
au

se

These ones are sufficient!

x1

κ

1

κ′

0

dl = 3

dl = 4

dl = 5

dl = 6

48 / 70

Dependency-directed backtracking

Which assignments caused
the conflicts?

x9 = 0@1
x10 = 0@3
x11 = 0@3
x12 = 1@2
x13 = 1@2 V

ar
ia

b
le

s
in

le
ar

n
ed

cl
au

se

These ones are sufficient!

x1

κ

1

κ′

0

dl = 3

dl = 4

dl = 5

dl = 6

All possibilities for x1 exhausted! To which level do we backtrack?

49 / 70

Dependency-directed backtracking

Which assignments caused
the conflicts?

x9 = 0@1
x10 = 0@3
x11 = 0@3
x12 = 1@2
x13 = 1@2 V

ar
ia

b
le

s
in

le
ar

n
ed

cl
au

se

These ones are sufficient!

x1

κ

1

κ′

0

dl = 3

dl = 4

dl = 5

dl = 6

All possibilities for x1 exhausted! To which level do we backtrack?
Could go to dl=5. Is this clever?

50 / 70

Dependency-directed backtracking

Which assignments caused
the conflicts?

x9 = 0@1
x10 = 0@3
x11 = 0@3
x12 = 1@2
x13 = 1@2 V

ar
ia

b
le

s
in

le
ar

n
ed

cl
au

se

These ones are sufficient!

x1

κ

1

κ′

0

dl = 3

dl = 4

dl = 5

dl = 6

Backtrack to dl = 3, which is the biggest dl occurring in the clause.
For a bigger dl, the conflicts occur again!

51 / 70

Dependency-directed backtracking

Rule

Backtrack to the largest dl in the conflict clause

Delete the decision (but keep the dl)

Works for both, initial conflicts and conflict after adding
learned conflict clauses (causing a flip of a truth value)

What if the flipped assignment for a variable x works?

Then we don’t get a conflict immediately simply by BCP

We continue with the next decision level, letting the current
one without a decision variable

Later, if we backtrack to the current dl, then the variable x is
flipped again. But now, the conflict clause from before results
in a conflict which initiates further backtracking.

52 / 70

Extending the approach

We extend and change the first approach as follows:

We discuss a systematic approach to derive conflict clauses by
the first UIP scheme used in all modern SAT solvers.

It has been demonstrated empirically that this scheme works
well and outperforms other schemes.

Resolution can be used to actually compute the conflict clause
from the implication graph. Consequently, one can get a
resolution refutation as a witness for unsatisfiability.

A modified backtracking scheme called conflict-driven
backtracking together with an especially tailored decision
heuristics like VSIDS or Berkmin is used.

53 / 70

Cuts in graphs

Separating the conflict from the roots

We have already seen one possibility to separate the “roots” from
the “conflict”. In the following, possible separation methods are
described which influence the clause learned from a conflict.

Definition (cut, cut set)

Let G = (V ,E) be a graph with vertices in V and edges in E . A
cut C = (S,T) is a partition of V . A cut set of C is a set of edges
whose end parents occur in different sets of the partition (i.e., one
in S and the other one in T).

Definition
A conflict clause (for a clause set C) is any clause implied by C.

54 / 70

More conflict clauses

Let C be a cut in the IG, separating the conflict node from all roots. Let
Ec be the cut edges of the form (mi , ni). Let mi be labeled with literal ℓi
in IG. Then

∨
i ℓ

d
i is a conflict clause where ℓd is the dual of ℓ.

x10 = 0@3

x2 = 1@6 x5 = 1@6

x1 = 1@6 x4 = 1@6 κ

Conflict

x3 = 1@6 x6 = 1@6

x9 = 0@1 x11 = 0@3

c1

c2

c2

c3

c3

c4

c4

c5

c5

c6

c6

1

2

3

Cuts and conflict clauses

1 : x10 ∨ ¬x1 ∨ x9 ∨ x11

2 : x10 ∨ ¬x4 ∨ x11

3 : x10 ∨ ¬x2 ∨ ¬x3 ∨ x11

...

55 / 70

Which conflict clause(s) shall we add?

How many of the conflict clauses should we add?

If not all of them, then which ones?

Shorter ones?

The ones with a “good” influence on the backtrack level
(But how to measure/estimate this influence?)

The ones directing search to yet unexplored regions?

The most influential/beneficial?

56 / 70

Which conflict clause(s) shall we add?

How many of the conflict clauses should we add?

If not all of them, then which ones?

Shorter ones?

The ones with a “good” influence on the backtrack level
(But how to measure/estimate this influence?)

The ones directing search to yet unexplored regions?

The most influential/beneficial?

We will see in the following a further possibility to implement
clause learning and conflict-driven backtracking

57 / 70

Asserting clauses

Definition
An asserting clause (AC) is a conflict clause with a single literal
from the current decision level.

➥ Backtracking to the right level makes it a unit clause

Modern SAT solvers only consider asserting clauses!

58 / 70

Unique implication points (UIPs)

Definition
A unique implication point (UIP) is an internal node in the IG that all
paths from the decision node (at the current dl) to the conflict node go
through it. The first UIP is the UIP closest to the conflict.

Example x10 = 0@3

x2 = 1@6

x5 = 1@6

x1 = 1@6 x4 = 1@6

x3 = 1@6 x6 = 1@6

x9 = 0@1

x11 = 0@3

c1

c2

c2

c3

c3

c4

c4

c5

c5

c6

c6

κ

Conflict

UIPUIP

Current decision

at level 6

59 / 70

Unique implication points (UIPs)

Definition
A unique implication point (UIP) is an internal node in the IG that all
paths from the decision node (at the current dl) to the conflict node go
through it. The first UIP is the UIP closest to the conflict.

Example x10 = 0@3

x2 = 1@6

x5 = 1@6

x1 = 1@6 x4 = 1@6

x3 = 1@6 x6 = 1@6

x9 = 0@1

x11 = 0@3

c1

c2

c2

c3

c3

c4

c4

c5

c5

c6

c6

κ

Conflict

UIPUIP

Current decision

at level 6

Conflict clause wrt first UIP: x10 ∨ ¬x4 ∨ x11

60 / 70

Conflict-driven backtracking

The conflict clause is x10 ∨ ¬x4 ∨ x11

Recall: x10 = 0@3, x4 = 1@6, and x11 = 0@3

With standard non-chronological backtracking: dl = 6

With conflict-driven backtracking: backtrack to the second
highest dl, dl, in the clause (without erasing it)

Here, we backtrack to dl = 3 and erase all decisions at dl > 3

Then the literal with the currently highest dl (here 6) is
implied at dl = 3, resulting in x4 = 0@3

61 / 70

The use of resolution to derive conflict clauses

Conflict clauses can be computed by resolution

Recall: The order of literals in clauses is irrelevant!

The propositional binary resolution rule is

k1 ∨ · · · ∨ kn ∨ z ℓ1 ∨ · · · ∨ ℓm ∨ ¬z

k1 ∨ · · · ∨ kn ∨ ℓ1 ∨ · · · ∨ ℓm
res

z is called the atom resolved upon

The propositional factoring rule is

ℓ1 ∨ · · · ∨ ℓk ∨ ℓ ∨ ℓk+1 ∨ · · · ∨ ℓj ∨ ℓ ∨ ℓj+1 ∨ · · · ∨ ℓn

ℓ1 ∨ · · · ∨ ℓk ∨ ℓ ∨ ℓk+1 ∨ · · · ∨ ℓj ∨ ℓj+1 ∨ · · · ∨ ℓn
fac

62 / 70

Example: Compute a conflict clause by resolution

c4 : ¬x4 ∨ x5 ∨ x10

c5 : ¬x4 ∨ x6 ∨ x11

c6 : ¬x5 ∨ ¬x6

x10 = 0@3

x2 = 1@6 x5 = 1@6

x1 = 1@6 x4 = 1@6 κ

Conflict

x3 = 1@6 x6 = 1@6

x9 = 0@1 x11 = 0@3

c1

c2

c2

c3

c3

c4

c4

c5

c5

c6

c6

UIPUIP

63 / 70

Example: Compute a conflict clause by resolution

c4 : ¬x4 ∨ x5 ∨ x10

c5 : ¬x4 ∨ x6 ∨ x11

c6 : ¬x5 ∨ ¬x6

x10 = 0@3

x2 = 1@6 x5 = 1@6

x1 = 1@6 x4 = 1@6 κ

Conflict

x3 = 1@6 x6 = 1@6

x9 = 0@1 x11 = 0@3

c1

c2

c2

c3

c3

c4

c4

c5

c5

c6

c6

UIPUIP

Start with the unsatisfied clause c6 (for κ)

64 / 70

Example: Compute a conflict clause by resolution

c4 : ¬x4 ∨ x5 ∨ x10

c5 : ¬x4 ∨ x6 ∨ x11

c6 : ¬x5 ∨ ¬x6

x10 = 0@3

x2 = 1@6 x5 = 1@6

x1 = 1@6 x4 = 1@6 κ

Conflict

x3 = 1@6 x6 = 1@6

x9 = 0@1 x11 = 0@3

c1

c2

c2

c3

c3

c4

c4

c5

c5

c6

c6

UIPUIP

Start with the unsatisfied clause c6 (for κ)

Take predecessor x5 (from current dl) and the corresponding
(antecedent) clause c4 and build

r1 = res(c6, c4, x5) = ¬x4 ∨ x10 ∨ ¬x6

65 / 70

Example: Compute a conflict clause by resolution

c4 : ¬x4 ∨ x5 ∨ x10

c5 : ¬x4 ∨ x6 ∨ x11

c6 : ¬x5 ∨ ¬x6

x10 = 0@3

x2 = 1@6 x5 = 1@6

x1 = 1@6 x4 = 1@6 κ

Conflict

x3 = 1@6 x6 = 1@6

x9 = 0@1 x11 = 0@3

c1

c2

c2

c3

c3

c4

c4

c5

c5

c6

c6

UIPUIP

Start with the unsatisfied clause c6 (for κ)

Take predecessor x5 (from current dl) and the corresponding
(antecedent) clause c4 and build

r1 = res(c6, c4, x5) = ¬x4 ∨ x10 ∨ ¬x6

Take predecessor x6 (from current dl) and the corresponding
(antecedent) clause c5 and build

r2 = fac(res(r1, c5, x6)) = ¬x4 ∨ x10 ∨ x11 (= conflict clause)

66 / 70

Finding the conflict clause

Algorithm 1: Analyze-conflict
Input:
Output: BT level and new conflict clause
begin

if current-decision-level = 0 then
return −1

;
cl := current-conflicting-clause;
while ¬ Stop-criterium-met(cl) do

lit := Last-assigned-literal(cl);
var := Variable-of-literal(lit);
ante := Antecedent(var);
cl := Resolve(cl,ante,var);

add-clause-to-database(cl);
return clause-asserting-level(cl);
/* 2nd highest dl in cl */

end

Applied to our example:

cl lit var ante
c6 ¬x5 ∨ ¬x6 ¬x5 x5 c4

r1 ¬x4 ∨ x10 ∨ ¬x6 ¬x6 x6 c5

r2 ¬x4 ∨ x10 ∨ x11

Stop when cl is asserting!

67 / 70

Decision heuristic: VSIDS

Basic idea: Make the heuristic conflict-driven, i.e., give higher
scores to variables involved in conflicts

Similar to DLIS with the following differences:

When counting the no of clauses in which a literal appears,
disregard whether clause is already satisfied or not
(decision quality ↓, performance ↑ with “good” data struct.)

Periodically, divide the scores by 2

68 / 70

Background reading
Handbook of Satisfiability, IOS Press, 2009

Editors

Armin Biere

Marĳn Heule

Hans van Maaren

Toby Walsh

69 / 70

Learning objectives

You should be able to

explain and apply the basic DLL procedure,

explain different methods to construct conflict clauses,

construct implication graphs and conflict clauses (including
resolution),

explain the use of cuts, UIPs, etc.,

distinguish different BT schemes,

calculate the BT level for different versions,

explain different heuristics,

prove basic properties about the procedures and implication
graphs (ex).

70 / 70

	Basic DLL
	Basic DLL by example
	A first look at heuristics
	A basic SAT algorithm

	Extensions to the basic algorithm: Towards CDCL solvers
	The definition and construction of implication graphs
	The first approach: Clause learning and backtracking in GRASP
	Conflict clause generation by 1st UIPs and conflict-driven BT

