
Formale Methoden der Informatik

Block 2: Satisfiability Problems

3. Recap: First-order Logic and Theories

Uwe Egly

Knowledge-Based Systems Group
Institute of Information Systems
Vienna University of Technology

1 / 44



Why do we need first-order logic?

Goal of the SAT part

Provide necessary tools and background info to construct a decision
procedure for equality logic with uninterpreted functions (EUF).

EUF is a restricted variant (or a fragment) of first-order logic. It
uses the theory of equality.

Therefore, we need some definitions and notions from first-order
logic extended by theories.

Disclaimer: The first slides recapitulate known material about first-

order logic which you know from “Theoretische Informatik und Logik”.

The theory handling is new for (most of) you.
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Outline
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First-order Theories
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Signatures

Signature Σ: countably infinite set of function symbols (FSs)
or predicate symbols (PSs) together with their arity

In propositional logic: Σ is the set of Boolean variables

Elements from Σ are the building blocks for formulas.

Σ = (Func,Pred) Func: set of function symbols (+ arity)

With arity 0: constant symbols (CSs)

With arity > 0: for building terms

Pred: set of predicate symbols (+ arity)

For building atomic formulas

Elements of Σ are often called the “non-logical symbols”.
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Terms
The definition of Terms(Σ,Var)

Given a signature Σ = (Func,Pred) and a set Var of (object)
variables

Variables are often denoted by x , y , z , x1, x
′, . . .

Definition

The set of terms, Terms(Σ,Var), for given Σ and Var is de-
fined inductively as follows:

B1: Every x ∈ Var is a term.

B2: Every constant symbol from Func in Σ is a term.

S1: If t1, . . . , tn are terms and f is a FS from Func in Σ
with arity n > 0, then f (t1, . . . , tn) is a term.

5 / 44



Terms: Some examples

Example

Given Var = {x} and Func = {c/0, f /1}

Terms(Σ,Var) = {x , c, f (x), f (c), f (f (x)), f (f (c)), . . .}

➥ The set of terms is infinite since there is a FS of arity > 0 in Σ.

Definition

A ground term is a term without variables.

Example

Given Var = {x} and Func = {c/0, f /1} as above. The set of
ground terms from Terms(Σ,Var) is

{c, f (c), f (f (c)), f (f (f (c))), . . .}
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First-order (FO) formulas

Given a signature Σ = (Func,Pred) and Var

Let p be a PS from Σ with arity n ≥ 0 and t1, . . . , tn terms.
Then p(t1, . . . , tn) is an atomic formula or atom.

Ground atoms are atoms without variables.

Inductive definition of the set of FO formulas for given Σ, Var

B1: Every atom is a formula.

B2: ⊤ (verum) and ⊥ (falsum) are formulas.

S1: For ¬,∧,∨,→,↔,⊕: same as for propositional logic.

S2: If x ∈ Var and ϕ is a formula, then so are ∀x ϕ and ∃x ϕ.

∀ is the universal quantifier, ∃ is the existential quantifier

In S2, ϕ is called the scope of the quantifier.
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Formulas as trees

First-order formulas can be depicted as formula trees.

Example: (∀x p(x , f (x))) ∧ q(x , y)

∧

∀x

p(x, f(x))

q(x,y)

Var. occurrences can be free or bound.

Occurrences x are bound (∀x above!).

Occurrence x is free (no ∀x , ∃x above).

Formulas without free vars are called closed or sentences.

8 / 44



The free variables of a formula

Definition
The set of free variables of a term t, free(t), is defined inductively:

B1: free(t) = {x} if t is a variable x

B2: free(t) = {} if t is a constant a

S1: free(t) =
⋃n

i=1 free(ti) if t is a term f (t1, . . . , tn)

Definition
The set of free variables of a formula λ, free(λ), is defined inductively:

B1: free(λ) =
⋃n

i=1 free(ti) if λ is an atom p(t1, . . . , tn)

S1: free(λ) = free(ϕ) if λ is ¬ϕ

S2: free(λ) = free(ϕ) ∪ free(ψ) if λ is ϕ ◦ ψ and ◦ ∈ {∨,∧,→,↔,⊕}

S3: free(λ) = free(ϕ) \ {x} if λ is Qx ϕ and Q ∈ {∀,∃}

9 / 44



Outline

Syntax of First-order Logic

Semantics of First-order Logic

First-order Theories

10 / 44



The semantics of first-order logic

Semantics of first-order logic more difficult than for
propositional logic because of

the term structure,

the quantifiers, and

the free variables which can occur in formulas.

A first-order (interpretation) structure wrt Σ consists of

a domain U , i.e., a nonempty set of symbols and

the interpretation function I(·).

I(·) has to satisfy the following conditions:

1. For CS (0-ary FS) c ∈ Func: I(c) ∈ U

2. For n-ary FS f ∈ Func (n>0): I(f ) : Un 7→ U

3. For n-ary PS p ∈ Pred: I(p) ⊆ Un
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How to handle free variables?

Free variables in a formula cause problems.
What is the meaning of a free x?

Two solutions possible:

Close a formula by ∀ (universal closure), or

interpret the formula modulo a variable assignment

α : Var 7→ U

We use variable assignments in the following.
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The evaluation of a term

Definition (Evaluation of a term under I and α)

The evaluation of a term t under an interpretation structure U , I

and a variable assignment α (modulo the signature Σ), IU ,Σ,α(t),
is defined inductively as follows:

B1: Iα(x) = α(x) for x ∈ Var

B2: Iα(c) = I(c) for a constant symbol c (recall: I(c) ∈ U)

S1: Iα(f (t1, . . . , tn)) = I(f )(Iα(t1), . . . , Iα(tn)) for f /n ∈ Func

and t1, . . . , tn are terms

We often write Iα instead of IU ,Σ,α(t) to improve readability!
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The evaluation of a formula

Definition (Evaluation of a formula under I and α)

The evaluation of a formula under an interpretation structure U , I

and a variable assignment α (modulo the signature Σ) is defined
inductively as follows:

B1: Iα(p(t1, . . . , tn)) = 1 iff (Iα(t1), . . . , Iα(tn)) ∈ I(p) where
p/n ∈ Pred and t1, . . . , tn are terms

S1: The connectives are handled like in propositional logic

S2: Iα(∀x ϕ) = 1 iff Iα∪{x←c}(ϕ) = 1 for each c ∈ U

S3: Iα(∃x ϕ) = 1 iff Iα∪{x←c}(ϕ) = 1 for at least one c ∈ U

The evaluation of a first-order formula is undecidable.

Notions like tautology, valid, (un)satisfiable, model, etc.
remain essentially unchanged.
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Example for an evaluation of a closed formula

Let ϕ be ∀x (p(x)→ p(f (f (x)))).

Let U = N.

Informally, the symbols f , p have the following meaning:

f /1 ∈ Func with the intended meaning “successor of”

p/1 ∈ Pred with the intended meaning “is odd number”

ϕ’s intended reading: for every odd no x , x + 2 is also odd

Let I(f ) : U 7→ U with f (u) = u + 1

Moreover, I(p) = {(1), (3), (5), . . .} ⊂ U

Since ϕ is closed, α = {} at the beginning
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Example for an evaluation of a closed formula (cont’d)

I{}(ϕ) = 1 iff, for each c ∈ U ,
I{x←c}(p(x)→ p(f (f (x)))) = I{}(p(c)→ p(f (f (c)))) = 1

Case distinction for c:

1: c is odd (i.e., (c) ∈ I(p)):

◮ I{}(p(c)→ p(f (f (c)))) = 1 iff (c) 6∈ I(p) or I(f (f (c))) ∈ I(p)

◮ Since I(f (f (c))) = I(c) + 2, (c) ∈ I(p) implies I(f (f (c))) ∈ I(p)

◮ Since (c) ∈ I(p), I(f (f (c))) ∈ I(p) and the implication is true

2: c is even (i.e., (c) 6∈ I(p)):

◮ Then p(c)→ p(f (f (c))) is true under I because (c) 6∈ I(p)

Hence, ϕ is true under the chosen interpretation
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Recall the notations

Mod(ψ) is the class of all models of ψ.

ϕ is satisfiable if there is some U , Iα that satisfies ϕ.

ϕ is falsifiable if there is some U , Iα that does not satisfy ϕ.

ϕ is valid if every U , Iα is a model of ϕ.

This means: for all U , for all I and for all α!

ϕ is unsatisfiable if ϕ is not satisfiable.

Formulas ϕ and ψ are equivalent, denoted by ϕ ≡ ψ, iff they
have exactly the same models, i.e., Mod(ϕ) = Mod(ψ). In
other words, for all U , Iα, we have Iα |= ϕ iff Iα |= ψ

Note: p(x) 6≡ p(y) why?
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Construct a counter-example to p(x) ≡ p(y)
(Slide added on students’ request)

We know from the definition of ≡ that

p(x) ≡ p(y) if and only if Mod(p(x)) = Mod(p(y))

We construct U , Iα such that Iα |= p(x) but Iα 6|= p(y)

Let U = {0, 1}, let I(p) = {(0)} and let α map x to 0 and y to 1.

Then Iα |= p(x) iff I |= p(0) iff (0) ∈ I(p). Therefore Iα |= p(x).

Then Iα |= p(y) iff I |= p(1) iff (1) ∈ I(p). Therefore Iα 6|= p(y).

We have constructed U , Iα which is a model of p(x) but not of
p(y). Therefore, Mod(p(x)) 6= Mod(p(y)). Consequently, the
equivalence does not hold.
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Example

Let Σ = {{a/0, b/0, ◦/2}, {∼ /2}}

Let ϕ : ∃x (x ◦ a ∼ b) or ∃x (∼ (◦(x , a), b)))

Q: Can ϕ be satisfied over U = N0?
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Example

Let Σ = {{a/0, b/0, ◦/2}, {∼ /2}}

Let ϕ : ∃x (x ◦ a ∼ b) or ∃x (∼ (◦(x , a), b)))

Q: Can ϕ be satisfied over U = N0?

A: It depends on the interpretation (function)!
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Example

Let Σ = {{a/0, b/0, ◦/2}, {∼ /2}}

Let ϕ : ∃x (x ◦ a ∼ b) or ∃x (∼ (◦(x , a), b)))

Q: Can ϕ be satisfied over U = N0?

A: It depends on the interpretation (function)!

Possibility 1: Let I(a) = 0, I(b) = 1

Interpret ◦ as multiplication and ∼ as equality, i.e.,

I(◦) = {((n1, n2), n) | n1, n2, n ∈ N0 ∧ n = n1 · n2}

I(∼) = {(n, n) | n ∈ N0}

☞ ϕ is false under the above interpretation! (Why?)
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Example

Let Σ = {{a/0, b/0, ◦/2}, {∼ /2}}

Let ϕ : ∃x (x ◦ a ∼ b) or ∃x (∼ (◦(x , a), b)))

Q: Can ϕ be satisfied over U = N0?

A: It depends on the interpretation (function)!

Possibility 2: Let I(a) = 0, I(b) = 1

Interpret ◦ as addition and ∼ as equality

I(◦) = {((n1, n2), n) | n1, n2, n ∈ N0 ∧ n = n1 + n2}

I(∼) = {(n, n) | n ∈ N0}

☞ ϕ is true under the above interpretation! (Why?)
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Entailment (or logical implication)

So far, |= relates an interpretation and a formula.

We want to allow a set of formulas on the left side.

Important: a set of formulas coincides with the conjunction of
its elements, i.e., {ϕ1, . . . , ϕn} is

∧n
i=1 ϕi .

Important: an empty conjunction is 1 in all interpretations
i.e., it is equivalent to ⊤.

Let W be a set of closed formulas. Then W entails ϕ,

W |= ϕ, if and only if Mod(W ) ⊆ Mod(ϕ)

Entailment is a very important concept, when we consider theories!
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Check of an entailment

Show: ϕ |= ψ with ϕ : ∃x (p(x) ∧ (p(x)→ q(x))) and ψ : ∃y q(y)

We show that each model of ϕ is also a model of ψ.

Take an arbitrary domain U and let I be a model of ϕ.

Then there is c ∈ U , s.t. I{x←c}(p(x) ∧ (p(x)→ q(x))) = 1.

Moreover, (c) ∈ I(p) and (c) ∈ I(q). why?

Evaluate ψ under the model of ϕ.

I(∃y q(y)) = 1 iff I{y←d}(q(y)) = 1 for some d ∈ U

Let d = c and observe that I is then also a model of ψ.
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Construction of a counter-example to an entailment
(Slide added on students’ request)

Show: ϕ |= ψ with ϕ : p(c) ∧ (p(c)→ q(c)) and ψ : ∀y q(y)

Let c be a constant. Then ϕ is closed.

We construct a counter-example, i.e., we present an
interpretation U , I, such that I |= ϕ, but I 6|= ψ.

Take U = {0, 1} as the domain.

Let I(c) = 0 and let I make exactly p(0) and q(0) true, i.e.,
I(p) = {(0)} and I(q) = {(0)}. Consequently, I |= ϕ holds.

Evaluate ψ under the model of ϕ:
I(∀y q(y)) = 1 iff I{y←d}(q(y)) = 1 for all d ∈ U

Since q(1) is false under I, so is ψ.

➥ We have found U , I, such that I |= ϕ, but I 6|= ψ. Hence,
Mod(ϕ) 6⊆ Mod(ψ) and therefore ϕ 6|= ψ.
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Semantics of First-order Logic

First-order Theories
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Motivation

Reasoning about application domains like software or
hardware requires structures to formalize important properties.

E.g., programs manipulate numbers, lists, arrays, pointers, etc.

➥ First-order theories can be used for the formalization.

/ Reasoning with theories is undecidable in general.

, Reasoning with “restricted” theories is often decidable!
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The definition of a theory

Definition

A first-order theory, T = (Σ,A), is defined by its components:

1. its signature Σ,

2. its axioms as a set A of closed first-order formulas with
function symbols (FSs) and predicate symbols (PSs) from Σ.

A theory is often identified

1. by its axioms (when Σ is clear from the context), or

2. by the set of all Σ-formulas, valid in the theory.

A Σ-formula is constructed from FSs and PSs from Σ, as well as
variables, connectives and quantifiers. We often use formula
instead of Σ-formula when Σ is clear from the context.
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Some definitions

Definition

Given a theory T = (Σ,A).

1. A T -interpretation I is an interpretation which satisfies T ’s
axioms, i.e.,

I |= ϕ for all ϕ ∈ A

2. A Σ-formula ϕ is valid in the theory T , or T -valid, if every
T -interpretation satisfies ϕ. Notation: T |= ϕ

3. A Σ-formula ϕ is satisfiable in the theory T , or T -satisfiable,
if some T -interpretation satisfies ϕ.

When T is clear from the context, we often use interpretation,
valid, satisfiable instead of T -interpretation, T -valid, T -satisfiable

What is the connection to entailment, i.e., to W |= ϕ?
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Properties of theories

Definition

A theory T = (Σ,A) is

1. complete, if for every closed Σ-formula ϕ, T |= ϕ or T |= ¬ϕ;

2. consistent, if there is at least one T -interpretation;

3. decidable, if T |= ϕ is decidable for every Σ-formula ϕ.

Formulas ϕ1 and ϕ2 are equivalent in T or T -equivalent if T |=
ϕ1 ↔ ϕ2, i.e., I |= ϕ1 iff I |= ϕ2 holds for all T -interpretations I.

Example of a complete theory: Presburger arithmetic [link]

Example of an incomplete theory: group theory [link]
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Incompleteness of group theory
(Slide added on students’ request)

Q: Why is group theory incomplete?

A: Because for the formula ϕ : ∀x∀y (x · y
.
= y · x), it holds that

T 6|= ¬ϕ and T 6|= ϕ.

The sentence ¬∀x∀y (x · y = y · x) is not valid for groups. Take
the abelian group (Z,+), i.e., use U = Z and define I appropriately.
Since addition in Z is commutative, ∀x∀y (x · y = y · x) is true
under U , I and therefore the negation is false. We have identified a
model of the theory which is not a model of ¬∀x∀y (x · y = y · x).

The sentence ∀x∀y (x · y = y · x) is not valid for groups. Simply
take a non-commutative group (like the symmetric group Sn of
degree n ≥ 3) and proceed similarly.
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Fragments of theories

A fragment of a theory T is a syntactically restricted subset of
formulas of T . A fragment of T is decidable if T |= ϕ is decidable
for every Σ-formula ϕ from the fragment.

Example

1. The quantifier-free fragment of a theory T is the set of
T -valid formulas without quantifiers.

NB Technically speaking, the “quantifier-free fragment” consists of
valid formulas in which all variables are considered to be
universally quantified!

2. The fragment of prenex conjunctive normal forms consists of
valid formulas which have a quantifier prefix and a matrix in
conjunctive normal form (CNF).
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Combinations of theories

The union T1 ∪ T2 of two theories T1 and T2 with signatures
Σ1 and Σ2 and axioms A1 and A2 has

1. signature Σ1 ∪ Σ2 and

2. axioms A1 ∪ A2.

We restrict our attention here to combinations for which
Σ1 ∩ Σ2 = {

.
=} holds.

A (T1 ∪ T2)-interpretation is both a T1-interpretation and a
T2-interpretation, since it satisfies A1 ∪ A2.

➥ A formula which is T1-valid or T2-valid is (T1 ∪ T2)-valid.

➥ A formula which is (T1 ∪ T2)-satisfiable is both T1-satisfiable
and T2-satisfiable.
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The theory of equality

ΣE consists of
.
= together with FSs and other PSs.

.
= is an interpreted symbol: the meaning is defined by the
axioms of TE (∀x1, . . . , xn abbreviates ∀x1 · · · ∀xn):

1. ∀x (x
.
= x) (reflexivity)

2. ∀x , y ((x
.
= y)→ (y

.
= x)) (symmetry)

3. ∀x , y , z ((x
.
= y) ∧ (y

.
= z)→ (x

.
= z)) (transitivity)

4. Substitution axioms for each function symbol f of arity n:

∀x1, y1, . . . , xn, yn

( n
∧

i=1

xi
.
= yi → f (x1, . . . , xn)

.
= f (y1, . . . , yn)

)

5. Substitution axioms for each predicate symbol p of arity n:

∀x1, y1, . . . , xn, yn

( n
∧

i=1

xi
.
= yi →

(

p(x1, . . . , xn)↔ p(y1, . . . , yn)
)

)
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The theory of equality cont’d

The axioms 1. to 3. state that
.
= is an equivalence relation.

The axioms 4. and 5. assert that
.
= is a congruence relation.

Functions (predicates) evaluate always to the same value
(truth value) provided the same arguments are given.

TE is undecidable, but its quantifier-free fragment is decidable.
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Example

Show: ϕ : a
.
= b ∧ b

.
= c → g(f (a), b)

.
= g(f (c), a) is TE -valid

The proof is by contradiction. Suppose there exists a
TE -interpretation I with I 6|= ϕ.

1. I 6|= ϕ assumption
2. I |= a

.
= b ∧ b

.
= c 1., semantics of →

3. I 6|= g(f (a), b)
.
= g(f (c), a) 1., semantics of →

4. I |= a
.
= b 2., semantics of ∧

5. I |= b
.
= c 2., semantics of ∧

6. I |= a
.
= c 4., 5., transitivity of

.
=

7. I |= f (a)
.
= f (c) 6., substitution axiom for f

8. I |= b
.
= a 4., symmetry of

.
=

9. I |= g(f (a), b)
.
= g(f (c), a) 7., 8., substitution axiom for g

10. I |= ⊥ 3., 9., contradiction

The assumption is false: ϕ is therefore TE -valid!
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The theory of LISP-like lists: Tcons

LISP-like lists have signature Σcons = {{cons, car, cdr}, {atom,
.
=}}

1. cons is a binary function called the list constructor. cons(a, b)
represents the list constructed from a and b.

2. car is a unary function called the left projector.
car(cons(a, b))

.
= a

3. cdr is a unary function called the right projector.
cdr(cons(a, b))

.
= b

4. atom is a unary predicate. atom(x) is true iff x is a
single-element list.

5.
.
= is the binary predicate equality.
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Examples of LISP-like lists

In the intended interpretations

atoms are individual elements,

while lists are functional structures with binary FS cons.

cons(a, cons(b, c))

represents a list of three elements,

a is its head and cons(b, c) is its tail

Examples:

1. car(cons(a, cons(b, c))) 7→ a

2. cdr(cons(a, cons(b, c))) 7→ cons(b, c)

3. cdr(cdr(cons(a, cons(b, c)))) 7→ c
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The axioms of Tcons

1. The axioms of reflexivity, symmetry, and transitivity

2. Substitution axioms (functional congruence) for cons, car, cdr

3. Substitution axioms (predicate congruence) for atom

4. ∀x , y car(cons(x , y))
.
= x (left projection)

5. ∀x , y cdr(cons(x , y))
.
= y (right projection)

6. ∀x ¬atom(x)→ cons(car(x), cdr(x))
.
= x (construction)

7. ∀x , y ¬atom(cons(x , y)) (atom)
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The theory Tcons : Some remarks

There is no NIL value representing the empty list.

The behavior of car and cdr on atoms is unspecified.

Tcons is undecidable, but its quantifier-free fragment is
decidable.
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The theory T E
cons = Tcons ∪ TE

Let Tcons = (Σcons ,Acons) and TE = (ΣE ,AE ).

The signature of T E
cons is Σcons ∪ ΣE .

The set of axioms of T E
cons is Acons ∪ AE .

T E
cons has uninterpreted CSs, FSs, and PSs from ΣE .

T E
cons is undecidable, but its quantifier-free fragment is

decidable.

Prove the following formula ϕ

car(a)
.
= car(b) ∧ cdr(a)

.
= cdr(b) ∧ ¬atom(a) ∧ ¬atom(b)

→ f (a)
.
= f (b)

T E
cons -valid.
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The theory T E
cons : The proof of ϕ

The proof is by contradiction. Suppose there exists a
T E

cons -interpretation I with I 6|= ϕ.

1. I 6|= ϕ assumption
2. I |= car(a)

.
= car(b) 1., semantics of →, ∧

3. I |= cdr(a)
.
= cdr(b) 1., semantics of →, ∧

4. I |= ¬atom(a) 1., semantics of →, ∧
5. I |= ¬atom(b) 1., semantics of →, ∧
6. I 6|= f (a)

.
= f (b) 1., semantics of →

7. I |= cons(car(a), cdr(a))
.
= cons(car(b), cdr(b))

2., 3., functional congruence
8. I |= cons(car(a), cdr(a))

.
= a 4., construction

9. I |= cons(car(b), cdr(b))
.
= b 5., construction

10. I |= a
.
= b 7., 8., 9., symmetry + transitivity

11. I |= f (a)
.
= f (b) 10., functional congruence

10. I |= ⊥ 6., 11., contradiction

The assumption is false: ϕ is therefore T E
cons -valid!
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Further examples for theories

Presburger arithmetic (Σ = ({0/0, 1/0,+/2}, {
.
=/2}))

Peano arithmetic (Σ = ({0/0, 1/0,+/2, ∗/2}, {
.
=/2}))

Theory of integers

Theory of reals

Theory of arrays

Theory of pointers

Theory of recursive data structures

and many more
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Learning objectives

You should be able to

explain the syntax and semantics of first-order logic,

evaluate formulas under a given first-order structure,

find models/falsifying interpretations for first-order formulas,

evaluate entailments and provide proofs or counter-examples,

motivate the use of theories,

explain T -validity and T -satisfiability in detail,

check them for a formula and a theory
(including providing proofs or counter-examples for the answers),

discuss the notion of decidability of a theory or one of its
fragments.
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