Formale Methoden der Informatik

Block 2: Satisfiability Problems

4. A Decision Procedure for Equality Logic

Uwe Egly

Knowledge-Based Systems Group
Institute of Information Systems
Vienna University of Technology

kbs” H HY

/RO

The overall procedure again

Goal of the SAT part

Provide necessary tools and background info to construct a decision
procedure for equality logic with uninterpreted functions (EUF).

Overall procedure

The problem of deciding a EUF-formula ©EUYF is reduced to the
SAT problem of a propositional formula ¢ such that

©EUF is E-valid iff ©F is E-valid iff ¢ is unsat

Then a model of ¢ provides a counterexample to the E-validity of
EUF
adl

The task for today

m Given a formula f (this can be the negation of some ¢F).
We want to construct a propositional formula ¢ such that

©F is E-satisfiable iff o is satisfiable

m The construction of ¢ from ¢F (reduction) requires run time
polynomial in the size of ©F.

m The reduction uses several kinds of (equality) graphs.

m An overview of the translation can be found in:
D. Kroening, O. Strichman. Decision Procedures, Springer, 2008

Outline

Basic Concepts

Simplifying E-formulas

Reduction of E-formulas to Propositional Formulas

Equality logic

m We work in a restricted quantifier-free fragment of 7.
m X consists only of constants, Boolean variables and =.

m That is, we have no FSs and other PSs of arity > 0.

Why equality logic?

m Technically not necessary
(E-logic has the same expressive power as propositional logic)

m It can be shown that the satisfiability problem for equality
logic is NP-complete.

m But often allow for more natural problem descriptions
especially if E-logic is extended by uninterpreted functions.

[0 Examples and applications will be discussed in the next
lecture.

A /RO

The syntax of equality logic

Definition (The syntax of equality logic (E-logic))

formula ::= atom|(formula) |~formula|formula A formula |

formula \/ formula | formula — formula

atom 1= term = term| Boolean variable
term = identifier| constant
Remarks

1. The set of Boolean vars and the set of term vars are disjoint!
2. = is always interpreted as equality!

3. The connectives < and @ are not part of the language.

4

. An E-formula is a formula of E-logic.

Example

Consider formula ¢: x; = xo A (x2 = x3 V (—(x1 = x3) A x1 = 2))

m Let ¥ = ({1/0,2/0,3/0}, {=/2})

m Let U =N, interpret any constant by itself and assign natural
numbers to variables as follows:

{X1I—>27 X2i—>2, X3'—>9}

m Then ¢ is true in this structure.

Q /K5Q

Removal of constants from E-formulas

Definition (Removal of constants from an E-formula)

Let ©F be any E-formula with constants ¢y, ..., c,. Construct an
E-formula £ without any constant by replacing each ¢; by v,
where v, is a new term variable (identifier).

Observations

1. The length of F is equal to the length of 9F.

2. ¢F and ¢F are equi-satisfiable.
O See extra-sheet4-1.pdf in TUWEL for a proof sketch!

Removal of Boolean variables from E-formulas

Definition (Removal of Boolean variables from an E-formula)

Let ©F be any E-formula with Boolean variables by, ..., b,. Con-
struct an E-formula ¢ without any Boolean variable by replacing
each b; by vy, 1 = vy, 2, where vy, 1, vp,, o are two new term variables
(identifiers).

Observations

1. The number of atoms in ¢F and £ are identical.

2. ¢F and ¥F are equi-satisfiable.
[0 See extra-sheet4-la.pdf in TUWEL for a proof!

10 / RO

Equality and disequality literals

m We consider E-formulas ©f

m in negation normal form (NNF) and

m without constants and Boolean variables.

m The set of all atoms in F is denoted by At(¢F).

Definition

The set of equality literals of pF, E. | is the set of positive literals
(equalities) in oF. Likewise for the set of disequality literals of F,
E, and negative literals (disequalities).

Example: F: x=y A y=z A z#x
E- = {xty, y=2) E, = {zx)

11 / RO

Equality graphs

Definition

The equality graph, GEF(¢F), for an E-formula ©F in NNF and
without constants and Boolean variables is an undirected graph
(V,E-,E,), where the nodes (or vertices) V corresponds to the
variables in ¢f and the two edge sets correspond to the set of
equality literals and disequality literals, respectively.

NB: E. and E;;,é represent literal sets and edges in the graph.

Example: GE(pF) with oF: x =y Ay =zAz#x

12 / RQ

Equality graphs

Definition

The equality graph, GE(¢F), for an E-formula ©F in NNF and
without constants and Boolean variables is an undirected graph
(V,E-,E;), where the nodes (or vertices) V' corresponds to the
variables in ¢f and the two edge sets correspond to the set of
equality literals and disequality literals, respectively.

NB: E. and E;;é represent literal sets and edges in the graph.

Example: GE(pF) with oF: x =y Ay =zAz#x

y
°

X @ ez

The variables of ©F are the vertices of GF(F)

1?7 / RO

Equality graphs

Definition

equality literals and disequality literals, respectively.

The equality graph, GE(¢F), for an E-formula ©F in NNF and
without constants and Boolean variables is an undirected graph
(V,E-,E;), where the nodes (or vertices) V' corresponds to the

variables in ¢f and the two edge sets correspond to the set of

NB: E. and E7-,é represent literal sets and edges in the graph.

Example: GE(pF) with F: x =y Ay =zAz#x

y
x:y//
-

e

x o ®z

Adding an equality edge ...

14 / RO

Equality graphs

Definition

The equality graph, GE(¢F), for an E-formula ©F in NNF and
without constants and Boolean variables is an undirected graph
(V,E-,E,), where the nodes (or vertices) V corresponds to the
variables in ¢f and the two edge sets correspond to the set of
equality literals and disequality literals, respectively.

NB: E. and E# represent literal sets and edges in the graph.

Example: GE(pF) with oF: x =y Ay =2zAz#x

...and another one . ..

14s}

Equality graphs

Definition

The equality graph, GE(¢F), for an E-formula ©F in NNF and
without constants and Boolean variables is an undirected graph
(V,E-,E;), where the nodes (or vertices) V' corresponds to the
variables in ¢f and the two edge sets correspond to the set of
equality literals and disequality literals, respectively.

NB: E. and E7-,é represent literal sets and edges in the graph.

Example: GE(pF) with oF: x =y Ay =zAz#x

...and finally a disequality edge

~E~e)

Equality graphs

Definition

The equality graph, GEF(¢F), for an E-formula ©F in NNF and
without constants and Boolean variables is an undirected graph
(V,E-,E,), where the nodes (or vertices) V corresponds to the

variables in ¢f and the two edge sets correspond to the set of
equality literals and disequality literals, respectively.

NB: E. and E§;,é represent literal sets and edges in the graph.

Example: GE(pF) with oF: x =y Ay =zAz#x

Observation: GE(F) is independent from F's (A, V)-structure!

17 / RO

Equality graphs and loss of information

Consider the following equality graph GE (¢F):

What is the formula p£?

Possibility 1: f isx =y Vx #y a tautology
Possibility 2: pf is x =y Ax #y a contradiction
0 The same graph represents a tautology and a contradiction.

0 We loose the information about the propositional structure
when we consider GE(F) instead of (F!

12 / RQ

Paths and cycles

A path in a graph G = (V, E) is a sequence vy, ..., v, of
vertices such that, for all 1 </ < n, (v;,vi41) € E.

v1 is the start vertex and v, is the end vertex.

m We often unify a path with its associated edges.

The length of a path vq,..., v, is the number of its edges.

A simple path in G is a path without repeated vertices.

A cyclein G =(V,E) is a path vy,...,v,_1, vy with repeated
vertices.

A simple cycle in G is a cycle where v; (=v,) is the only
repeated vertex.

10 / RQ

Examples of paths and cycles

A simple path vq, v», v3, v4, vs, vg, v7 of length 6.

Vi Vo V3 Va V5 Ve %4

270 / 5Q

Examples of paths and cycles

A cycle v, va, v3, v4, V5, Vg, V7, V3, V1.

T

Vi Vo V3 V4 V5 Ve V7

21 / KQ

Examples of paths and cycles

A simple cycle v, v», v3, V4, Vs, Vg, V7, V1.

T

Vi Vo V3 Va Vg Ve %4

279 / KQ

Equality and disequality paths

Definition (equality path, disequality path, simple paths)

An equality (eq) path in GE(¢F) is a path consisting of edges from
E.. The existence of an equality path between vertices x and y is
denoted by x =" y.

A disequality (diseq) path in GE(F) is a path consisting of edges
from E. and exactly one edge from E,. The existence of a dise-
quality path between vertices x and y is denoted by x #" y.

A simple (eq or diseq) path in GE(¢F) is a path without cycles.

Example: Reconsider GE(pF)

27 / KQ

Equality and disequality paths

Definition (equality path, disequality path, simple paths)

An equality (eq) path in GE(¢F) is a path consisting of edges from
E.. The existence of an equality path between vertices x and y is
denoted by x =" y.

A disequality (diseq) path in GE(F) is a path consisting of edges
from E. and exactly one edge from E,. The existence of a dise-
quality path between vertices x and y is denoted by x #" y.

A simple (eq or diseq) path in GE(¢F) is a path without cycles.

Example: Reconsider GE(pF)

24 / KQ

Equality and disequality paths

Definition (equality path, disequality path, simple paths)

An equality (eq) path in GE(¢F) is a path consisting of edges from
E.. The existence of an equality path between vertices x and y is
denoted by x =" y.

A disequality (diseq) path in GE(F) is a path consisting of edges
from E. and exactly one edge from E,. The existence of a dise-
quality path between vertices x and y is denoted by x #" y.

A simple (eq or diseq) path in GE(¢F) is a path without cycles.

Example: Reconsider GE(pF)

2795 / KQ

Contradictory cycles

Definition

A contradictory cycle (CC) in GF(¢F) is a cycle with exactly one
disequality edge.

Important Property:

m In a CC, for every two x,y, it holds that x =" y and x #" y.

® Xx,y,z,x with the (dis-)equalities x = y,

y y =z, z# x form a CC
//.\\ *
= SO m x = y because of x,y and x =y € E.
e N
/ .
X'T\'Z m x #" y because of x, z,y and

z;’éXEE;-éandyizeEi

29 /

14s}

Contradictory cycles and simple contradictory cycles

Contradictory cycle vq, vo, va, v5, Vo, V3, vy

Contradictory cycle: A cycle with exactly one disequality edge.

Simple cycle: Only the start vertex is repeated.
Simple CC: Both conditions are satisfied.

27 / KQ

Contradictory cycles and simple contradictory cycles

Contradictory cycle vq, vo, va, v5, o, v3, vy

Theorem

Every contradictory cycle is either simple or contains a simple con-
tradictory cycle.

279 /RO

Contradictory cycles and simple contradictory cycles

Simple contradictory cycle vq, vs, v3, g

Theorem

Every contradictory cycle is either simple or contains a simple con-
tradictory cycle.

20 / BQ

Subgraphs and satisfiability

Definition

A subgraph of GF(yF) is called E-satisfiable iff the conjunction of
the predicates represented by its edges is E-satisfiable.

Theorem

A subgraph of GE (pF) is E-unsatisfiable iff it contains a contradic-
tory cycle.

Example

m Consider the contradictory cycle (CC) x =y, y =z, x # z.
m From x = y and y = z and transitivity
X=yANy=zZ—-Xx=2

we derive x = z, contradicting x # z from the CC.

20 / RO

Outline

Simplifying E-formulas

21 / BQ

The simplification algorithm

Algorithm: SIMPLIFY-EQUALITY-FORMULA
Input: An equality formula ¢F in NNF.
Output: An equality formula ¥f equi-satisfiable with ¢F, with
length less than or equal to the length of ©F.
1. Let ¢F = F.
2. Construct the equality graph G ().

3. Replace each pure literal in 1)E whose corresponding edge is not
part of a simple contradictory cycle with true.

4. Simplify ¥F with respect to Boolean constants true and false.
5. If any rewriting has occurred in the previous two steps, go to 2.

6. Return F.

27 /RO

The simplification algorithm

Algorithm: SIMPLIFY-EQUALITY-FORMULA
Input: An equality formula ¢F in NNF.
Output: An equality formula ¥f equi-satisfiable with ¢F, with
length less than or equal to the length of ©F.
1. Let ¢F = F.
2. Construct the equality graph G ().

3. Replace each pure literal in 1)E whose corresponding edge is not
part of a simple contradictory cycle with true.

4. Simplify ¥F with respect to Boolean constants true and false.

5. If any rewriting has occurred in the previous two steps, go to 2.

6. Return 7/JE- A literal £ is a pure literal in a formula X if ¢
occurs either positively or negatively in .

22 /EQ

Simplifications: The formula and the graph

pF: (e #xVyr #ypVhi=h)A
(n#HLVuw#hVe =g)A
(Ulifl\/UZifz\/Zigl))Az;}égé
Eﬁ: {fliéuglig27uliﬂ7u2if27zigl}
E,: a#x,n#y,u #f,i# h,z# g}
X1 x2 3% ¥ z
— o . o '
|
|
o o |
e — — — oL e D .
v fi f uy 81 &

The edges (x1,x2), (v1,y2) and (f1,) are not part of any simple
contradictory cycle ~- set corresponding literals true

24 / BQ

Simplifying the formula

PE: (1 #x2Vyr #y»Vh=h)A
(n# OV #hHVeg=g)A
(m=AVuw=hbVz=g))Nz#g

2 /EQ

Simplifying the formula

B ((true V true V true) A
(L1 # AV # hHVe =g)NA
(m=AVm=hVz=g))Az#g

2A / BQ

Simplifying the formula

B ((true V true V true) A
(i # AV #hVegr=g)A
(mn=fHVwm=htVz=g))ANz#g

Propositional simplifications result in:

V5 (i # AV #hHVeg =g)A
(mn=fAVwm=htVz=g))ANz#g

©F and 1/15 are equi-satisfiable, but 1/}5 is smaller than oF.

27 / RQ

Simplifying the formula

After the first round of simplification, we have

W (W #AVmEHVe =g)A
(n=AVwm=htVz=g))Nz#g

We go back to step 2 in the algorithm and construct GE(¢£):

°
\
\
|
/
/
o
°
\
\
|
/
/
070 N

No more simplifications are possible. £ is returned.

29 /RO

Outline

Reduction of E-formulas to Propositional Formulas

20 / RO

Reduction of E-formulas to propositional formulas
The basic idea

m The described method is called the sparse method.

m For oF, generate two formulas e(¢f) and B; such that

©F is E-satisfiable iff e(F) A B; is satisfiable

m e(F) is the propositional skeleton generated as follows:
m Choose an ordering on variables and constants.
m Orient the equations according to the ordering.
m Replace x; = x; by € ;.

m To maintain equi-satisfiability, add transitivity constraints.
(Bt is a conjunction of such constraints).

AN / RO

The construction of a propositional skeleton: An example

Let oF be x; = x0 A ((x2 = x3 A x3 # x1) V X2 # x1).
m Fix an ordering, e.g., x3 < x» < X3.

m Orient the equations: x3 = x3 — X1 = X3, Xp =X] — X1 = X2

Then e(goE) is €12 N ((6273 VAN —|e1,3) V —|6172)

It holds that if ¢ is satisfiable then so is e(¢F)

m The converse is false, because ...

e(oF) is satisfiable but ©f is E-unsatisfiable (0 next slide)

A1 / RO

©F and its propositional skeleton

m Reconsider of: x; = x0 A ((x2 = x3 A x3 # x1) V X2 # x1).
m Then e(ng) is €12 N ((6273 VAN —\6173) V ﬁel,g).

m e(¢F) is satisfiable.

m Simply set e; > and e 3 to true and e; 3 to false.

m o is E-unsatisfiable. Let us try to satisfy ¢F:

m Then any E-interpretation must make x; = x, and
X2 = X3 A\ X1 7§ X3 true.

m But then transitivity results that x; = x3 has to be true.

m This however contradicts that x; # x3 is true.

[0 Transitivity is important to maintain (un-)satisfiability!

A2 / KEQ

Non-polar equality graphs for the construction of B;

The construction of B; is guided by cycles in the non-polar equality
graph of F.

Definition

The non-polar equality graph corresponding to oF, Ghp(¢F), is
an undirected graph (V, E), where the nodes in V' correspond to
the variables in ©f and the edges correspond to At(F) (i.e., all
equality predicates define the edges).

O GEp(¢F) is a degenerated version of GE(¢F), because the
polarity of predicates (i.e., the negation sign) is neglected.

A / KQ

The transitivity constraints in B;

m For each cycle in G§p(pF) with n vertices, we add a
conjunction of n implications of the form p; A ... A p,_1 — pn.

0 The size of B; depends on the number of cycles in the graph!

m Each implication forbids to set the “last” edge false if all the
other edges have been set to true.

m Imposing this constraint for each of the edges in each one of
the cycles is sufficient to obtain

©F is E-satisfiable iff e(F) A B is satisfiable

A4 / KEQ

Example: The formula oF, Gyp(F) and B,

W xi = A((e=xAXx #x3) VX #x) X e————e X
e(¥f): epA((e23 N —er3)V mer) /

GﬁP(Q‘QE): ({le X2, X3}7 {(le X2)7 (X23X3)a (Xl’X3)}) X3 @

m A (simple) cycle of length 3 in GE,P(¢E) is X1, X2, X3, X1 With
corresponding edges (x1, x2), (x2,x3), (x1,x3) and
corresponding variables e1 >, e 3, €1 3.

m Maintain equi-satisfiability by setting B; to

(e12Ne3—e3)N(e1oNer3 — e3)A(e23Ner3— ern)

AR / BEQ

Is the use of simple cycles sufficient?

Theorem

In the construction of B;, the use of simple cycles in Gp(pF) is
sufficient to maintain equi-satisfiability.

Problem: Number of simple cycles in Gkp(F) can be
exponential.

O Try to reduce the number of necessary cycles!

Solution: (Bryant and Velev): In the construction of By, it is
sufficient to generate transitivity constraints from
simple chord-free cycles (triangles) in the chordal
version of the input graph Gkp(¢F).

AR / KO

Chords, chord-free cycles and chordal graphs

Definition

A chord of a cycle is an edge between two non-adjacent vertices of
the cycle. If a cycle has no chords in a given graph, it is called a
chord-free cycle.

Definition

An (undirected) graph G is called chordal (or triangulated) if no
cycle of length > 4 in G is chord-free.

Q1 Do we really need chordal graphs?

Q2 If so, how do we construct them?

A7 / RO

The motivation for chordal graphs

Observation
For arbitrary graphs G, the number of simple chord-free cycles in
G can still be exponential in the number of vertices!

[0 We have to make the graph chordal (by adding edges)!

Example: Making a graph chordal

X1 @——0 X2
The simple cycle x, x2, X3, Xa, x5, x1 of length
5 is chord-free. * %

X5 @——@ X4

AR / KQ

The motivation for chordal graphs

Observation
For arbitrary graphs G, the number of simple chord-free cycles in
G can still be exponential in the number of vertices!

[0 We have to make the graph chordal (by adding edges)!

Example: Making a graph chordal

X] @——@ X2
We can make the graph chordal by, e.g., v~
introducing the red edges! \ T Ne x

\
X5 @—@ X4

A0 / KQ

An algorithm for making a graph chordal

Any graph can be made chordal (in PTIME) by adding edges!
Procedure: Let an undirected graph G = (V, E) be given.
1. While V # {} do
1.1 Select a vertex v from V
1.2 Add E'(v) :={(u,w) | (u,v),(v,w) € E,(u,w) € E} to E
1.3 Remove v and all edges containing v from G

2. Return original G extended by all edges added in 1.2

0 Result depends on the elimination ordering for vertices

Vi, V2, V3, V4 Vo, V1, V3, V4

Vi v2 vi v

v3 V4 v3 va

5N / RO

An algorithm for making a graph chordal

Any graph can be made chordal (in PTIME) by adding edges!
Procedure: Let an undirected graph G = (V, E) be given.
1. While V # {} do
1.1 Select a vertex v from V
1.2 Add E'(v) :={(u,w) | (u,v),(v,w) € E,(u,w) € E} to E
1.3 Remove v and all edges containing v from G

2. Return original G extended by all edges added in 1.2

0 Result depends on the elimination ordering for vertices

Vi, V2, V3, V4 Vo, V1, V3, Wa
! v2 vi v
v3 vy v3 vg

51 /EQ

An algorithm for making a graph chordal

Any graph can be made chordal (in PTIME) by adding edges!
Procedure: Let an undirected graph G = (V, E) be given.
1. While V # {} do
1.1 Select a vertex v from V
1.2 Add E'(v) :={(u,w) | (u,v),(v,w) € E,(u,w) € E} to E
1.3 Remove v and all edges containing v from G

2. Return original G extended by all edges added in 1.2

0 Result depends on the elimination ordering for vertices

Vi, V2, V3, V4 Vo, V1, V3, Wa

! v2 vi v

v3 V4 v3 va

R / RQ

An algorithm for making a graph chordal

Any graph can be made chordal (in PTIME) by adding edges!
Procedure: Let an undirected graph G = (V, E) be given.
1. While V # {} do
1.1 Select a vertex v from V
1.2 Add E'(v) :={(u,w) | (u,v),(v,w) € E,(u,w) € E} to E
1.3 Remove v and all edges containing v from G

2. Return original G extended by all edges added in 1.2

0 Result depends on the elimination ordering for vertices

Vo, V3, V4 Vi, V3, V4
V2 %1
L4 o
—O0 o ——— o

v3 V4 v3 va

2 /EQ

An algorithm for making a graph chordal

Any graph can be made chordal (in PTIME) by adding edges!
Procedure: Let an undirected graph G = (V, E) be given.
1. While V # {} do

1.1 Select a vertex v from V
1.2 Add E'(v) := {(u,w) | (u,v),(v,w) € E,(u,w) € E} to E
1.3 Remove v and all edges containing v from G

2. Return original G extended by all edges added in 1.2

O Result depends on the elimination ordering for vertices

i V2 Vi v

v3 V4 v3 va

The two alternative chordal graphs are given above.

RA / RQ

What do we win with chordal graphs?

m We have argued that using cycles in non-chordal graphs
GEp(¢F) makes B; exponential.

m The number of simple chord-free cycles (triangles) is
polynomial (cubic) in the size of G§p(F).

m We know that triangles are sufficient for the generation of
transitivity constraints (in By).

m Consequently, the size of B; is polynomial in the size of

(because the size of Ghp(¢F) is polynomial in the size of F).

m B; may have new variables (from newly introduced edges).

EE /EQ

The reduction algorithm

From equality logic to propositional logic

Input: An already simplified equality formula ©f (in NNF)
Output: A propositional formula equi-satisfiable with &

1.

AR

Construct a Boolean formula e(¢f) by replacing any x; = x; in ©f
by a Boolean variable ¢; ;.

Construct the non-polar equality graph Gf,P(apE).
Make Ghp(F) chordal.
Set B; to true.

For each triangle (ei, €k, ex.;) in Gyp(F) do

B: = (eijAek— eik)A
(€ N ek — €i) A
(eik N ejk — eij) A B

Return e(¢f) A B:.

RA / RO

The reduction algorithm

From equality logic to propositional logic

Input: An already simplified equality formula ©f (in NNF)
Output: A propositional formula equi-satisfiable with &

E

1. Construct a Boolean formul>g§(F) by replacing any x; = x; in ¢

by a Boolean variable s

2. Construct the

B: = (eijAek— eik)A
(€ N ek — €i) A
(eik N ejk — eij) A B

6. Return e(pf) A B.

R7 / RQ

Literature

Different kinds of reduction have been developed

1. R. Bryant, M. Velev: Boolean Satisfiability with Transitivity
Constraints. CAV 2000, 85-98

2. R. Bryant, M. Velev: Boolean satisfiability with transitivity
constraints. ACM Trans. Comput. Log., 3(4):604-627. 2002

3. O. Meir, O. Strichman: Yet Another Decision Procedure for
Equality Logic. CAV 2005, 307-320

4. M. Rozanov, O. Strichman: Generating Minimum Transiti-

vity Constraints in P-time for Deciding Equality Logic. Electr.

Notes Theor. Comput. Sci. 198(2):3-17. 2008

RR /RO

Learning objectives

You

should be able to

explain the concepts of equality graphs, non-polar equality
graphs and chordal graphs and their use in the reduction,

construct such graphs from given E-formulas,

identify different kind of cycles in graphs,

simplify formulas,

perform correctness proofs for the simplification methods,
make a graph chordal,

apply the reduction.

5Q

14s}

	Basic Concepts
	Simplifying E-formulas
	Reduction of E-formulas to Propositional Formulas

