Mathematik 1 für Informatik und Wirtschaftsinformatik

halbwegs mitgeschrieben von Ondřej Hošek

29. Juni 2010

Inhaltsübersicht

- 1. Grundlagen
 - a) Aufbau des Zahlensystems
 - b) komplexe Zahlen
 - c) Zahlentheorie
 - d) Relationen
 - e) Funktionen
- 2. Diskrete Mathematik
 - a) Kombinatorik
 - b) Graphentheorie
 - c) Algebra
- 3. Lineare Algebra
 - a) Rechnen mit Vektoren, Matrizen
 - b) Determinanten
 - c) Lösen von linearen Gleichungssystemen
- 4. Folgen, Reihen und Funktionen
 - a) Grenzwerte
- 5. Differentialrechnung in einer Variablen
 - a) Differential quotient
 - b) Differentiationsregeln

1 Grundlagen

Mathematik: einerseits Logik (was betreibt man?), andererseits Mengenlehre (womit betreibt man es?)

1.1 Zahlen

1.1.1 Natürliche Zahlen

$$\mathbb{N} = \{0, 1, 2, 3, \dots\}$$

Peano-Axiome: Eine Menge \mathbb{N} heißt *Menge der natürlichen Zahlen*, wenn folgende Eigenschaften erfüllt sind:

- 1. 0 ist eine natürliche Zahl: $0 \in \mathbb{N}$
- 2. Jede natürliche Zahl $n \in \mathbb{N}$ hat genau einen Nachfolger $n' \in \mathbb{N}$.
- 3. 0 ist nicht Nachfolger einer natürlichen Zahl, d.h. $\nexists n \in \mathbb{N} : n' = 0$.
- 4. Verschiedene natürliche Zahlen besitzen verschiedene Nachfolger, d.h. $\forall m, n \in \mathbb{N} : m' = n' \Rightarrow m = n$.
- 5. Besitzt eine Teilmenge $S \subseteq \mathbb{N}$ die beiden Eigenschaften
 - a) $0 \in S$
 - b) mit jeder natürlichen Zahl $n \in S$ ist auch $n' \in S$, d.h. $\forall n \in \mathbb{N} : n \in S \Rightarrow n' \in S$, dann gilt $S = \mathbb{N}$ (Induktionsprinzip).

Rechenoperation: + definiert durch

$$n + 0 = n$$

$$n + 1 = n'$$

$$n + k' = (n + k)'$$

Beispiel:

$$n+3 = n+2'$$

$$= (n+2)'$$

$$= (n+1')'$$

$$= ((n+1)')'$$

$$= ((n')')'$$

$$= n'''$$

Rechenoperation: · definiert durch

$$n \cdot 0 = 0$$

$$n \cdot k' = (n \cdot k) + n$$

Ordnungsrelation: \leq "natürliche Ordnung" $0 \leq 1 \leq 2 \leq 3 \leq \dots$ (wir verwenden \leq als Ordnungsrelation, da sie im Gegensatz zu < reflexiv ist)

Beweisprinzip der vollständigen Induktion:

Beispiel:

$$1 = 12$$

$$1+3 = 22$$

$$1+3+5 = 32$$

2

Vermutung: Die Summe der ersten n ungeraden Zahlen ergibt n^2 , d.h. $S_n = 1 + 3 + 5 + \cdots + (2n-1) = n^2 \quad \forall n \in \mathbb{N}.$

$$S_0 = 0 = 0^2$$

 $S_1 = 1 = 1^2$

allgemeiner Schritt $n \to n+1$:

$$S_n = 1 + 3 + \dots + (2n - 1) = n^2$$

 $S_{n+1} = \underbrace{1 + 3 + \dots + (2n - 1)}_{n^2} + (2n + 1) = n^2 + (2n + 1)$

also

$$S_{n+1} = (n+1)^2$$

Satz (Prinzip der vollständigen Induktion): Gilt für eine Aussage $P(n), n \in \mathbb{N}$, dass:

- 1. P(0) wahr ist
- 2. $P(n) \Rightarrow P(n+1)$ für alle $n \in \mathbb{N}$

dann ist P(n) wahr für alle natürlichen Zahlen $n \in \mathbb{N}$.

Also:

$$P(0) \land (\forall n \in \mathbb{N} : P(n) \Rightarrow P(n+1)) \Rightarrow \forall n \in \mathbb{N} : P(n)$$

Bemerkungen:

- (1.) heißt Induktionsanfang
 - (2.) heißt Induktionsschritt (P(n): Induktionsvoraussetzung, P(n+1): Induktionsbehauptung)
- Statt P(0) auch beliebiger Induktionsanfang $P(n_0)$ möglich; P(n) gilt dann für alle $n \ge n_0$.
- Statt (2.) auch möglich: (2.') $P(0), P(1), \ldots, P(n) \Rightarrow P(n+1)$ für alle $n \in \mathbb{N}$

Beispiel 1: Behauptung $P(n): 0+1+2+\cdots+n=\frac{n(n+1)}{2} \quad \forall n \in \mathbb{N} \text{ bzw. } \sum_{k=0}^{n} k=\frac{n(n+1)}{2}$ **Beweis**:

- 1. Induktionsanfang n = 0: $0 = \frac{0.1}{2}$ OK
- 2. Induktionsschritt $n \to n+1$: Zu zeigen:

$$0+1+\dots+(n+1) = \frac{(n+1)(n+2)}{2}$$

$$P(n): 0+1+\dots+n = \frac{n(n+1)}{2} | + (n+1)$$

$$0+1+\dots+n+(n+1) = \frac{n(n+1)}{2} + (n+1)$$

$$0+1+\dots+n+(n+1) = \frac{n+1}{2}(n+2)$$

$$P(n+1): 0+1+\dots+n+(n+1) = \frac{(n+1)(n+2)}{2}$$

q.e.d.

Bespiel 2: Behauptung: $n^2 \ge n + 20$ für $n \ge 5$ Beweis durch vollständige Induktion:

1. $n = 5 : 25 \ge 5 + 20$ OK

2. $n \rightarrow n+1$: Zu zeigen:

$$(n+1)^{2} \geq (n+1) + 20$$

$$n^{2} \geq n + 20$$

$$(n+1)^{2} = n^{2} + 2n + 1 \geq (n+20) + \underbrace{2n}_{\geq 0} + 1 \geq n + 21$$

q.e.d.

Beispiel 3: Eine natürliche Zahl $n \geq 2$ heißt prim, wenn sie nicht als Produkt $n = r \cdot s$ mit $r, s \in \mathbb{N}, r < n, s < n$ darstellbar ist.

Behauptung: jede natürliche Zahl $n \geq 2$ ist entweder prim oder als Produkt endlich vieler Primzahlen darstellbar.

$$12 = 2^2 \cdot 3$$

Beweis durch vollständige Induktion:

- 1. Induktionsanfang: $n = 2 = 2^1$ prim. OK.
- 2. Induktionsschritt: $2, 3, \ldots, n \rightarrow n+1$
 - a) Induktionsbehauptung: n + 1 ist prim oder Produkt endlich vieler Primzahlen. Wir betrachten n + 1:
 - i. n+1 ist prim oder
 - ii. $n+1=r\cdot s$ mit r,s< n+1, also $r,s\leq n$ r und s sind entweder prim oder Produkt enzlich vieler Primzahlen. $\Rightarrow n+1$ ist wieder Produkt endlich vieler Primzahlen.

q.e.d

1.1.2 Ganze und rationale Zahlen

$$\mathbb{N} \cup \{-1, -2, \dots\} = \mathbb{Z}$$

$$\mathbb{Z} \cup \left\{ \frac{1}{2}, -\frac{3}{4}, \dots \right\} = \mathbb{Q}$$

$$\mathbb{Q} \cup \left\{ \sqrt{2}, \pi, e, 2\pi - \frac{1}{2}, \dots \right\} = \mathbb{R}$$

$$\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$$

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \dots\}$$

 $\mathbb Z$ ist die Menge der ganzen Zahlen. Hier gilt: a+x=b ist in $\mathbb Z$ stets lösbar: x=b-a

$$\mathbb{Q} = \left\{ \frac{a}{b} | a, b \in \mathbb{Z} \land b \neq 0 \right\}$$

4

 $\mathbb Q$ ist die Menge der rationalen Zahlen, wobei $\frac{a}{b} = \frac{c}{d} \Leftrightarrow a \cdot d = b \cdot c \to \text{Erweitern}$, Kürzen. In $\mathbb Q$ gilt: $a \cdot x = b$ ist $\forall a, b \in \mathbb{Q} \land a \neq 0$ stets lösbar: $x = \frac{b}{a} = b : a$

Behauptung: die Gleichung $x^2 = 2$ hat keine Lösung in \mathbb{Q} , d.h. $\sqrt{2} \notin \mathbb{Q}$.

Beweis: Angenommen, $\sqrt{2} = \frac{p}{q} \in \mathbb{Q}$ mit $p, q \in \mathbb{N} \setminus \{0\}$; p, q nicht beide gerade.

$$\Rightarrow p^2 = 2q^2 \Rightarrow p^2$$
 gerade, p gerade, also $p = 2 \cdot r, r \in N$

 $\Rightarrow p^2 = 2q^2 \Rightarrow p^2$ gerade, p gerade, also $p = 2 \cdot r, r \in N$ $\Rightarrow 4r^2 = 2q^2 \Rightarrow q^2 = 2r^2 \Rightarrow q^2$ gerade, q gerade. Widerspruch zu p, q nicht beide gerade. Also: $\sqrt{2} \notin \mathbb{Q}$.

1.1.3 Reele Zahlen

 \mathbb{R} =Menge der reellen Zahlen = Menge aller positiven und negativen, endlichen und unendlichen Dezimalzahlen.

$$\begin{array}{lll} 127,5 & = & 1\cdot 10^2 + 2\cdot 10^1 + 7\cdot 10^0 + 5\cdot 10^{-1} & \text{endliche Dezimalzahl} \\ \frac{5}{11} & = & 0,4545\cdots = 0,\overline{45} & \text{reinperiodische Dezimalzahl} \\ \frac{1}{12} & = & 0,0833\cdots = 0,08\dot{3} & \text{schlie}\\ \text{Slich periodische Dezimalzahl} \\ \sqrt{2} & = & 1,4142135\ldots & \text{nichtperiodische unendliche Dezimalzahl} \end{array}$$

Endliche und periodische Dezimalzahlen sind rational (\mathbb{Q}), nichtperiodische und unendliche Dezimalzahlen sind irrational (\mathbb{I}). Sowohl rationale als auch irrationale Zahlen sind reell (\mathbb{R}).

$$r \in \mathbb{R} \Rightarrow r = \pm c_k c_{k-1} \dots c_1 c_0, c_{-1} c_{-2} \dots$$

= $\pm \left(c_k 10^k + c_{k-1} 10^{k-1} + \dots + c_1 10 + c_0 + c_{-1} 10^{-1} + \dots \right)$
Dezimalentwicklung von r zu Basis 10 mit Ziffern $c_i = \{0, 1, \dots, 9\}$.

$$r \in \mathbb{R} : |r| = \begin{cases} r & r \ge 0 \\ -r & r < 0 \end{cases}$$
 Betrag von r

$$\lfloor r \rfloor = \max \{ k \in \mathbb{Z} | k \le r \} \text{ Ganzteil (floor)}$$

$$\{ r \} = r - \lfloor r \rfloor \text{ Bruchteil}$$

$$\Rightarrow r = \lfloor r \rfloor + \{ r \}$$

Rechnen in \mathbb{R} : Operationen + und · mit folgenden Eigenschaften:

1. Abgeschlossenheit: $\forall a, b$

$$a, b \in \mathbb{R} \quad \Rightarrow \quad a + b \in \mathbb{R}$$

 $\Rightarrow \quad a \cdot b \in \mathbb{R}$

2. Assoziativgesetze: $\forall a, b, c$

$$(a+b)+c = a+(b+c)$$
$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

3. Existenz von neutralen Elementen: $\forall a$

$$a+0=0+a = a$$
$$a \cdot 1 = 1 \cdot a = a$$

4. Existenz von inversen Elementen:

$$a + (-a) = (-a) + a = 0 \quad \forall a$$
$$a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1 \quad \forall a \neq 0$$

5. Kommutativgesetze: $\forall a, b$

$$\begin{array}{rcl} a+b & = & b+a \\ a \cdot b & = & b \cdot a \end{array}$$

6. Distributivgesetze: $\forall a, b, c$

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

 $(a+b) \cdot c = a \cdot c + b \cdot c$

 $(\mathbb{R},+,\cdot)$ bildet einen "Körper". Ferner gilt für die natürliche Ordnung \leq :

$$a \le b \implies a + c \le b + c$$

$$a \le b \implies \begin{cases} ac \le bc & c \ge 0 \\ ac \ge bc & c < 0 \end{cases}$$

Wie werden Zahlen im Computer dargestellt?

Basis b > 1: $r = \pm \left(c_k b^k + \dots + c_1 b + c_0 + c_{-1} b^{-1} + \dots \right)$ mit $0 \le c < b$ Darstellung im Computer:

$$r = \underbrace{\pm}_{\text{Vorzeichen}} \underbrace{0, d_1 \dots d_n}_{\text{Mantisse}} \mathbf{E} \underbrace{\pm e_1 \dots e_m}_{\text{Exponent}} \quad \text{(Gleitkomma-Darstellung)}$$
$$= \pm \left(d_1 b^{-1} + \dots + d_n b^{-n} \right) \cdot b^{\pm \left(e_1 b^{m-1} + \dots + e_m \right)}$$

Sei M die Menge der "Maschinenzahlen", abhängig von m, n, b. Achtung: $M \neq \mathbb{R}!$

1.1.4 Komplexe Zahlen

quadratische Gleichungen: $ax^2 + bx + c = 0 \Rightarrow x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$\Delta b^2 - 4ac > 0 \Rightarrow$$
 zwei reelle Lösungen
= 0 \Rightarrow eine reelle Lösung
< 0 \Rightarrow keine reelle Lösung (insbesondere $x^2 + 1 = 0$)

Menge der komplexen Zahlen $\mathbb{C} = \{(a,b)|a,b \in \mathbb{R}\} = \{a+b\imath|a,b \in \mathbb{R}\}$ mit $\imath^2 = -1$ $z = \underbrace{a}_{\text{Realteil }\Re(z)} + \underbrace{b}_{\text{Imaginärteil }\Im(z)} \imath$ (Elektrotechniker $a+b\jmath$, da i schon für Stromstärke reserviert)

 $\bar{z} = a - bi$ konjugiert komplexe Zahl

Gauß'sche Zahlenebene: zweidimensionale Ebene, horizontale Achse \Re , vertikale Achse \Im z=a+bi: kartesische Koordinaten

 $z = r(\cos(\phi) + i\sin(\phi)) = [r; \phi]$: Polarkoordinaten (r: Radius, $r \ge 0$; ϕ : Argument, $0 \le \phi < 2\pi$ oder $-\pi < \phi \le \pi$)

Zusammenhang zwischen kartesischen und Polarkoordinaten:

• $[r; \phi] \rightarrow (a; b)$:

$$a = r \cdot \cos(\phi)$$
$$b = r \cdot \sin(\phi)$$

• $(a;b) \rightarrow [r;\phi]$:

$$r = \sqrt{a^2 + b^2}$$
 $\phi = \arctan\left(\frac{b}{a}\right) \underbrace{\pm \pi}_{\text{je nach Quadrant}}$

Beispiele:

$$2i = (0; 2) = \left[2; \frac{\pi}{2}\right]$$

$$-1 + \sqrt{3}i = \left(-1; \sqrt{3}\right) = [?]$$

$$r = \sqrt{(-1)^2 + \sqrt{3}^2} = 2$$

$$\phi = \arctan\left(\frac{\sqrt{3}}{-1}\right) = -\frac{\pi}{3} + \pi = \frac{2\pi}{3}$$

$$-1 + \sqrt{3}i = \left[2; \frac{2\pi}{3}\right]$$

Rechnen mit komplexen Zahlen in kartesischen Koordinaten:

für

$$z_1 = a_1 + b_1 i$$

$$z_2 = a_2 + b_2 i$$

gilt

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2) i$$

 $z_1 \cdot z_2 = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1) i$

 $\Rightarrow (\mathbb{C},+,\cdot)$ bildet einen Körper, aber die Ordnung
 \leq geht verloren! **Multiplikation** in Polarkoordinaten:

$$z_{1} = r_{1} (\cos (\phi_{1}) + i \sin (\phi_{1}))$$

$$z_{2} = r_{2} (\cos (\phi_{2}) + i \sin (\phi_{2}))$$

$$\Rightarrow z_{1} \cdot z_{2} = r_{1} r_{2} (\cos (\phi_{1}) + i \sin (\phi_{1})) (\cos (\phi_{2}) + i \sin (\phi_{2}))$$

$$= r_{1} r_{2} \left(\underbrace{\cos (\phi_{1}) \cos (\phi_{2}) - \sin (\phi_{1}) \sin (\phi_{2})}_{\cos (\phi_{1} + \phi_{2})} + \underbrace{\left(\underbrace{\sin (\phi_{1}) \cos (\phi_{2}) + \cos (\phi_{1}) \sin (\phi_{2})}_{\sin (\phi_{1} + \phi_{2})}\right) i}_{i} \right)$$

also

$$[r_1; \phi_1] \cdot [r_2; \phi_2] = [r_1 r_2; \phi_1 + \phi_2]$$

Folgerungen:

$$1. \ z = [r;\phi] \neq 0 \Rightarrow z^{-1} = \left[\frac{1}{r};-\phi\right], \ \text{denn} \ z \cdot z^{-1} = [r;\phi] \cdot \left[\frac{1}{r};-\phi\right] = \left[\frac{r}{r};\phi-\phi\right] = [1;0] = 1$$

2.
$$z = [r; \phi] \Rightarrow z^n = [r^n; n \cdot \phi] \quad \forall n \in \mathbb{Z}$$

3. insbesondere für
$$r = 1$$
: $(\cos(\phi) + i\sin(\phi))^n = \cos(n\phi) + i\sin(n\phi) \quad \forall n \in \mathbb{Z}$ (Moivre'sche Formel)

Wurzelziehen in \mathbb{C} :

Sei $z = [R; \psi]$; gesucht wird $w \in \mathbb{C}$ mit $w^n = z$ (also $w = \sqrt[n]{z}$)

$$\Rightarrow w_k = \left\lceil \sqrt[n]{R}; \frac{\psi + 2k\pi}{n} \right\rceil \text{ mit } k = 0, 1, 2, \dots, n - 1$$

das sind n verschiedene nte Wurzeln von z in \mathbb{C} $(n \geq 1; z \neq 0)$

Bespiel:

$$w^{3} = 8 = [8; 0]$$

 $\Rightarrow w_{k} = \left[\sqrt[3]{8}; \frac{0 + 2k\pi}{3}\right] = \left[2; \frac{2k\pi}{3}\right] \quad k = 0, 1, 2$

also

$$w_{0} = [2; 0] = 2$$

$$w_{1} = \left[2; \frac{2\pi}{3}\right] = -1 + \sqrt{3}i$$

$$w_{2} = \left[2; \frac{4\pi}{3}\right] = -1 - \sqrt{3}i$$

$$w_{3} = \left[2; \frac{6\pi}{3}\right] = [2; 0] = w_{0}$$

Die nten Wurzeln einer Zahl z bilden immer ein gleichseitiges n-Eck auf Kreis mit Radius $\sqrt[n]{R}$. Fundamentalsatz der Algebra: Jede quadratische Gleichung $az^2 + bz + c = 0 \ (a \neq 0)$ ist in $\mathbb C$ lösbar und hat im Allgemeinen zwei Lösungen. Jede algebraische Gleichung $a_n z^n + a_{n-1} z^{n-1} + \cdots + a_{$ $a_1z + a_0 = 0$ von Grad $n \ge 1$ mit reellen oder komplexen Koeffizienten $a_0, a_1, \dots a_n \ (a_n \ne 0)$ besitzt in \mathbb{C} im Allgemeinen n Lösungen.

Es ist nicht möglich, Gleichungen mit Grad $n \geq 5$ mit einer Lösungsformel zu lösen.

1.2 Elementare Zahlentheorie

1.2.1 Teilbarkeit

Seien $a, b \in \mathbb{Z}$: $b|a \Leftrightarrow \exists c \in \mathbb{Z} : a = b \cdot c$, z.B. 2|6, 1|6, 6|6 $d = ggT(a, b) \iff d|a, d|b \wedge$

 $t|a,t|b \Rightarrow t|d$ triviale Teiler $t|a,t|b \Rightarrow t|d$ $\forall t$ (größter gemeinsamer Teiler) analog: kleinstes gemeinsames Vielfaches kgV(a,b)

 $ggT(a, b) \cdot kgV(a, b) = a \cdot b$

z.B. ggT(6, 10) = 2, kgV(6, 10) = 30

Wie kann der ggT effizient bestimmt werden?

Division mit Rest: $\forall a, b \in \mathbb{Z}, b > 0 : \exists q, r \in \mathbb{Z} : a = b \cdot q + r \text{ mit } 0 \leq r < b$

Am Computer: wir wählen $q = \lfloor \frac{a}{b} \rfloor$ und $r = a - b \cdot q$

Euklidischer Algorithmus:

$$a = b \cdot q_0 + r_0 \qquad 0 < r_0 < b$$

$$b = r_0 \cdot q_1 + r_1 \qquad 0 < r_1 < r_0$$

$$c = r_1 \cdot q_2 + r_2$$

$$\vdots$$

$$r_{k-2} = r_{k-1} \cdot q_k + r_k$$

$$r_{k-1} = r_k \cdot q_{k+1} + 0$$

letzter Rest $r_k \neq 0$ ist ggT(a, b)

Algorithmus terminiert stets, da $r_0 > r_1 > r_2 > \cdots > 0$.

Behauptung: $r_k = ggT(a, b)$

Beweis:

- 1. $r_k|r_{k-1} \Rightarrow r_k|r_{k-2} \Rightarrow \cdots \Rightarrow r_k|b, r_k|a$
- 2. angenommen, $t|a,t|b \Rightarrow t|r_0 \Rightarrow t|r_1 \Rightarrow \cdots \Rightarrow t|r_k$ q.e.d.

Beispiel:

$$ggT(59, 11) = ?$$

$$59 = 11 \cdot 5 + 4$$

$$11 = 4 \cdot 2 + 3$$

$$4 = 3 \cdot 1 + 1 = ggT(59, 11)$$

$$3 = 1 \cdot 3 + 0$$

$$1 = 4 - 3 \cdot 1$$

$$= 4 - (11 - 4 \cdot 2)$$

$$= 4 \cdot 3 - 11 \cdot 1$$

$$= (59 - 11 \cdot 5) \cdot 3 - 11 \cdot 1$$

$$= \underbrace{59}_{a} \cdot 3 - \underbrace{11}_{b} \cdot 16$$

$$= 3a - 16b$$

Satz: Es gilt stets $ggT(a,b) = e \cdot a + f \cdot b$ mit geeigneten Koeffizienten $e, f \in \mathbb{Z}$.

1.2.2 Primzahlen

 $p \ge 2$ heißt prim \Leftrightarrow es gilt nicht $p = r \cdot s$ mit $r < p, s < p \Leftrightarrow p$ besitzt nur triviale Teiler $\pm 1, \pm p$. Menge aller Primzahlen $\mathbb{P} = \{2, 3, 5, 7, 11, 13, \dots\}$

Behauptung: für $p \in \mathbb{P}$ gilt $p|ab \Rightarrow p|a$ oder p|b.

Beweis:

- 1. Fall: $p|a\checkmark$
- 2. Fall: $p \nmid a \Rightarrow ggT(a, p) = 1 \Rightarrow \exists e, f \in \mathbb{Z}$:

$$1 = e \cdot a + f \cdot p \quad | \cdot b$$

$$b = \underbrace{eab}_{p|\cdot} + \underbrace{fbp}_{p|\cdot}$$

 $\Rightarrow p|b$ q.e.d.

z.B.
$$60 = 2 \cdot 2 \cdot 3 \cdot 5 = 2^2 \cdot 3^1 \cdot 5^1$$

Satz (Fundamentalsatz der Zahlentheorie): Jede natürliche Zahl $n \geq 2$ lässt sich als Produkt von Primzahlen darstellen: $n = p_1 \cdot p_2 \cdot \cdots \cdot p_r$ mit $p_1, \ldots, p_r \in \mathbb{P}$. Diese Darstellung ist bis auf die Reihenfolge eindeutig.

Beweis:

- 1. Darstellung möglich: siehe Beispiel 3 in 1.1.
- 2. Eindeutigkeit: angenommen, $n=p_1\cdots p_r=q_1\cdots q_s$ mit $p_i,q_j\in\mathbb{P}.\Rightarrow p_1|q_1\cdots q_s\Rightarrow p_1|q_1$ oBdA [ohne Beschränkung der Allgemeinheit] $\Rightarrow p_1=q_1$.

$$p_2 \cdot \dots \cdot p_r = q_2 \cdot \dots \cdot q_s \Rightarrow p_2 | q_2 \Rightarrow p_2 = q_2$$

Schließlich folgt r = s und $p_1 = q_1, \dots, p_r = q_r$, d.h. Darstellung bis auf Reihenfolge eindeutig. q.e.d.

1.2.3 Kongruenzen und Restklassen

Seien $a, b \in \mathbb{Z}, m > 2$ Modul.

$$a \equiv b \mod 2 \Leftrightarrow m|a-b, \text{ d.h. } \exists q: a-b=q\cdot m$$

$$a \equiv b \mod 2 \Leftrightarrow m|a-b, \text{d.h. } \exists q: a-b=q \cdot m$$

$$\Leftrightarrow a = q_1 \cdot m + r$$

$$b = q_2 \cdot m + r$$

d.h. a und b besitzen bei Division durch m denselben Rest.

z.B.
$$12 \equiv 26 \mod 7$$
, kurz $12 \equiv_7 26$.

Rechnen mit Kongruenzen:

- 1. Addition: $a \equiv_m b \Rightarrow a + c \equiv_m b + c$
- 2. Multiplikation: $a \equiv_m b \Rightarrow a \cdot c \equiv_m b \cdot c$
- 3. Division: $a \cdot c \equiv_m b \cdot c$ und $ggT(c, m) = 1 \Rightarrow a \equiv_m b$

z.B.

$$12 \equiv_{7} 26| + 2 \Rightarrow 14 \equiv_{7} 28\checkmark$$

$$\cdot 3 \Rightarrow 36 \equiv_{7} 78\checkmark$$

$$: 2 \Rightarrow 6 \equiv_{7} 13\checkmark \text{ weil } ggT(2,7) = 1$$

Gleichungen mit Kongruenzen:

z.B.

$$2x \equiv_7 1$$
$$x = ?$$

Lemma: Zu $c \in \mathbb{Z}$ existiert ein $d \in \mathbb{Z}$ mit $c \cdot d \equiv_m 1 \Leftrightarrow \operatorname{ggT}(c, m) = 1$.

Beweis:

Hin-Richtung:

$$c \cdot d \equiv_m 1 \Rightarrow \exists q : cd - 1 = q \cdot m$$

 $cd - q \cdot m = 1 \Rightarrow ggT(c, m) = 1$

Zurück-Richtung:

$$ggT(c, m) = 1 \Rightarrow \exists d, e : c \cdot d + e \cdot m = 1$$

 $\Rightarrow c \cdot d \equiv_m 1$

z.B.

$$ggT(2,7): 7 = 2 \cdot 3 + 1 \implies 1 = 7 - 2 \cdot 3$$

 $2 = 1 \cdot 2 + 0 \qquad 1 \equiv_7 - 2 \cdot 3$
 $\Rightarrow x \equiv_7 - 3 \equiv_7 4$

Beweis der Division:

$$ac \equiv_m bc, ggT(c, m) = 1 \Rightarrow a \equiv_m b$$

 $\Rightarrow \exists d : c \cdot d \equiv_m 1$
 $a(cd) \equiv_m b(cd)$
 $a \cdot 1 \equiv_m b \cdot 1$ q.e.d.

Wir betrachten die Menge

$$\bar{a} = \{b \in \mathbb{Z} | a \equiv_m b\}$$
$$= \{a, a \pm m, a \pm 2m\}$$
$$= a + m\mathbb{Z}$$

Restklasse von amodulo m

also:

$$\overline{0} = \{m, 2m, 3m, \dots, 0, -m, -2m, \dots\}$$

$$\overline{1}, \overline{2}, \dots, \overline{m-1}$$

$$\mathbb{Z} = \overline{0} \cup \overline{1} \cup \overline{2} \cup \dots \cup \overline{m-1}$$

$$\mathbb{Z}_m = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{m-1}\}$$

 \mathbb{Z}_m ist die (endliche) Menge der Restklassen modulo m.

Prüfziffern zur Fehlererkennung:

ISBN: Internationale Standard-Buchnummer

z.B. ISBN 3 - 211 -82084 - 1 , allgemein:
$$a_1$$
- $a_2a_3a_4$ - $a_5a_6a_7a_8a_9$ - p . Früfziffer

Es muss gelten: $10a_1 + 9a_2 + 8a_3 + \cdots + 2a_1 + p \equiv_{11} 0 \text{ mit } p \in \{0, 1, 2, \dots, 9, X\}$

$$\Rightarrow p \equiv -10a_1 - 9a_2 - \dots - 2a_9$$
$$p \equiv WTF$$

z.B.:
$$p \equiv 1 \cdot 3 + 2 \cdot 2 + 3 \cdot 1 + 4 \cdot 1 + \dots + 9 \cdot 4 \equiv 166 \equiv_{11} 1$$

Satz: Jeder Fehler in einer Ziffer sowie alle Vertauschungen zweier Ziffern werden vom ISBN-Code erkannt.

Beweis:

1. Angenommen, zwei ISBN unterscheiden sich an einer Stelle:

$$a \dots a \dots$$
 $b \dots$
 \uparrow
 n

Angenommen, beide ISBN wären korrekt.

$$s + na \equiv s + nb$$
 $a, b \in \{0, 1, \dots, 9, X\}$
 $1 \le n \le 10$
 s restliche Summe

$$n(a - b) \equiv_{11} 0$$

$$\Rightarrow a - b \equiv_{11} 0$$

$$a \equiv_{11} b$$

$$\Rightarrow a = b$$

2. Angenommen, zwei ISBN unterscheiden sich durch Vertauschen zweier Ziffern:

1.3 Elementare Aussagenlogik

1.3.1 Aussagen und Prädikate

Aussage sprachlicher Ausdruck, der entweder wahr oder falsch sein kann, d.h. der einen Wahrheitswert in $\mathbb{B} = \{0, 1\}$ annehmen kann.

Prädikat Ausdruck der Form $P(x_1, x_2, ..., x_n)$, welcher variable $x_1, ..., x_n$ enthält und erst durch Einsetzen für diese Zahl ...

Beispiele für Aussagen:

- Die Erde ist ein Planet.
- 1+1=3
- Jede gerade Zahl, die größer als 2 ist, ist Summe zweier Primzahlen.

Beispiele für Prädikate:

- P(x): x ist ein Planet $x \in \{\text{Erde}, \text{Mond}, \text{Sonne}\}$
- Q(x): x ist eine Primzahl $x \subseteq \mathbb{N}$
- R(x,y): x ist kleiner als y $x,y \in \mathbb{R}$
- 1. Verknüpfung von Aussagen mittels Junktoren

$$a,b \text{ Aussagen:} \underbrace{\neg a}_{\text{Negation Konjunktion Disjunktion Implikation Äquivalenz}}, \underbrace{a \wedge b}_{\text{Negation Konjunktion Disjunktion Implikation Äquivalenz}}, \underbrace{a \wedge b}_{\text{Negation Konjunktion Disjunktion Implikation Äquivalenz}}$$

Definition mittels Wahrheitstafel: a b $\neg a$ $a \wedge b$ $a \vee b$ $a \rightarrow b$ $a \leftrightarrow b$ a b $a \wedge b$ $a \vee b$ $a \rightarrow b$ $a \leftrightarrow b$ a

-		U	-	-	-	
1	0	0	0	1	0	0
0	1	1	0	1	1	0
0	0	1	0	0	1	1

2. Binden von Variablen in Prädikaten mittels Quantoren

$$P(x)$$
 Prädikat : $\exists x : P(x), \forall x : P(x)$

Existenzquantor Allquantor

Paigraid: avasistallines Prädikat $P(x)$

Beispiel: zweistelliges Prädikat P(x,y): x < y für $x,y \in \mathbb{N}$

- $\forall x \exists y : P(x,y)$ wahre Aussage (z.B. y = x + 1)
- $\exists y \forall x : P(x,y)$ falsche Aussage (es gibt keine größte natürliche Zahl)
- $\exists x : P(x,y) = Q(y)$ neues (einstelliges) Prädikat z.B. Q(0) falsche Aussage, Q(1) wahre Aussage

1.3.2 Äquivalente Formeln

Es gilt:

 $\neg(a \wedge b)$ ist gleichbedeutend mit $(\neg a) \lor (\neg b)$

ist gleichbedeutend mit $(\neg a) \lor b$

ist gleichbedeutend mit $(a \to b) \land (b \to a)$ $a \leftrightarrow b$

Definition: Unter einer Formel der Aussagenlogik versteht man einen Ausdruck der Form $F(a, b, c, \dots)$, der sich aus Aussagevariablen a, b, c, \ldots und Junktoren in endlich vielen Schritten aufbauen lässt.

Beispiel: $F(a, b, c) = \neg(a \land b) \rightarrow c$ **Definition**: Eine Formel F heißt

1. gültig (Tautologie), falls F für jede Belegung der Aussagevariablen mit Werten aus $\mathbb B$ wahr ist

2. erfüllbar, falls F für mindestens eine solche Belegung wahr ist

3. unerfüllbar (Kontradiktion), falls F für jede solche Belegung falsch ist

Beispiele:

• $F(a,b) = (\neg a \rightarrow (a \rightarrow b))$ ist Tautologie:

	, ,	((//
a	b	$\neg a$	$a \rightarrow b$	$\neg a \to (a \to b)$
1	1	0	1	1
1	0	0	0	1
0	1	1	1	1
0	0	1	1	1

- $F(a) = a \vee \neg a$ ist Tautologie
- $F(a,b) = a \wedge b$ ist erfüllbar
- $F(a) = a \land \neg a$ ist Kontradiktion

Syntaktik versus Semantik

zum Beispiel $a \wedge b, b \wedge a$: semantisch äquivalent, syntaktisch unterschiedlich

Definition: seien F_1, F_2 Formeln. Dann gilt:

- 1. $F_1 \Leftrightarrow F_2$ (semantische oder mathematische Äquivalenz), wenn $F_1 \leftrightarrow F_2$ eine Tautologie ist, d.h. wenn die Formeln F_1, F_2 bei beliebiger Belegung ihrer Aussagevariablen entweder beide wahr oder beide falsch sind.
- 2. $F_1 \Rightarrow F_2$ (semantische oder mathematische Implikation), wenn $F_1 \to F_2$ eine Tautologie ist, d.h. dass immer dann, wenn F_1 wahr ist, auch F_2 wahr sein muss.

Beispiele:

- $a \wedge b \neq b \wedge a$, aber $a \wedge b \Leftrightarrow b \wedge a$
- $a \rightarrow b \Leftrightarrow \neg a \lor b$
- $a \to b \Rightarrow (a \lor c) \to (b \lor c)$, denn $(a \to b) \to ((a \lor c) \to (b \lor c))$ ist eine Tautologie
- Sätze der Aussagen- und Prädikatenlogik (siehe Tabelle auf der Homepage), z.B.
 - $-(a \wedge b) \wedge c \Leftrightarrow a \wedge (b \wedge c)$
 - $-a \wedge (b \vee c) \Leftrightarrow (a \wedge b) \vee (a \wedge c)$
 - $-a \wedge (a \vee b) \Leftrightarrow a \text{ (Verschmelzungsgesetz)}$
 - _ :

1.3.3 Mathematische Beweise

 \Leftrightarrow , \Rightarrow

mathematischer Satz:
$$\underbrace{F_1 \wedge F_2 \wedge \cdots \wedge F_n}_{\text{Voraussetzungen}} \Rightarrow \underbrace{G}_{\text{Behauptung}}$$
, kurz $F \Rightarrow G$

- 1. direkter Beweis: $F \to G$ ist Tautologie
- 2. indirekter Beweis:
 - a) $F \to G \Leftrightarrow \neg F \lor G \Leftrightarrow \neg (F \land \neg G)$, also $F \land \neg G$ ist Kontradiktion
 - b) $F \to G \Leftrightarrow \neg G \to \neg F$ (Kontraposition)
- 3. Beweis durch vollständige Induktion

Bemerkung: $F \Rightarrow G$: F ist hinreichend für G und G ist notwendig für F.

1.4 Mengen

Definition (Cantor, 1895): Eine Menge ist eine Zusammenfassung von wohl unterschiedenen Obekten unserer Anschauung unseres Denkens eines Ganzen.

Beispiele:

- Ø
- ASCII = $\{0, 1, \dots, 9, A, \dots, Z, a, \dots, z, +, \$, \dots\}$
- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_n, \mathbb{P} = \{2, 3, 5, \dots\} = \{x \in \mathbb{N} | x \text{ ist Primzahl}\}$
- $M = \{1, 1, 2, 2, 2, 3, 4, 4, \dots\}$ (Multimenge)

Rechnen mit Mengen:

- $x \in A, A \subseteq B, A \cup B, A \cap B, \bigcup_{i \in I} A_i, \bigcap_{i \in I} A_i, A \setminus B, A \triangle B, \overline{A}, A \times B$
- Potenzmenge $\mathcal{P}(A)=\{C|C\subseteq A\}$, z.B. $A=\{0,1\}\Rightarrow \mathcal{P}(A)=\{\varnothing,\{0\},\{1\},A\}$ $|A|=2\Rightarrow |\mathcal{P}(A)|=4=2^2$

Satz: Ist A endlich, so gilt $|\mathcal{P}(A)| = 2^{|A|}$.

Beweis durch vollständige Induktion nach n = |A|:

1.
$$n = 0 : A = \emptyset \Rightarrow \mathcal{P}(\emptyset) = \{\emptyset\}, |P(\emptyset)| = 1 = 2^{0} \checkmark$$

2.
$$n \to n+1$$
: also $A = \{a_1, \dots, a_{n+1}\}$. Zu zeigen: $|\mathcal{P}(A)| = 2^{n+1}$
 $\mathcal{P}(A) = \mathcal{P}(\{a_1, \dots, a_2\}) \cup \{A \cup \{a_{n+1}\} | A \subseteq \{a_1, \dots, a_n\}\}$
 $|\mathcal{P}(A)| = 2^n + 2^n = 2^{n+1}$ q.e.d.

- 1.4.1 ?
- 1.4.2 ?
- 1.4.3 ?

Graphische Darstellung von Halbordnungsrelationen:

R Halbordnungsrelation, G(R) zugehöriger Graph

- Weglassen von Schlingen
- Weglassen von Kanten gemäß der Transitivität
- Weglassen aller Orientierungen
- \rightarrow Hasse-Diagramm

Beispiele:

- $(P(\{0,1\}),\subseteq)$
- $A = \{a, b, c, d, e, f\}, x \le x \forall x, x \le a \forall x, e \le d, f \le d$
- $n \ge 1, T_n = \{m \in \mathbb{N} : m|n\} = \text{Menge aller positiven Teiler von } n \Rightarrow (T_n, |) \text{ ist Halbordnungsrelation, z.B. } T_{12} = \{1, 2, 3, 4, 6, 12\}$

1.4.4 Funktionen

Definition: Seien A, B nichtleere Mengen. Eine Funktion (Abbildung) $f: A \to B$ ist ein Tripel (A, B, R_f) wobei $R_f \subseteq A \times B$ eine Relation ist, bei der zu jedem $a \in A$ genau ein $b \in B$ mit $a R_f b$ existiert.

$$\begin{pmatrix}
\underline{A}, & \underline{B}, & \underline{R_f} \\
\text{Definitionsmenge Zielmenge, Wertemenge Graph der Funktion}
\end{pmatrix}$$
Schreibweise: $f: A \to B$ statt $R_f \subseteq A \times B$ und $f(\underbrace{a}) = b$ statt $(a, b) \in R_f$.

Argument, Urbild

 $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$

Definition: Eine Funktion $f: A \to B$ heißt

- 1. injektiv, wenn es zu jedem $b \in B$ höchstens ein $a \in A$ gibt mit f(a) = b (d.h. falls $a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2) \quad \forall a_1, a_2 \in A$; "kein Wert in B wird mehr als einmal getroffen")
- 2. surjektiv, wenn es zu jedem $b \in B$ mindestens ein $a \in A$ gibt mit f(a) = b ("jeder Wert in B wird mindestens einmal getroffen")
- 3. bijektiv, wenn es zu jedem $b \in B$ genau ein $a \in A$ gibt mit f(a) = b, also wenn f injektiv und surjektiv ist.

Beispiele:

- Studierende(r) \rightarrow Matrikelnummer (injektiv, da es für jede Matrikelnummer höchstens eine(n) Studierende(n) gibt; nicht surjektiv, da es unbelegte Matrikelnummern gibt)
- Studierende(r) → hauptgemeldete Universität (nicht injektiv, da eine Universität mehr als eine(n) Studierende(n) hat; surjektiv, da jede Universität mindestens eine(n) hauptgemeldete(n) Studierende(n) hat)
- Universität → Rektor (bijektiv)

- $f_1: \mathbb{R} \to \mathbb{R}, f_1(x) = x^2$ weder injektiv noch surjektiv
- $f_2: \mathbb{R}_0^+ \to \mathbb{R}, f_2(x) = x^2$ injektiv aber nicht surjektiv
- $f_3: \mathbb{R}_0^+ \to \mathbb{R}_0^+, f_3(x) = x^2$ bijektiv

Satz: Haben zwei endliche Mengen A, B gleich viele Elemente, dann sind für jede Funktion $f:A\to B$ folgende Bedingungen äquivalent:

- 1. f ist injektiv
- 2. f ist surjektiv
- 3. f ist bijektiv

Beweis: Seien $A = \{a_1, \dots, a_n\}, B = \{b_1, \dots b_n\}, |A| = |B| = n.$

- $1. \Rightarrow 2.$: sei f injektiv $\Rightarrow f(A) = \{f(a_1), f(a_2), \dots, f(a_n)\} \subseteq B$ und $|f(A)| = |B| = n \Rightarrow f(A) = 1$ B, d.h. f surjektiv
- 2. \Rightarrow 3.: sei f surjektiv, d.h. f(A) = B. Angenommen, f ist nicht injektiv, d.h. $\exists a_i \neq a_j$ mit $f(a_i) = f(a_i) \Rightarrow |f(A)| = |\{f(a_1), \dots, f(a_n)\}| \leq n - 1 < |B|$, Widerspruch zu f(A) = B, also ist f surjektiv und injektiv, damit bijektiv.
 - $3. \Rightarrow 1.: \text{klar. Q.E.D.}$

Zusammensetzung (Komposition) von Funktionen:

 $f: A \to B, g: B \to C$ Funktionen

 $f: A \to C \text{ mit } (g \circ f)(a) = g(f(a))$ betrachten q

 $\dot{\text{Funktionenkomposition}}$

z.B. $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$

inverse Funktion:

 $f: A \to B, f^{-1}B \to A$ heißt inverse Funktion von f, wenn $f^{-1} \circ f = \mathrm{id}_A$ und $f \circ f^{-1} = \mathrm{id}_B$ gilt $(id_A, id_B identische Abbildungen auf A bzw. B, d.h. <math>x \mapsto x)$

$$f^{-1} \circ f : A \to A = \mathrm{id}_A$$

 $f \circ f^{-1} : B \to B = \mathrm{id}_B$

Beispiel: $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^3 \Rightarrow f^{-1}: \mathbb{R} \to \mathbb{R}, x \mapsto \sqrt[3]{x}$ $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ hat keine f^{-1} !

Satz: Zu $f: A \to B$ existiert genau dann eine inverse Funktion $f^{-1}: B \to A$, wenn f bijektiv ist.

2 Diskrete Mathematik

 $diskret \neq kontinuierlich$

2.1 Kombinatorik

Kombinatorik = Theorie des Zählens

A endliche Menge: |A| = #A = Anzahl der Elemente von A

2.1.1 Grundaufgaben der Kombinatorik

1. Summerregel: gibt es m Elemente vom Typ A und n Elemente von Typ B, dann gibt es m+nMöglichkeiten, ein Element von Typ A oder B zu wählen: $|A \cup B| = |A| + |B|$, falls $A \cap B = \emptyset$. z. B. Autovermittlung: 5 VW + 3 Opel = 8 Autos zur Auswahl

- 2. Produktregel: unter den obigen Annahmen gibt es $m \cdot n$ Möglichkeiten, Elemente von Typ A und B zu kombinieren: $|A \times B| = |A| \cdot |B|$.
 - z. B. Computerprogramm für 4 verschiedene Betriebssysteme in 6 Benutzersprachen $\Rightarrow 24$ verschiedene Versionen
 - z. B. Anzahl der Binärfolgen der Länge $n: \underbrace{2 \cdot 2 \cdot \dots \cdot 2}_{n} = 2^{n}$
- 3. Gleichheitsregel: entsprechen die Typen A und B einander umkehrbar eindeutig, dann gibt es genauso viele Möglichkeiten, ein Element von Typ A auszuwählen wie für B.
 - d. h. $\exists f: A \to B \text{ bijektiv} \Rightarrow |A| = |B|$
 - z. B. Mächtigkeit der Potenzmenge $\mathcal{P}(A)$ für $A = \{a_1, a_2, \dots, a_n\}$

$$f: \mathcal{P}(A) \to \{0,1\}^n$$

$$B \subseteq A \mapsto (b_1, \dots, b_n) \text{ mit } b_i = \begin{cases} 0 & a_i \notin B \\ 1 & a_i \in B \end{cases}$$
 z. B. $\{a_1, a_3, a_4, a_n\} \mapsto (1, 0, 1, 1, 0, \dots, 0, 1)$
$$\Rightarrow |\mathcal{P}(A)| = |\{0,1\}^n| = 2^n \checkmark$$

Schreibweisen:

$$n! = \prod_{i=1}^{n} i = 1 \cdot 2 \cdot \dots \cdot n \text{ für } n \ge 1, 0! = 1$$

(nebenbei: 1000! hat 249 Nullen)

$$\underbrace{\binom{n}{k}}_{\text{praktischer}} = \underbrace{\frac{n \cdot (n-1) \cdot (n-k+1)}{k!}}_{\text{praktischer}} = \frac{n!}{k! \cdot (n-k)!} \text{ für } 1 \le k \le n, \binom{n}{0} = 1$$

z.B.

$$5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$$

$$\binom{5}{2} = \frac{5 \cdot 4}{2!} = 10$$

$$\binom{5}{3} = \frac{5 \cdot 4 \cdot 3}{3!} = 10$$

Grundlegende Anordnungs- und Auswahlprobleme:

Sei A eine Menge mit n Elementen (n-Menge).

1. Anordnungen ohne Einschränkungen sind geordnete k-Tupel (a_1, \ldots, a_k) von Elementen von A (Variationen mit Wiederholungen)

1. Platz	2. Platz	 k-ter Platz	$= n^k$ Möglichkeiten
n	n	n	— 11 Wognenkerten
		,	1 1

#Variationen mit Wiederholung: $\overline{V}_n^k = \left| A^k \right| = n^k$

- z. B. Fußballtoto: $A = \{1, 2, X\}, k = 12 \Rightarrow \overline{V}_3^{12} = 3^{12}$ Tipps
- 2. Anordnungen verschiedener Elemente sind geordnete k-Tupel (a_1, \ldots, a_k) verschiedener Elemente von A (Variationen ohne Wiederholungen)

17

1. Platz	2. Platz	 k-ter Platz	n!	Möglichkoiton
n	n-1	n-k+1	$\overline{(n-k)!}$	Möglichkeiten

#Variationen ohne Wiederholung:
$$V_n^k = n(n-1)\cdots(n-k+1) = \frac{n!}{(n-k)!}$$
 z. B. Alphabet $A=\{A,B,\ldots,Z\}$, #Wörter aus 4 verschiedenen Buchstaben: $V_{26}^4=26\cdot 25\cdot 24\cdot 23=358\,800$

3. Permutationen einer Menge A sind alle bijektiven Funktionen $\pi: A \neg A_i$, das sind alle möglichen Anordnungen der n Elemente von A.

#Permutationen
$$P_n = V_n^n = n \cdot (n-1) \cdots (n-n+1) = n!$$

z. B. 3 Gläser mit Bier, Schnaps, Wein; $A = \{B, S, W\} \Rightarrow BSW, BWS, SBW, SWB, WBS, WSB$
 $P_3 = 3! = 6$

4. Permutationen einer Multimenge (Permutationen mit Wiederholung) sind Anordnungen der

Elemente einer Multimenge
$$A = \left\{\underbrace{a_1, \dots, a_1}_{k_1}, \underbrace{a_2, \dots, a_2}_{k_2}, \dots, \underbrace{a_r, \dots a_r}_{k_r}\right\}, k_1 + k_2 + \dots + k_r = n$$

#Permutationen mit Wiederholung: $P_n^{k_1, \dots, k_r} = \frac{n!}{k_1! \cdot k_2! \cdot \dots k_r!}$

#R 3 Cläser mit Bier Bier Wein: $A = \{B, B, W\} \rightarrow BBW$ BWB WBB

- z. B. 3 Gläser mit Bier, Bier, Wein; $A=\{B,B,W\}$ \Rightarrow BBW,BWB,WBB $P_3^{2,1}=\frac{3!}{2!\cdot 1!}=\frac{6}{2}=3$
- 5. Auswahlen einer Teilmenge (Kombinationen ohne Wiederholungen) sind ungeordnete k-Tupel $\{a_1,\ldots,a_k\}$ verschiedener Elemente von A; das sind k-elementige Teilmengen von A.

#Kombinationen ohne Wiederholungen:
$$C_n^k = \frac{V_n^k}{k!} = \frac{n(n-1)\cdots(n-k+1)}{k!} = \binom{n}{k}$$

z.B. Lotto "6 aus 45":
$$C_{45}^6 = {45 \choose 6} = \frac{45 \cdot 44 \cdot 43 \cdot 42 \cdot 41 \cdot 40}{6!} = 8145060 \text{ Tipps}$$

6. Auswahlen einer Teilmultimenge (Kombinationen mit Wiederholungen) sind ungeordnete k-Tupel $\{a_1, \ldots, a_k\}$ von nicht notwendig verschiedenen Elementen von A; das sind k-elementige Teilmultimengen von A.

#Kombinationen mit Wiederholung:
$$\overline{C}_n^k = \binom{n+k-1}{k}$$

Beweis: o. B. d. A.
$$A = \{1, 2, ..., n\}$$

Kombination ohne Wiederholung:
$$\{a_1, \ldots, a_k\} \subseteq A$$
 mit $1 \le a_1 < a_2 < \cdots < a_k \le n$. $C_n^k = |\{(a_1, \ldots, a_k) | 1 \le a_1 < \cdots < a_k \le n\}| = \binom{n}{k}$

Kombination mit Wiederholung:
$$\{a_1, \ldots, a_k\} \subseteq A$$
 mit $1 \le a_1 \le a_2 \le \cdots \le a_k \le n$

Kombination mit Wiederholung:
$$\{a_1, \dots, a_k\} \subseteq A$$
 mit $1 \le a_1 \le a_2 \le \dots \le a_k \le n$ $\Leftrightarrow 1 \le \underbrace{a_1}_{b_1} < \underbrace{a_2 + 1}_{b_2} < \underbrace{a_3 + 2}_{b_3} < \dots < \underbrace{a_k + k - 1}_{b_k} \le n + k - 1$ $\Leftrightarrow 1 \le b_1 < b_2 < \dots < b_k \le n + k - 1$

$$\Leftrightarrow 1 \leq b_1 < b_2 < \dots < b_k \leq n+k-1$$

$$\rightarrow \overline{C}_n^k = |\{\{a_1, \dots, a_k\} \mid 1 \le a_1 \le a_2 \le \dots \le a_k \le n\}|$$

$$= \left| \left\{ \left\{ b_1, \dots, b_2 \right\} \middle| 1 \le b_1 < b_2 < \dots < b_k \le n + k - 1 \right\} \right|$$

$$= C_{n+k-1}^k = \binom{n+k-1}{k} \text{ q. e. d.}$$

z. B. #Würfe mit 3 Würfeln, falls man die Würfel nicht unterscheidet: $A = \{1, \dots 6\}, k = 3$

$$\overline{C}_6^3 = \begin{pmatrix} 6+3-1\\3 \end{pmatrix} = \begin{pmatrix} 8\\3 \end{pmatrix} = \frac{8\cdot 7\cdot 6}{3!} = 56$$

Zusammenfassung:

	Anordnungsprobleme	Auswahlprobleme	Anordnungs- und
			${f Auswahl probleme}$
	Permutationen	Kombinationen	Variationen
keine	$P_n = n!$	$C_n^k = \binom{n}{k}$ $= \frac{n \cdot (n-1) \cdot (n-k+1)}{n-k+1}$	$V_n^k = n \cdot (n-1) \cdots (n-k+1)$
Wiederholungen		$= \frac{n \cdot (n-1) \cdot (n-k+1)}{k!}$	
Wiederholungen	$P_n^{k_1,\dots,k_r} = \frac{n!}{k_1!\dots k_r!}$	$\overline{C}_n^k = \binom{n+k-1}{k}$	$\overline{V}_n^k = n^k$

2.1.2 Der binomische Lehrsatz

Binomialkoeffizienten: $\binom{n}{k}$ für $0 \le k \le n$

$$n = 0$$

$$n = 1$$

$$n = 2$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$\vdots$$

Pascal'sches Dreieck:

				1					1
			1		1				2
		1		2		1			4
	1		3		3		1		8
1		4		6		4		1	$16 = 2^4$
				:					

Satz: Für $0 \le k \le n$ gilt:

1.
$$\binom{n}{0} = \binom{n}{n} = 1$$

$$2. \binom{n}{k} = \binom{n}{n-k}$$

$$3. \binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

4.
$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$
 (Beweis siehe Übung)

Satz (binomischer Lehrsatz): Für $x,y\in\mathbb{C}$ und $n\in\mathbb{N}$ gilt $(x+y)^n=\sum_{k=0}^n\binom{n}{k}\cdot x^{n-k}\cdot y^k$. Beweis:

$$(x+y)^n = \underbrace{(x+y)(x+y)\cdots(x+y)}_{n \text{ Faktoren}}$$

= Summe von Produkten der Form x^ky^{n-k} $(k=0,\ldots,n)$

$$\begin{split} &\# \text{Produkt} = P_n^{k,n-k} = \frac{n!}{k! \cdot (n-k)!} = \binom{n}{k} \\ &\to (x,y)^n = \sum_{k=0}^n \binom{n}{k} \, x^k y^{n-k} = \sum_{k=0}^n \binom{n}{k} \, x^{n-k} y^k \text{ q. e. d.} \end{split}$$

2.2 Graphentheorie

2.2.1 ?

2.2.2 ?

2.2.3 Euler'sche und Hamilton'sche Linien

Definition: Eine Euler'sche Linie (EL) in einem Graphen G = (V, E) ist eine Kantenfolge in G, die alle Knoten und alle Kanten enthält, und zwar jede Kante genau $1 \times$. Eine Hamilton'sche Linie (HL) ist eine Kantenfolge in G, die alle Knoten genau $1 \times$ enthält (ausgenommen eventuell Anfangsknoten=Endknoten).

Beispiel: K_5 besitzt eine geschlossene EL (\rightarrow Euler'scher Graph) und eine geschlossene HL (\rightarrow Hamilton'scher Graph).

allgemein: Briefträgerproblem, Problem des Handlungsreisenden (traveling salesman problem)

Satz: Ein ungerichteter Graph G besitzt genau dann eine geschlossene EL, wenn G zusammenhängend ist und alle Knotengrade d(v) ($v \in V(G)$) gerade sind.

Beweis:

1. Sei G Euler'scher Graph, sei k geschlossene EL in G

 $\Rightarrow G$ ist zusammenhängend

 $v \in V$ beliebige Knoten: bei jedem Durchlauf durch v längs k entsteht ein Beitrag von 2 zu $d(v) \Rightarrow d(v)$ gerade

 $\Rightarrow G$ enthält geschlossene Kantenfolge und damit Kreis k_1

2 7

G' = (V, E') mit $E' = E \setminus k_1$ (entferne k_1 aus G)

d(v) gerade $\forall v \in V(G') = V'$

 $\Rightarrow G'$ enthält Kreis k_2 , usw.

Erhalten Kreise $k_1, k_2, k_3, \ldots, k_r$, welche durch geeignete Zusammensetzung eine geschlossene EL k bilden.

Beispiel: K_5 : $V = \{v_1, ..., v_5\}, d(v_i) = 4 \text{ gerade } \forall i$

 $k_1 = v_1 v_2 v_3 v_1$

 $k_2 = v_3 v_4 v_5 v_3$

 $k_3 = v_1 v_5 v_2 v_4 v_1$

 $\Rightarrow k = v_1 v_2 \underbrace{v_3 v_4 v_5 v_3}_{k_2} \underbrace{v_1 v_5 v_2 v_4 v_1}_{k_3} \text{ ist EL}.$

Beispiel: Brücken von Königsberg: alle Grade ungerade⇒ ∄EL

Bemerkung: G ungerichtet, G besitzt offene EL \Leftrightarrow genau 2 Knoten haben ungeraden Grad G gerichtet: G besitzt geschlossene EL \Leftrightarrow G ist schwach zusammenhängend, $d^+(v) = d^-(v) \quad \forall v \in V$ Es gibt (bislang) keine effiziente Lösung für das Finden einer Hamilton'schen Linie.

2.2.4 Netzwerke und Algorithmen

Wir betrachten ein Netzwerk (= bewerteter Graph): G = (V, E, w) mit Bewertungsfunktion $w : E \to \mathbb{R}$ (bspw. Entfernung, Kosten, Kapazität)

Beispiel: Eisenbahnnetz zwischen 5 Städten. Bewertung = Kosten für alle möglichen Verbindungen

```
V = \{a, b, c, d, e\}

w(E) = \{(ab, 4), (ac, 7), (ae, 11), (cd, 3), (ce, 10), (be, 10), (bd, 8), (de, 12)\}
```

Gesucht ist ein Eisenbahnnetz, an welches alle Städte angeschlossen sind, mit minimalen Errichtungskosten \rightarrow Minimalgerüst, minimaler spannender Baum (minimal spanning tree)

Definition: ein spannender Baum T eines schlichten, ungerichteten, zusammenhängenden Graphen G ist ein Baum mit $V(T) = V(G), E(T) \subseteq E(G)$. Ein Gerüst (oder spannender Wald) eines schlichten, ungerichteten Graphen G ist ein Wald W mit $V(W) = V(G), E(W) \subseteq E(G)$ und denselben Zusammenhangskomponenten wie G. Ist E bewertet, so nennt man ein Gerüst W ein Minimalgerüst, falls $w(W) = \sum_{e \in E(W)} w(e)$ minimal ist. Es müssen stets |E| - |V| + 1 Kanten entfernt werden.

Algorithmus von Kruskal zur Bestimmung eines Minimalgerüsts W eines ungerichteten, bewerteten Graphen G = (V, E, w)

- 1. Man nummeriert die Kanten $E=\{e_1,e_2,\dots\}$ nach steigendem Gewicht: $w\left(e_1\right)\leq w\left(e_2\right)\leq\cdots\leq w\left(e_m\right)$
- 2. Man setze $E' = \emptyset$
- 3. Für j := 1 bis m: Ist der Graph $(V, E' \cup \{e_j\})$ kreisfrei, so setze $E' := E' \cup \{e_j\}$.

 $\Rightarrow W = (V, E')$ ist Minimalgerüst von G. Abbruch in Schleife 3 möglich nach Auswahl von |V| - 1 Kanten (oder |V| - #Zusammenhangskomponenten Kanten, falls G nicht zusammenhängend).

Zurück	711m	Beispiel:
Zuruck	zum	Deispiei.

Zuruck zum beispiei.							
e	w(e)	E'	Partition				
			a b c d e				
cd	3	√	a b cd e				
ab	4	√	ab cd e				
ac	7	√	abcd e				
bd	8	X	abcd e				
be	10	√	abcde				
	Abbruch						
ce	10						
ae	11						
de	12						
/TT7	`\ 0.4						

w(W) = 24

Nun betrachten wir einen gerichteten oder ungerichteten, bewerteten Graphen mit Länge $w: E \to \mathbb{R}_0^+$. Die Länge einer Kantenfolge $e_1, e_2, \ldots, e_k: w\left(e_1e_2\ldots e_k\right) = \sum_{j=1}^k w\left(e_j\right)$. Distanz zwischen zwei Knoten v und w:

$$d(v,w) = \begin{cases} \text{minimale L\"ange einer KF von } v \text{ nach } w \\ \infty, \text{ falls keine KF von } v \text{ nach } w \text{ existert} \end{cases}$$

Gesucht: Distanz zwischen vorgegebenem Anfangs- und Endknoten \to Dijkstra-Algorithmus **Algorithmus von Dijkstra** zur Bestimmung aller Distanzen $d(v_0, v)$ von einem Knoten v_0 eines Netzwerks G = (V, E, w) mit nichtnegativer Bewertungsfunktion w.

- 1. Man setze $l\left(v_{0}\right)=0, l(v)=\infty$ für alle $v\neq v_{0}, U=\left\{v_{0}\right\}, u=v_{0}.$
- 2. Für alle Knoten $v \in V \setminus U$ mit $(u, v) \in E$:
 - a) Wenn l(v) > l(u) + w(u, v), dann setze l(v) = l(u) + w(u, v), p(v) = u

- 3. Man bestimme $m = \min_{v \in V \setminus U} l(v)$; falls $m = \infty$, dann ENDE. Man wähle einen Knoten $z \in V \setminus U$ mit l(z) = m und setze $U = U \cup \{z\}, u = z$.
- 4. Ist U = V, dann ENDE, sonst Fortsetzung bei 2.

Notizen:

- l(v) ist die Länge eines Weges von v_0 nach v.
- p(v) ist der Vorgänger von v.
- $V = U \cup (V \setminus U)$. U enthält am Anfang nur v_0 , wird aber immer größer; $V \setminus U$ wird immer kleiner.
- U enthält endgültig markierte Knoten, $l(v) = d(v_0, v)$.
- $V \setminus U$ enthält vorläufig markierte Knoten, $l(v) = \infty$ falls (bisher) kein Weg von v_0 nach v gefunden wurde.
- Rekonstruktion eines kürzesten Weges von v_0 nach $v: v, p(v), p(p(v)), \ldots, v_0$.

Beispiel:

$$G = (V = \{v_0, v_1, v_2, v_3, v_4, v_5\}, E \diamond w(E))$$

 $E \diamond w(E) = \{(v_0v_12), (v_0v_25), (v_1v_34), (v_1v_43), (v_3v_54), (v_4v_22), (v_4v_32), (v_4v_56)\}$. Gesucht: alle Distanzen von v_0 aus.

Initialisierung:
$$l(v_0) = 0, l(v_1) = \cdots = l(v_5) = \infty, U = \{v_0\}, u = v_0$$

1. Durchlauf:

- a) Nachkommen von $u = v_0 : v_1, v_2$
 - $l(v_1) = \min \{\infty, 0+2\} = 2$
 - $l(v_2) = \min \{\infty, 0+5\} = 5$

b)
$$m = 2, z = v_1, U = \{v_0, v_1\}, u = v_1$$

2. Durchlauf:

- a) Nachkommen von $u = v_1 : v_2, v_3, v_4$
 - $l(v_2) = \min\{5, 2+2\} = 4$
 - $l(v_3) = \min\{\infty, 2+4\} = 6$
 - $l(v_4) = \min\{\infty, 2+3\} = 5$

b)
$$m = 4, z = v_2, U = \{v_0, v_1, v_2\}, u = v_2$$

	v_0	v_1	v_2	v_3	v_4	v_5	Auswahl	Vorgänger
0	[0]	∞	∞	∞	∞	∞	v_0	X
1		[2]	5	∞	∞	∞	v_1	v_0
2			[4]	6	5	∞	v_2	v_1
3				6	[5]	∞	v_4	v_1
4				[6]		11	v_3	v_1
5						[10]	v_5	v_3

[d] = alle gesuchten Distanzen von v_0 aus (insbesondere Distanz $d(v_0, v_5) = 10$, kürzester Weg: $v_0v_1v_3v_5$).

2.3 Algebraische Strukturen

2.3.1 Binäre Operationen

z.B. Addition, Multiplikation in N

$$(3,7) \mapsto 3 + 7 = 10$$

 $3 \cdot 7 = 21$

Definition: Sei A Menge. Eine binäre Operation \circ auf A ist eine Abbildung \circ : $A \times A \to A$, die je zwei Elementen $a, b \in A$ ein Element $a \circ b \in A$ zuordnet. Das Paar (A, \circ) heißt eine algebraische Struktur oder ein Gruppoid.

Beispiele:

- $a+b, a\cdot b, a-b \text{ in } \mathbb{Q}, a^b \text{ in } \mathbb{R}^+$
- $A \cup B, A \cap B, A \triangle B$ in $\mathcal{P}(M)$
- $A = \mathbb{Z}_4, a \cdot b = a \cdot b \mod 4$:

		0	1	2	3	
	0	0	0	0	0	
Ì	1	0	1	2	3	(Operationstafel)
Ì	2	0	2	0	2	
Ì	3	0	3	2	1	

Mögliche Eigenschaften:

- 1. Assoziativgesetz: $a \circ (b \circ c) = (a \circ b) \circ c \quad \forall a, b, c$
- 2. Existenz eines neutralen Elementes $e: a \circ e = e \circ a = a \quad \forall a$
- 3. Existenz inverser Elemente a' zu a: $a \circ a' = a' \circ a = e$
- 4. Kommutativgesetz: $a \circ b = b \circ a \quad \forall a, b$

Beispiele:

- $+, \cdot$ in \mathbb{N} sind assoziativ und kommutativ
- \cup , \cap in $\mathcal{P}(M)$ sind assoziativ und kommutativ
- $(\mathbb{Z},+): e=0, a'=-a \quad \forall a$
- $(\mathbb{Z},\cdot): e=1, a'=\frac{1}{a}$ nur für a=1, a=-1
- $(\mathcal{P}(M), \triangle)$
 - assoziativ, kommutativ
 - $-\varnothing$ ist neutrales Element, denn $A\triangle\varnothing=A\quad\forall A$
 - $-A' = A \quad \forall A, \text{ denn } A \triangle A = \emptyset$

Satz: In einem Gruppoid (A, \circ) existiert höchstens ein neutrales Element. Ist \circ assoziativ, gibt es höchstens ein inverses Element a' zu jedem a.

23

Beweis:

• Angenommen, e_1, e_2 sind neutrale Elemente. $e_1 = e_1 \circ e_2 = e_2$.

• Angenommen, a', a'' invers zu a. $a' = a' \circ e = a' \circ (a \circ a'') = (a' \circ a) \circ a'' = e \circ a'' = a''$.

Operationen können auch mehrstellig sein: $\circ : \underbrace{A \times A \times \cdots \times A}_{n} \to A$ n-stellige Operation $(n \ge 0)$.

$$\circ(a,b,c)$$

Eine Menge A zusammen mit einem oder mehreren Operatoren $\circ, *, \ldots$ heißt algebraische Struktur oder $Algebra: (A; \circ, *, \ldots)$

z.B.
$$\left(\mathbb{Z}, \underbrace{+, \cdot}, \underbrace{-}, \underbrace{0, 1}_{\text{binär einstellig nullstellig}}\right)$$

2.3.2 Gruppen

Definition: Ein Gruppoid (A, \circ) heißt:

- 1. Halbgruppe, wenn \circ assoziativ ist
- 2. Monoid, wenn o assoziativ ist und ein neutrales Element besitzt
- 3. Gruppe, wenn o assoziativ ist, ein neutrales Element und zu jedem Element ein inverses Element besitzt. Ist o außerdem kommutativ, so spricht man von einer kommutativen oder Abel'schen Gruppe.

Beispiele:

- (\mathbb{N}, \circ) mit $a \circ b = a^b$ ist ein Gruppoid, aber $\left(a^b\right)^c \neq a^{(b^c)}$.
- $(\mathbb{N} \setminus \{0\}, +)$ ist eine Halbgruppe.
- $(\mathbb{N}, +), (\mathbb{N}, \cdot)$ sind Monoide (aber keine Gruppen).
- $(\mathbb{Z}, +), (\mathbb{Q} \setminus \{0\}, \cdot)$ sind Gruppen.
- $(\mathcal{P}(M), \triangle)$ ist eine Gruppe.
- (G, \circ) Gruppoid
- + assoziativ: Halbgruppe
- + neutrales Element e: Monoid
- + inverse Elemente a' zu a: Gruppe
- + kommutativ: kommutative Gruppe (Abel'sche Gruppe)

weitere Beispiele:

• sei Σ Menge (Alphabet). Σ^* = Menge aller endlichen Wörter über Σ , d.h. $x_1x_2...x_n$ mit $x_1 \in \Sigma$, sowie das "leere Wort" ϵ .

24

- $z.B. \Sigma = \{a, b\} \Rightarrow \Sigma^* = \{\epsilon, a, aa, aaa, \dots, b, bb, bbb, \dots, ab, aba, \dots\}$
- $-(\Sigma^*, \circ)$ mit $w_1 = x_1, x_2, \dots x_k; w_2 = y_1, y_2, \dots, y_l \Rightarrow w_1 \circ w_2 = x_1 x_2 \dots x_k y_1 y_2 \dots y_l$ ist ein Monoid (das sogenannte freie Monoid über Σ).
- betrachte Funktionen $f: A \to A$ auf einer Menge A.
 - Funktionenkomposition $\circ: A \xrightarrow{g} A \xrightarrow{f} A \equiv A \xrightarrow{g \circ f} A \text{ mit } (f \circ g)(a) = f(g(a))$
 - $-F_A = \{f: A \to A\}$ Menge aller Funktionen auf A.
 - * \circ ist assoziativ, d. h. $f \circ (g \circ h) = (f \circ g) \circ h$, denn $(f \circ (g \circ h))(a) = f((g \circ h)(a)) = f((g \circ h)(a))$ f(g(h(a))) und $((f \circ g) \circ h)(a) = (f \circ g)(h(a)) = f(g(h(a))) \quad \forall a$
 - $* \Rightarrow (F_A, \circ)$ ist Halbgruppe, genannt symmetrische Halbgruppe von A
 - $-S_A = \{f: A \to A \,|\, f \text{ bijektiv}\}$: Menge der Permutationen² auf A
 - * $f, g \in S_A \to f \circ g \in S_A$, $id \in S_A$, $f^{-1} \in S_A$ $(\forall a : id(a) = a)$
 - $* \Rightarrow (S_A, \circ)$ Gruppe, genannt symmetrische Gruppe von A

Betrachten speziell alle Permutationen auf $A = \{1, 2, ..., n\}$.

- $\pi: \{1, 2, ..., n\} \to \{1, 2, ..., n\}$ bijektiv.
- S_n = symmetrische Gruppe auf $\{1, 2, \dots, n\}$. $|S_n|$ Ordnung der symmetrischen Gruppe

z.B.

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 5 & 1 & 6 & 3 \end{pmatrix} \in S_{6}$$

$$\rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 3 & 6 & 1 & 5 \end{pmatrix} \in S_{6}$$

$$\pi \circ \rho : \{1, \dots, 6\} \xrightarrow{\rho} \{1, \dots, 6\} \xrightarrow{\pi} \{1, \dots, 6\}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 5 & 3 & 4 & 6 \end{pmatrix} \in S_{6}$$

$$\rho \circ \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 1 & 2 & 5 & 3 \end{pmatrix} \in S_{6}$$

$$id = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 1 & 2 & 5 & 6 \end{pmatrix}$$

$$\pi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$$

$$\pi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 6 & 1 & 3 & 5 \end{pmatrix}$$

- $\Rightarrow S_6$ ist eine nicht-kommutative Gruppe
- neue Schreibweise für Permutationen

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 5 & 1 & 6 & 3 \end{pmatrix}$$

¹Monoid ohne zusätzliche Beschränkungen

 $^{^{2}}$ Permutation \equiv bijektive Funktion

 π enthält drei Zyklen: $\begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 3 & 5 & 6 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix}$. Allgemeiner Zyklus: $(a_1 a_2 a_3 \dots a_n)$ heißt $a_1 \rightarrow a_2, a_2 \rightarrow a_3, \dots, a_n \rightarrow a_1$. $\begin{pmatrix} 2 \end{pmatrix}$ ist ein *Fixpunkt*, wird also nicht angeschrieben. $\pi = \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 3 & 5 & 6 \end{pmatrix}$. Dies ist die *Zyklenschreibweise*.

Satz: Jede Permutation $\pi \in S_n$ kann als Produkt von elementfremden Zyklen geschrieben werden. Ferner gilt für jeden Zyklus $\begin{pmatrix} a_1 & \dots & a_m \end{pmatrix} = \begin{pmatrix} a_1 & a_2 \end{pmatrix} \cdot \begin{pmatrix} a_2 & a_3 \end{pmatrix} \dots \begin{pmatrix} a_{n-1} & a_n \end{pmatrix}$, d.h. jeder Zyklus und damit jede Permutation kann als Produkt von Zyklen der Länge 2 geschrieben werden.

Ein Zyklus der Länge 2 ist eine Transposition.

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 5 & 1 & 6 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 3 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 3 & 5 \end{pmatrix} \begin{pmatrix} 5 & 6 \end{pmatrix}
\rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 3 & 6 & 1 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 & 6 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix} \begin{pmatrix} 4 & 6 \end{pmatrix} \begin{pmatrix} 6 & 5 \end{pmatrix}
\Rightarrow \pi\rho = \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 3 & 5 \end{pmatrix} \begin{pmatrix} 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix} \begin{pmatrix} 4 & 6 \end{pmatrix} \begin{pmatrix} 6 & 5 \end{pmatrix}
= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 5 & 3 & 4 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 5 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 5 \end{pmatrix} \begin{pmatrix} 5 & 4 \end{pmatrix}$$

Es gilt: Jede Permutation kann entweder nur in eine gerade Anzahl oder in eine ungerade Anzahl von Transpositionen zerlegt werden.

on Transpositionen zeriegt werden.
$$S_n = \underbrace{A_n} \cup \underbrace{\left(S_n \setminus A_n\right)}_{\text{ungerade Permutationen}}$$
. Es gibt $\frac{n!}{2}$ gerade und $\frac{n!}{2}$ ungerade Permutationen in

Beispiele für Permutationsgruppen:

- Symmetriegruppe eines gleichseitigen Dreiecks
 - Drehungen: $\rho_0 = (1) = id$, $\rho_1 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$, $\rho_2 = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$
 - Spiegelungen: $\sigma_1 = \begin{pmatrix} 2 & 3 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 1 & 3 \end{pmatrix}, \sigma_3 = \begin{pmatrix} 1 & 2 \end{pmatrix}$
 - $\to \{\rho_0, \rho_1, \rho_2, \sigma_1, \sigma_2, \sigma_3\} = S_3$
- Gruppe von zwei Drehungen und zwei Spiegelungen eines Quadrats

$$-\rho_0 = (1), \rho_1 = \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix}$$

$$-\sigma_1 = \begin{pmatrix} 2 & 4 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 1 & 3 \end{pmatrix}$$

$$- \rightarrow \{\rho_0, \rho_1, \sigma_1, \sigma_2\} = V_4$$
 (Klein'sche Vierergruppe)

Grundbegriffe der Gruppentheorie

Gruppe (G, \cdot)	Operation: Multiplikation
	neutrales Element: e
	a^{-1} inverses Element zu a

Definition: Eine Teilmenge $U \subseteq G$ einer Gruppe (G, \cdot) heißt Untergruppe, falls (U, \cdot) selbst Gruppe ist.

Schreibweise: $(U, \cdot) \leq (G, \cdot), U \leq G$

z.B. $(\mathbb{Q} \setminus \{0\}, \cdot)$ Gruppe, $\mathbb{Q}^+ \leq \mathbb{Q} \setminus \{0\}$ Untergruppe, $\mathbb{Z} \setminus \{0\} \not\leq \mathbb{Q} \setminus \{0\}$ keine Untergruppe.

U impliziert automatisch eine Klassenunterteilung von G.

$$U \leq (G, \cdot), a \in G$$

 $aU = \{a \cdot u \mid u \in U\}$ Linksnebenklasse (LNK) von U in G

 $Ua = \{u \cdot a \mid u \in U\}$ Rechtsnebenklasse (RNK) von U in G

Es gilt: die Menge aller LNK bildet eine Partition von G, genannt LNK-Zerlegung von G in U. (analog für RNK)

$$G$$
 endlich, $G:U$ = $\#$ LNK = $\#$ RNK

Satz (von Lagrange): Ist G eine endliche Gruppe und $U \leq G$, so gilt $|G| = |G:U| \cdot |U|$, d. h. die Ordnung |U| jeder Untergruppe einer endlichen Gruppe ist stets Teiler der Gruppenordnung G.

Beispiel für Boole'sche Algebra: $(\mathcal{P}(M), \cup, \cap,', \varnothing, M)$. Jede endliche Boole'sche Algebra sieht so aus (und hat damit immer 2^n Elemente).

3 Lineare Algebra

3.1 Vektoren

skalare \neq vektorielle Größen

3.1.1 Vektorräume

Ebene:
$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$$
 = $\left\{ \overrightarrow{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mid x_1, x_2 \in \mathbb{R} \right\}$
Raum: $\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ = $\left\{ \overrightarrow{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mid x_1, x_2, x_3 \in \mathbb{R} \right\}$
Allgemein: $\mathbb{R}^n = \underbrace{\mathbb{R} \times \dots \times \mathbb{R}}_n$ = $\left\{ \overrightarrow{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mid x_1, \dots, x_n \in \mathbb{R} \right\}$

$$\overrightarrow{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 Spaltenvektor, $\overrightarrow{x} = (x_1, \dots, x_n)$ Zeilenvektor

 K^n , wo K beliebiger Körper ist (zumeist \mathbb{R} oder \mathbb{C})

K: Skalare

 K^n : Vektoren

Wie rechnet man mit Vektoren?

• Addition von Vektoren:
$$\overrightarrow{x}$$
, $\overrightarrow{y} \in K^n \Rightarrow \overrightarrow{x} + \overrightarrow{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$

• Nullvektor
$$\overrightarrow{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \in K^n : \overrightarrow{x} + \overrightarrow{0} = \overrightarrow{0} + \overrightarrow{x} = \overrightarrow{x} \quad \forall \overrightarrow{x}$$
 – neutrales Element der Vektoraddition

• inverser Vektor
$$-\overrightarrow{x} = \begin{pmatrix} -x_1 \\ \vdots \\ -x_n \end{pmatrix} : \overrightarrow{x} + (-\overrightarrow{x}) = \overrightarrow{0}$$

 $\Rightarrow (K^n, +)$ ist eine kommutative Gruppe

• Multiplikation mit einem Skalar:

$$\overrightarrow{x} \in K^n, \lambda \in K \to \lambda \cdot \overrightarrow{x} = \lambda \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda \cdot x_1 \\ \vdots \\ \lambda \cdot x_n \end{pmatrix} \in K^n$$

effektiv: Streckung oder Stauchung, gegebenenfalls mit Richtungsänderung **Beispiel**: Geradengleichung in Parameterform $g: \overrightarrow{x'} = \overrightarrow{x'_0} + \lambda \cdot \overrightarrow{v'}, \lambda \in \mathbb{R}$

Definition: Ein Vektorraum (V, +, K) über einem Körper K besteht aus einer Menge V von Vektoren, einer Addition + auf V, sowie einer Abbildung $\cdot : K \times V \to V$ (Multiplikation von Vektoren mit Skalaren), so dass gilt:

1. (V, +) ist kommutative Gruppe

2.
$$\forall \overrightarrow{x}, \overrightarrow{y} \in V; \lambda, \mu \in K$$

a)
$$\lambda \cdot (\overrightarrow{x} + \overrightarrow{y}) = \lambda \cdot \overrightarrow{x} + \lambda \cdot \overrightarrow{y}$$

b)
$$(\lambda + \mu) \cdot \overrightarrow{x} = \lambda \overrightarrow{x} + \mu \overrightarrow{x}$$

c)
$$(\lambda \mu) \overrightarrow{x} = \lambda (\mu \overrightarrow{x})$$

d)
$$1 \cdot \overrightarrow{x} = \overrightarrow{x}$$

V Vektoren, K Skalare (zumeist $K=\mathbb{R},\mathbb{C},\mathbb{Z}_2,$ endliche Körper)

Beispiele:

• \mathbb{R}^2 , \mathbb{R}^3 Ebene, Anschauungsraum

•
$$(\mathbb{R}^4, +, \mathbb{R})$$
 analog $\mathbb{C}^4, \mathbb{Z}_2^4$

•
$$V = \mathbb{R}^2, W = \left\{ \overrightarrow{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 | x_1 = x_2 \right\}$$

– dies ist auch ein Vektorraum, denn
$$\overrightarrow{x} + \overrightarrow{y} = \begin{pmatrix} x \\ x \end{pmatrix} + \begin{pmatrix} y \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ x+y \end{pmatrix} \in W$$
 und $\lambda \overrightarrow{x} = \lambda \begin{pmatrix} x \\ x \end{pmatrix} = \begin{pmatrix} \lambda x \\ \lambda x \end{pmatrix} \in W$

•
$$V = \mathbb{R}^3, U = \left\{ \overrightarrow{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 | x_1 + x_2 + x_3 = 0 \right\}$$
 ist ebenfalls ein Vektorraum (U ist eine Ebene in \mathbb{R}^3 durch den Ursprung)

• Sei $F(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R}\}$ Menge aller vollwertigen Funktionen auf \mathbb{R} . $(F(\mathbb{R}), +, \mathbb{R})$ ist ein Vektorraum mit:

$$- (f \underbrace{+}_{\text{neu definiert in } F(\mathbb{R})} g)(x) = f(x) \underbrace{+}_{\text{in } \mathbb{R}} g(x) \quad \forall x \in \mathbb{R}$$
$$- (\lambda \cdot f)(x) = \lambda \cdot f(x) \quad \forall x$$

Definition: Sei (V, +, K) ein Vektorraum und $U \subseteq V$. U heißt Unterraum von V, wenn (U, +, K) ebenfalls Vektorraum ist. Für jedes $\overrightarrow{x_0} \in V$ heißt $\overrightarrow{x_0} + U = N$ ein Nebenraum von U.

Beispiel:

- $W \subseteq \mathbb{R}^2, U \subseteq \mathbb{R}^3$ siehe oben.
- Gerade: $g: \overrightarrow{x} = \overrightarrow{x_0} + \lambda \cdot \overrightarrow{v}, \lambda \in \mathbb{R}$ $\{\overrightarrow{x} = \overrightarrow{x_0} + \lambda \cdot \overrightarrow{v} | \lambda \in \mathbb{R}\} = \overrightarrow{x_0} + \{\lambda \cdot \overrightarrow{v} | \lambda \in \mathbb{R}\}$
- $P_n(\mathbb{R}) = \{p = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 | a_n, \dots, a_0 \in \mathbb{R}\}$ (Menge aller Polynome von Grad $\leq n$)

 $P_n(\mathbb{R}) \leq F(\mathbb{R}); (P_n(\mathbb{R}), +, \mathbb{R})$ ist selbst ein Vektorraum

Man betrachte die Vektoren $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n} \in V$ und die Skalare $\lambda_1, \lambda_2, \dots, \lambda_n \in K$ in einem Vektoraum (V, +, K). Nun bilde man $\overrightarrow{v} = \lambda_1 \overrightarrow{v_1} + \lambda_2 \overrightarrow{v_2} + \dots + \lambda_n \overrightarrow{v_n} \in V$. Dies ist eine *Linearkombination* (LK) der Vektoren $\overrightarrow{v_1}, \dots, \overrightarrow{v_n}$.

Sei $M \subseteq V$. [M], die *lineare Hülle* von M, ist die Menge aller Linearkombinationen von Vektoren aus M.

$$[M] = \{ \overrightarrow{v} = \lambda_1 \overrightarrow{v_1} + \dots + \lambda_n \overrightarrow{v_n} | \overrightarrow{v_1}, \dots, \overrightarrow{v_n} \in M; \lambda_1, \dots, \lambda_n \in \mathbb{R}; n \in \mathbb{N} \}$$
 insbesondere $[\varnothing] = \{ \overrightarrow{0} \}$

 $M \subseteq [M] \leq V$. [M] ist der kleinste Unterraum von V, der M enthält.

z.B. $M = \{\overrightarrow{v}, \overrightarrow{w} | \overrightarrow{v} \not | \overrightarrow{w}\} \subseteq \mathbb{R}^2$, $[M] = \{\lambda \overrightarrow{v} + \mu \overrightarrow{w} | \lambda, \mu \in \mathbb{R}\}$ – Menge aller Ebenen durch den Ursprung mit den Richtungsvektoren $\overrightarrow{v}, \overrightarrow{w}$

3.2 Matrizen

3.2.1 ?

 $A \in K^{m \times n}$, A + B Gruppe (jedenfalls für m = n), $(A + B, A \cdot B)$ Ring (nicht unbedingt kommutativ, nicht ??? frei!)

3.2.2 Invertierbare Matrizen

$$(K^{n \times n}, +, \cdot) \text{ Ring mit Einselement } I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

Frage: Gibt es (manchmal) auch inverse Matrizen?

Definition: Eine $n \times n$ -Matrix $A \in K^{n \times n}$ heißt inventierbar (auch: nicht singulär, regulär), falls es eine Matrix $A^{-1} \in K^{n \times n}$ gibt, sodass $A \cdot A^{-1} = A^{-1} \cdot A = I_n$. A^{-1} heißt dann inverse Matrix zu A.

Beispiele:

•
$$A = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix} \to A^{-1} = \begin{pmatrix} 2 & -3 \\ -3 & 5 \end{pmatrix} \operatorname{denn} A \cdot A^{-1} = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 2 & -3 \\ -3 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \operatorname{und} A^{-1} \cdot A = \begin{pmatrix} 2 & -3 \\ -3 & 5 \end{pmatrix} \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

•
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
 ist singulär, denn $A \cdot B = I_2 : \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} : \begin{pmatrix} a+c & b+d \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ ist unlösbar!

•
$$I_n^{-1} = I_n$$

Es gilt: A, B invertierbar $\Rightarrow A \cdot B$ ebenfalls invertierbar, und $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$. A^{\top} ist ebenfalls invertierbar und $(A^{\top})^{-1} = (A^{-1})^{\top}$.

 \Rightarrow ({ $A \in K^{n \times n} | A \text{ invertierbar} \}$, ·) ist eine Gruppe (allgemeine lineare Gruppe GL(n)) Wie erkennt man, ob A invertierbar ist? Wie berechnet man A^{-1} ?

• Bei einer
$$2 \times 2$$
-Matrix: $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow A^{-1} = \frac{1}{a \cdot d - b \cdot c} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

3.2.3 Rang einer Matrix und elementare Umformungen

Sei
$$A \in K^{m \times n} : A = (\overrightarrow{s_1}, \overrightarrow{s_2}, \dots, \overrightarrow{s_n}) = \begin{pmatrix} \overrightarrow{z_1} \\ \overrightarrow{z_2} \\ \vdots \\ \overrightarrow{z_m} \end{pmatrix}$$
 wo $\overrightarrow{s_i}$ Spaltenvektoren und $\overrightarrow{z_j}$ Zeilenvektoren.

Definition: Der Spaltenrang von rg(A) einer Matrix $A \in K^{m \times n}$ ist die Anzahl der linear unabhängigen Spalten von A; das ist zugleich die Dimension der linearen Hülle der Spalten von A. Analog ist der Zeilenrang von A definiert.

Es gilt stets: Zeilenrang = Spaltenrang.

Beispiel:
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$
, $rg(A) = 1$. $I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$, $rg(I_n) = n$.

Lemma: $\operatorname{rg}(A \in K^{m \times n}) \leq \min\{m, n\}$

Betrachten folgende Spalten- beziehungsweise Zeilenumformungen von Matrizen:

- "elementare Spaltenumformungen":
 - 1. Multiplikation einer Spalte $\overrightarrow{s_i}$ und einem Skalar $\lambda \neq 0 : \overrightarrow{s_i} \rightarrow \lambda \overrightarrow{s_i}$
 - 2. Addition eines Vielfachen einer Spalte $\overrightarrow{s_i}$ zu einer anderen Spalte $\overrightarrow{s_j}:\overrightarrow{s_j}\to\lambda\cdot\overrightarrow{s_i}$
 - 3. Vertauschung zweier Spalten $\overrightarrow{s_i}$ und $\overrightarrow{s_j}$: $\overrightarrow{s_i} \leftrightarrow \overrightarrow{s_j}$
- analog auch für Zeilenumformungen

Satz: Sei A' eine Matrix, die aus einer $m \times n$ -Matrix A durch eine Folge von elementaren Spaltenund/oder Zeilenoperationen hervorgeht. Dann gilt: rg(A) = rg(A'). Beispiel:

$$A = \begin{pmatrix} 1 & -3 & 0 \\ -1 & 4 & 1 \\ 2 & 1 & 7 \\ 3 & 5 & 14 \end{pmatrix}$$

$$\overrightarrow{s_2} + 3 \cdot \overrightarrow{s_1} \to \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 1 \\ 2 & 7 & 7 \\ 3 & 14 & 14 \end{pmatrix}$$

$$\overrightarrow{s_3} - \overrightarrow{s_2} \to \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 7 & 0 \\ 3 & 14 & 0 \end{pmatrix}$$

2 linear unabhängige Spalten

$$rg(A) = 2$$

$$A = \begin{pmatrix} 1 & -3 & 0 \\ -1 & 4 & 1 \\ 2 & 1 & 7 \\ 3 & 5 & 14 \end{pmatrix}$$

$$\overrightarrow{z_1}$$

$$\overrightarrow{z_2} + \overrightarrow{z_1}$$

$$\overrightarrow{z_3} + 2\overrightarrow{z_1} \rightarrow \begin{pmatrix} 1 & -3 & 0 \\ 0 & 1 & 1 \\ 0 & 7 & 7 \\ 0 & 14 & 14 \end{pmatrix}$$

$$\overrightarrow{z_1}$$

$$\overrightarrow{z_2}$$

$$\overrightarrow{z_3} - 7\overrightarrow{z_2} \rightarrow \begin{pmatrix} 1 & -3 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\overrightarrow{z_1}$$

$$\overrightarrow{z_2} \rightarrow (1 - 3 & 0)$$

$$0 \rightarrow$$

2 linear unabhängige Zeilen

$$rg(A) = 2$$

weitere Vereinfachung:

$$A' = \begin{pmatrix} 1 & -3 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\overrightarrow{s_2} + 3\overrightarrow{s_3} \to \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\overrightarrow{s_3} - \overrightarrow{s_2} \to \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

3.3 Lineare Abbildungen

zum Beispiel $\mathbb{R}^2 \cong \left\{ \overrightarrow{x} \in \mathbb{R}^3 \middle| \overrightarrow{x} = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} \right\}$. Sie sind *isomorph*, d.h. es gibt eine bijektive, struktur-

verträgliche Abbildung zwischen diesen beiden Räumen.

Definition: Seien (V, +, K) und (W, +, K) Vektorräume über dem Körper K. Eine Abbildung $f: V \to W$ heißt linear, falls $\forall \overrightarrow{x}, \overrightarrow{y} \in V, \forall \lambda \in K$ gilt:

1.
$$f(\overrightarrow{x} + \overrightarrow{y}) = f(\overrightarrow{x}) + f(\overrightarrow{y})$$

2.
$$f(\lambda \cdot \overrightarrow{x}) = \lambda \cdot f(\overrightarrow{x})$$

Beispiele:

•
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
, $f\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}_{\in \mathbb{R}^2} = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} \in \mathbb{R}^3$ ist linear, denn:
$$-f(\overrightarrow{x} + \overrightarrow{y}) = f\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}\right) = f\begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ 0 \end{pmatrix} = f(\overrightarrow{x}) + f(\overrightarrow{y})$$

$$- \text{ analog } f(\lambda \cdot \overrightarrow{x}) = \lambda \cdot f(\overrightarrow{x})$$

•
$$f: K^n \to K^m, f(\overrightarrow{x} \in K^n) = A_{\in m \times n} \cdot \overrightarrow{x} \in K^m$$
 ist linear, denn:

$$- f(\overrightarrow{x} + \overrightarrow{y}) = A \cdot (\overrightarrow{x} + \overrightarrow{y}) = A \cdot \overrightarrow{x} + A \cdot \overrightarrow{y} = f(\overrightarrow{x}) + f(\overrightarrow{y})$$

$$- f(\lambda \cdot \overrightarrow{x}) = A \cdot (\lambda \cdot \overrightarrow{x}) = \lambda \cdot (A \cdot \overrightarrow{x}) = \lambda \cdot f(\overrightarrow{x})$$

Also: Jede Matrix definiert eine lineare Abbildung.

Satz (Fortsetzungssatz): Sei V ein n-dimensionaler Vektorraum und $B = \{\overrightarrow{b_1}, \dots, \overrightarrow{b_n}\}$ eine Basis von V. Weiters sei W ein Vektorraum und $\overrightarrow{c_1}, \dots, \overrightarrow{c_n} \in W$. Dann gibt es genau eine lineare Abbildung $f: V \to W$ mit $f(\overrightarrow{b_i}) = \overrightarrow{c_i} \quad \forall i$.

Beweis: Sei $\overrightarrow{x} \in V$, $\overrightarrow{x} = x_1 \overrightarrow{b_1} + x_2 \overrightarrow{b_2} + \dots + x_n \overrightarrow{b_n}$ (x_i sind die Koordinaten von \overrightarrow{x} bezüglich der Basis).

Definiere $f(\overrightarrow{x}) = x_1 \cdot f(\overrightarrow{b_1}) + x_2 \cdot f(\overrightarrow{b_1}) + \cdots + x_n \cdot f(\overrightarrow{b_n}) = x_1 \cdot \overrightarrow{c_1} + \cdots + x_n \cdot \overrightarrow{c_n}$ $\rightarrow f: V \rightarrow V$ ist eine lineare Abbildung

zum Beispiel:
$$f: \mathbb{R}^2 \to \mathbb{R}^3: \begin{pmatrix} 1\\0\\0 \end{pmatrix} \mapsto \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix} \mapsto f\begin{pmatrix} x_1\\x_2 \end{pmatrix} = x_1 f\begin{pmatrix} 1\\0\\0 \end{pmatrix} + x_2 f\begin{pmatrix} 0\\1\\0 \end{pmatrix} = x_1 f\begin{pmatrix} x_1\\x_2 \end{pmatrix} = x_1 f(x_1) f(x_1)$$

$$x_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}$$

Betrachten nochmals $f: K^n \to K^m, f(\overrightarrow{x}) = A_{\in K^{m \times n}} \cdot \overrightarrow{x}$

Basis in
$$K^n : \overrightarrow{e_1} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, \overrightarrow{e_n}$$

$$f(\overrightarrow{e_1}) = A \cdot \overrightarrow{e_1} = \begin{pmatrix} a_{11} & \cdots \\ a_{21} & \cdots \\ \vdots & \cdots \\ a_{n1} & \cdots \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix} = \overrightarrow{s_1} \text{ (erste Spalte von } A)$$

 $f(\overrightarrow{e_i}) = \overrightarrow{s_i} \ i$ -te Spalte von also $A = (\overrightarrow{s_1}, \overrightarrow{s_2}, \dots, \overrightarrow{s_n})$

Beispiele aus der Geometrie der Ebene:

•
$$A = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$
 $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} \lambda \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} 0 \\ \lambda \end{pmatrix}$ Streckung/Stauchung

•
$$S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} 0 \\ -1 \end{pmatrix}$ Spiegelung an der 1. Achse

 $f: K^m \to K^n$ linear: $f(\overrightarrow{x} + \overrightarrow{y}) = f(\overrightarrow{x}) + f(\overrightarrow{y})$ und $f(\lambda \overrightarrow{x}) = \lambda f(\overrightarrow{x})$ insbesondere ist $f(\overrightarrow{x}) = A \cdot \overrightarrow{x} \ (A: m \times n\text{-Matrix})$ eine lineare Abbildung und umgekehrt falls f linear $\to f(\overrightarrow{x}) = A \overrightarrow{x}$ für eine geeignete Matrix, nämlich $A = (f(\overrightarrow{e_1}), \dots, f(\overrightarrow{e_n}))$

Also: Matrizen und lineare Abbildungen (auf endlich dimensionalen Vektorräumen bezüglich fester Basis) entsprechen einander umkehrbar eindeutig:

$$A \in K^{m \times n} \longleftrightarrow f : K^m \to K^n \text{ mit } f(\overrightarrow{x}) = A \overrightarrow{x}$$

Weitere Beispiele aus der Geometrie der Ebene:

•
$$B = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$$
 $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} \lambda \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} 0 \\ \mu \end{pmatrix}$ $B\overrightarrow{x} = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \lambda x \\ \mu y \end{pmatrix}$ Streckung mit zwei festen Faktoren

•
$$D_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} = (\overrightarrow{s_1}, \overrightarrow{s_2})$$
 Drehung um α
z. B. $D_{\frac{\pi}{2}} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ Drehung um $+90^{\circ}$ (gegen den Uhrzeigersinn)

•
$$P_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 Projektion auf die erste Achse $P_1 \overrightarrow{x} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$

•
$$P_2 = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
 Projektion auf die erste Mediane (45°-Gerade)

• eine Translation ist keine lineare Abbildung, denn $\overrightarrow{0}$ wird nicht immer auf $\overrightarrow{0}$ abgebildet Kenngrößen einer linearen Abbildung $f:V\to W$:

• Kern $\ker(f) = \{ \overrightarrow{x} \in V \mid f(\overrightarrow{x}) = 0 \} \le V$

• Bild im
$$(f) = f(V) = \{f(\overrightarrow{x}) \mid \overrightarrow{x} \in V\} < W$$

• Defekt def(f) = dim(ker(f))

• Rang $\operatorname{rg}(f) = \dim(\operatorname{im}(f)) \ (= \operatorname{rg}(A), \text{ falls } f(\overrightarrow{x}) = A\overrightarrow{x})$

Satz (Rangformel): Es gilt rg(f) + def(f) = dim(V).

Beispiel:

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{1} \begin{pmatrix} x+y \\ x+y \end{pmatrix}$$

$$\ker(f) = \begin{bmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \end{bmatrix} \le \mathbb{R}^2$$

$$\det(f) = 1$$

$$\operatorname{im}(f) = \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{bmatrix} \le \mathbb{R}^2$$

$$\operatorname{ig}(f) = 1$$

$$\det(f) + \operatorname{ig}(f) = 2 = \dim(\mathbb{R}^2) \checkmark$$

3.4 Lineare Gleichungssysteme

3.4.1 Lösbarkeit von linearen Gleichungssystemen

Beispiel: Handytarif: Gesamtkosten = Grundentgelt + Minutenentgelt · Zeit, also $K(t) = G + M \cdot t$.

angenommen: $60 \text{ min} \dots 7.40 \in$ $300 \text{ min} \dots 17.00 \in$

$$G+60M = 7.40$$

$$G+300M = 17.00$$

$$G+60M = 7.40$$

$$240M = 9.60$$

$$M = 0.04$$

$$G = 5$$

bzw.

$$\begin{pmatrix} 1 & 60 \\ 1 & 300 \end{pmatrix} \begin{pmatrix} G \\ M \end{pmatrix} = \begin{pmatrix} 7.40 \\ 17.00 \end{pmatrix}$$

Betrachten wir ein lineares Gleichungssystem mit m Gleichungen und n Variablen:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Koeffizienten a_{ij}, b_j und Variablen x_i sind im Körper K. Wir setzen:

$$A = (a_{ij}), \overrightarrow{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}, \overrightarrow{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\Rightarrow A\overrightarrow{x} = \overrightarrow{b}$$

A heißt Systemmatrix, (A, \overrightarrow{b}) heißt erweiterte Matrix. Lineares Gleichungssystem heißt homogen, falls $\overrightarrow{b} = \overrightarrow{0}$, sonst inhomogen.

Lösbarkeit: $A\overrightarrow{x} = \overrightarrow{b}$, sei $A = (\overrightarrow{s_1}, \dots, \overrightarrow{s_n})$

$$\Leftrightarrow (\overrightarrow{s_1}, \dots, \overrightarrow{s_n}) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \overrightarrow{b}$$

$$\Leftrightarrow x_1 \overrightarrow{s_1}$$

3

Lösungen: $A\overrightarrow{x} = \overrightarrow{b}$, sei $\overrightarrow{x_0}$ eine feste Lösung $(A\overrightarrow{x_0} = \overrightarrow{b})$

$$\Leftrightarrow A(\overrightarrow{x} - \overrightarrow{x_0}) = \overrightarrow{0}$$

$$\Leftrightarrow \overrightarrow{x} - \overrightarrow{x_0} \in \ker(f) \quad \text{für } f(\overrightarrow{x}) = A\overrightarrow{x}$$

$$\ker(f) = \ker(A)$$
d. h. $\overrightarrow{x} \in \overrightarrow{x_0} + \ker(A)$

Satz: Sei $\overrightarrow{x_0}$ eine beliebige feste Lösung des linearen Gleichungssystems $A\overrightarrow{x} = \overrightarrow{b}$. Dann bilden alle Lösungen dieses Gleichungssystems einen Nebenraum $\overrightarrow{x_0} + \ker(A)$ der Dimension $n - \operatorname{rg}(A)$. Folgerung: Die Lösung ist eindeutig, wenn $\operatorname{rg}(A) = n$.

3.4.2 Gauß'sches Eliminationsverfahren

Idee: Umformung des linearen Gleichungssystems $A\overrightarrow{x} = \overrightarrow{b}$ in ein lösungsäquivalentes System, welches besonders einfach zu lösen ist.

- elementare Zeilenoperationen von $\left(A, \overrightarrow{b}'\right)$
- ullet Vertauschen von Spalten von A (und Umbezeichnung der zugehörigen Variablen!)

Hierbei bleibt die Lösungseinheit unverändert.

Das Verfahren:

• Ausgangspunkt:
$$A\overrightarrow{x} = \overrightarrow{b}$$
 bzw. $(A, \overrightarrow{b}) = \begin{pmatrix} a_{11} & \dots & a_{1n} & | & b_1 \\ \vdots & & \vdots & | & \vdots \\ a_{m1} & \dots & a_{mn} & | & b_m \end{pmatrix}$

- Falls $a_{11} = 0$: Zeilen- und Spaltentausch
- Man bilde *i*-te Zeile $-\frac{a_{i1}}{a_{11}}\cdot 1$. Zeile (für $i=2,\ldots,m$):

$$\begin{pmatrix} A', \overrightarrow{b'} \end{pmatrix} = \begin{pmatrix} a'_{11} & a'_{21} & \dots & a'_{1n} & | & b'_{1} \\ 0 & a'_{22} & \dots & a'_{2n} & | & b'_{2} \\ \vdots & \vdots & & \vdots & | & \vdots \\ 0 & a'_{m2} & \dots & a'_{mn} & | & b'_{m} \end{pmatrix}$$

• Fortsetzung mit Untermatrix $\begin{pmatrix} a'_{22} & \dots & a'_{2n} & | & b'_2 \\ \vdots & & \vdots & | & \vdots \\ a'_{m2} & \dots & a'_{mn} & | & b'_m \end{pmatrix} \text{ usw.}$

³Ich bitte um Entschuldigung für die Unvollständigkeit; Prof. Karigl löscht ziemlich aggressiv.

• Nach endlich vielen Schritten erhält man ein System in Trapezform (Halbdiagonalform, Staffelform):

$$(C, \overrightarrow{d}) = \begin{pmatrix} c_{11} & c_{12} & \dots & \dots & c_{1n} & | & d_1 \\ 0 & c_{22} & \dots & \dots & c_{2n} & | & d_2 \\ \vdots & \ddots & \ddots & & \vdots & | & \vdots \\ \vdots & & \ddots & c_{rr} & \dots & c_{rn} & | & d_r \\ \vdots & & & 0 & \dots & 0 & | & d_{r+1} \\ \vdots & & & & \vdots & | & \vdots \\ 0 & \dots & \dots & \dots & 0 & | & d_m \end{pmatrix}$$

wobei $c_{rr} \neq 0$, $r = \operatorname{rg}(C) = \operatorname{rg}(A) \leq \min(m, n)$.

Spalten entsprechen den Variablen $\hat{x}_1, \dots, \hat{x}_n$; das sind x_1, \dots, x_n eventuell in geänderter Reihenfolge.

Zur Lösung des Systems $\left(C,\overrightarrow{d}\right)$ in Trapezform unterscheiden wir drei Fälle:

1. untere Reihen: links stehen lauter Nullen, rechts steht Zahl $\neq 0$

$$r < m, d_i \neq 0$$
 für $i > r$
 $\Rightarrow \operatorname{rg}(C) = r \neq \operatorname{rg}\left(C, \overrightarrow{d}\right)$

Das System ist nicht lösbar!

In jedem anderen Fall ist das System lösbar; die "überflüssigen" Zeilen von r+1 bis m werden gestrichen (da sie die Tautologie 0=0 darstellen).

2. unterste Zeile enthält links genau eine Zahl $\neq 0$

$$r = n$$

$$\dim(\ker(A)) = n - r = 0$$

Das System ist eindeutig lösbar.

Wir berechnen sukzessive $\hat{x}_n, \hat{x}_{n-1}, \dots, \hat{x}_1$ "von unten nach oben"

3. r < n

Dimension des Lösungsraums: $\dim(\ker(A)) = n - r > 0$

Das System hat unendlich viele Lösungen.

Wir ersetzen $\hat{x}_{r+1}, \dots \hat{x}_n$ durch Parameter $t_1, \dots, t_{n-r} \in K$ und berechnen $\hat{x}_r, \hat{x}_{r-1}, \dots, \hat{x}_1$ wie oben.

$$\begin{pmatrix} a & b & \dots & c & | & j \\ d & e & \dots & f & | & k \\ \vdots & \vdots & \ddots & \vdots & | & \vdots \\ g & h & \dots & i & | & l \end{pmatrix} \xrightarrow{\operatorname{Gauß}} \begin{pmatrix} a & b & \dots & c & | & g \\ 0 & d & \dots & e & | & h \\ \vdots & \ddots & \ddots & \vdots & | & \dots \\ 0 & \dots & 0 & f & | & i \end{pmatrix}$$

Beispiele:

$$\bullet \begin{pmatrix} 3 & 4 & 2 & | & 5 \\ 2 & 3 & 5 & | & 7 \\ 19 & 27 & 31 & | & 51 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 4 & 2 & | & 5 \\ 0 & 1 & 11 & | & 11 \\ 0 & 5 & 55 & | & 58 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 4 & 2 & | & 5 \\ 0 & 1 & 11 & | & 11 \\ 0 & 0 & 0 & | & 3 \end{pmatrix} \Rightarrow \text{Fall 1, LGS nicht lösbar}$$

$$\bullet \quad \begin{pmatrix} 3 & 2 & 4 & | & 1 \\ 2 & -1 & 1 & | & 0 \\ 1 & 2 & 3 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & | & 1 \\ 0 & -4 & -5 & | & -2 \\ 0 & -5 & -5 & | & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & | & 1 \\ 0 & 1 & 0 & | & 0 \\ 0 & 5 & 5 & | & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & | & 1 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 5 & | & 2 \end{pmatrix} \Rightarrow Fall$$

36

2, Lösung eindeutig bestimmt:
$$\overrightarrow{x} = \begin{pmatrix} -\frac{1}{5} \\ 0 \\ \frac{2}{5} \end{pmatrix}$$
 oder: $\rightarrow \begin{pmatrix} 1 & 2 & 3 & | & 1 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & \frac{2}{5} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & | & -\frac{1}{5} \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & \frac{2}{5} \end{pmatrix}$

$$\begin{pmatrix} 0 & 0 & 1 & | & \frac{2}{5} \end{pmatrix} & \begin{pmatrix} 0 & 0 & 1 & | & \frac{2}{5} \end{pmatrix}$$

$$\bullet & \begin{pmatrix} 1 & 2 & 7 & 4 & | & 1 \\ 2 & -3 & 0 & 2 & | & -6 \\ 1 & 2 & 5 & 3 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 7 & 4 & | & 1 \\ 0 & -7 & -14 & -6 & | & -8 \\ 0 & -1 & -2 & -1 & | & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 7 & 4 & | & 1 \\ 0 & 1 & 2 & 1 & | & 1 \\ 0 & 0 & 0 & 1 & | & -1 \end{pmatrix}$$

$$\to \begin{pmatrix} 1 & 2 & 4 & 7 & | & 1 \\ 0 & 1 & 1 & 2 & | & 1 \\ 0 & 0 & 1 & 0 & | & -1 \end{pmatrix}$$

$$m = 3 \text{ Gleichungen}$$

n=4 Variablen

r=3 Rang \Rightarrow Lösung ist n-r=4-3=1-dimensional

Man wähle $x_3 = t$ ($t \in \mathbb{R}$, Parameter) und berechne:

$$x_{4} = -1$$

$$x_{2} + x_{4} + 2x_{3} = 1$$

$$\Rightarrow x_{2} = 2 - 2t$$

$$x_{1} + 2x_{2} + 4x_{4} + 7x_{3} = 1$$

$$\Rightarrow x_{1} = 1 - 3t$$

$$\overrightarrow{x'} = \begin{pmatrix} 1 - 3t \\ 2 - 2t \\ t \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \\ -1 \end{pmatrix} + t \begin{pmatrix} -3 \\ -2 \\ 1 \\ 0 \end{pmatrix}$$

Bemerkungen:

•
$$\begin{pmatrix} x & 0 & \dots & 0 & a & \dots & b & | & g \\ 0 & \ddots & \ddots & \vdots & c & \dots & d & | & h \\ \vdots & \ddots & \ddots & 0 & \vdots & \ddots & \vdots & | & \vdots \\ 0 & \dots & 0 & y & e & \dots & f & | & i \end{pmatrix}$$
 Gauß-Jordan-Form

•
$$\begin{pmatrix} w & & & | & a \\ 0 & x & 0 & 0 & & | & b \\ 0 & 0 & 0 & y & 0 & | & c \\ 0 & 0 & 0 & 0 & z & | & d \end{pmatrix}$$
 Zeilenstufenform (bei Vermeidung von Spaltentausch)

Berechnung der Inversen einer Matrix $A \in K^{n \times n}$ sodass $A \cdot A^{-1} = I_n$

$$A^{-1} = (\overrightarrow{x_1}, \dots, \overrightarrow{x_n})$$

$$A \cdot A^{-1} = A(\overrightarrow{x_1}, \dots, \overrightarrow{x_n}) = (\overrightarrow{e_1}, \dots, \overrightarrow{e_n})$$

$$A\overrightarrow{x_i} = \overrightarrow{e_i}$$

Das sind n lineare Gleichungssysteme. Diese sind lösbar, wenn rg(A) = n. Lösung: $(A \mid \overrightarrow{e_1}), \dots, (A \mid \overrightarrow{e_n}).$

$$(A \mid I_n) \to \cdots \to (I_n | A^{-1})$$

Satz: Ene Matrix $A \in K^{n \times n}$ ist genau dann invertierbar, wenn ihre Spalten beziehungsweise Zeilen linear unabhängig sind, also rg(A) = n gilt.

Beispiel:
$$A = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$
, $\operatorname{rg}(A) = 2 \checkmark$ also $\exists A^{-1}$

$$\begin{pmatrix} 5 & 3 & | & 1 & 0 \\ 3 & 2 & | & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & -1 & 2 \\ 3 & 2 & | & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & -1 & 2 \\ 0 & -1 & | & 3 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | & -1 & 2 \\ 0 & 1 & | & -3 & 5 \end{pmatrix}$$

3.5 Determinanten

Sei $A = (a_{ij}) \in K^{n \times n}$. Wir definieren $\det(A) = |A| \in K$ wie folgt:

•
$$n=1:|A|=a_{11}$$

•
$$n = 2 : |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

•
$$n = 3: |A| = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} =$$

= $a_{11} \cdot A_{11} + a_{12} \cdot A_{12} + a_{13} \cdot A_{13}$ (Entwickeln nach der ersten Zeile)

Definition: Die Determinante det(A) = |A| einer Matrix $A \in K^{n \times n}$ ist (für n > 1) wie folgt rekursiv definiert:

$$|A| = a_{11}A_{11} + a_{12} + A_{12} + \dots + a_{1n}A_{1n}$$

wobei $A_{ij} = (-1)^{(i+j)}$. Determinante jener Matrix aus $K^{(n-1)\times(n-1)}$, welche man aus A durch Streichen der i-ten Zeile und j-ten Spalte erhält. Dieses A_{ij} heißt Kofaktor (oder algebraisches Komplement).

$$(-1)^{(i+j)} = \begin{pmatrix} + & - & + & - & \dots \\ - & + & - & + & \dots \\ + & - & + & - & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
 "Schachbrettvorzeichen"

Satz (Entwicklungssatz von Laplace): Eine Determinante kann nach jeder beliebigen Zeile oder Spalte entwickelt werden, d.h.

$$|A|=a_{i1}A_{i1}+a_{i2}A_{i2}+\cdots+a_{in}A_{in}$$
 Entwicklung nach der *i*-ten Zeile
$$=a_{1j}A_{1j}+a_{2j}A_{2j}+\cdots+a_{nj}A_{nj}$$
 Entwicklung nach der *j*-ten Spalte

Beispiel:

$$\begin{vmatrix} 2 & 3 & -1 \\ 3 & 0 & 1 \\ 0 & -1 & 4 \end{vmatrix} = -3 \begin{vmatrix} 3 & -1 \\ -1 & 4 \end{vmatrix} + 0 - 1 \begin{vmatrix} 2 & 3 \\ 0 & -1 \end{vmatrix} = -3 \cdot 11 - 1 \cdot (-2) = -31$$
$$= 2 \cdot \begin{vmatrix} 0 & 1 \\ -1 & 4 \end{vmatrix} - 3 \cdot \begin{vmatrix} 3 & -1 \\ -1 & 4 \end{vmatrix} = 2 - 33 = -31$$

Interpretation in \mathbb{R}^n : Wenn $A = (\overrightarrow{s_1}, \dots, \overrightarrow{s_n})$, dann $|\det(A)| = \text{Volumen des von } \overrightarrow{s_1}, \dots, \overrightarrow{s_n}$ aufgespannten Parallelepipeds.

Für praktische Berechnung werden folgende Eigenschaften von Determinanten verwendet:

- 1. Multipliziert man eine Zeile (bzw. Spalte) einer Matrix mit einem Faktor $\lambda \in K$, so multipliziert sich die Determinante mit diesem Faktor.
- 2. Addiert man ein Vielfaches einer Zeile (bzw. Spalte) zu einer anderen Zeile (bzw. Spalte), so ändert sich die Determinante nicht.
- 3. Vertauscht man zwei Zeilen (bzw. Spalten), so ändert sich das Vorzeichen der Determinante.

Beispiel:

$$\begin{vmatrix} 4 & 2 & 4 & 3 \\ 1 & -1 & -2 & 2 \\ 0 & 5 & -3 & -1 \\ 2 & 1 & 1 & 2 \end{vmatrix} = \begin{vmatrix} 0 & 6 & -4 & -5 \\ 1 & -1 & -2 & 2 \\ 0 & 5 & -3 & -1 \\ 0 & 3 & 5 & -2 \end{vmatrix}$$
$$= (-1) \begin{vmatrix} 6 & 12 & -5 \\ 5 & -3 & -1 \\ 3 & 5 & -2 \end{vmatrix}$$
$$= \begin{vmatrix} 6 & 12 & 5 \\ 5 & -3 & 1 \\ 3 & 5 & 2 \end{vmatrix}$$
$$= \begin{vmatrix} -19 & 27 & 0 \\ 5 & -3 & 1 \\ -7 & 11 & 0 \end{vmatrix}$$
$$= (-1) \begin{vmatrix} -19 & 27 \\ -7 & 11 \end{vmatrix}$$
$$= 20$$

Ferner gilt:

$$\bullet \quad \left| A^T \right| = \left| A \right|$$

•
$$|AB| = |A| \cdot |B|$$

•
$$|A^{-1}| = |A|^{-1} = \frac{1}{|A|}$$
 (falls $|A| \neq 0$)

Satz: Eine Matrix $A \in K^{n \times n}$ ist genau dann invertierbar, wenn $|A| \neq 0$. In diesem Fall gilt:

$$A^{-1} = \frac{1}{|A|} (A_{ij})^T$$

Beispiel:

$$A = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}$$

$$|A| = \begin{vmatrix} 5 & 3 \\ 3 & 2 \end{vmatrix} = 10 - 9 = 1 \neq 0 \Rightarrow \exists A^{-1}$$

$$A^{-1} = \frac{1}{|A|} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}^{T} = \frac{1}{1} \begin{pmatrix} 2 & -3 \\ -3 & 5 \end{pmatrix}^{T} = \begin{pmatrix} 2 & -3 \\ -3 & 5 \end{pmatrix}$$

Insbesondere gilt für eine quadratische $n \times n$ -Matrix A:

 $\operatorname{rg}(A) = n \leftrightarrow A$ hat nlinear unabhängige Zeilen $\leftrightarrow A$ hat nlinear unabhängige Spalten $\leftrightarrow |A| \neq 0 \leftrightarrow \exists A^{-1} \leftrightarrow A \overrightarrow{x} = \overrightarrow{b}$ eindeutig lösbar

Wir betrachten ein lineares Gleichungssystem der Form $A\overrightarrow{x} = \overrightarrow{b}$ mit $n \times n$ -Matrix A und $|A| \neq 0$, d. h. das LGS ist eindeutig lösbar.

Satz (Gramer'sche Regel): Sei $A\overrightarrow{x} = \overrightarrow{b}$ ein LGS mit quadratischer Systemmatrix $A = (\overrightarrow{a_1}, \dots, \overrightarrow{a_n})$ und $|A| \neq 0$. Dann gilt für die Koordinate x_i des Lösungsvektors \overrightarrow{x} :

$$x_i = \frac{\left|\overrightarrow{a_1}, \dots, \overrightarrow{a_{i-1}}, \overrightarrow{b}, \overrightarrow{a_{i+1}}, \dots, \overrightarrow{a_n}\right|}{|A|} \text{ für } i = 1, \dots, n$$

Beispiel:

$$\begin{pmatrix} 3 & 2 & 4 & | & 1 \\ 2 & -1 & 1 & | & 0 \\ 1 & 2 & 3 & | & 1 \end{pmatrix} = \begin{pmatrix} A | \overrightarrow{b} \end{pmatrix}$$

$$|A| = \begin{vmatrix} 3 & 2 & 4 \\ 2 & -1 & 1 \\ 1 & 2 & 3 \end{vmatrix}$$

$$= \begin{vmatrix} 0 & -4 & -5 \\ 0 & -5 & -5 \\ 1 & 2 & 3 \end{vmatrix}$$

$$= 1 \cdot \begin{vmatrix} -4 & -5 \\ -5 & -5 \end{vmatrix}$$

$$= -5$$

$$x_1 = \frac{1}{-5} \begin{vmatrix} 1 & 2 & 4 \\ 0 & -1 & 1 \\ 1 & 2 & 3 \end{vmatrix}$$

$$= \frac{1}{-5} \begin{vmatrix} 1 & 2 & 4 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{vmatrix}$$

$$= -\frac{1}{5} \cdot 1 \cdot \begin{vmatrix} -1 & 1 \\ 0 & -1 \end{vmatrix}$$

$$= -\frac{1}{5}$$

$$x_2 = \frac{1}{-5} \begin{vmatrix} 3 & 1 & 4 \\ 2 & 0 & 1 \\ 1 & 1 & 3 \end{vmatrix} = \cdots = 0$$

$$x_3 = \frac{1}{-5} \begin{vmatrix} 3 & 2 & 1 \\ 2 & -1 & 0 \\ 1 & 2 & 1 \end{vmatrix} = \cdots = \frac{2}{5}$$

$$\overrightarrow{x} = \begin{pmatrix} -\frac{1}{5} \\ 0 \\ \frac{2}{5} \end{pmatrix}$$

3.6 Eigenwerte und Eigenvektoren

Definition: Sei $A \in K^{n \times n}$ eine quadratische Matrix. Gilt $A\overrightarrow{x} = \lambda \overrightarrow{x}$ für einen Vektor $\overrightarrow{x} \neq \overrightarrow{0}$ und einen Skalar λ , dann heißt λ Eigenwert (EW) von A und \overrightarrow{x} Eigenvektor (EV) zum EW λ .

Bemerkungen:

- $\overrightarrow{x} \neq \overrightarrow{0}$ ist ???, λ kann auch 0 sein
- \overrightarrow{x} , \overrightarrow{y} EV zum EW λ , dann auch \overrightarrow{x} + \overrightarrow{y} , $c\overrightarrow{x}$ (c Skalar)

$$\operatorname{dann} A(\overrightarrow{x} + \overrightarrow{y}) = A\overrightarrow{x} + A\overrightarrow{y} = \lambda \overrightarrow{x} + \lambda \overrightarrow{y} = \lambda (\overrightarrow{x} + \overrightarrow{y}) \text{ und } A(c\overrightarrow{x}) = c \cdot A\overrightarrow{x} = c \cdot \lambda \overrightarrow{x} = \lambda (c\overrightarrow{x})$$

• EW, EV auch für lineare Abbildungen $f: V \to V: f(\overrightarrow{x}) = \lambda \cdot \overrightarrow{x}, \overrightarrow{x} \neq \overrightarrow{0}$

Beispiele:

•
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
: $A\overrightarrow{x} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ -x_2 \end{pmatrix}$ Spiegelung auf der 1. Achse $A\overrightarrow{e_1} = \overrightarrow{e_1} = 1 \cdot \overrightarrow{e_1}$, d. h. $\overrightarrow{e_1}$ ist EV zum EW $\lambda = 1$ $A\overrightarrow{e_2} = -\overrightarrow{e_2}$, d. h. $\overrightarrow{e_2}$ ist EV zum EW $\lambda = -1$

$$\bullet B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} : B \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}$$

$$B\overrightarrow{e_1} = \overrightarrow{e_1}$$

$$B\overrightarrow{e_2} = \overrightarrow{e_2}$$

$$B\overrightarrow{e_3} = \overrightarrow{0}$$

Wie findet man EW und EV einer Matrix? $A\overrightarrow{x}=\lambda\overrightarrow{x}\Leftrightarrow (A-\lambda I)\overrightarrow{x}_{\neq 0}=\overrightarrow{0}\Leftrightarrow |A-\lambda I|=0$

- 1. Bestimmung von λ aus $|A \lambda I| = 0$
- 2. Bestimmung von \overrightarrow{x} zu jedem λ aus $(A \lambda I)\overrightarrow{x} = \overrightarrow{0}$

Beispiele:

• $A = \begin{pmatrix} 13 & 0 & -12 \\ 12 & 1 & -12 \\ 16 & 0 & -15 \end{pmatrix}$, gesucht: alle EW und EV charakteristische Gleichung $|A - \lambda I| = 0$ lösen:

$$\begin{vmatrix} 13 - \lambda & 0 & -12 \\ 12 & 1 - \lambda & -12 \\ 16 & 0 & -15 - \lambda \end{vmatrix} = (1 - \lambda) \begin{vmatrix} 13 - \lambda & -12 \\ 16 & -15 - \lambda \end{vmatrix}$$
$$= (1 - \lambda) \left(\lambda^2 + 2\lambda - 3\right) = 0$$
$$\Rightarrow \lambda_1 = 1$$
$$\lambda_2 = 1$$
$$\lambda_3 = -3$$

$$\begin{array}{l} \mathrm{EV} \ \mathrm{zu} \ \lambda = 1 \colon \\ (A - \lambda I) \overrightarrow{x} = \overrightarrow{0} \\ (A - I | \overrightarrow{0}) \\ \begin{pmatrix} 12 & 0 & -12 & | & 0 \\ 12 & 0 & -12 & | & 0 \\ 16 & 0 & -16 & | & 0 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ \end{pmatrix} \Rightarrow \overrightarrow{x} = \begin{pmatrix} a \\ b \\ a \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad a, b \in \mathbb{R}, (a, b) \neq (0, 0) \\ \mathrm{EV} \ \mathrm{zu} \ \lambda = -3 \colon \\ \end{array}$$

$$\begin{pmatrix} 16 & 0 & -12 & | & 0 \\ 12 & 4 & -12 & | & 0 \\ 16 & 0 & -12 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 4 & 0 & -3 & | & 0 \\ 3 & 1 & -3 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 4 & 0 & -3 & | & 0 \\ 0 & 4 & -3 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \overrightarrow{x} = \begin{pmatrix} 3c \\ 3c \\ 4c \end{pmatrix} = c \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix}$$

$$c \in \mathbb{R} \setminus \{0\}$$

Bemerkung: Man setze
$$D = \text{diag}(\lambda_1, \lambda_2, \lambda_3) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{pmatrix}, T = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 3 \\ 1 & 0 & 4 \end{pmatrix}, \text{ dann gilt:}$$

 $T^{-1}AT = D$ (A kann diagonalisiert werden)

PC-Händler verkauft im Laden oder im Internet.

heuer		nächstes Jahr
Ladenkunden	80%	Ladenkunden
Ladenkunden	$\xrightarrow{20\%}$	Internetkunden
Internetkunden	$\xrightarrow{90\%}$	Internetkunden
Internetkunden	$\frac{10\%}{\longrightarrow}$	Ladenkunden

Gibt es einen Zustand, für den sich die Kundenzahlen nicht mehr ändern?

 $x_t = \# \text{Ladenkunden im Jahr } t$

$$y_t = \#\text{Internetkunden im Jahr } t \ (t = 0, 1, 2, ...)$$

$$\Rightarrow \begin{pmatrix} x_{t+1} \\ y_{t+1} \end{pmatrix} = \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix} \begin{pmatrix} x_t \\ y_t \end{pmatrix} \text{ bzw. } \overrightarrow{x_{t+1}} = A\overrightarrow{x_t}$$
Wir suchen \overrightarrow{x} mit $A\overrightarrow{x} = \overrightarrow{x}$, d. h. \overrightarrow{x} ist EV zum EW $\lambda = 1$.
$$|A - \lambda I| = 0 \Rightarrow \lambda_1 = 1, \lambda_2 = 0.7$$

$$|A - \lambda I| = 0 \Rightarrow \lambda_1 = 1, \lambda_2 = 0.7$$

$$\mathrm{EV}(\lambda_1) = c \begin{pmatrix} 1 \\ 2 \end{pmatrix}, c \in \mathbb{R} \setminus \{0\}, \text{ also: } \frac{1}{3} \mathrm{\ Ladenkunden}, \frac{2}{3} \mathrm{\ Internetkunden}$$

3.7 Skalarprodukte

gewöhnliches Skalarprodukt im \mathbb{R}^n

$$\overrightarrow{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$

$$\overrightarrow{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n$$

$$\Rightarrow \overrightarrow{x} \cdot \overrightarrow{y} = x_1 y_1 + \dots + x_n y_n$$

$$= \sum_{i=1}^n x_i y_i \in \mathbb{R}$$

$$\cdot : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

42

• Länge von
$$\overrightarrow{x}$$
: $\|\overrightarrow{x}\| = \sqrt{\overrightarrow{x} \cdot \overrightarrow{x}} = \sqrt{x_1^2 + \dots + x_n^2}$

• Orthogonalität: wann gilt $\overrightarrow{x} \perp \overrightarrow{y}$?

$$\overrightarrow{x} \perp \overrightarrow{y} \Leftrightarrow \|\overrightarrow{x}\|^2 + \|\overrightarrow{y}\|^2 = \|\overrightarrow{x} - \overrightarrow{y}\|^2$$

$$\overrightarrow{x}^2 + \overrightarrow{y}^2 = (\overrightarrow{x} - \overrightarrow{y})^2$$

$$\overrightarrow{x}^2 + \overrightarrow{y}^2 = \overrightarrow{x}^2 - 2\overrightarrow{x}\overrightarrow{y} + \overrightarrow{y}^2$$

$$\Leftrightarrow \overrightarrow{x} \cdot \overrightarrow{y} = 0$$

• Winkel zwischen zwei Vektoren

$$\|\overrightarrow{x} - \overrightarrow{y}\|^2 = \|\overrightarrow{x}\|^2 + \|\overrightarrow{y}\|^2 - 2\|\overrightarrow{x}\| \|\overrightarrow{y}\| \cdot \cos \phi$$

$$\vdots$$

$$\Rightarrow \cos \phi = \frac{\overrightarrow{x} \cdot \overrightarrow{y}}{\|\overrightarrow{x}\| \cdot \|\overrightarrow{y}\|}$$

Beispiel: Welchen Winkel schließen Flächen- und Raumdiagonale eines Würfels miteinander ein?

$$\overrightarrow{d} = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$$

$$\overrightarrow{e} = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$\cos \phi = \frac{\overrightarrow{d} \cdot \overrightarrow{e}}{\|\overrightarrow{d}\| \cdot \|\overrightarrow{e}\|} = \frac{\begin{pmatrix} 1\\1\\0 \end{pmatrix} \cdot \begin{pmatrix} 1\\1\\1 \end{pmatrix}}{\sqrt{2} \cdot \sqrt{3}} = \frac{2}{\sqrt{6}} = \sqrt{\frac{2}{3}}$$

$$\phi \approx 0.62 \, \text{rad} \approx 35.3^{\circ}$$

Allgemeines Skalarprodukt Definition: Sei V ein Vektorraum über \mathbb{R} . Ein Skalarprodukt ist eine Abbildung von $V \times V$ in \mathbb{R} , welche zwei Vektoren $\overrightarrow{x}, \overrightarrow{y} \in V$ einen Skalar $\langle \overrightarrow{x}, \overrightarrow{y} \rangle \in \mathbb{R}$ zuordnet, sodass gilt:

1.
$$\langle \overrightarrow{x}, \overrightarrow{y} \rangle = \langle \overrightarrow{y}, \overrightarrow{x} \rangle$$

$$2. \ \langle \overrightarrow{x} + \overrightarrow{y}, \overrightarrow{z} \rangle = \langle \overrightarrow{x}, \overrightarrow{z} \rangle + \langle \overrightarrow{y}, \overrightarrow{z} \rangle$$

3.
$$\langle \lambda \overrightarrow{x}, \overrightarrow{y} \rangle = \lambda \langle \overrightarrow{x}, \overrightarrow{y} \rangle$$

4.
$$\langle \overrightarrow{x}, \overrightarrow{x} \rangle \ge 0, \langle \overrightarrow{x}, \overrightarrow{x} \rangle = 0 \Leftrightarrow \overrightarrow{x} = \overrightarrow{0}$$

Ein reeler Vektorraum mit einem Skalarprodukt heißt Euklidischer Raum.

Betrag, Winkel, Orthogonalität genauso definiert wie für gewöhnliches Skalarprodukt:

$$\|\overrightarrow{x}\| = \sqrt{\langle \overrightarrow{x}, \overrightarrow{x} \rangle}$$

$$\overrightarrow{x} \perp \overrightarrow{y} \Leftrightarrow \langle \overrightarrow{x}, \overrightarrow{y} \rangle = 0$$

$$\cos \phi = \frac{\langle \overrightarrow{x}, \overrightarrow{y} \rangle}{\|\overrightarrow{x}\| \cdot \|y\|}$$

Beispiele:

- $V = \mathbb{R}^n, \langle \overrightarrow{x}, \overrightarrow{y} \rangle = \overrightarrow{x} \cdot \overrightarrow{y}$ (gewöhnliches Skalarprodukt) erfüllt Regeln 1. bis 4. kanonische Basis: $\overrightarrow{e_1}, \overrightarrow{e_2}, \dots, \overrightarrow{e_n}$ wobei $\forall i : ||\overrightarrow{e_i}|| = 1$ und $\forall i \neq j : \langle \overrightarrow{e_i}, \overrightarrow{e_j} \rangle = \overrightarrow{e_i} \cdot \overrightarrow{e_j} = 0$. Dies ist eine Orthonormalbasis.
- $V = \mathbb{R}^2, \langle \overrightarrow{x}, \overrightarrow{y} \rangle = 2x_1y_1 + 3x_2y_2$ "Kreis"?

$$\|\overrightarrow{x}\|^2 = r^2 = 1$$
$$2x^2 + y^2 = 1$$

 \rightarrow Ellipse

$$\langle \overrightarrow{x}, \overrightarrow{y} \rangle = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$
$$= \overrightarrow{x}^T \cdot A \cdot \overrightarrow{y}$$

- $V = \mathbb{R}^n$, A symmetrisch positiv definite⁴ Matrix $\langle \overrightarrow{x}, \overrightarrow{y} \rangle = \overrightarrow{x}^T A \overrightarrow{y}$ (z. B. $A = I : \langle \overrightarrow{x}, \overrightarrow{y} \rangle = \overrightarrow{x}^T I \overrightarrow{y} = \overrightarrow{x} \cdot \overrightarrow{y}$
- $V = C[0,1] = \{f : [0,1] \to \mathbb{R} \mid f \text{ ist stetig}\}$ $\langle f,g \rangle = \int_0^1 f(x) \cdot g(x) \, \mathrm{d}x \in \mathbb{R}$ z. B. $\sin(\pi x) \perp \cos(\pi x)$, denn $\int_0^1 \sin(\pi x) \cdot \cos(\pi x) \, \mathrm{d}x = \cdots = 0$

Satz (Cauchy-Schwarz'sche Ungleichung): Für \overrightarrow{x} , $\overrightarrow{y} \in V$ gilt

$$|\langle \overrightarrow{x}, \overrightarrow{y} \rangle| \le ||\overrightarrow{x}|| \cdot ||\overrightarrow{y}||$$

Die Gleichheit gilt genau dann, wenn \overrightarrow{x} , \overrightarrow{y} linear abhängig sind. **Beweis**: Sei $\lambda \in \mathbb{R}$ beliebig.

$$\begin{aligned} \|\overrightarrow{x} - \lambda \overrightarrow{y}\| &\geq 0 \\ \langle \overrightarrow{x} - \lambda \overrightarrow{y}, \overrightarrow{x} - \lambda \overrightarrow{y} \rangle &\geq 0 \\ \langle \overrightarrow{x}, \overrightarrow{x} \rangle - 2\lambda \langle \overrightarrow{x}, \overrightarrow{y} \rangle + \lambda^2 \langle \overrightarrow{y}, \overrightarrow{y} \rangle &\geq 0 \end{aligned}$$

$$\text{man setze } \lambda = \frac{\langle \overrightarrow{x}, \overrightarrow{y} \rangle}{\langle \overrightarrow{y}, \overrightarrow{y} \rangle} :$$

$$\langle \overrightarrow{x}, \overrightarrow{x} \rangle - 2 \frac{\langle \overrightarrow{x}, \overrightarrow{y} \rangle}{\langle \overrightarrow{y}, \overrightarrow{y} \rangle} \langle \overrightarrow{x}, \overrightarrow{y} \rangle + \frac{\langle \overrightarrow{x}, \overrightarrow{y} \rangle^2}{\langle \overrightarrow{y}, \overrightarrow{y} \rangle^2} \langle \overrightarrow{y}, \overrightarrow{y} \rangle &\geq 0$$

$$\langle \overrightarrow{x}, \overrightarrow{y} \rangle^2 \leq \langle \overrightarrow{x}, \overrightarrow{x} \rangle \langle \overrightarrow{y}, \overrightarrow{y} \rangle$$

$$|\langle \overrightarrow{x}, \overrightarrow{y} \rangle| \leq ||\overrightarrow{x}|| \cdot ||\overrightarrow{y}|| \qquad \square$$

Bemerkungen:

- $\cos \phi$ ist stets wohldefiniert
- Dreiecksungleichung $\|\overrightarrow{x} \pm \overrightarrow{y}\| \le \|\overrightarrow{x}\| + \|\overrightarrow{y}\|$ gilt stets

 $^{{}^4}A$ ist positiv definit $\Leftrightarrow \overrightarrow{x}^T \cdot A \cdot \overrightarrow{x} > 0 \quad \forall \overrightarrow{x} \neq \overrightarrow{0}$

4 Folgen, Reihen und Funktionen

4.1 Folgen reeler Zahlen

4.1.1 Definition des Grenzwerts

Beispiel: Dezimalentwicklung von π

$$a_0 = 3$$

 $a_1 = 3.1$
 $a_2 = 3.14$
 $a_3 = 3.141$
 $a_4 = 3.1415$

$$a_n \to \pi$$

Definition: Eine Folge reeler Zahlen ist eine Anordnung $(a_n)_{n\geq 0}=a_1,a_2,\ldots$ Beispiele:

•	$a_n = \frac{1}{n^2} \ (n \ge 1)$	$1, \frac{1}{4}, \frac{1}{9}, \dots$	
•	$a_n = \overset{\sim}{2}$	$2, 2, 2, \ldots$	konstante Folge
•	$a_n = a_0 + n \cdot d$	$z. B. 2, 5, 8, 11, \dots$	arithmetische Folge
•	$a_n = a_0 + q^n$	$z. B. 2, 6, 18, \dots$	geometrische Folge
•	$a_0 = 5$, $a_{n+1} = \frac{1}{2} \left(a_n + \frac{5}{a_n} \right)$ für $n = 0, 1, 2, \dots$	$5, 3, \frac{7}{3}, \dots \to \sqrt{5}$	rekursiv definierte Folge
	` ",		(Babylonisches Wurzelziehen)

Wir betrachten eine rekursiv definierte Folge $(a_n)_{n\geq 0}$ mit $a_0=0, a_{n+1}=\frac{a_n+4}{2}$ für $n=0,1,2,\ldots$ also: $0,2,3,3.5,3.75,3.875,\ldots$

Hier gilt: fast alle Folgenglieder a_n liegen in der Umgebung $(4 - \varepsilon, 4 + \varepsilon)$ von 4.

$$a_n \in (4 - \varepsilon, 4 + \varepsilon) = U_{\varepsilon}(4)$$
 für fast alle n

Definition: Eine Folge (a_n) konvergiert gegen den Grenzwert a, falls in jeder ε -Umgebung von a fast alle Glieder der Folge liegen, d. h. falls $\forall \varepsilon > 0 \exists N(\varepsilon) \in \mathbb{N} : |a_n - a| < \varepsilon$ für alle $n > N(\varepsilon)$. Besitzt die Folge keinen Grenzwert, heißt sie *divergent*.

Schreibweise:

$$\lim_{n \to \infty} a_n = a$$

oder

$$a_n \to a$$

z. B.
$$a_n = \frac{1}{n^2} \quad (n \ge 1) \qquad \qquad \lim_{n \to \infty} a_n = 0, \quad \text{denn } \left| \frac{1}{n^2} - 0 \right| < \varepsilon \Leftrightarrow n > \left\lfloor \frac{1}{\sqrt{\varepsilon}} \right\rfloor = N(\varepsilon)$$

$$a_n = n^2 \quad (n \ge 0) \quad 0, 1, 4, 9, \dots \quad \lim_{n \to \infty} a_n = \infty \quad (a_n) \text{ ist uneigentlich konvergent,}$$

$$\text{d. h. } \forall K > 0 \exists N(K) : a_n > K \text{ (für alle } n > N(K))$$

 $a_0, a_1, a_2, a_3, \dots \to a$, wobei $a_n \in U_{\varepsilon}(a)$ für fast alle n und $\forall a$.

z. B.
$$a_n = \frac{n+1}{n} : \frac{2}{1}, \frac{3}{2}, \frac{4}{3}, \dots \to 1$$

$$\lim_{n\to\infty} a_n = 1$$
, denn $|a_n - 1| = \left|\frac{n+1}{n} - 1\right| = \frac{1}{n} < \varepsilon$ für $n > \frac{1}{\varepsilon}$

Beispiel: $a_n = (-1)^n \frac{n-1}{n}$, $n \ge 1$ hat keine Grenzwerte, sondern Häufungswerte (-1 für ungerade und 1 für gerade n).

Definition: Eine Folge (a_n) besitzt einen Häufungswert a, falls in jeder ε-Umgebung von a unendlich viele Glieder der Folge liegen.

Bemerkungen:

- Grenzwert = einziger Häufungswert
- eine Folge kann mehrere Häufungswerte besitzen
- der größte Häufungswert: $\limsup a_n$ oder $\overline{\lim} a_n$ ("limes superior")
- der kleinste Häufungswert: $\liminf a_n$ oder $\underline{\lim} a_n$ ("limes inferior")
- $\exists \lim a_n : \lim a_n = \lim \sup a_n = \lim \inf a_n$

z. B.
$$a_n = (-1)^n \frac{n-1}{n}$$

$$\pm 1 \text{ Häufungswerte}$$

$$\overline{\lim} a_n = 1$$

$$\frac{\underline{\lim} a_n = -1}{a_n = (-1)^n \frac{1}{n}} \qquad \qquad \lim a_n = \overline{\lim} a_n = \underline{\lim} a_n = 0$$

$$(a_n) = \left(1, \frac{1}{2}, 3, \frac{1}{4}, 5, \dots\right) \quad \nexists \lim a_n$$

 $\underline{\lim} a_n = 0, \overline{\lim} a_n = \infty$ (uneigentlicher Häufungswert)

4.1.2 Monotonie und Beschränktheit

Definition: Eine Folge (a_n) heißt:

- monoton fallend, wenn $a_{n+1} \leq a_n$
- streng monoton fallend, wenn $a_{n+1} < a_n$
- monoton wachsend, wenn $a_{n+1} \ge a_n$
- streng monoton wachsend, wenn $a_{n+1} > a_n$

jeweils $\forall n$.

Definition: Eine Folge (a_n) heißt beschränkt, wenn es Zahlen a, b gibt, so dass $a \le a_n \le b \quad \forall n \in \mathbb{N}$. (a: untere Schranke, b: obere Schranke)

Bemerkungen:

- Folgen sind eventuell nur nach oben/unten beschränkt, z.B. 0, 1, 2, 3, ... (untere Schranke: z.B. 0, keine obere Schranke).
- obere/untere Schranken sind nicht eindeutig bestimmt
- jede beschränkte Folge reeller Zahlen besitzt stets eine kleinste obere Schranke (das Supremum) und eine größte untere Schranke (das Infimum) gemäß Vollständigkeit von \mathbb{R}

$$\alpha = \inf a_n$$
, falls
$$\begin{cases} \alpha \le a_n & \forall n \\ \alpha' \le a_n & \forall n \Rightarrow \alpha' \le \alpha \end{cases}$$
 analog $\beta = \sup a_n$

Beispiele:

$$a_n = \frac{1}{n^2}$$
 streng monoton fallend denn $a_{n+1} < a_n \Leftrightarrow \frac{1}{(n+1)^2} < \frac{1}{n^2} \Leftrightarrow (n+1)^2 > n^2 \checkmark$ beschränkt $0 < \frac{1}{n^2} \le 1$ sup $a_n = 1$, inf $a_n = 0$ (0 ist kein Folgenglied!) \Rightarrow konvergent

Satz:

- 1. Jede konvergente Folge ist beschränkt.
- 2. Jede beschränkte Folge besitzt (mindestens) einen Häufungswert. (Satz von Bolzano-Weierstraß)
- 3. Eine monotone Folge ist genau dann konvergent, wenn sie beschränkt ist. (Hauptsatz für monotone Folgen)

4.1.3 Rechnen mit Grenzwerten

Satz:

1. Für Summen, Differenzen, Produkte und Quotienten konvergenter Folgen gilt: $\lim a_n = a, \lim b_n = b \Rightarrow \lim (a_n \pm b_n) = a \pm b$ $\lim (a_n \cdot b_n) = a \cdot b$ $\lim \left(\frac{a_n}{b_n}\right) = \frac{a}{b} \text{ falls } b_n \neq 0, b \neq 0$

2. (Sandwich-Theorem)
Für Folgen (a_n) , (b_n) , (c_n) gilt: $a_n \le c_n \le b_n \text{ für (fast) alle } n$ $\lim a_n = \lim b_n = a$ $\Rightarrow \lim c_n = a$

Beispiele:

 $a_n = \frac{n^2 + n - 1}{3n^2 + 11}$ $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1 + \frac{1}{n} - \frac{1}{n^2}}{3 + \frac{11}{n^2}}$ $= \frac{\lim \left(1 + \frac{1}{n} - \frac{1}{n^2}\right)}{\lim \left(3 + \frac{11}{n^2}\right)}$ $= \frac{1 + 0 - 0}{3 + 0}$ $= \frac{1}{3}$

 $a_n = q^n : 1, q, q^2, q^3, \dots \quad \text{geometrische Folge}$ $\lim_{n \to \infty} q^n = \begin{cases} 0 & \text{für } |q| < 1 \\ 1 & \text{für } q = 1 \\ \infty & \text{für } q > 1 \text{ (uneigentlich konvergent)} \end{cases}$

Beweis für q > 1:

q = 1 + p mit p > 0 $q^{n} = (1 + p)^{n}$ $= 1 + \binom{n}{1} p + \binom{n}{2} p^{2} + \dots + \binom{n}{n} p^{n}$ $\geq 1 + np \to \infty$ $\Rightarrow q^{n} \to \infty$

$$a_n = \left(1 + \frac{1}{n}\right)^n, n \ge 1$$
 $2, 2.25, 2.37, 2.44, \dots \to e = 2.71828...$

 $a_n = \sqrt[n]{n} \to 1 \text{ (siehe Übung)}$

•

$$(a_n)$$
 Folge mit $\frac{1}{n^{\alpha}} \le a_n \le n^{\alpha}$
 $\to \lim \sqrt[n]{a_n} = 1$

denn $\lim \sqrt[n]{\frac{1}{n^{\alpha}}} = \lim \frac{1}{\left(\sqrt[n]{n}\right)^{\alpha}} = \frac{1}{1^{\alpha}} = 1$ und $\lim \sqrt[n]{n^{\alpha}} = \lim \left(\sqrt[n]{n}\right)^{\alpha} = 1^{\alpha} = 1$, dann gemäß Sandwich-Theorem

Satz (Konvergenzkriterium von Cauchy): Eine Folge (a_n) ist genau dann konvergent, wenn gilt:

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : |a_m - a_n| < \varepsilon \qquad \forall m, n > N(\varepsilon)$$

4.2 Unendliche Reihen

z. B.
$$\frac{1}{10} + \frac{1}{100} + \frac{1}{1000} + \dots + 0.\dot{1} = \frac{1}{9}$$

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - + \dots = \frac{\pi}{4} \text{ Leibniz-Reihe}$$

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln 2$$

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = \infty$$

4.2.1 Der Begriff der unendlichen Reihe

Sei a_1, a_2, \ldots Folge...

Wir betrachten die Partialsummen:

$$s_0 = a_0$$

$$s_1 = a_0 + a_1$$

$$s_2 = a_0 + a_1 + a_2$$

:

$$s_n = \sum_{k=0}^n a_k$$

↓

Definition: Eine unendliche Reihe $\sum_{n=0}^{\infty} a_n$ heißt konvergent und besitzt den Grenzwert s (die Summe s), wenn die Folge der Partialsummen $s_n = \sum_{k=0}^{n} a_k$ konvergiert und $\lim s_n = s$ gilt; andernfalls

ist die Reihe divergent.

Beispiel: unendliche geometrische Reihe $\sum_{n=0}^{\infty} q^n = 1 + q + q^2 + \dots$

$$s_n = 1 + q + \dots + q^n$$

$$q \cdot s_n = q + q^2 + \dots + q^{n+1}$$

$$(1 - q)s_n = 1 - q^{n+1}$$

$$s_n = \frac{1 - q^{n+1}}{1 - q} \xrightarrow{n \to \infty} \frac{1}{1 - q} \text{ falls } |q| < 1$$

$$\text{also } \sum q^n = 1 + q + q^2 + \dots = \frac{1}{1 - q} \text{ für } -1 < q < 1$$

$$z. \text{ B. } \frac{1}{10} + \frac{1}{100} + \dots = \frac{1}{10} \left(1 + \frac{1}{10} + \frac{1}{100} + \dots \right) = \frac{1}{10} \cdot \frac{1}{1 - \frac{1}{10}} = \frac{1}{10} \cdot \frac{10}{9} = \frac{1}{9}$$

Satz: Ist $\sum_{n>0} a_n$ konvergent, folgt $\lim_{n\to\infty} a_n = 0$, aber nicht umgekehrt.

1. angenommen,
$$\sum a_n = \lim s_n = s$$
 konvergiert $\Rightarrow a_n = s_n - s_{n-1} \to 0 - 0 = 0$

2. harmonische Reihe
$$\sum_{n\geq 1} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = \infty$$

$$\text{denn } 1 + \underbrace{\frac{1}{2}}_{\geq \frac{1}{2}} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{\geq \frac{1}{2}} + \underbrace{\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}_{\geq \frac{1}{2}} + \dots \to \infty$$

$$\text{explizit: } s_{2^n} \geq 1 + \frac{n}{2} \to \infty$$

Definition: Eine Reihe $\sum_{n\geq 0} a_n$ heißt absolut konvergent, falls $\sum_{n\geq 0} |a_n|$ konvergent ist. Eine Reihe, die nicht absolut konvergent ist, nennt man bedingt konvergent.

Satz: Eine absolut konvergente Reihe ist konvergent, aber nicht umgekehrt.

Also:

$$\sum |a_n| \quad \Rightarrow \quad \sum a_n \text{ konvergent} \quad \Rightarrow \quad \lim a_n = 0$$

$$\notin \quad \quad \notin$$

hinreichende Bedingung für Konvergenz von $\sum a_n$ Beispiele:

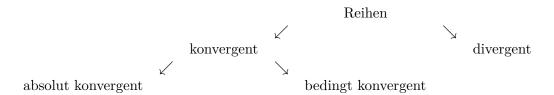
notwendige Bedingung für Konvergenz von $\sum a_n$

•
$$\frac{1}{10} + \frac{1}{100} + \dots = \frac{1}{9}$$

 $\frac{1}{10} - \frac{1}{100} + \dots = \frac{1}{10} \cdot \frac{1}{1 - \left(-\frac{1}{10}\right)} = \frac{1}{11}$

 $\sum \frac{(-1)^n}{10^n}$ ist absolut konvergent und daher auch konvergent

•
$$1 + \frac{1}{2} + \frac{1}{3} + \dots = \infty$$
 (harmonische Reihe)
 $1 - \frac{1}{2} + \frac{1}{3} - \dots = \ln 2$ (alternierende harmonische Reihe)
 $\sum \frac{(-1)^n}{n}$ ist zwar konvergent, aber nicht absolut konvergent



4.2.2 Konvergenzkriterien

(Vorsicht: alle diese "Kriterien" sind hinreichend, aber nicht notwendig!)

- 1. Sind $\sum a_n$ und $\sum b_n$ zwei Reihen, so dass $|a_n| \leq b_n$ für fast alle n und $\sum b_n$ konvergent ist, dann ist $\sum a_n$ absolut konvergent. (Majorantenkriterium)
- 2. Sind $\sum a_n$ und $\sum b_n$ zwei Reihen, so dass $0 \le a_n \le b_n$ für fast alle n und $\sum a_n$ divergent ist, dann ist $\sum b_n$ divergent. (Minorantenkriterium)
- 3. Gilt für $\sum a_n$, dass $\sqrt[n]{|a_n|} \le q < 1$ für fast alle n, dann ist $\sum a_n$ absolut konvergent. Falls hingegen $\sqrt[n]{|a_n|} \ge 1$ für unendlich viele n, so ist $\sum a_n$ divergent. (Wurzelkriterium)
- 4. Gilt für $\sum a_n$ (mit $a_n \neq 0$), dass $\left| \frac{a_{n+1}}{a_n} \right| \leq q < 1$ für fast alle n, dann ist $\sum a_n$ absolut konvergent. Falls hingegen $\left| \frac{a_{n+1}}{a_n} \right| \geq 1$ für fast alle n, so ist $\sum a_n$ divergent. (Quotientenkriterium)
- 5. Ist $\sum (-1)^n a_n$ eine alternierende Reihe, sodass a_n monoton gegen 0 konvergiert, dann ist $\sum (-1)^n a_n$ konvergent. (Leibniz-Kriterium)

Beispiele:

- $\sum_{n\geq 1} \frac{1}{n^2}$ konvergiert, denn (nach Majorantenkriterium) $\frac{1}{n^2} \leq \frac{1}{n(n-1)}$ $(n\geq 2)$ und $\sum \frac{1}{n(n-1)} = 1$ (siehe Übung) $\sum_{n\geq 1} \frac{1}{n^2} = \frac{\pi^2}{6}$
- $\sum_{n\geq 1} \frac{1}{\sqrt{n}}$ ist divergent, denn $\frac{1}{\sqrt{n}} \geq \frac{1}{n}$ und $\sum \frac{1}{n}$ divergiert (nach Minorantenkriterium)
- $\sum_{n\geq 0} \frac{n}{2^n}$ ist konvergent, denn $\sqrt[n]{|a_n|} = \sqrt[n]{\frac{n}{2^n}} = \frac{\sqrt[n]{n}}{2} \to \frac{1}{2}$ und $\frac{\sqrt[n]{n}}{2} \leq \underbrace{\frac{3}{4}}_{a} < 1$ für fast alle n (nach

Wurzelkriterium)

oder
$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{n+1}{2^{n+1}}}{\frac{n}{2^n}} = \frac{n+1}{n} \cdot \frac{1}{2} \to \frac{1}{2} < 1$$
 (nach Quotientenkriterium)

• $\sum_{n\geq 0} \frac{(-1)^n}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots \text{ ist konvergent (nach Leibniz-Kriterium: } \frac{1}{2n+1} \downarrow 0) \text{ gegen } \frac{\pi}{4}$ $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - + \dots \text{ ist konvergent (nach Leibniz-Kriterium: } \frac{1}{n} \downarrow 0) \text{ gegen ln 2}$

Rechnen mit unendlichen Reihen

$$\sum a_n = a, \sum b_n = b \Rightarrow \sum (a_n + b_n) = a + b$$
$$\sum (\lambda a_n) = \lambda \cdot a$$

Cauchy-Produkt

$$\sum a_n \cdot \sum b_n = ?$$

neue Reihe $\sum c_n$, wo

$$c_{0} = a_{0}b_{0}$$

$$c_{1} = a_{0}b_{1} + a_{1}b_{0}$$

$$c_{2} = a_{0}b_{2} + a_{1}b_{1} + a_{2}b_{0}$$

$$\vdots$$

$$c_{n} = a_{0}b_{n} + a_{1}b_{n-1} + \dots + a_{n}b_{0}$$

$$= \sum_{k=0}^{n} a_{k}b_{n-k}$$

$$\sum c_n = \sum_{n \ge 0} \left(\sum_{k=0}^n a_k b_{n-k} \right)$$

 $\sum c_n$ ist das Cauchy-Produkt der Reihen $\sum a_n$ und $\sum b_n$.

Es gilt: $\sum a_n, \sum b_n$ absolut konvergent \Rightarrow Cauchy-Produkt absolut konvergent und $\sum \sum a_k b_{n-k} = a \cdot b$

4.2.3 Potenzreihen

Beispiel: Exponentialreihe (für festes $x \in \mathbb{R}$)

$$\sum_{n\geq 0} \frac{x^n}{n!} = 1 + \frac{x}{1} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^n}{n!}} \right| = |x| \frac{1}{n+1} \to 0$$
also $\left| \frac{a_{n+1}}{a_n} \right| \leq \frac{1}{2} < 1$ falls n genügend groß

 \Rightarrow Reihe konvergiert für alle $x \in \mathbb{R}$

$$1 + \frac{x}{1} + \frac{x^2}{2!} + \dots = e^x$$
, insbesondere $x = 1 : 1 + \frac{1}{1!} + \frac{1}{2!} + \dots = e = 2.7 \dots$
Allgemein: $\sum_{n>0} a_n x^n$ oder $\sum_{n>0} a_n (x - x_0)^n$

z. B.
$$\sum_{n\geq 0} x^n = 1 + x + x^2 + x^3 + \dots = \begin{cases} \frac{1}{1-x} & \text{für } |x| < 1\\ \text{divergent sonst} \end{cases}$$

Satz (Konvergenz von Potenzreihen): Zu jeder Potenzreihe $\sum a_n x^n$ gibt es eine Zahl R mit $0 \le R \le \infty$, so dass die Reihe für alle |x| < R absolut konvergent und für alle |x| > R divergent ist.

Dabei gilt:
$$R = \frac{1}{\limsup \sqrt[n]{|a_n|}}$$

Bemerkungen:

- Satz gilt auch für $x_0 \neq 0$ (beliebiger Entwicklungspunkt)
- Satz gilt auch in \mathbb{C}

• $\limsup \sqrt[n]{|a_n|} = \infty \Rightarrow R = 0 \ (\sum a_n x^n \text{ konvergent nur für } x = 0)$ $\limsup \sqrt[n]{|a_n|} = 0 \Rightarrow R = \infty \ (\sum a_n x^n \text{ konvergent für alle } x)$

Beweis:

Sei |x| < R.

$$\limsup_{n \to \infty} \sqrt[n]{|a_n x^n|} = \underbrace{|x|}_{< R} \cdot \underbrace{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}_{= \frac{1}{R}} < 1$$

$$\Rightarrow \sqrt[n]{|a_n x^n|} \le q < 1 \text{ für fast alle } n$$

$$\Rightarrow \text{Konvergenz nach Wurzelkriterium}$$

Sei |x| > R: analog.

Beispiel:

$$\begin{split} \sum_{n\geq 1} \frac{x^n}{n} &= x + \frac{x^2}{2} + \frac{x^3}{3} + \dots \\ \left| \frac{a_{n+1}}{a_n} \right| &= \left| \frac{\frac{x^{n+1}}{n}}{\frac{x^n}{n}} \right| = |x| \frac{n}{n+1} < |x| < 1 \text{ für } |x| < 1 \\ \sum_{n=1}^{\infty} \text{ konvergent für } |x| < 1 \end{split}$$

oder:

$$\limsup \sqrt[n]{\frac{1}{n}} = \limsup \frac{1}{\sqrt[n]{n}} = 1$$
$$\Rightarrow R = \frac{1}{1} = 1$$

4.3 Asymptotischer Vergleich von Folgen

Analyse von Algorithmen: Komplexität und Speicherbedarf

z. B. Sortierung von n Zahlen der Größe nach:

primitiver Algorithmus: #Vergleiche = $(n-1)+(n-2)+\cdots+2+1=\frac{n(n-1)}{2}={\rm O}\left(n^2\right)$ ("groß-O") Average-Case-Analyse oder Worst-Case-Analyse

Definition (Landau-Symbole): Seien a_n, b_n Folgen. Dann schreibt man:

- 1. $a_n = \mathcal{O}(b_n)$ (" a_n ist ein Groß-O von b_n ", für $n \to \infty$), wenn eine Konstante C > 0 existiert, so dass $\left|\frac{a_n}{b_n}\right| \le C$ für fast alle n.
- 2. $a_n = o(b_n)$ (" a_n ist ein Klein-O von b_n "), wenn $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$.
- 3. $a_n \sim b_n$ (" a_n und b_n sind asymptotisch gleich"), wenn $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$.

Beispiele:

•
$$\frac{n(n-1)}{2} = \frac{n^2}{2} - \frac{n}{2} = n^2 \underbrace{\left(\frac{1}{2} - \frac{1}{2n}\right)}_{\leq C} \leq C \cdot n^2$$
, d. h. $\frac{n(n-1)}{2} = O(n^2)$

•
$$\frac{n(n-1)}{2} = o(n^2) = o(2^n) \text{ denn } \frac{\frac{n(n-1)}{2}}{n^3} \to 0$$

•
$$\frac{n(n-1)}{2} \sim \frac{n^2}{2}$$
, denn $\frac{\frac{n(n-1)}{2}}{\frac{n^2}{2}} = \frac{n^2 - n}{n^2} \to 1$ für $n \to \infty$

• $n! \sim \left(\frac{n}{2}\right)^n \sqrt{2\pi n}$ (Stirling'sche Formel)

O(n) linear, $O(n \log n)$ (z. B. Quicksort), $O(n^2)$ quadratisch, $O(2^n)$ exponentiell

4.4 Elementare Funktionen

Wir betrachten Funktionen $f: \mathbb{R} \supseteq D \to \mathbb{R}$.

4.4.1 Beispiele und einfache Eigenschaften

Polynomfunktionen $f: \mathbb{R} \to \mathbb{R}, f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \text{ wo } n \in \mathbb{N} \text{ (Grad des Polynoms)}, a_i \in \mathbb{N}$ \mathbb{R} (Koeffizienten), $a_n \neq 0$

konstante Funktionen $f(x) = a_n$ z.B. lineare Funktionen $f(x) = a_1 x + a_0$ Potenzfunktionen $f(x) = x^n, n \in \mathbb{N}$ Polynomfunktion 3. Grades $f(x) = x^3 - 4x^2 + 3x$

Rationale Funktionen $f: D \to \mathbb{R}$ mit $f(x) = \frac{p(x)}{q(x)}$ wo $D = \mathbb{R} \setminus \{x \in \mathbb{R} : q(x) = 0\}$ (Nullstellen von

z. B. $f(x) = \frac{x}{x^2 - 4}$ wo $f : \mathbb{R} \setminus \{-2, +2\} \to \mathbb{R} - 2$ und +2 sind Polstellen **Definition**: Sei $f : D \to \mathbb{R}$ und $I \subseteq D$ ein Intervall, dann heißt f auf I streng monoton wachsend, wenn $x < y \Rightarrow f(x) < f(y) \quad \forall x, y \in I$. (Analog streng monoton fallend: $x < y \Rightarrow f(x) > 0$ $f(y) \quad \forall x, y$

Polynomfunktionen sind auf ganz R definiert, stückweise monoton, im Allgemeinen weder injektiv noch surjektiv.

Satz: Jede auf einem Intervall I streng monotone Funktion $f: I \to f(I)$ ist bijektiv und lässt sich daher auf I umkehren.

Beweis: o. B. d. A. sei f streng monoton wachsend.

 $x \neq y$, etwa $x < y \Rightarrow f(x) < f(y)$, d. h. $f(x) \neq f(y)$, also ist f injektiv.

 $f: I \to f(I) = \{y \mid \exists x \in I: f(x) = y\}, \text{ also ist } f \text{ surjektiv.}$

Demnach ist f bijektiv.

Es gilt: f^{-1} ist auch streng monoton, und zwar gleichsinnig zu f.

4.4.2 Exponential- und Logarithmusfunktionen

Definition: Die natürliche Exponentialfunktion ist definiert durch $\exp(x) = e^x$, wo $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \approx 2.71828...$ ist. Die allgemeine Exponentialfunktion lautet $f(x) = a^x$ für a > 0. Frage: Wie ist e^x bzw. a^x überhaupt definiert?

• ganzzahlige n: $a^{n} = \underbrace{a \cdot a \cdot a \cdot a}_{n} \text{ für } n > 0$ $a^{0} = 1$ $a^{-n} = \frac{1}{a^{n}}$

• rationale $n: a^{\frac{p}{q}} \quad p \in \mathbb{Z}, n \in \mathbb{N}^+$ $f: \mathbb{R}^+ \to \mathbb{R}^+ a \mapsto a^n \ (n \in \mathbb{N}^+)$: ist stets streng monoton und bijektiv

$$\Rightarrow f^{-1}(a) = \sqrt[n]{a} = a^{\frac{1}{n}} \text{ (n-te Wurzel existiert)}$$
 definiere $a^{\frac{p}{q}} = \sqrt[q]{a^p}$

• reelle Exponenten a^b mit $b \in \mathbb{R}$ man wähle eine Folge in \mathbb{Q} : $\underbrace{b_n}_{\in \mathbb{Q}} \to \underbrace{b}_{\in \mathbb{R}}$ und setze $a^b = \lim_{n \to \infty} a^{b_n}$. Dieser Grenzwert existiert stets und ist unabhängig von der Folge b_n .

besondere Stellen von e^x :

•
$$e^0 = 1$$

•
$$e^1 = e \approx 2.7...$$
 Euler'sche Zahl

• Gauß'sche Glockenkurve:
$$e^{-\frac{x^2}{2}}$$

 $e^x: \mathbb{R} \to \mathbb{R}^+$ bijektiv \Rightarrow es existiert eine Umkehrfunktion ln : $\mathbb{R}^+ \to \mathbb{R}$ (natürlicher Logarithmus) wo $y = \ln(x) \Leftrightarrow x = e^y$, insbesondere:

•
$$\ln 1 = 0$$

•
$$\ln e = 1$$

Analog: allgemeiner Logarithmus zu Basis a als Umkehrfunktion von a^x : $y = \log_a(x) \Leftrightarrow x = a^y$ (nur für $a > 0, a \neq 1$

•
$$\log_a(1) = 0$$

•
$$\log_a(a) = 1$$

•
$$\log_a(a^x) = x \quad \forall x \in \mathbb{R}$$

•
$$a^{\log_a(x)} = x \quad \forall x \in \mathbb{R}^+$$

Rechenregeln für Potenzen und Logarithmen

•
$$\log(a \cdot b) = \log a + \log b \ (\rightarrow \text{Rechenschieber})$$

•
$$\log(a^b) = b \cdot \log a$$

•
$$a^x = e^{x \cdot \ln a}$$
 und $\log_a x = \frac{\ln x}{\ln a}$

Satz: Die natürliche Exponentialfunktion besitzt folgende Eigenschaften:

1.
$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$$
 (Darstellung von e^x als Grenzwert)

2.
$$e^x = \sum_{n \ge 0} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \dots$$
 (Darstellung von e^x als unendliche Reihe)

3.
$$e^x \cdot e^y = e^{x+y}$$
 (Funktionalgleichung für e^x)

4.4.3 Winkelfunktionen und Arcusfunktionen

Sinus: $\sin x = \frac{\text{Gegenkathete}}{\text{Hypotenuse}}$ Cosinus: $\cos x = \frac{\text{Ankathete}}{\text{Hypotenuse}}$ Tangens: $\tan x = \frac{\text{Gegenkathete}}{\text{Ankathete}}$ Siehe Einheitskreis im 1. Quadranten für $0 \le x < 2\pi$. Die Funktionen werden dann periodisch erweitert, d. h. $\sin(x + 2k\pi) = \sin x$ $k \in \mathbb{Z}$. $\sin : \mathbb{R} \to \mathbb{R}$

Reihendarstellung

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n \ge 0} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{n \ge 0} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$\tan x = \frac{\sin x}{\cos x}$$

$$\tan : \mathbb{R} \setminus \left\{ \pm \frac{\pi}{2}; \pm \frac{3\pi}{2}; \pm \frac{5\pi}{2}; \dots \right\} \to \mathbb{R}$$

Die Reihen (sowie Ableitungs- und Integralformeln) gelten ausschließlich im Bogenmaß!

Zusammenhang zwischen Sinus, Cosinus und Exponentialfunktion Sei hierfür e^z auch für $z \in \mathbb{C}$ definiert.

$$e^{ix} = 1 + (ix) + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \dots$$

$$= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$

$$+ ix - i\frac{x^3}{3!}$$

Also: $e^{ix} = \cos x + i \sin x$

Anwendungen:

- Polardarstellung komplexer Zahlen: $z = r(\cos \varphi + i \sin \varphi) = re^{i\varphi}$ z. B. $3 + 3i = \sqrt{2}e^{i\frac{\pi}{4}}$
- $e^{ix} = \cos x + i \sin x$ $e^{-ix} = \cos x - i \sin x$ $\Rightarrow \cos x = \frac{e^{ix} + e^{-ix}}{2}$ $\Rightarrow \sin x = \frac{e^{ix} - e^{-ix}}{2i}$
- $e^{i\pi} = \cos \pi + i \sin \pi = -1$ $e^{i\pi} + 1 = 0\pi$

Umkehrfunktionen In $\mathbb{R} \to \mathbb{R}$ sind sin und cos werder injektiv noch surjektiv. Wir müssen also den Definitions- und den Bildbereich einschränken.

Sei also $\sin: \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \to [-1; 1]$. Hier ist sin bijektiv. $\Rightarrow \exists \text{Umkehrfunktion arcsin}: \left[-1; 1\right] \to \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \text{ (genannt } Arcussinus; } y = \arcsin x \Leftrightarrow x = \sin y \text{)}$ analog arccos, arctan : $\mathbb{R} \to \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ Elementarfunktionen sind zusammengesetzt aus Grundfunktionen,

z. B.
$$f(x) = \sqrt{1 + \frac{1}{\cos^2 x}} - \sin x \cdot \ln \frac{x}{1 + e^{-x}}$$

4.5 Grenzwerte von Funktionen und Stetigkeit

4.5.1 Definition und Beispiele

Wir betrachten eine Funktion $f: D \to \mathbb{R}, y = f(x), x_0$ fester Punkt. "Gegen welchen Wert strebt f(x), wenn x gegen x_0 geht?" Beispiel:

$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \quad f(x) = \frac{\sin x}{x}$$
$$\lim_{x \to 0} f(x) = ?$$
$$\lim_{x \to \infty} f(x) = ?$$

Es gilt $\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{\sin x}{x} = 1$, denn

$$\sin x \le x \qquad \le \tan x$$

$$1 \le \frac{x}{\sin x} \le \frac{1}{\cos x}$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$1 \implies 1 \qquad 1$$

$$\mathrm{denn}\, \left|\frac{\sin x}{x}\right| = \frac{\left|\sin x\right|}{|x|} \leq \frac{1}{|x|} \to 0 \text{ für } x \to \infty$$

Beispiel:
$$g: \mathbb{R} \setminus \{0\} \to \mathbb{R}$$
 $g(x) = \begin{cases} 1 & \text{für } x > 0 \\ -1 & \text{für } x < 0 \end{cases}$

 $\lim_{x \to 0} g(x) = ?...$ dieser Grenzwert existiert nicht!

Definition: Eine Funktion $f:D\to\mathbb{R}$ besitzt an der Stelle x_0 den Grenzwert c, wenn für jede Folge (x_n) mit $x_n \in D, x_n \neq x_0$ und $\lim_{x \to \infty} x_n = x_0$ folgt $\lim_{x \to \infty} f(x_n) = c$ Gleichwertige Definition: f besitzt an der Stelle x_0 den Grenzwert c, wenn zu jedem $\varepsilon > 0$ eine

Zahl $\delta(\varepsilon) > 0$ existiert, so dass gilt $|x - x_0| < \delta \Rightarrow |f(x) - c| < \varepsilon$

Schreibweise: $\lim_{x \to x_0} f(x) = c$

analog ist definiert: $\lim_{x\to\infty} f(x) = c$, $\lim_{x\to x_0} f(x) = \infty$

Praktische Berechnung eines Funktionsgrenzwerts

- 1. gemäß Definition des Grenzwerts
- 2. Anwendung der Rechenregeln für Grenzwerte von Summen und Produkten von Funktionen
- 3. Umformung des Ausdrucks für f(x)
- 4. Entwicklung von f(x) in eine Reihe (siehe später)
- 5. Regeln von de l'Hôpital (siehe später)

Beispiele:

$$\lim_{x \to 1} \frac{3x+1}{x+1} = \frac{\lim_{x \to 1} (3x+1)}{\lim_{x \to 1} (x+1)}$$
$$= \frac{4}{2} = 2$$

$$\lim_{x \to \infty} \frac{3x+1}{x+1} = \lim_{x \to \infty} \frac{3+\frac{1}{x}}{1+\frac{1}{x}} = \frac{3+0}{1+0}$$

•

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{1}{x} \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - + \dots \right)$$
$$= \lim_{x \to 0} \left(1 - \frac{x^2}{3!} + \frac{x^4}{5!} - + \dots \right)$$
$$= 1$$

•

$$\lim_{x \to \infty} \frac{100}{1 + \varphi e^{-x}} = \frac{100}{\lim_{x \to \infty} \left(1 + \varphi e^{-x}\right)} = 100$$

Stetigkeit von Funktionen Definition: Eine Funktion $f: D \to \mathbb{R}$ heißt stetig an der Stelle $x_0 \in D$, wenn $\lim_{x \to x_0} f(x) = f(x_0)$. Die Funktion heißt stetig in D, wenn f an jeder Stelle $x_0 \in D$ stetig ist.

$$\Leftrightarrow \lim_{x \to x_0} f(x) = f\left(\lim_{x \to x_0} x\right)$$
, also lim und f vertauschbar

Beispiele für stetige Funktionen:

- alle elementaren Funktionen sind auf ihrem jeweiligen Definitionsbereich stetig
- Summen, Produkte, usw., Zusammensetzungen und Umkehrfunktionen stetiger Funktionen sind wieder stetig
- Potenzreihen sind im Inversen ihres Konvergenzintervalls stetig

Beispiele für nicht stetige Funktionen:

• Funktionen mit Sprungstellen (u. a. Treppenfunktionen)

$$y = f(x)$$

f ist stetig in x, wenn $f(\lim_{x\to x_0}) = \lim_{x\to x_0} f(x)$ Funktion, die nirgends stetig ist:

$$f(x) = \begin{cases} 0 & x \in \mathbb{Q} \\ 1 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

4.5.2 Eigenschaften stetiger Funktionen

1. Vorzeichenbeständigkeit f stetig, $f(x_0) > 0 \Rightarrow \exists \text{Umgebung } U_f(x_0) : f(x) > 0 \quad \forall x \in U_f(x_0)$

2. Nullstellensatz von Bolzano $f: I = [a, b] \to \mathbb{R}, f \text{ stetig}, f(a) < 0, f(b) > 0 \Rightarrow f \text{ besitzt mindestens eine Nullstelle } c \in I \text{ mit } f(c) = 0.$

3. Zwischenwertsatz

 $f: I = [a,b] \to \mathbb{R}, f$ stetig $\Rightarrow f$ nimmt auf I einen kleinsten Wert $m = \min\{f(x) \mid x \in I\}$, einen größten Wert $M = \max\{f(x) \mid x \in I\}$ und alle Werte in [m,M] mindestens einmal an.

5 Differentialrechnung in einer Variablen

5.1 Die Ableitung

5.1.1 Definition und Ableitung einfacher Funktionen

Wir betrachten eine Funktion $f(x): D \to \mathbb{R}$

Durchschnittliche Steigung im Intervall (x_0, x_1) : $\frac{\Delta y}{\Delta x} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$ "Differenzenquotient" Steigung in Punkt x_0 : $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0}$ "Differentialquotient" **Definition**: Unter der Ableitung (dem Differentialquotienten) einer Funktion $f: D \to \mathbb{R}$ an der

Stelle $x_0 \in D$ versteht man den Grenzwert

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Existiert dieser Grenzwert, so heißt f in x_0 differenzierbar; existiert er für alle $x_0 \in D$, heißt f in Ddifferenzierbar und die Funktion f'(x) die Ableitung von f.

Schreibweisen: $f'(x), y'(x_0), \frac{df}{dx}(x_0)$ ("Dee-Eff nach Dee-Iks in Iks-Null"), $\frac{dy}{dx}|_{x=x_0}$

Interpretation in der Geometrie: Tangentenanstieg

> den Naturwissenschaften: momentane Änderung einer Größe (z.B. Geschwindigkeit, Wachstum)

der Wirtschaft: z.B. Grenzkosten (zusätzliche Kosten für ein weiteres Stück)

Beispiele:

•
$$f(x) = c \text{ konstant } \Rightarrow f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{c - c}{x - x_0} = \lim_{x \to x_0} \frac{0}{x - x_0} = 0$$

•
$$f(x) = ax + b \text{ linear } \Rightarrow f'(x_0) = \lim_{x \to x_0} \frac{ax + b - (ax_0 + b)}{x - x_0} = \lim_{x \to x_0} \frac{a(x - x_0)}{x - x_0} = a$$

•
$$f(x) = 3x^2 + 1$$
 quadratisch $\Rightarrow f'(x_0) = \lim_{x \to x_0} \frac{3x^2 + 1 - (3x_0^2 + 1)}{x - x_0} = \lim_{x \to x_0} \frac{3(x - x_0)(x + x_0)}{x - x_0} = 6x_0$ also $(3x^2 + 1)' = 6x_0$ allgemein $(ax^2 + bx + c)' = 2ax + b$

•
$$f(x) = |x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

in $x_0 = 0$ nicht differenzierbar!

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{|x|}{x} = \begin{cases} 1 & x_n = \frac{1}{n} \downarrow 0 \\ -1 & x_n = -\frac{1}{n} \uparrow 0 \end{cases}$$

5.1.2 Eigenschaften und Ableitungsregeln

f stetig \Rightarrow f differenzierbar

Satz: Ist f differenzierbar in x_0 , dann ist f dort auch stetig. Beweis:

$$f(x) = f(x_0) + \frac{f(x) - f(x_0)}{x - x_0} \cdot (x - x_0)$$

$$\downarrow \lim_{x \to x_0} f(x)$$

$$f(x) = f(x_0) + \frac{f(x) - f(x_0)}{x - x_0} \cdot (x - x_0)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\lim_{x \to x_0} f(x) = f(x_0) + f(x_0) \cdot 0$$

$$\lim_{x \to x_0} f(x) = f(x_0), \text{ d. h. } f \text{ ist stetig ist } x_0 \square$$

reellwertige Funktionen \supset stetige Funktionen \supset differenzierbare Funktionen

	reellwertig	stetig	differenzierbar
$\frac{1}{x}$	ja	nein	nein
x	ja	ja	nein
x^2	ja	ja	ja

Ableitungen elementarer Funktionen (Schule)

•
$$f(x) = x^n \Rightarrow f'(x) = n \cdot x^{n-1}$$
 $(x \in \mathbb{R}, n \in \mathbb{N} \text{ oder } x > 0, n \in \mathbb{R})$

•
$$f(x) = e^x \Rightarrow f'(x) = e^x$$

•
$$f(x) = \sin x \Rightarrow f'(x) = \cos x$$

 $\operatorname{denn} f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim \frac{\sin x - \sin x_0}{x - x_0} = \lim_{x \to x_0} \frac{\sin(x_0 + (x - x_0)) - \sin x_0}{x - x_0}$
 $= \lim_{x \to x_0} \frac{\sin x_0 \cos(x - x_0) + \cos x_0 \sin(x - x_0) - \sin x_0}{x - x_0} = \sin x \cdot \lim_{x \to x_0} \frac{\cos(x - x_0) - 1}{x - x_0} + \cos x_0 \cdot \lim_{x \to x_0} \frac{\sin x - x_0}{x - x_0}$
 $= \lim_{x \to x_0} \frac{\sin x_0 \cos(x - x_0) + \cos x_0 \sin(x - x_0) - \sin x_0}{x - x_0} = \sin x \cdot \lim_{x \to x_0} \frac{\cos(x - x_0) - 1}{x - x_0} + \cos x_0 \cdot \lim_{x \to x_0} \frac{\sin x - x_0}{x - x_0}$

 $=\cos x_0$

•
$$f(x) = \arctan x \Rightarrow f'(x) = \frac{1}{1+x^2}$$

Satz (Ableitungsregeln):

•
$$(c \cdot f(x))' = c \cdot f'(x)$$
 $\forall c \in \mathbb{R}$

•
$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$
 Summerregel

•
$$(f(x) \cdot g(x))' = f'(x)g(x) + f(x)g'(x)$$
 Produktregel

•
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$
 $(g(x) \neq 0)$ Quotientenregel

•
$$D_1 \xrightarrow{g} D_2 \xrightarrow{f} \mathbb{R}, f \circ g = F$$

 $F(x) = f(g(x))$
 $\Rightarrow F'(x) = f'(g(x)) \cdot g'(x)$ Kettenregel
kurz: $\frac{df}{dx} = \frac{df}{da} \cdot \frac{dg}{dx}$

Beispiele:

•
$$f(x) = (1+x^2)e^x \Rightarrow f'(x) = 2x \cdot e^x + (1+x^2)e^x = (1+x)^2e^x$$

•
$$f(x) = \tan x = \frac{\sin x}{\cos x} \Rightarrow f'(x) = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = 1 + \tan^2 x$$

•
$$f(x) = \sqrt{1+x^2} \Rightarrow f'(x) = \frac{1}{2\sqrt{1+x^2}} \cdot 2x = \frac{x}{\sqrt{1+x^2}}$$

•
$$f(x) = \underbrace{\sin}_{f_1} \underbrace{\sqrt{\frac{1+x^2}{f_3}}}_{f_2} = f_1(f_2(f_3(x))) \Rightarrow f'(x) = f'_1(f_2(f_3(x))) \cdot f'_2(f_3(x)) \cdot f'_3(x)$$

= $\cos \sqrt{1+x^2} \cdot \frac{1}{2\sqrt{1+x^2}} \cdot 2x$

•
$$f(x) = \ln x \Rightarrow f'(x) = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}y}} = \frac{1}{\mathrm{e}^y} = \frac{1}{x}$$
, also $(\ln x)' = \frac{1}{x}$

•
$$f(x) = \arctan x \Rightarrow f'(x) = \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + x^2}$$
, also $(\arctan x) = \frac{1}{1 + x^2}$

Höhere Ableitungen

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = f'(x) \quad 1. \text{ Ableitung von } f$$

$$\frac{\mathrm{d}}{\mathrm{d}x}f'(x) = f''(x) \quad 2. \text{ Ableitung von } f \text{ (falls sie existiert!)}$$

allgemein $f'''(x), f^{(4)}(x), \dots, f^{(n)}(x) = \frac{\mathrm{d}^n}{\mathrm{d}x^n}f$ n-te Ableitung **Definition**: die n-te Ableitung einer Funktion f ist rekursiv definiert gemäß $f^{(n)}(x) = \frac{\mathrm{d}}{\mathrm{d}x}f^{(n-1)}(x)$ und $f^{(1)}(x) = f'(x)$. Falls $f^{(n)}(x)$ existiert, heißt f n-mal differenzierbar; falls $f^{(n)}(x)$ auch stetig ist, heißt f n-mal stetig differenzierbar.

Beispiel:

$$f(x) = \ln x \Rightarrow f'(x) = \frac{1}{x}$$

$$f''(x) = -\frac{1}{x^2}$$

$$f'''(x) = +\frac{2}{x^3}$$

$$f^{(4)} = -\frac{6}{x^4} = -\frac{3!}{x^4}$$

allgemein: $f^{(n)}(x) = (-1)^{(n+1)} \frac{(n-1)!}{x^n}$ für $n \ge 1$

Beispiel: $f(x) = x \cdot |x| \Rightarrow f'(x) = \frac{d}{dx} \begin{cases} x^2 & x \ge 0 \\ -x^2 & x < 0 \end{cases} = \begin{cases} 2x & x \ge 0 \\ -2x & x < 0 \end{cases} = 2|x|$

f''(x) existiert nicht für $x_0 = 0$, also ist f einmal aber nicht mehr zweimal differenzierbar

5.2 Die Taylor'sche Formel und der Mittelwertsatz

5.2.1 Mittelwertsatz

momentane Änderung von f im Punkt x_0 $\underline{f(x_1) - f(x_0)}$ mittlere Änderung von f im Intervall $[x_0, x_1]$

 \mathbf{Satz} (Mittelwertsatz der Differentialrechnung): Ist f auf dem abgeschlossenen Intervall [a,b] stetig und auf dem offenen Intervall (a,b) differenzierbar, dann gibt es mindestens eine Stelle ξ mit a < $\xi < b$, so dass $f'(\xi) = \frac{f(b) - f(a)}{b - a}$

(Sei g die Gerade durch a und b, dann ist h die dazu parallele Tangente von f. ξ ist dann der Berührpunkt von h und f.)

Sonderfall für f(a) = f(b): $\exists \xi : f'(\xi) = 0 \text{ (Satz von Rolle)}$

Beweis: ohne Beschränkung der Allgemeinheit sei f nicht linear (sonst trivial).

Man bilde $F(x) = f(b) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$ $\Rightarrow F(x)$ stetig in [a, b]; F(a) = F(b) = 0, aber $F(x) \neq 0$

 $\Rightarrow F$ besitzt Minimum oder Maximum in einem ξ mit $a < \xi < b$

$$\Rightarrow F'(\xi) = f(\xi) - \frac{f(b) - f(a)}{b - a} \cdot 1 = 0 \text{ (Schule, siehe Abschnitt 4)}$$

$$\Rightarrow f'(\xi) = \frac{f(b) - f(a)}{b - a} \text{ für ein } \xi \text{ mit } a < \xi < b \quad \square$$

Beispiel für Anwendung des Mittelwertsatzes:

Satz: Seien Funktionen f, g differenzierbar auf [a, b] und gelte $f'(x) = g'(x) \quad \forall x \in [a, b]$, dann folgt f(x) = g(x) + C mit C konstant, d. h. f und g unterscheiden sich nur um eine additive Konstante.

Beweis: man setze $F(x) = f(x) - g(x), x_0 \in [a, b]$ beliebig.

$$\Rightarrow F(x) - F(x_0) = \underbrace{F'(\xi)}_{f'(\xi) - g'(\xi) = 0} \cdot (x - x_0) = 0$$

$$\Rightarrow \forall x : F(x) = F(x_0), \text{ also konstant } (C = F(x_0))$$

5.2.2 Der verallgemeinerte Mittelwertsatz und die Regel von de l'Hôpital

Satz (verallgemeinerter Mittelwertsatz der Differentialrechnung): Sind f, g auf dem Intervall [a, b] stetig und auf (a, b) differenzierbar, $g'(x) \neq 0 \quad \forall x$, dann gibt es mindestens eine Stelle ξ mit $a < \xi < b$, so dass

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Beweis: Wir bilden

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} (g(x) - g(a))$$
$$g(b) - g(a) = g'(\xi) \cdot (b - a) \neq 0$$

F stetig und differenzierbar; F(a) = F(b) = 0

$$\Rightarrow \exists \xi : F'(\xi) = 0 = f'(\xi) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g'(\xi)$$
$$\Rightarrow \frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)} \quad \Box$$

Unbestimmte Formen z. B. $\lim_{x\to 0} \frac{\sin x}{x} = \frac{0}{0}$ unbestimmte Form. Wie groß ist $\frac{0}{0}$?

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\sqrt{x}}{x} = \infty$$

$$\lim_{x \to 0} \frac{\sin 3x}{x} = 3$$

$$\lim_{x \to 0} \frac{x^2}{x} = 0$$

andere unbestimmte Formen:

$$\begin{array}{c}
\frac{\infty}{\infty} \\
0 \cdot \infty \\
\infty - \infty \\
0^0 \\
\infty^0 \\
1^{\infty}
\end{array}$$

Satz (Regel von de l'Hôpital): Sind die Funktionen f, g in einer Umgebung von x_0 differenzierbar, gilt $f(x_0) = g(x_0) = 0$ und existiert $\lim_{x \to x_0} \frac{f'(x_0)}{g'(x_0)}$, so folgt

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Eine analoge Aussage gilt für $x \to \infty$ oder auch, falls $\lim f(x) = \lim g(x) = \infty$.

Beweis:

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(\xi)}{g'(\xi)} \text{ für ein } \xi \text{ zwischen } x_0 \text{ und } x$$

$$x \to x_0 \Rightarrow \xi \to x_0$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{\xi \to x_0} \frac{f'(\xi)}{g'(\xi)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} \quad \Box$$

Beispiele:

•

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = 1$$

•

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\sin x}{2x} = \lim_{x \to 0} \frac{\cos x}{2} = \frac{1}{2}$$

•

$$\lim_{x \to \infty} \frac{x^n}{e^n} = \lim_{x \to \infty} \frac{nx^{n-1}}{e^x} = \dots = \lim_{x \to \infty} \frac{n!x^0}{e^x} = 0 \qquad (n \in \mathbb{N})$$

d. h. e^x wächst schneller an als jede Potenz x^n

•

$$\lim_{x \to 0} x \cdot \ln x = \lim_{x \to 0} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0} \frac{-x^2}{x} = \lim_{x \to 0} (-x) = 0$$

•

$$\lim_{x \to 1} (\ln x)^{x-1} = \lim_{x \to 1} e^{(x-1) \cdot \ln(\ln x)}$$

$$\lim_{x \to 1} (x-1) \cdot \ln(\ln x) \stackrel{0 \infty}{=} \lim_{x \to 1} \frac{\ln(\ln x)}{\frac{1}{x-1}} \stackrel{\frac{\infty}{\infty}}{=} \lim_{x \to 1} \frac{\frac{1}{\ln x} \cdot \frac{1}{x}}{(-1) \frac{1}{(x-1)^2}} = \lim_{x \to 1} \frac{-(x-1)^2}{x \cdot \ln x}$$

$$\stackrel{\frac{0}{=}}{=} \lim_{x \to 1} \frac{-2(x-1)}{\frac{1}{x} \cdot x + \ln x \cdot 1} = \frac{-2 \cdot 0}{1+0} = 0$$
und damit $\lim_{x \to 1} (\ln x)^{x-1} = e^{\lim_{x \to 1} (x-1) \cdot \ln(\ln x)} = e^0 = 1$

•

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x \stackrel{1^{\infty}}{=} e^{\lim_{x \to \infty} x \cdot \ln\left(1 + \frac{1}{x}\right)}$$

$$\lim_{x \to \infty} \frac{\ln\left(1 + \frac{1}{x}\right)}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\frac{1}{1 + \frac{1}{x}} \cdot \left(-\frac{1}{x^2}\right)}{\left(-\frac{1}{x^2}\right)} = 1$$

$$\Rightarrow \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e^2 = e$$

5.2.3 Taylorreihen

Sei f(x) differenzierbar in x_0 .

Tangente t: Anstieg $f'(x_0)$, durch den Punkt $(x_0, f(x_0)) \Rightarrow y = f(x_0) + f'(x_0) \cdot (x - x_0)$. also

$$f(x) \approx f(x_0) + f'(x_0) \cdot (x - x_0) \text{ für } x \in U(x_0)$$

$$= f(x_0) + f'(x_0) \cdot (x - x_0) + R(x)$$
Fehler $R(x) = o(x - x_0)$ für $x \to x_0$

$$\dim \lim_{x \to x_0} \frac{R(x)}{x - x_0} = \lim_{x \to x_0} \frac{1}{x - x_0} (f(x) - f(x_0) - f'(x_0) \cdot (x - x_0))$$

$$= \lim_{x \to x_0} \underbrace{\frac{f(x) - f(x_0)}{x - x_0}}_{f'(x_0)} - f'(x_0)$$

also: f differenzierbar in $x_0 \Rightarrow f$ linear approximierbar in x_0 (siehe oben)

Genauso gilt: f linear approximierbar, d. h. $f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + R(x)$ mit R(x) =

$$\Rightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \left(f'(x_0) + \frac{R(x)}{x - x_0} \right) = f'(x_0) \Rightarrow f \text{ in } x_0 \text{ differenzierbar}$$
Satz: Eine Funktion $f(x)$ ist genau dann differenzierbar in x_0 , wenn f wie folgt linear approxi-

mierbar ist:

$$f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + R(x)$$
 mit $R(x) = o(x - x_0)$

Bisher: $f(x) \approx f(x_0) + f'(x_0) \cdot (x - x_0)$

besser: $f(x) \approx a_0 + a_1(x - x_0) + a_2(x - x_0)^2$ usw.

Angenommen, f(x) ist durch eine endliche oder unendliche Summe approximierbar,

d. h.
$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 (Potenzreihe im Punkt x_0)

Potenzreihe kann für $|x-x_0| < R$ gliedweise differenziert werden (ohne Beweis)

$$\Rightarrow f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + a_3(x - x_0)^3 + \dots$$

 $f(x_0) = a_0$

$$f'(x) = a_1 + 2a_2(x - x_0) + 3a_3(x - x_0)^2 + \dots$$

 $f'(x_0) = a_1$

$$f''(x) = 2a_2 + 3!a_3(x - x_0) + \dots$$

 $f''(x_0) = 2a_2 = 2!a_2$

 $f'''(x_0) = 3!a_3$

allgemein $f^{(n)}(x_0) = n! \cdot a_n \Rightarrow a_n = \frac{f^{(n)}(x_0)}{n!}$

Somit gilt:

$$f(x) = f(x_0) + f'(x)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots$$
$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n$$

Dies ist die Taylorreihe von f im Entwicklungspunkt x_0 .

Sonderfall: $x_0 = 0$:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \cdot x^n$$

Dies ist die McLaurinreihe von f.

Beispiele:

 $f(x) = e^{x}$ $x_{0} = 0$ $\Rightarrow f^{(n)}(x) = e^{x}$ $f^{(n)}(x) = e^{0} = 1$ $\Rightarrow e^{x} = f(0) + f'(0) \cdot x + \frac{f''(0)}{2!} \cdot x^{2} + \dots$ $= 1 + x + \frac{x^{2}}{2!} + \dots$ $= \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

analog für $\sin x$ und $\cos x$

 $f(x) = \ln x$ $x_0 = 1$ $f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{x^n}$ $\Rightarrow f^{(n)}(1) = (-1)^{n-1} (n-1)!$ $\Rightarrow \ln x = \ln 1 + 1 \cdot (x-1) - \frac{1!}{2!} (x-1)^2 + \frac{2!}{3!} (x-1)^3 - + \dots$ $= (x-1) - \frac{1}{2} (x-1)^2 + \frac{1}{3} (x-1)^3 - + \dots$ $\Rightarrow \ln(x+1) = x - \frac{x^2}{2} + \frac{x^3}{3} - + \dots$ $= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} \text{ für } -1 < x \le 1$ insbesondere $x = 1 : \ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - + \dots$

Bricht man die Taylorreihe nach dem n-ten Glied ab, erhält man

$$f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + R_n$$

Dies ist die Taylor'sche Formel mit Restglied R_n . R_n ist abhängig von n, x_0, x .

Satz (von Taylor): Ist $f: I \to \mathbb{R}$ (n+1)-mal differenzierbar, und sind $x, x_0 \in I$, dann gilt obige Formel mit dem Restglied (nach Lagrange) $R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$ wo ξ zwischen x_0 und x liegt. Ist f beliebig oft differenzierbar, so stimmt die Taylorreihe genau dann mit f überein, wenn $\lim_{n\to\infty} R_n = 0$.

Beispiele:

$$f(x) = \sqrt{1+x}$$

$$x_0 = 0$$

$$f(0) = 1$$

$$t_0(x) = 1 \text{ konstantes Taylorpolynom}$$

$$f'(0) = \frac{1}{2\sqrt{1+x}} \Big|_{x=0} = \frac{1}{2}$$

$$t_1(x) = 1 + \frac{1}{2}x \text{ lineares Taylorpolynom} = \text{ Tangente}$$

 $t_2(x) = 1 + \frac{1}{2}x - \frac{1}{8}x^2$ quadratische Approximation

$$f(x) = e^{x}$$

$$= 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + R_{n}$$

$$\text{mit } R_{n} = \frac{e^{\xi}}{(n+1)!} x^{n+1}$$

$$\xi \text{ zwischen 0 und } x$$

$$\Rightarrow |R_{n}| \le \frac{e^{|x|}}{(n+1)!} \cdot |x|^{n+1} =$$

$$= e^{|x|} \cdot \frac{|x|}{1} \cdot \frac{|x|}{2} \cdots \frac{|x|}{n+1} \xrightarrow{n \to \infty} 0$$

Bestimme e auf 4 Nachkommastellen, d. h. wähle n so, dass $|R_n| < 10^{-4}$ für x = 1.

$$|R_n||_{x=1} \le \frac{e^1}{(n+1)!} < \frac{3}{(n+1)!} < 10^{-4}$$

$$(n+1)! > 3 \cdot 10^4$$

$$n+1 \ge 8$$

$$n \ge 7$$

$$\Rightarrow e \approx 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{7!} = 2.7182\dots$$

$$f(x) = \arctan x$$

$$x_0 = 0$$

$$y = \arctan x$$

$$y' = \frac{1}{1 + x^2}$$

$$= \frac{1}{1 - (-x^2)}$$

$$= 1 - x^2 + x^4 - x^6 + x^8 - + \dots$$

$$y = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - + \dots + C$$

$$y(0) = \arctan 0 = 0 = C$$

$$\Rightarrow \arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$

insbesondere x = 1: $\arctan 1 = \frac{\pi}{4}$

5.2.4 Monotonie, Extrema und Konvexität

Gegeben sei eine Funktion $f: I_{\subseteq \mathbb{R}} \to \mathbb{R}$, die nach Bedarf differenzierbar ist.

Monotonie Satz: f ist genau dann monoton wachsend (bzw. fallend) auf I, wenn $f'(x) \ge 0$ (bzw. $f'(x) \le 0$) $\forall x \in I$ gilt.

Beweis:

 \Rightarrow : Sei f monoton wachsend, das heißt $f(x_1) \leq f(x_2)$ für $x_1 < x_2, \quad x_1, x_2 \in I$.

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \ge 0 \quad \forall x_1, x_2$$

$$\Rightarrow f'(x_1) = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1} \ge 0$$

 \Leftarrow : Es gelte $f'(x) \ge 0 \quad \forall x \in I$. Seien $x_1, x_2 \in I, x_1 < x_2$.

$$\Rightarrow f(x_2) - f(x_1) = \underbrace{f'(\xi)}_{\geq 0} \underbrace{(x_2 - x_1)}_{\geq 0} \text{ mit } \xi \text{ zwischen } x_1 \text{ und } x_2 \text{ (Mittelwertsatz)}$$

$$\Rightarrow f(x_1) \leq f(x_2) \quad \Box$$

Beispiel:

$$f(x) = x^{2}e^{x}$$

$$f'(x) = 2x \cdot e^{x} + x^{2} \cdot e^{x} = e^{x}(x^{2} + 2x) = e^{x}x(2 + x)$$

$$f'(x) = 0 \text{ für } x \in \{0; -2\}$$

f'(x) ist in $(-\infty; -2)$ monoton wachsend, in (-2; 0) monoton fallend, und in $(0; \infty)$ wieder monoton wachsend.

Extremwerte Definition: f besitzt an der Stelle x_0 ein relatives Maximum, wenn $f(x) \leq f(x_0)$ in einer Umgebung von x_0 gilt, d. h. $\forall x \in (x_0 - \delta; x_0 + \delta) \cap I$ mit $\delta > 0$. f besitzt an der Stelle x_0 ein absolutes Maximum im Intervall I, wenn $f(x) \leq f(x_0)$ $\forall x \in I$ gilt. Analog sind relatives und absolutes Minimum definiert.

Satz: Für relative Extrema von f gilt:

- notwendige Bedingung: f hat ein relatives Extremum in $x_0 \Rightarrow f'(x_0) = 0$
- hinreichende Bedingung: $f'(x_0) = 0$ und $f''(x_0) \begin{cases} < 0 \Rightarrow f \text{ hat ein relatives Maximum in } x_0 \\ > 0 \Rightarrow f \text{ hat ein relatives Minimum in } x_0 \end{cases}$

Also $f'(x_0) \wedge f''(x_0) \neq 0 \Rightarrow f$ hat ein relatives Extremum in $x_0 \Rightarrow f'(x_0) = 0$ Beweis:

• f besitze ein relatives Maximum in x_0 , d. h. $f(x) \le f(x_0)$ für $x_0 - \delta < x < x_0 + \delta$ $(\delta > 0)$.

$$\frac{f(x) - f(x_0)}{x - x_0} \ge 0 \text{ für } x < x_0 \Rightarrow f'(x_0) \ge 0 = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

$$\le 0 \text{ für } x > x_0 \Rightarrow f'(x_0) \le 0$$

$$\Rightarrow f'(x_0) = 0$$

• Gelte $f'(x_0) = 0$ und $f''(x_0) < 0$ ($\Rightarrow f''(x) < 0$ in einer Umgebung von x_0).

$$f(x) = f'(x_0) \cdot (x - x_0) + \frac{f''(\xi)}{2!} \cdot (x - x_0)^2$$

$$\Rightarrow f(x) \le f(x_0) \text{ für } x \text{ nahe genug bei } x_0$$

$$\Rightarrow f \text{ hat ein relatives Maximum in } x_0 \quad \Box$$

Bemerkungen:

- Die Bedingung $f'(x_0) = 0$ ist notwendig, aber **nicht** hinreichend für ein relatives Extremum. Beispiel: $f(x) = x^3, x_0 = 0$ (Wendepunkt, kein Extremum!)
- Die Bedingung $f'(x_0) = 0$, $f''(x_0) < 0$ ist hinreichend, aber **nicht** notwendig für ein relatives Maximum. Beispiel: $f(x) = 1 x^4$, $x_0 = 0$ (f'(0) = 0, f''(0) = 0; trotzdem relatives Maximum!)
- Generell: Sei $f^{(n \in \mathbb{N})}(x) = 0$ und $\forall k \in \mathbb{N} < n : f^{(k)}(x) \neq 0$ (die *n*-te Ableitung von f ist in x die erste ungleich 0). Nur wenn n gerade ist, liegt in x ein relatives Extremum vor.
- Obige Bedingungen sind nur für relative Extrema von differenzierbaren Funktionen geeignet. Beispiel: f(x) = |x|. $x_0 = 0$ ist ein relatives Minimum, aber $f'(x) \neq 0$.

Zum Auffinden von absoluten Extremwerten in einem Intervall I = [a; b] untersucht man alle relativen Extrema und die möglichen Randextrema an den Stellen $x_0 = a$ oder $x_0 = b$.

Beispiel:

$$f(x) = x^2 e^x$$

$$f'(x) = e^x x(2+x) = 0 \Rightarrow x_1 = -2, x_2 = 0$$

$$f''(x) = \left[e^x (2x+x^2)\right]' = e^x (2x+x^2) + e^x (2+2x) = e^x (x^2+4x+2)$$

$$\Rightarrow f''(-2) = e^{-2} (-2) \le 0 \Rightarrow \text{ relatives Maximum an der Stelle } x_1 = -2$$

$$f''(0) = 2 > 0 \Rightarrow \text{ relatives Minimum an der Stelle } x_2 = 0$$

$$\lim_{x \to -\infty} f(x) = \infty \Rightarrow \text{ $\frac{1}{2}$ absolutes Maximum auf } \mathbb{R}$$

$$\lim_{x \to -\infty} f(x) = 0, f(0) = 0, f(x) > 0 \text{ für } x \ne 0 \Rightarrow \text{ absolutes Minimum bei } x = 0$$

Wendepunkte und Konvexität Definition: f heißt konvex (konkav), wenn f' monoton wachsend (fallend) ist. f hat an der Stelle x_0 einen Wendepunkt, wenn f' in x_0 ein relatives Extremum besitzt. Satz: f ist genau dann konvex (konkav) auf I, wenn $f''(x) \ge 0$ $(f''(x) \le 0)$ $\forall x \in I$. Gilt f''(x) = 0 und $f'''(x) \ne 0$, dann besitzt f einen Wendepunkt an der Stelle x. (Für Wendepunkte gelten ähnliche Kriterien wie bei relativen Extrema, nur umgekehrt: ist n ungerade, gibt es einen Wendepunkt.) Beispiel:

$$f(x) = x^{2}e^{x}$$

$$f'(x) = (2x + x^{2})e^{x}$$

$$f''(x) = (2 + 4x + x^{2})e^{x}$$

$$f'''(x) = (6 + 6x + x^{2})e^{x}$$

$$f''(x) = 0 \text{ in } x_{3,4} = -2 \pm \sqrt{2} \quad (f'''(x_{3,4}) \neq 0)$$