Hybrid Systems Modeling, Analysis and Control

Radu Grosu
Vienna University of Technology

Lecture 6

Continuous AND Discrete Systems

Control Theory

Continuous systems approximation, stability control, robustness

Computer Science

Discrete systems abstraction, composition concurrency, verification

Software controlled systems Embedded real-time systems Multi-agent systems

Models and Tools

Dynamic systems with continuous & discrete state variables

	Continuous Part	Discrete Part
Models	Differential equations, transfer functions,	Automata, Petri nets, Statecharts,
Analytical Tools	Lyapunov functions, eigenvalue analysis,	Boolean algebra, formal logics, verification,
Software Tools	Matlab, Matrix _x , VisSim,	Statemate, Rational Rose, SMV,

Modeling a Hybrid System

Hybrid Automaton (HA)

Example: Bouncing Ball

Ball has mass m and position xBall initially at position x_o and at rest Ball bounces when hitting ground at x = 0

Bouncing Ball: Free Fall

Condition for free fall: $x \ge 0$

Physical law: $F_g = -mg = -m\ddot{x}$

Differential equations: $\dot{\mathbf{x}} = \mathbf{v}$

First order $\dot{\mathbf{v}} = -\mathbf{g}$

Bouncing Ball: Bouncing

Condition for bouncing: x = 0

Action for bouncing: v' = -cv

Coefficient c: deformation, friction

Bouncing Ball: Hybrid Automaton

Bouncing Ball: Associated Program

Execution of Bouncing Ball

Boost DC-DC Converter

Boost DC-DC Converter

Boost DC-DC Converter


```
float i_L = i_0, v_c = v_0, d = d_0; bool s = 0;
while true {
```

while
$$(s = 0)$$
 {
 $i_L = i_L - (\frac{R_L}{L} * i_L - \frac{1}{L} * V_S) * d$
 $V_C = V_C - \frac{1}{C} * \frac{1}{R_C + R_0} * V_C * d$
read(s) }

while
$$(s = 0)$$
 {
$$i_{L} = i_{L} - (\frac{R_{L}}{L} * i_{L} - \frac{1}{L} * v_{s}) * d$$

$$i_{L} = i_{L} - (\frac{1}{L} (R_{L} + \frac{R_{c} * R_{0}}{R_{c} + R_{0}}) * i_{L} + \frac{1}{L} \frac{R_{0}}{R_{c} + R_{0}} * v_{c} - \frac{1}{L} * v_{s}) * d$$

$$v_{c} = v_{c} - \frac{1}{C} * \frac{1}{R_{c} + R_{0}} * v_{c} * d$$

$$v_{c} = v_{c} + (\frac{1}{C} * \frac{R_{0}}{R_{c} + R_{0}} * i_{L} - \frac{1}{C} * \frac{1}{R_{c} + R_{0}} * v_{c}) * d$$

$$read(s) \}$$

Execution of Boost DC-DC Converter

Parameters:

$$U_s = 20V$$

$$L = 1mH$$

$$C = 50nF$$

$$R_L = 1kW$$

$$R_C = 10W$$

$$R_0 = 10kW$$

$$dt = 200 ns$$

$$U_{\rm max} = 16V$$

$$U_{\min} = 14V$$

Hybrid Automaton H

Variables: Continuous variables $x = [x_1, ..., x_n]$

Control Graph: Finite directed multigraph (V,E)

Finite set *V* of control modes
Finite set *E* of control switches

Vertex labeling functions: for each $v \in V$

Initial states: init(v)(x) defines initial region

Invariant: inv(v)(x) defines invariant region

Continuous dynamics: \dot{x} is in flow(v)(x)

Edge labeling functions: for each $e \in E$

Guard: guard(e)(x) defines enabling region

Update: action(e)(x, x') defines the reset region

Synchronization labels: label(e) defines communication

Executions of a Hybrid Automaton

```
State: (m,x) such that x \in inv(m)
      Initialization: (m,x) such that x \in init(m)
           Two types of state updates:
Discrete switches: (m,x) \rightarrow (m',x') if
           e = (m, m') \in E \land label(e) = a \land
           guard(e)(x) \geq 0 \wedge \text{action(e)}(x,x')
Continuous flows: (m,x) \rightarrow^f (m,x') if \exists f : [0,T] \rightarrow \mathbb{R}^n.
                    f(0) = x \wedge f(T) = x'
   \forall 0 \le t \le \mathsf{T}. \ f(t) \in \mathsf{inv}(m) \land \dot{f}(t) \in \mathsf{flow}(m)(f(t))
```

References

 T. A. Henzinger, "The theory of hybrid automata", Logic in Computer Science, 1996. LICS '96.
 Proceedings., Eleventh Annual IEEE Symposium on, New Brunswick, NJ, 1996, pp. 278-292.