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Continuous AND Discrete Systems

Hybrid Systems

Continuous systems

approximation, stability 

control, robustness

Control Theory Computer Science

Discrete systems

abstraction, composition

concurrency, verification

Software controlled systems

Embedded real-time systems

Multi-agent systems



Models and Tools 

Dynamic systems with continuous & discrete state variables

Models

Continuous Part

Differential equations,

transfer functions, 

Automata, Petri nets,

Statecharts, 

Discrete Part

Software Tools

Analytical Tools
Lyapunov functions,

eigenvalue analysis,

Matlab, Matrixx,

VisSim,

Boolean algebra, formal

logics, verification,

Statemate, Rational 

Rose, SMV,



Modeling a Hybrid System
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Hybrid Automaton (HA)
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continuous 
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x  inv (m )

  
x  init (m )

 n

  
x  inv (n )

  
action (x , x )

  
e :  guard (x )  0

  

invariant: HA may remain in

   m  as long as x  inv (m )



Example: Bouncing Ball

  
Ball has m ass m  and position x  

  
Ball bounces when hitting ground at x  0

  
Ball initially at position x

0
 and at rest



Bouncing Ball: Free Fall

  Condition for free fall: x  0

 
Differential equations: 

 First order



Bouncing Ball: Bouncing

  
Condition for bouncing: x  0

  
Action for bouncing: v  cv

 Coefficient c: deform ation, friction



Bouncing Ball: Hybrid Automaton

 freeFall

 x  0

 location

 invariant

 flow

  
x  x

0
,  v  0 initial condition

 bounce: 

  v  cv

 label

 
guard

 action

 discrete transition



Bouncing Ball: Associated Program

 freeFall location

 invariant

 flow

 initial condition

 bounce: 

  v  c  v

 label

 guard

 action

 discrete transition



Execution of Bouncing Ball

  
Position (x ) 0

x (t)

1
x (t)

2
x (t)

3
x (t)

4
x (t)

0
v (t) 1

v (t) 2
v (t) 3

v (t) 4
v (t)

  
Velocity (v )

  
Tim e (t )

  
Tim e (t )  

T
0   

T
1   

T
2   

T
3   

T
4

  
T

0   
T

1   
T

2   
T

3   
T

4



Boost DC-DC Converter
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Boost DC-DC Converter
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Boost DC-DC Converter
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;  bool  s  0;

w hile true {   

  

w hile (s  0)  { 
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Execution of Boost DC-DC Converter
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Capacitor Voltage and Inductor Current

0

4

8

12

16

V
o
lt
ag

e
u

R
0
,
V

0

50

100

150

200

C
u
rr

en
t
i L

,
m

A

0 1 2 3

Time t, ms

Load Voltage

Parameters :

Us = 20V

L = 1mH

C = 50nF

RL = 1kW

RC = 10W

R0 = 10kW

dt = 200ns

Umax = 16V

Umin = 14V



  
Hybrid  Autom aton H

  
Variables: Continuous variables x  [ x

1
, ..., x

n
]

  
Control Graph: Finite directed m ultigraph (V ,E ) 

  
Vertex labeling functions: for each v V

  
Initial states:  init(v )(x ) defines initial region

  
Invariant: inv(v )(x ) defines invariant region 

  Finite set V  of control modes

 Finite set E of control switches

  
Edge labeling functions: for each e E

  
Guard: guard(e )(x ) defines enabling region

  
Update: action(e )(x , x ) defines the reset region

  
Synchronization labels: label(e ) defines com m unication



 
Executions of a Hybrid  Autom aton

  
State: (m ,x ) such that x  inv(m )

  
Initialization: (m ,x ) such that x  init(m ) 

 
Two types of state updates:

  
Discrete sw itches:  (m ,x ) 

a
( m , x ) if  

  
e  ( m , m ') E    label(e )  a    

   
Continuous flows:  (m ,x ) 

f
(m , x ) if    f : [0,T]  R

n
.

  
f (0)  x    f (T)  x

  
guard(e )(x )  0    action(e)(x , x )
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