
Radu Grosu

Vienna University of Technology

Hybrid Systems

Modeling, Analysis and Control

Lecture 6

Continuous AND Discrete Systems

Hybrid Systems

Continuous systems

approximation, stability

control, robustness

Control Theory Computer Science

Discrete systems

abstraction, composition

concurrency, verification

Software controlled systems

Embedded real-time systems

Multi-agent systems

Models and Tools

Dynamic systems with continuous & discrete state variables

Models

Continuous Part

Differential equations,

transfer functions,

Automata, Petri nets,

Statecharts,

Discrete Part

Software Tools

Analytical Tools
Lyapunov functions,

eigenvalue analysis,

Matlab, Matrixx,

VisSim,

Boolean algebra, formal

logics, verification,

Statemate, Rational

Rose, SMV,

Modeling a Hybrid System

Model of System

M odel of

Physics

M odel of

Softw are

continuous dynam ics

discrete dynam ics

Hybrid Automaton (HA)

jump

transformation

edge guard

continuous

dynamics

initial

condition

locations or modes

(discrete states)

 m

x  inv (m)

x  init (m)

 n

x  inv (n)

action (x , x)

e : guard (x)  0

invariant: HA may remain in

 m as long as x  inv (m)

Example: Bouncing Ball

Ball has m ass m and position x

Ball bounces when hitting ground at x  0

Ball initially at position x

0
 and at rest

Bouncing Ball: Free Fall

 Condition for free fall: x  0

Differential equations:

 First order

Bouncing Ball: Bouncing

Condition for bouncing: x  0

Action for bouncing: v  cv

 Coefficient c: deform ation, friction

Bouncing Ball: Hybrid Automaton

 freeFall

 x  0

 location

 invariant

 flow

x  x

0
, v  0 initial condition

 bounce:

 v  cv

 label

guard

 action

 discrete transition

Bouncing Ball: Associated Program

 freeFall location

 invariant

 flow

 initial condition

 bounce:

 v  c  v

 label

 guard

 action

 discrete transition

Execution of Bouncing Ball

Position (x) 0

x (t)

1
x (t)

2
x (t)

3
x (t)

4
x (t)

0
v (t) 1

v (t) 2
v (t) 3

v (t) 4
v (t)

Velocity (v)

Tim e (t)

Tim e (t)

T
0

T
1

T
2

T
3

T
4

T

0
T

1
T

2
T

3
T

4

Boost DC-DC Converter

i
L
 i

0

v
c
 v

0

 s  0
s

0

Boost DC-DC Converter

s

1
 s  1

 s  1

 s  0

s

0

 s  0

i
L
 i

0

v
c
 v

0

Boost DC-DC Converter

s

1
 s  1

 s  1

 s  0

s

0

 s  0

i
L
 i

0

v
c
 v

0

float i
L
 i

0
, v

c
 v

0
, d  d

0
; bool s  0;

w hile true {

w hile (s  0) {

 i
L
 i

L
 (

R
L

L
 i

L


1

L
 v

S
)  d

 v
C
 v

C


1

C


1

R
C
 R

0

 v
C
 d

 read(s) }

Execution of Boost DC-DC Converter

0

4

8

12

16

V
o
lt
ag

e
u

C
þ,
V

0

50

100

150

200

C
u
rr

en
t
i L

,
m

A

0 1 2 3

Time t, ms

Capacitor Voltage and Inductor Current

0

4

8

12

16

V
o
lt
ag

e
u

R
0
,
V

0

50

100

150

200

C
u
rr

en
t
i L

,
m

A

0 1 2 3

Time t, ms

Load Voltage

Parameters :

Us = 20V

L = 1mH

C = 50nF

RL = 1kW

RC = 10W

R0 = 10kW

dt = 200ns

Umax = 16V

Umin = 14V

Hybrid Autom aton H

Variables: Continuous variables x  [x

1
, ..., x

n
]

Control Graph: Finite directed m ultigraph (V ,E)

Vertex labeling functions: for each v V

Initial states: init(v)(x) defines initial region

Invariant: inv(v)(x) defines invariant region

 Finite set V of control modes

 Finite set E of control switches

Edge labeling functions: for each e E

Guard: guard(e)(x) defines enabling region

Update: action(e)(x , x) defines the reset region

Synchronization labels: label(e) defines com m unication

Executions of a Hybrid Autom aton

State: (m ,x) such that x  inv(m)

Initialization: (m ,x) such that x  init(m)

Two types of state updates:

Discrete sw itches: (m ,x) 

a
(m , x) if

e  (m , m ') E  label(e)  a 

Continuous flows: (m ,x) 

f
(m , x) if  f : [0,T]  R

n
.

f (0)  x  f (T)  x

guard(e)(x)  0  action(e)(x , x)

References

• T. A. Henzinger, "The theory of hybrid automata“,

Logic in Computer Science, 1996. LICS '96.

Proceedings., Eleventh Annual IEEE Symposium on,

New Brunswick, NJ, 1996, pp. 278-292.

