
Model Engineering Exam 2 Material

The following document contains some background information on the metamodels, models and the

Henshin Textual Syntax that will be used in Exam 2. You can print this document for the second exam

or prepare it on a second screen. The metamodels will also be provided as single graphics in the Tuwel

course.

Metamodels - APLML

For the practical Atl, Henshin and Xtend examples you will work with the Automated Production Line

Modeling Language (APLML) and the Simple Xml Language. You probably already know parts of these

metamodels from the tutorials. Make yourself familiar with the APLML Metamodel and the “Hammer

Factory” model and the Simple Xml metamodel.

APLML describes automated production lines. Each model describes a factory. In a Factory multiple

different ItemTypes are processed. You should be familiar with the ItemType submodel from the

tutorial videos. Note that we deleted the class Marker.

A Factory can have multiple AssemblyLines. Each AssemblyLine can have multiple sections, which have

an input and an output Depot, multiple IndustrialRobots and one Program. Each IndustrialRobot has

an EndOfArmTooling. If the EndOfArmTooling is a Driller it also contains at least one DrillTool. A

Program consists of multiple Commands. A SplitItem command defines a splitLength as parameter. A

DrillItem command refers to the used DrillTool and the MoveItem command referes to the source and

the target AssemblyLineElemet.

The “Hammer Factory” is a model conforming to APLML.

Figure 1 APLML Metamodel

Figure 2 Hammer Factory Model conforming to APLML

Metamodels – Simple Xml

With Simple Xml basic Xml documents can be modeled. In Simple Xml elements can either have a text

value or contain other elements. All elements can have attributes assigned to them. In the following

example you can see how a Simple Xml model represented as object diagram maps to a Xml

representation.

Figure 3 Simple Xml Metamodel

Figure 4 Simple Xml Example Model

Simple Xml Example – Xml representation:

<?xml version="1.0" encoding="UTF-8"?>
<rootelement>
 <elem>Hello World</elem>
 <subelem attr="val">
 <subsubelem/>
 </subelem>
</rootelement>

Henshin – Textual Syntax

In the exam you will have to define a Henshin Rule in the textual syntax. Basically, you define a Henshin

graph with nodes and edges in a textual form. The example bellow shows a textual solution of the

Scenarios 2 and 3b of the lab3 assignment. These two rules show you all language concepts you will

need in the exam. For further information we provided you a full textual Henshin solution of the lab3

in the lab 3 sample solution Github repository. You can also find some information in the textual

Henshin documentation.

ePackageImport sbsml

/* Scenario 2 */
rule RemoveUnusedSensorNodes() {
 graph {
 multiRule RemoveUnusedSensorNodes {
 graph {
 preserve node configuration: Configuration
 preserve node controller: Controller
 delete node sensorNode: Node
 preserve node sensor: Sensor
 forbid node threshold: Threshold

 edges [
 (delete configuration->sensorNode: nodes),
 (preserve configuration->controller: controllers),
 (delete sensorNode->sensor: thing),
 (forbid controller->threshold: threshold),
 (forbid threshold->sensorNode: source)
]
 }
 }
 }
}

/* Scenario 3b */
rule MoveController(IN nodeName:EString, IN controllerName:EString) {
 graph {
 preserve node controller: Controller {
 name=controllerName
 }
 preserve node fogNode: Node {
 name=nodeName
 }
 preserve node fogDevice: FogDevice

 edges [
 (create controller->fogNode: computationNode),
 (preserve fogNode->fogDevice: thing)
]
 }
}

https://github.com/ModelEngineeringWS20/lab3SampleSolution
https://wiki.eclipse.org/Henshin/Textual_Editor
https://wiki.eclipse.org/Henshin/Textual_Editor

