TERMINOLOGY AND
ASSUMPTIONS

Real-time scheduling involves the allocation of resources and time intervals
to tasks in such a way that certain timeliness performance requirements are
met. Scheduling has been perhaps the most widely researched topic within
real-time systems. This is due to the belief that the basic problem in real-time
systems is to make sure that tasks meet their time constraints. This Chapter
introduces basic terminology, assumptions, notation, and metrics necessary to
fully understand the remaining Chapters of the book.

It should be mentioned that two different research communities have examined
real-time scheduling problems from their own perspectives. Scheduling in the
Operations Research (OR) community has focussed on job-shop and flow-shop
problems, with and without deadlines. For instance, manpower scheduling,
project scheduling, and scheduling of machines are some of the topics studied
in OR [5, 6, 7, 8]. The types of resources assumed by OR researchers (machines,
factory cells, etc.) and how jobs use those resources (e.g., a job may be required
to use every machine in some specified order) are quite different from those as-
sumed by Computer Science researchers (CPU cycles, memory, etc. and where
jobs typically use only a single machine). Activities on a factory floor typically
have larger time granularities than those studied by computer scientists. The
metrics of interest to the OR community such as: minimizing maximum cost,
minimizing the sum of completion times, minimizing schedule length, minimiz-
ing tardiness, and minimizing the number of tardy jobs are often not of interest
to real-time system designers. Rather, real-time system designers attempt to
prove all tasks meet their deadlines, or in less stringent situations, they try to
minimize the number of tasks which miss their deadlines. OR techniques are
geared towards static (off-line) methods where those developed in Computer
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Science focus more on dynamic techniques. In this book scheduling problems
are examined from the perspective of Computer Science.

2.1 TASK MODELS, ASSUMPTIONS AND
NOTATION

Real-time systems can be quite complex with many different types of tasks, time
and reliability requirements, and metrics. The basic terminology, assumptions
and notation used throughout the book are now defined and described. Other
terminology is introduced in later Chapters when it applies to a particular
algorithm or system configuration.

Definition 2.1 A real-time task is an ezecutable entity of work which, at a
minimum, is characterized by a worst case execution time and a time constraint.

Definition 2.2 A job is an instance of a task.

There are three types of real-time tasks: periodic, aperiodic, and sporadic.
Each type normally gives rise to multiple jobs.

Definition 2.3 Periodic tasks are real-time tasks which are activated (released)
reqularly at fized rates (period). In keeping with common notation, the period
s designated by T'. Normally, periodic tasks have constraints which indicate
that instances of them must execute once per period T. The time constraint for
a periodic task is a deadline d that can be less than, equal to, or greater than
the period. The most common case is when the deadline equals the period.

Definition 2.4 Synchronous periodic tasks are a set of periodic tasks where
all first instances are released at the same time, usually considered time zero.

Definition 2.5 Asynchronous periodic tasks are a set of periodic tasks where
tasks can have their first instance released at different times.

Definition 2.6 Aperiodic tasks are real-time tasks which are activated irreg-
ularly at some unknown and possibly unbounded rate. The time constraint is
usually a deadline d.
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Definition 2.7 Sporadic tasks are real-time tasks which are activated irreg-
ularly with some known bounded rate. The bounded rate is characterized by
a minimum interarrival period, that is, a minimum interval of time between
two successive activations. This is necessary (and achieved by some form of
flow control) in order to bound the workload generated by such tasks. The time
constraint is usually a deadline d.

Definition 2.8 A hybrid task set is a task set containing both periodic and
sporadic tasks.

Time constraints can be release times or deadlines, or both.

Definition 2.9 A release time, r, is a point in time at which a real-time job
becomes ready to (or is activated to) execute.

Definition 2.10 A deadline, d is a point in time by which the task (job) must
complete.

Usually, a deadline d is an absolute time. Sometimes, d is also used to refer to
a relative deadline when there is no confusion. To emphasize relative deadlines
D is used. The deadline can be hard, soft, or firm.

Definition 2.11 A hard deadline means that it is vital for the safety of the
system that this deadline is always met.

Definition 2.12 A soft deadline means that it is desirable to finish exvecut-
ing the task (job) by the deadline, but no catastrophe occurs if there is a late
completion.

Definition 2.13 A firm deadline means that a task should complete by the
deadline, or not execute at all. There is no value to completing the task after
its deadline.

Accordingly, real-time tasks are often distinguished as hard, soft, and firm tasks.
Sometimes, soft tasks do not have deadlines at all. Their requirement is then
to complete as soon as possible.
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Scheduling constraints are sometimes expressed with respect to tasks, when
they do not depend on particular instances, with respect to jobs, otherwise.

With these definitions presented, the notation used in the remainder of the
book is as follows. The i*" task in the system is denoted by 7;. Its j¢* instance
is denoted by J; ;. Sometimes it is only important to distinguish jobs and it
is not important what tasks they are an instance of. In these cases, J; is used
to denote the ith) unique job. In two clearly marked areas of the book, J
is redefined to mean the amount of jitter that a job experiences. This should
not cause any confusion. Each task usually has a worst case or maximum
execution time C;. A periodic task has also a period denoted by T;. The
minimum interarrival time of sporadic tasks is also designated by T;.

Definition 2.14 A job has release time r if its execution can begin only at
timet>r.

Definition 2.15 A job has deadline d if its execution must complete by d.

The release time of the j** job of the periodic task 7; is most commonly given
as:
riy = (i — 1)T;,

and its deadline is:
dij =rij +T; = jT;,

that is, the deadline of one instance is the release time of the next instance.

For sporadic tasks, the assumption is that the release times of two consecutive
instances must be separated by at least its minimum interarrival time, that is:

Tij > Yig—1 -+ 1,

The deadline is often assumed to be equal to the earliest possible release time
of the next instance, that is:

di,j =ris+ Is,
An example of an EDF schedule is depicted in Figure 2.1. The first task in

the schedule, which is sporadic, has maximum execution time 2 and minimum
interarrival time 5. The example shows 2 arrivals of T} at times 5 and 17.
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Figure 2.1 Example of EDF schedule.

The other two tasks are periodic and they have maximum execution times
3 and 2, and periods 6 and 8, respectively. The schedule is represented on
three horizontal time axes, one for each task. Along the axes, release times of
sporadic task instances are represented by upward arrows, while deadlines are
represented by downward arrows. For instance, the first job of 7; has release
time 5 and deadline 10.

Deadlines of periodic task instances are represented by downward arrows, as
well. Release times are usually represented by a vertical segment. When they
coincide with deadlines and there is no ambiguity they are not shown. For
instance, the first job of 7 is released at time ¢t = 0 and has deadline 6. 6 is
also the release time of the second job.

The assignment of jobs to the processor is represented by filled rectangular
boxes drawn along the axes. For instance, at time ¢t = 0 the job with the earliest
deadline in the system is J;. This job gets the processor and completes at
time ¢t = 3. At this point the processor is assigned to J3 ;.

An example of preemption is represented at time t = 17. At time ¢t = 16 the
processor is assigned to J3 3. At time t = 17 Ji 2 is released. J; 2 has deadline
22 and becomes the job with the earliest deadline in the system (i.e., 22), hence
it preempts the execution of J3 3 and gets the processor. When it completes at
time ¢t = 19, J3 3 can resume its execution.

Note that meanwhile, J» 4 has also been released. However, its deadline is equal
to the deadline of J; 3 and it is executed later. Actually, ties could be broken
arbitrarily.
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CHAPTER 2

Another key issue in real-time scheduling involves the underlying assumptions
made. Initially, in Chapter 3 the assumptions made are the same made by
Liu and Layland [9] because this is the seminal paper on real-time scheduling.
These assumptions are:

A1l: All hard tasks are periodic.

A2: Jobs are ready to run at their release times.
A3: Deadlines are equal to periods.

A4: Jobs do not suspend themselves.

A5: Jobs are independent in that there are neither synchronizations be-
tween them, nor shared resources other than the CPU, nor relative depen-
dencies or constraints on release times or completion times.

A6: There are no overhead costs for preemption, scheduling, or interrupt
handling.

AT: Processing is fully preemptable at any point.

These assumptions are acceptable for a first step in the study of real-time
scheduling theory. However, they are not practical and not adequate for the
analysis of most actual systems. For this reason, one goal of this book is
to present results in which one or more of these assumptions is relaxed. For
example, in addition to timing constraints, a task may also possess the following
types of constraints and requirements:

Resource constraints — A task may require access to certain resources other
than the CPU, such as, I/O devices, networking, data structures, files, and
databases [4, 11].

Precedence relationships — A complex task, for example, one requiring
access to many resources, is better handled by breaking it up into multiple
subtasks related by precedence constraints and each requiring a subset of
the resources.

Concurrency constraints — Tasks are allowed concurrent access to resources
providing the consistency of the resources is not violated.
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m  Communication requirements — Sets of cooperating tasks are the norm
for distributed, hard real-time systems. The communication requirements
are a function of the semantics of the communication (synchronous, asyn-
chronous) and of their timing requirements.

= Placement constraints — 'When multiple instances of a task are executed

for fault-tolerance, the different instances should be executed on different
Processors.

®  Criticalness — Depending on the functionality of a task, meeting the dead-
line of one task may be considered more critical than another. For example,
a task that reacts to an emergency situation, such as, a fire on the factory
floor is more critical than the task that controls the movements of a robot
under normal operating conditions.

2.2 STATIC VERSUS DYNAMIC
SCHEDULING

Most classical scheduling theory deals with static scheduling. Static scheduling
refers to the fact that the scheduling algorithm has complete knowledge re-
garding the task set and its constraints, such as, deadlines, computation times,
precedence constraints, and future release times. This set of assumptions is
realistic for many real-time systems. For example, real-time control of a sim-
ple laboratory experiment or a simple process control application might have
a fixed set of sensors and actuators, and a well defined environment and set of
processing requirements. In these types of real-time systems, the static schedul-
ing algorithm operates on this set of tasks and produces a single schedule that
is fixed for all time. Sometimes there is confusion regarding future release
times. If all future release times are known when the algorithm is developing
the schedule then it is still a static algorithm.

In contrast, a dynamic scheduling algorithm (in the context of this book) has
complete knowledge of the currently active set of tasks, but new arrivals may
occur in the future, not known to the algorithm at the time it is scheduling the
current set. The schedule therefore changes over time. Dynamic scheduling is
required for real-time systems such as teams of robots cleaning up a chemical
spill or in military command and control applications. Fewer theoretical re-
sults are known about real-time dynamic scheduling algorithms than for static
algorithms.
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Off-line scheduling is often equated to static scheduling, but this is wrong. In
building any real-time system, off-line scheduling (analysis) should always be
done regardless of whether the final runtime algorithm is static or dynamic. In
many real-time systems, the designers can identify the maximum set of tasks
with their worst case assumptions and apply a static scheduling algorithm to
produce a static schedule. This schedule is then fixed and used on-line with
well understood properties such as, given that all the assumptions remain true,
all tasks meet the deadlines. In other cases, the off-line analysis might produce
a static set of priorities to use at runtime. The schedule itself is not fixed, but
the priorities that drive the schedule are fixed. This is common in the rate
monotonic approach.

If the real-time system is operating in a more dynamic environment, then it
is not feasible to meet the assumptions of static scheduling (i.e., everything
is known a priori). In this case an algorithm is chosen and analyzed off-line
for the expected dynamic environmental conditions. Usually, less precise state-
ments about the overall performance can be made. On-line, this same dynamic
algorithm executes.

Generally, a scheduling algorithm (possibly with some modifications) can be
applied to static scheduling or dynamic scheduling and used off-line or on-
line. The important difference is what is known about the performance of the
algorithm in each of these cases. As an example, consider earliest deadline first
(EDF) scheduling. When applied to static scheduling it is known that EDF is
optimal in many situations (to be enumerated in this book), but when applied
to dynamic scheduling on multi-processors it is not optimal, in fact, it is known
that no algorithm can be optimal.

Predictability is one of the primary issues in real-time systems. Schedulability
analysis or feasibility checking of the tasks of a real-time system has to be done
to predict whether the tasks meet their timing constraints. Several scheduling
paradigms emerge, depending on (a) whether a system performs schedulability
analysis, (b) if it does, whether it is done statically or dynamically, and (c)
whether the result of the analysis itself produces a schedule or plan according
to which tasks are dispatched at run-time. Based on this the following classes
of algorithms are identified:

®  Static table-driven approaches: These perform static schedulability analysis
and the resulting schedule (or table, as it is usually called) is used at run-
time to decide when a task must begin execution.




Terminology and Assumptions 21

m  Static priority-driven preemptive approaches: These perform static schedu-
lability analysis, but unlike in the previous approach, no explicit schedule
is constructed. At run-time, tasks are executed highest-priority-first.

®  Dynamic planning-based approaches: Unlike the previous two approaches,
feasibility is checked at run-time, i.e., a dynamically arriving task is ac-
cepted for execution only if it is found feasible, i.e., will make its deadline.
Such a task is said to be guaranteed to meet its time constraints. This is
sometimes called admission control. One of the results of the feasibility
analysis is a schedule or plan that is used to decide when a task can begin
execution. However, similar to the static case, the feasibility check and
schedule creation can be separated. For example, in classical real-time
systems it has been common that a schedule is created, while in real-time
multimedia scheduling it is common to separate the feasibility check from
the scheduling,.

" Dynamic best-effort approaches: In this approach no feasibility checking
is done. The system tries to do its best to meet deadlines. But since no
guarantees are provided, a task may be aborted during its execution.

It must be pointed out that even though four categories have been iden-
tified, some scheduling techniques possess characteristics that span multiple
paradigms. Each of these categories is now briefly elaborated.

Static table-driven approaches are applicable to tasks that are periodic (or have
been transformed into periodic tasks by well known techniques). Given task
characteristics, a table is constructed, using one of many possible techniques
(e.g., using various search heuristics), that identifies the start and completion
times of each task and tasks are dispatched according to this table. This is
a highly predictable approach but, is highly inflexible since any change to the
tasks and their characteristics may require a complete overhaul of the table.

The approach traditionally used in non real-time systems is the priority-based
preemptive scheduling approach. Here, tasks have priorities that may be stat-
ically or dynamically assigned and at any time, the task with the highest pri-
ority executes. It is the latter requirement that necessitates preemption: if a
low priority task is in execution and a higher priority task arrives, the former
is preempted and the processor is given to the new arrival. If priorities are
assigned systematically in such a way that timing constraints can be taken
into account, then the resulting scheduler can also be used for real-time sys-
tems. For example, using the rate-monotonic approach [9], utilization bounds
can be derived such that if a set of tasks do not exceed the bound, they can
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be scheduled without missing any deadlines using such a static priority-driven
preemptive scheduler.

Cyclic scheduling, used in many large-scale dynamic real-time systems [3], is
a combination of both table-driven scheduling and priority scheduling. Here,
tasks are assigned one of a set of harmonic periods. Within each period, tasks
are dispatched according to a table that just lists the order in which the tasks
execute. It is slightly more flexible than the table-driven approach because
no start times are specified and it is amenable to a priori bound analysis — if
maximum requirements of tasks in each cycle are known beforehand. However,
pessimistic assumptions are necessary for determining these requirements. In
many actual applications, rather than making worse-case assumptions, confi-
dence in a cyclic schedule is obtained by very elaborate and extensive simu-
lations of typical scenarios. This approach is both error-prone and expensive
[10].

The dynamic planning-based approaches provide the flexibility of dynamic ap-
proaches with some of the predictability of approaches that check for feasibility.
Here, after a task arrives, but before its execution begins, an attempt is made
to create a schedule that contains the previously guaranteed tasks as well as the
new arrival. If the attempt fails and if the attempt is made sufficiently ahead
of the deadline, time is available to take alternative actions. This approach
provides for predictability with respect to individual arrivals.

In contrast, if a purely priority-driven preemptive approach is used, say, by
using task deadlines as priorities, and without any planning, a task could be
preempted any time during its execution. In this case, until the deadline ar-
rives, or until the task finishes, whichever comes first, it is not known whether
the timing constraint is met. This is the major disadvantage of the dynamic
best-effort approaches. If, however, the worst case performance characteristics
of such a scheduler can be analyzed, then perhaps it can be recognized and
avoided. Such worst case analyses are in their infancy, being applicable only to
tasks with very simple characteristics [2].

2.3 METRICS

Classical scheduling theory typically uses metrics such as minimizing the sum
of completion times, minimizing the weighted sum of completion times, mini-
mizing schedule length, minimizing the number of processors required, or mini-
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mizing the maximum lateness. In most cases, deadlines are not even considered
in these results. When deadlines are considered, they are usually added as con-
straints, where, for example, one creates a minimum schedule length, subject
to the constraint that all tasks must meet their respective deadlines.

If one or more tasks miss their deadlines, then there is no feasible solution.
Which of these classical metrics (where deadlines are not included as con-
straints) are of most interest to real-time systems designers? The sum of com-
pletion times is generally not of interest because there is no direct assessment
of timing properties (deadlines or periods). However, the weighted sum is very
important when tasks have different values that they impart to the system
upon completion. Using value is often (erroneously) overlooked in many real-
time systems where the focus is simply on deadlines and not on a combination
of value and deadline. Minimizing schedule length has secondary importance
in possibly helping minimize the resources required for a system, but does not
directly address the fact that individual tasks have deadlines. The same is true
for minimizing the number of processors required. Minimizing the maximum
lateness metric can be useful at design time where resources can be continually
added until the maximum lateness is equal to zero. In this case no tasks miss
their deadlines. On the other hand, the metric is not always useful because
minimizing the maximum lateness doesn’t necessarily prevent one, many, or
even ALL tasks from missing their deadlines.

In the static real-time scheduling problem, an off-line schedule is to be found
that meets all deadlines. If more than one such schedule exists, a secondary
metric, such as maximizing the average earliness is used to choose one among
them. When a task completes its earliness is the amount of time still remaining
before its deadline. If no such schedule exists, one which minimizes the average
tardiness or lateness may be chosen. Tardiness is the amount of time by which
a task misses its deadline. In these cases, an algorithm’s ability to achieve
optimality is with respect to these secondary metrics.

In real-time systems, scheduling results are often presented in terms of schedu-
lability or feasibility analysis.

Definition 2.16 A set of jobs is schedulable or feasible if all timing constraints
are met, that is, all hard real-time jobs complete by their respective deadlines.

Definition 2.17 An optimal real-time scheduling algorithm is one which

may fail to meet a deadline only if no other scheduling algorithm can meet the
deadline.
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This definition of optimality is the typical one used in real-time scheduling.
A common (non real-time) definition of optimality says that an algorithm is
optimal if it minimizes (maximizes) some cost function. It is important to be
familiar with both definitions.

In dynamic real-time systems, since, in general, it cannot be a priori guaranteed
that all deadlines are met, maximizing the number of arrivals that meet their
deadlines is often used as a metric. Some of the results presented utilize the
metric of minimizing the number of tasks that miss their deadlines which is the
dual of maximizing the number that meet their deadlines.

The variety of metrics that have been suggested for real-time systems is indica-
tive of the different types of real-time systems that exist in the real world as
well as the types of requirements imposed on them. This sometimes makes it
hard to compare different scheduling algorithms.

Related to metrics is the complexity of the various scheduling problems them-
selves. Many scheduling problems are N P-complete or N P-hard [4]. NP is the
class of all decision problems that can be solved in polynomial time by a nonde-
terministic machine. A recognition problem R is N P-complete if R € NP and
all other problems in NP are polynomial transformable to R. A recognition
or optimization problem R is N P-hard if all problems in NP are polynomial
transformable to R, but it can’t be shown that R € NP. The complexity of the
various problems presented in this book is mentioned throughout. The reader
should take special note throughout the text regarding the types of tasks’ con-
straints that move the scheduling problem from P to NP, e.g., in some problem
situations allowing preemption moves a problem from N P-hard to polynomial
and in other problems adding a release time constraint might move the problem
from polynomial to N P-hard.
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