
VU Einführung in Wissensbasierte Systeme

Hans Tompits

Institut für Logic and Computation
Forschungsbereich Wissensbasierte Systeme

www.kr.tuwien.ac.at



Solutions Exercise Sheet 2



Exercise 2.1

Consider the theory

T := {∀x∀y
(
(P(x) ∨ Q(y))→ R(x , y)

)
,

∀x
(
(S(x) ∧ Q(x))→ P(x)

)
,

Q(b),P(a), S(b)}

containing only the constants a and b, along with the extended theories

T1 := T ∪ {∀x(S(x)→ ¬P(x))} and

T2 := T ∪ {∀x(¬S(x)→ ¬R(x , x))}.

For each Ti , i ∈ {1, 2}, answer the following questions:

(a) Determine CWA(Ti ) and CWA{S,P}(Ti ).

(b) Prove or refute whether CWA(Ti ) and CWA{S ,P}(Ti ) are consistent.
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Solution to Exercise 2.1

ä By definition,

• CWA(Ti ) = Cn(Ti ∪ Ti asm), where

Ti asm = {¬P | Ti 6|= P,P is a ground atom},

and

• CWA{S,P}(Ti ) = Cn(Ti ∪ Ti
{S ,P}
asm ), where

Ti
{S,P}
asm = {¬P |Ti 6|= P,P is a ground atom with

predicate symbol S or P},
for i = 1, 2.

å We need to determine Ti asm for i = 1, 2.
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Solution to Exercise 2.1 (ctd.)

ä First of all, we observe that T1 is inconsistent:

• Since

T1 |= S(b)∧Q(b)∧ ((S(b)∧Q(b))→ P(b))∧ (S(b)→ ¬P(b))

we get T1 |= P(b) and T1 |= ¬P(b).

=⇒ T1asm = T1
{S,P}
asm = ∅ and so

CWA(T1) = CWA{S ,P}(T1) = Cn(T1).

=⇒ CWA(T1) and CWA{S,P}(T1) are inconsistent too.

ä As for T2, this theory is consistent:

• Consider the Σ-structure I = 〈U , I , ∅〉 such that

– U = {da, db}, I (a) = da, I (b) = db, I (P) = I (S) = U ,
I (Q) = {db}, I (R) = U × U .

– Then, I is a model of T2. Moreover, I 6|= Q(a) while
I |= A for each ground atom A 6= Q(a).
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Solution to Exercise 2.1 (ctd.)

ä In view of model I, we have T2 6|= Q(a). =⇒ ¬Q(a) ∈ T2asm.

ä Moreover, it holds that T2 |= A for each ground atom A 6= Q(a):

• T2 |= P(a),Q(b), S(b) since {P(a),Q(b),S(b)} ⊆ T and
T ⊆ T2.

• T2 |= P(b) since T |= P(b) and T ⊆ T2.

• T2 |= R(a, a),R(a, b),R(b, a),R(b, b) since
– T2 |= (P(a) ∨ Q(a)), (P(a) ∨ Q(b)), (P(b) ∨

Q(a)), (P(b) ∨ Q(b)) and

– T2 |= ∀x∀y((P(x) ∨ Q(y))→ R(x , y)).

• T2 |= S(a) since T2 |= R(a, a) ∧ (¬S(a)→ ¬R(a, a)).

å T2asm = {¬Q(a)} and T2
{S ,P}
asm = ∅. Hence,

CWA(T2) = Cn(T2 ∪ {¬Q(a)}) and CWA{S,P}(T2) = Cn(T2).

• As I is clearly also a model of CWA(T2) as well as of
CWA{S,P}(T2), both CWA(T2) and CWA{S ,P}(T2) are
consistent.
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Exercise 2.2

Consider the following theorem from the lecture:

Let T be a consistent theory. Then, CWA(T ) is inconsistent iff
there are ground atoms A1, . . . ,An (for n > 1) such that
T |= A1 ∨ · · · ∨ An but T 6|= Ai , for all i = 1, . . . , n.

(a) Prove the only-if direction.

(b) Prove the if direction.
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Solution to Exercise 2.2 (a)

ä Assume that CWA(T ) is inconsistent. We first show that Tasm 6= ∅.
• Assume that Tasm = ∅. Then,

CWA(T ) = Cn(T ∪ Tasm) = Cn(T )

and hence T would be inconsistent in view of our hypothesis
CWA(T ) is inconsistent.

• This is a contradiction to our assumption that T is consistent.

=⇒ Tasm 6= ∅.
ä We now use the compactness property:

• T is satisfiable ⇐⇒ each finite subset of T is satisfiable.

• Hence:

– T is unsatisfiable ⇐⇒ not every finite subset of T is
satisfiable ⇐⇒ there is a finite subset of T which is
unsatisfiable.
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Solution to Exercise 2.2 (a) (ctd.)

ä We know that CWA(T ) is unsatisfiable and

CWA(T ) = Cn(T ∪ Tasm).

Hence, T ∪ Tasm is unsatisfiable too.

å By compactness, there is a finite subset T 0 ⊆ T ∪ Tasm such
that T 0 is unsatisfiable.

ä Let T 0
asm := T 0 ∩ Tasm.

• Then, T 0
asm is a finite set of ground atoms and T ∪ T 0

asm is
unsatisfiable.

• Furthermore, T 0
asm 6= ∅, otherwise T 0 ⊆ T would hold and that

would mean that T is unsatisfiable, which contradicts the fact
that T is consistent.
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Solution to Exercise 2.2 (a) (ctd.)

ä Let now T 0
asm be {¬A1, . . . ,¬An}.

Claim: n > 1.
Proof of Claim:
• n must be greater than 0 because T 0

asm 6= ∅.
• Assume that n = 1.

– Then, T ∪ {¬A1} is unsatisfiable, and hence T |= A1

follows.

– But ¬A1 ∈ Tasm and hence T 6|= A1 by definition of Tasm.
=⇒ Contradiction.

å n > 1.

å T ∪ {¬A1, . . . ,¬An} is unsatisfiable.

å T ∪ {¬A1 ∧ · · · ∧ ¬An} is unsatisfiable.

å T ∪ {¬(A1 ∨ · · · ∨ An)} is unsatisfiable.

å T |= A1 ∨ · · · ∨ An. This proves the only-if direction and thus
Part (a).
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Solution to Exercise 2.2 (b)

ä Assume there are ground atoms A1, . . . ,An, for n > 1, such that
T |= A1 ∨ · · · ∨ An but T 6|= Ai for each i = 1, . . . , n.

=⇒ {¬A1, . . . ,¬An} ⊆ Tasm (since T 6|= Ai for i = 1, . . . , n).

=⇒ {¬A1, . . . ,¬An} ⊆ Cn(T ∪ Tasm).

=⇒ T ∪ Tasm |= ¬A1 ∧ · · · ∧ ¬An.

=⇒ T ∪ Tasm |= ¬(A1 ∨ · · · ∨ An).

å Since T |= A1 ∨ · · · ∨ An by hypothesis, it follows also that
T ∪ Tasm |= A1 ∨ · · · ∨ An and hence T ∪ Tasm is inconsistent.

å CWA(T ) = Cn(T ∪ Tasm) is inconsistent.
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Exercise 2.3

ä Consider the open default theory T = (W ,∆), where

W = {∀x(P(x) ∨ Q(x)),∃x(R(x) ∨ P(x)),∀x(¬Q(x)→ ¬R(x))},

∆ =

{
P(x) : ¬Q(x)

¬Q(x)
,
Q(x) : ¬P(x)

¬P(x)
,
> : ¬R(x)

¬R(x)

}
.

ä Compute the closure of T and determine the possible candidates for
being an extension.

ä For each candidate E , compute the classical reduct ∆E and
determine all extensions of T .
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Solution to Exercise 2.3

ä A closure of T is given by T = (W ,∆), where

W = {∀x(P(x) ∨ Q(x)),R(a) ∨ P(a),∀x(¬Q(x)→ ¬R(x))},

∆ =

{
P(a) : ¬Q(a)

¬Q(a)
,
Q(a) : ¬P(a)

¬P(a)
,
> : ¬R(a)

¬R(a)

}
.

ä The possible candidates for being extensions are

• E1 = Cn(W ),
• E2 = Cn(W ∪ {¬Q(a)}),
• E3 = Cn(W ∪ {¬P(a)}),
• E4 = Cn(W ∪ {¬R(a)}),
• E5 = Cn(W ∪ {¬Q(a),¬P(a)}) (inconsistent),
• E6 = Cn(W ∪ {¬Q(a),¬R(a)}),
• E7 = Cn(W ∪ {¬P(a),¬R(a)}) (inconsistent),
• E8 = Cn(W ∪ {¬Q(a),¬P(a),¬R(a)}) (inconsistent).
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Solution to Exercise 2.3 (ctd.)

W = {∀x(P(x) ∨ Q(x)),R(a) ∨ P(a),∀x(¬Q(x)→ ¬R(x))},

∆ =

{
P(a) : ¬Q(a)

¬Q(a)
,
Q(a) : ¬P(a)

¬P(a)
,
> : ¬R(a)

¬R(a)

}
.

ä We determine the classical reducts ∆Ei
and ΓT (Ei ) = Cn∆Ei (W ) for

i = 1, . . . , 8:

• E1 = Cn(W ):
– ∆E1 = {P(a)/¬Q(a),Q(a)/¬P(a),>/¬R(a)}.
– ΓT (E1) = Cn(W ∪ {¬R(a),¬Q(a)}) = E6 6= E1.

• E2 = Cn(W ∪ {¬Q(a)}):
– ∆E2 = {P(a)/¬Q(a),>/¬R(a)}.
– ΓT (E2) = Cn(W ∪ {¬R(a),¬Q(a)}) = E6 6= E2.

• E3 = Cn(W ∪ {¬P(a)}):
– ∆E3 = {Q(a)/¬P(a)}.
– ΓT (E3) = Cn(W ) = E1 6= E3.
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Solution to Exercise 2.3 (ctd.)

W = {∀x(P(x) ∨ Q(x)),R(a) ∨ P(a),∀x(¬Q(x)→ ¬R(x))},

∆ =

{
P(a) : ¬Q(a)

¬Q(a)
,
Q(a) : ¬P(a)

¬P(a)
,
> : ¬R(a)

¬R(a)

}
.

• E4 = Cn(W ∪ {¬R(a)}):

– ∆E4 = {P(a)/¬Q(a),>/¬R(a)}.
– ΓT (E4) = Cn(W ∪ {¬R(a),¬Q(a)}) = E6 6= E4.

• E5 = Cn(W ∪ {¬Q(a),¬P(a)}) (inconsistent):

– ∆E5 = ∅.
– ΓT (E5) = Cn(W ) = E1 6= E5.

• E6 = Cn(W ∪ {¬Q(a),¬R(a)}):

– ∆E6 = {P(a)/¬Q(a),>/¬R(a)} = ∆E2 .

– ΓT (E6) = ΓT (E2) = E6. =⇒ Extension!
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Solution to Exercise 2.3 (ctd.)

W = {∀x(P(x) ∨ Q(x)),R(a) ∨ P(a),∀x(¬Q(x)→ ¬R(x))},

∆ =

{
P(a) : ¬Q(a)

¬Q(a)
,
Q(a) : ¬P(a)

¬P(a)
,
> : ¬R(a)

¬R(a)

}
.

• E7 = Cn(W ∪ {¬P(a),¬R(a)}) (inconsistent):

– ∆E7 = ∅.
– ΓT (E7) = Cn(W ) = E1 6= E7.

• E8 = Cn(W ∪ {¬Q(a),¬P(a),¬R(a)}) (inconsistent):

– ∆E8 = ∅.
– ΓT (E8) = Cn(W ) = E1 6= E8.

å E6 ∩ LT is the single extension of T !
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Exercise 2.4

ä Show that any closed normal default theory (W ,∆) has an
extension.

Solution:

ä Let T = (W ,∆) be a closed normal default theory.

• If W is inconsistent, then Cn(W ) is an extension as it satisfies
all properties of an extension.

• Assume now that W is consistent. We define a sequence
(Ei )i≥0 as follows:

E0 = W ;
Ei+1 = Cn(Ei ) ∪ Ti ,

where Ti is a maximal set of closed formulas satisfying the
following conditions:

1. Ei ∪ Ti is consistent;

2. if B ∈ Ti , then there is a default (A : B/B) ∈ ∆ such that
Ei |= A.
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Solution to Exercise 2.4 (ctd.)
ä Let E =

⋃
i≥0 Ei .

ä Claim: E is an extension of T .

ä Proof of claim: Let Hi = {B | (A : B/B) ∈ ∆,Ei |= A,¬B /∈ E}.
We show that Ti = Hi , for all i . This proves the claim by the semi-
recursive characterisation of extensions (cf. the hint in Ex. Sheet 2).

1. We first show that Ti ⊆ Hi .

– Let B ∈ Ti . Then, by definition of Ti , there is some
default (A : B/B) ∈ ∆ such that Ei |= A.

– Suppose ¬B ∈ E . Since E =
⋃

i≥0 Ei , there is some k ≥ 0
such that ¬B ∈ Ek .

– Since B ∈ Ti and Ti ⊆ Ei+1, we have that B ∈ Ei+1.

– Let m = max(i + 1, k). Since El ⊆ El+1, for all l ≥ 0, it
follows that B ∈ Em and ¬B ∈ Em. =⇒ Em is
inconsistent. Contradiction.

– Therefore, ¬B /∈ E must hold. We obtain B ∈ Hi .

=⇒ This proves that Ti ⊆ Hi . 17/30



Solution to Exercise 2.4 (ctd.)

2. Suppose that Ti ⊂ Hi holds. Then, there is some B ∈ Hi such that
B /∈ Ti .

• By the maximality of Ti , we have that Ei ∪ Ti ∪ {B} is
inconsistent. Since Ei ∪ Ti ⊆ Ei+1 ⊆ E holds, E ∪ {B} is also
inconsistent.

• It follows that E |= ¬B. Furthermore, it is easy to see
that E = Cn(E ). Hence, ¬B ∈ E .

• But B ∈ Hi , and so ¬B /∈ E must hold, by definition of
Hi . Contradiction.

=⇒ Ti ⊂ Hi cannot hold and we obtain Ti = Hi .
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Exercise 2.5

ä Consider the theory

W := {∀x∀y
(
(P(x) ∨ Q(y))→ R(x , y)

)
,

∀x
(
(S(x) ∧ Q(x))→ P(x)

)
,

Q(b),P(a), S(b),

∀x(¬S(x)→ ¬R(x , x))}.

ä Construct a closed, normal default theory T := (W ,∆) such that
there exists an extension E of T with CWA(W ) = E .
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Solution to Exercise 2.5

ä We define the closed normal default theory T = (W ,∆) with

∆ :=

{
> : ¬P(a)

¬P(a)
,
> : ¬Q(a)

¬Q(a)
,
> : ¬S(a)

¬S(a)
,
> : ¬R(a, a)

¬R(a, a)

}
∪{

> : ¬P(b)

¬P(b)
,
> : ¬Q(b)

¬Q(b)
,
> : ¬S(b)

¬S(b)
,
> : ¬R(b, b)

¬R(b, b)

}
∪{

> : ¬R(a, b)

¬R(a, b)
,
> : ¬R(b, a)

¬R(b, a)

}
.

ä Now, theory W is actually theory T2 from Exercise 2.1.
=⇒ CWA(W ) = Cn(W ∪ {¬Q(a)}).

ä To show that CWA(W ) is an extension of T , we only need to
construct the reduct ∆CWA(W ) and show that
ΓT (CWA(W )) = CWA(W ).

ä From what we know from Exercise 2.1, it follows that
∆CWA(W ) = {>/¬Q(a)}, so ΓT (CWA(W )) = CWA(W ) indeed
holds.
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Exercise 2.6

ä Extend the default theory T = (W ,∆), where

W = {∀x
(
P(x) ∨ Q(x)

)
,R(a),∀x

(
R(x)→ P(x)

)
} and

∆ =

{
P(x) : ¬Q(x)

¬Q(x)
,
Q(x) : ¬P(x)

¬P(x)

}
,

such that it has no extensions anymore.

ä For achieving this, use only predicates occurring in T .

ä Show then that your enlarged theory has no extensions, i.e., consider
possible extensions, compute the classical reducts and fixed points,
and show that no candidate set is an extension.
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Solution to Exercise 2.6

ä Since T is normal, we have to add a non-normal default.

ä We define T ′ = (W ,∆′), where

∆′ =

{
P(x) : ¬Q(x)

¬Q(x)
,
Q(x) : ¬P(x)

¬P(x)
,
> : ¬Q(x)

¬P(x)

}
.

ä To determine the extensions of T ′, we first built its closure
T ′ = (W ,∆′), where W = W and

∆′ =

{
P(a) : ¬Q(a)

¬Q(a)
,
Q(a) : ¬P(a)

¬P(a)
,
> : ¬Q(a)

¬P(a)

}
.

ä Candidates for being extensions of T ′:

• E1 = Cn(W );
• E2 = Cn(W ∪ {¬Q(a)});
• E3 = Cn(W ∪ {¬P(a)}) (inconsistent);
• E4 = Cn(W ∪ {¬Q(a),¬P(a)}) (inconsistent).

=⇒ E3 = E4.
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Solution to Exercise 2.6 (ctd.)

W = W = {∀x
(
P(x) ∨ Q(x)

)
,R(a),∀x

(
R(x)→ P(x)

)
},

∆ =

{
P(a) : ¬Q(a)

¬Q(a)
,
Q(a) : ¬P(a)

¬P(a)
,
> : ¬Q(a)

¬P(a)

}
.

ä We determine the classical reducts ∆Ei
and ΓT (Ei ) = Cn∆Ei (W ) for

i = 1, . . . , 4:

• E1 = Cn(W ):

– ∆E1 = {P(a)/¬Q(a),>/¬P(a)}.
– ΓT (E1) = Cn(W ∪ {¬P(a),¬Q(a)}) = E4 6= E1.

• E2 = Cn(W ∪ {¬Q(a)}):

– ∆E2 = {P(a)/¬Q(a),>/¬P(a)} = ∆E1 .

– ΓT (E2) = ΓT (E1) = E4 6= E2.
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Solution to Exercise 2.6 (ctd.)

W = W = {∀x
(
P(x) ∨ Q(x)

)
,R(a),∀x

(
R(x)→ P(x)

)
},

∆ =

{
P(a) : ¬Q(a)

¬Q(a)
,
Q(a) : ¬P(a)

¬P(a)
,
> : ¬Q(a)

¬P(a)

}
.

• E3 = Cn(W ∪ {¬P(a)}) (inconsistent):

– ∆E3 = ∅.
– ΓT (E3) = Cn(W ) = E1 6= E3.

• E4 = Cn(W ∪ {¬Q(a),¬P(a)}) = E3 (inconsistent):

– ∆E4 = ∆E3 = ∅.
– ΓT (E4) = ΓT (E3) = E1 6= E4.

å No candidate set satisfies the fixed-point condition.
=⇒ T , and hence also T , has no extension.

24/30



Exercise 2.7

ä Consider the following information:

1. British People usually like tea.
2. British People who drink tea usually do not drink coffee.
3. Scientists usually prefer to drink coffee.
4. Lisa is a British scientist.

ä Formalise the given information in terms of an open default theory.

ä To this end, use

• B(x) for “x is British”,
• T (x) for “x drinks tea”,
• C (x) for “x drinks coffee”,
• S(x) for “x is a scientist”,
• the constant symbol l for “Lisa”.
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Exercise 2.7 (ctd.)

ä Furthermore, determine the closure T = (W ′,∆′) of T and decide
which of the following extension candidates of T are actually
extensions of T :

• E2 = Cn(W ′ ∪ {T (l)}),
• E3 = Cn(W ′ ∪ {¬C (l)}),
• E5 = Cn(W ′ ∪ {T (l),¬C (l)}),
• E6 = Cn(W ′ ∪ {T (l),C (l)}).

ä Lastly, determine how many unique extension candidates of T there
would have been.
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Solution to Exercise 2.7

ä We formalise the information as the theory T = (W ,∆), where

W = {B(l),S(l)},

∆ =

{
B(x) : T (x)

T (x)
,
B(x) ∧ T (x) : ¬C (x)

¬C (x)
,
S(x) : C (x)

C (x)

}
.

ä Next, we determine the closure T = (W ,∆) = (W ′,∆′) of T :

W ′ = {B(l),S(l)},

∆′ =

{
B(l) : T (l)

T (l)
,
B(l) ∧ T (l) : ¬C (l)

¬C (l)
,
S(l) : C (l)

C (l)

}
.
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Solution to Exercise 2.7 (ctd.)

W = W ′ = W = {B(l),S(l)},

∆ = ∆′ =

{
B(l) : T (l)

T (l)
,
B(l) ∧ T (l) : ¬C (l)

¬C (l)
,
S(l) : C (l)

C (l)

}
.

ä Candidates for being extensions of T are:

• E1 = Cn(W ′);
• E2 = Cn(W ′ ∪ {T (l)});
• E3 = Cn(W ′ ∪ {¬C (l)});
• E4 = Cn(W ′ ∪ {C (l)});
• E5 = Cn(W ′ ∪ {T (l),¬C (l)});
• E6 = Cn(W ′ ∪ {T (l),C (l)});
• E7 = Cn(W ′ ∪ {¬C (l),C (l)});
• E8 = Cn(W ′ ∪ {T (l),¬C (l),C (l)}).

ä E7 and E8 are inconsistent =⇒ E7 = E8.
=⇒ We have only 7 unique candidates.
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Solution to Exercise 2.7 (ctd.)

W = W ′ = W = {B(l),S(l)},

∆ = ∆′ =

{
B(l) : T (l)

T (l)
,
B(l) ∧ T (l) : ¬C (l)

¬C (l)
,
S(l) : C (l)

C (l)

}
.

ä Our task is to check which of E2, E3, E5, and E6 are extensions.

ä To this end, we determine the classical reducts ∆Ei
and

ΓT (Ei ) = Cn∆Ei (W ) for i = 2, 3, 5, 6:

• E2 = Cn(W ′ ∪ {T (l)}):

– ∆E2 = {B(l)/T (l),B(l) ∧ T (l)/¬C (l), S(l)/C (l)}.
– ΓT (E2) = Cn(W ′ ∪ {T (l),¬C (l),C (l)}) = E8 6= E2.

• E3 = Cn(W ′ ∪ {¬C (l)}):

– ∆E3 = {B(l)/T (l),B(l) ∧ T (l)/¬C (l)}.
– ΓT (E3) = Cn(W ′ ∪ {T (l),¬C (l)}) = E5 6= E3.
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Solution to Exercise 2.7 (ctd.)

W = W ′ = W = {B(l),S(l)},

∆ = ∆′ =

{
B(l) : T (l)

T (l)
,
B(l) ∧ T (l) : ¬C (l)

¬C (l)
,
S(l) : C (l)

C (l)

}
.

• E5 = Cn(W ′ ∪ {T (l),¬C (l)}):

– ∆E5 = {B(l)/T (l),B(l) ∧ T (l)/¬C (l)} = ∆E3 .

– ΓT (E5) = ΓT (E3) = E5. =⇒ Extension!

• E6 = Cn(W ′ ∪ {T (l),C (l)}):

– ∆E6 = {B(l)/T (l),S(l)/C (l)}.
– ΓT (E6) = Cn(W ′ ∪ {T (l),C (l)}) = E6. =⇒ Extension!

å E2 and E3 are not extensions of T ; E5 and E6 are extensions
of T .
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