VU Einführung in Wissensbasierte Systeme

Hans Tompits
Institut für Logic and Computation
Forschungsbereich Wissensbasierte Systeme

www.kr.tuwien.ac.at

Solutions Exercise Sheet 2

Exercise 2.1

Consider the theory

$$
\begin{aligned}
T:= & \{\forall x \forall y((P(x) \vee Q(y)) \rightarrow R(x, y)), \\
& \forall x((S(x) \wedge Q(x)) \rightarrow P(x)), \\
& Q(b), P(a), S(b)\}
\end{aligned}
$$

containing only the constants a and b, along with the extended theories

$$
\begin{aligned}
& T_{1}:=T \cup\{\forall x(S(x) \rightarrow \neg P(x))\} \quad \text { and } \\
& T_{2}:=T \cup\{\forall x(\neg S(x) \rightarrow \neg R(x, x))\} .
\end{aligned}
$$

For each $T_{i}, i \in\{1,2\}$, answer the following questions:
(a) Determine CWA $\left(T_{i}\right)$ and $\mathrm{CWA}^{\{S, P\}}\left(T_{i}\right)$.
(b) Prove or refute whether $\operatorname{CWA}\left(T_{i}\right)$ and $\mathrm{CWA}{ }^{\{S, P\}}\left(T_{i}\right)$ are consistent.

Solution to Exercise 2.1

>By definition,

- $\operatorname{CWA}\left(T_{i}\right)=\operatorname{Cn}\left(T_{i} \cup T_{i a s m}\right)$, where

$$
T_{i a s m}=\left\{\neg P \mid T_{i} \not \vDash P, P \text { is a ground atom }\right\},
$$

and

- $\mathrm{CWA}^{\{S, P\}}\left(T_{i}\right)=\operatorname{Cn}\left(T_{i} \cup T_{i a s m}^{\{S, P\}}\right)$, where

$$
\begin{gathered}
T_{i \text { asm }}^{\{S, P\}}=\left\{\neg P \mid T_{i} \not \vDash P, P\right. \text { is a ground atom with } \\
\text { predicate symbol } S \text { or } P\},
\end{gathered}
$$

for $i=1,2$.
\Leftrightarrow We need to determine $T_{i \text { asm }}$ for $i=1,2$.

Solution to Exercise 2.1 (ctd.)

> First of all, we observe that T_{1} is inconsistent:

- Since

$$
\begin{aligned}
& T_{1} \models S(b) \wedge Q(b) \wedge((S(b) \wedge Q(b)) \rightarrow P(b)) \wedge(S(b) \rightarrow \neg P(b)) \\
& \text { we get } T_{1} \models P(b) \text { and } T_{1} \models \neg P(b) . \\
& \Longrightarrow T_{1 \text { asm }}=T_{1 \text { asm }}\{S, P\} \\
& \operatorname{CWA}\left(T_{1}\right)=\mathrm{CWA}^{\{S, P\}}\left(T_{1}\right)=\operatorname{Cn}\left(T_{1}\right) .
\end{aligned}
$$

$\Longrightarrow \operatorname{CWA}\left(T_{1}\right)$ and $\mathrm{CWA}^{\{S, P\}}\left(T_{1}\right)$ are inconsistent too.
$>$ As for T_{2}, this theory is consistent:

- Consider the Σ-structure $\mathcal{I}=\langle\mathcal{U}, I, \emptyset\rangle$ such that

$$
\begin{aligned}
-\mathcal{U}=\left\{d_{a}, d_{b}\right\}, I(a)=d_{a}, I(b)=d_{b}, I(P)=I(S)=\mathcal{U} \\
I(Q)=\left\{d_{b}\right\}, I(R)=\mathcal{U} \times \mathcal{U}
\end{aligned}
$$

- Then, \mathcal{I} is a model of T_{2}. Moreover, $\mathcal{I} \not \vDash Q(a)$ while $\mathcal{I} \models A$ for each ground atom $A \neq Q(a)$.

Solution to Exercise 2.1 (ctd.)

$>$ In view of model \mathcal{I}, we have $T_{2} \notin Q(a) . \Longrightarrow \neg Q(a) \in T_{2 \text { asm }}$.
> Moreover, it holds that $T_{2} \models A$ for each ground atom $A \neq Q(a)$:

- $T_{2} \models P(a), Q(b), S(b)$ since $\{P(a), Q(b), S(b)\} \subseteq T$ and $T \subseteq T_{2}$.
- $T_{2} \models P(b)$ since $T \models P(b)$ and $T \subseteq T_{2}$.
- $T_{2} \models R(a, a), R(a, b), R(b, a), R(b, b)$ since

$$
\begin{aligned}
- & T_{2} \models(P(a) \vee Q(a)),(P(a) \vee Q(b)),(P(b) \vee \\
& Q(a)),(P(b) \vee Q(b)) \text { and } \\
- & T_{2} \models \forall x \forall y((P(x) \vee Q(y)) \rightarrow R(x, y)) .
\end{aligned}
$$

- $T_{2} \models S(a)$ since $T_{2} \models R(a, a) \wedge(\neg S(a) \rightarrow \neg R(a, a))$.
$\Rightarrow T_{2 a s m}=\{\neg Q(a)\}$ and $T_{2 \text { asm }}{ }^{\{S, P\}}=\emptyset$. Hence,
$\operatorname{CWA}\left(T_{2}\right)=\operatorname{Cn}\left(T_{2} \cup\{\neg Q(a)\}\right)$ and $\operatorname{CWA}^{\{S, P\}}\left(T_{2}\right)=\operatorname{Cn}\left(T_{2}\right)$.
- As \mathcal{I} is clearly also a model of $\operatorname{CWA}\left(T_{2}\right)$ as well as of $\operatorname{CWA}^{\{S, P\}}\left(T_{2}\right)$, both $\operatorname{CWA}\left(T_{2}\right)$ and $\operatorname{CWA}^{\{S, P\}}\left(T_{2}\right)$ are consistent.

Exercise 2.2

Consider the following theorem from the lecture:
Let T be a consistent theory. Then, $\operatorname{CWA}(T)$ is inconsistent iff there are ground atoms $A_{1}, \ldots, A_{n}($ for $n>1$) such that $T \models A_{1} \vee \cdots \vee A_{n}$ but $T \not \vDash A_{i}$, for all $i=1, \ldots, n$.
(a) Prove the only-if direction.
(b) Prove the if direction.

Solution to Exercise 2.2 (a)

> Assume that $\operatorname{CWA}(T)$ is inconsistent. We first show that $T_{\text {asm }} \neq \emptyset$.

- Assume that $T_{\text {asm }}=\emptyset$. Then,

$$
\operatorname{CWA}(T)=C n\left(T \cup T_{a s m}\right)=C n(T)
$$

and hence T would be inconsistent in view of our hypothesis CWA(T) is inconsistent.

- This is a contradiction to our assumption that T is consistent. $\Longrightarrow T_{\text {asm }} \neq \emptyset$.
> We now use the compactness property:
- T is satisfiable \Longleftrightarrow each finite subset of T is satisfiable.
- Hence:
- T is unsatisfiable \Longleftrightarrow not every finite subset of T is satisfiable \Longleftrightarrow there is a finite subset of T which is unsatisfiable.

Solution to Exercise 2.2 (a) (ctd.)

> We know that $\operatorname{CWA}(T)$ is unsatisfiable and

$$
\mathrm{CWA}(T)=C n\left(T \cup T_{\text {asm }}\right) .
$$

Hence, $T \cup T_{a s m}$ is unsatisfiable too.
\Rightarrow By compactness, there is a finite subset $T^{0} \subseteq T \cup T_{\text {asm }}$ such that T^{0} is unsatisfiable.

- Let $T_{\text {asm }}^{0}:=T^{0} \cap T_{\text {asm }}$.
- Then, $T_{a s m}^{0}$ is a finite set of ground atoms and $T \cup T_{\text {asm }}^{0}$ is unsatisfiable.
- Furthermore, $T_{\text {asm }}^{0} \neq \emptyset$, otherwise $T^{0} \subseteq T$ would hold and that would mean that T is unsatisfiable, which contradicts the fact that T is consistent.

Solution to Exercise 2.2 (a) (ctd.)

$>$ Let now $T_{\text {asm }}^{0}$ be $\left\{\neg A_{1}, \ldots, \neg A_{n}\right\}$.
Claim: $n>1$.
Proof of Claim:

- n must be greater than 0 because $T_{\text {asm }}^{0} \neq \emptyset$.
- Assume that $n=1$.
- Then, $T \cup\left\{\neg A_{1}\right\}$ is unsatisfiable, and hence $T \models A_{1}$ follows.
- But $\neg A_{1} \in T_{\text {asm }}$ and hence $T \not \vDash A_{1}$ by definition of $T_{\text {asm }}$. \Longrightarrow Contradiction.
$\Rightarrow n>1$.
$\Rightarrow T \cup\left\{\neg A_{1}, \ldots, \neg A_{n}\right\}$ is unsatisfiable.
$\Rightarrow T \cup\left\{\neg A_{1} \wedge \cdots \wedge \neg A_{n}\right\}$ is unsatisfiable.
$\Rightarrow T \cup\left\{\neg\left(A_{1} \vee \cdots \vee A_{n}\right)\right\}$ is unsatisfiable.
$\Leftrightarrow T \models A_{1} \vee \cdots \vee A_{n}$. This proves the only-if direction and thus Part (a).

Solution to Exercise 2.2 (b)

$>$ Assume there are ground atoms A_{1}, \ldots, A_{n}, for $n>1$, such that $T \models A_{1} \vee \cdots \vee A_{n}$ but $T \not \vDash A_{i}$ for each $i=1, \ldots, n$.
$\Longrightarrow\left\{\neg A_{1}, \ldots, \neg A_{n}\right\} \subseteq T_{\text {asm }}$ (since $T \not \vDash A_{i}$ for $i=1, \ldots, n$).
$\Longrightarrow\left\{\neg A_{1}, \ldots, \neg A_{n}\right\} \subseteq C n\left(T \cup T_{\text {asm }}\right)$.
$\Longrightarrow T \cup T_{\text {asm }} \models \neg A_{1} \wedge \cdots \wedge \neg A_{n}$.
$\Longrightarrow T \cup T_{\text {asm }}=\neg\left(A_{1} \vee \cdots \vee A_{n}\right)$.
\Rightarrow Since $T \models A_{1} \vee \cdots \vee A_{n}$ by hypothesis, it follows also that $T \cup T_{\text {asm }} \models A_{1} \vee \cdots \vee A_{n}$ and hence $T \cup T_{\text {asm }}$ is inconsistent.
$\Leftrightarrow \operatorname{CWA}(T)=\operatorname{Cn}\left(T \cup T_{\text {asm }}\right)$ is inconsistent.

Exercise 2.3

$>$ Consider the open default theory $T=(W, \Delta)$, where

$$
\begin{aligned}
W & =\{\forall x(P(x) \vee Q(x)), \exists x(R(x) \vee P(x)), \forall x(\neg Q(x) \rightarrow \neg R(x))\}, \\
\Delta & =\left\{\frac{P(x): \neg Q(x)}{\neg Q(x)}, \frac{Q(x): \neg P(x)}{\neg P(x)}, \frac{\top: \neg R(x)}{\neg R(x)}\right\} .
\end{aligned}
$$

> Compute the closure of T and determine the possible candidates for being an extension.
> For each candidate E, compute the classical reduct Δ_{E} and determine all extensions of T.

Solution to Exercise 2.3

$>$ A closure of T is given by $\bar{T}=(\bar{W}, \bar{\Delta})$, where

$$
\begin{aligned}
\bar{W} & =\{\forall x(P(x) \vee Q(x)), R(a) \vee P(a), \forall x(\neg Q(x) \rightarrow \neg R(x))\}, \\
\bar{\Delta} & =\left\{\frac{P(a): \neg Q(a)}{\neg Q(a)}, \frac{Q(a): \neg P(a)}{\neg P(a)}, \frac{\top: \neg R(a)}{\neg R(a)}\right\} .
\end{aligned}
$$

> The possible candidates for being extensions are

- $E_{1}=\operatorname{Cn}(\bar{W})$,
- $E_{2}=C n(\bar{W} \cup\{\neg Q(a)\})$,
- $E_{3}=C n(\bar{W} \cup\{\neg P(a)\})$,
- $E_{4}=C n(\bar{W} \cup\{\neg R(a)\})$,
- $E_{5}=C n(\bar{W} \cup\{\neg Q(a), \neg P(a)\})$ (inconsistent),
- $E_{6}=C n(\bar{W} \cup\{\neg Q(a), \neg R(a)\})$,
- $E_{7}=C n(\bar{W} \cup\{\neg P(a), \neg R(a)\})$ (inconsistent),
- $E_{8}=C n(\bar{W} \cup\{\neg Q(a), \neg P(a), \neg R(a)\})$ (inconsistent).

Solution to Exercise 2.3 (ctd.)

$$
\begin{aligned}
\bar{W} & =\{\forall x(P(x) \vee Q(x)), R(a) \vee P(a), \forall x(\neg Q(x) \rightarrow \neg R(x))\}, \\
\bar{\Delta} & =\left\{\frac{P(a): \neg Q(a)}{\neg Q(a)}, \frac{Q(a): \neg P(a)}{\neg P(a)}, \frac{\top: \neg R(a)}{\neg R(a)}\right\} .
\end{aligned}
$$

$>$ We determine the classical reducts $\Delta_{E_{i}}$ and $\Gamma_{\bar{T}}\left(E_{i}\right)=C n^{\Delta_{E_{i}}}(\bar{W})$ for $i=1, \ldots, 8$:

- $E_{1}=\operatorname{Cn}(\bar{W})$:

$$
\begin{aligned}
& -\Delta_{E_{1}}=\{P(a) / \neg Q(a), Q(a) / \neg P(a), \top / \neg R(a)\} . \\
& -\Gamma_{\bar{T}}\left(E_{1}\right)=\operatorname{Cn}(\bar{W} \cup\{\neg R(a), \neg Q(a)\})=E_{6} \neq E_{1} .
\end{aligned}
$$

- $E_{2}=C n(\bar{W} \cup\{\neg Q(a)\}):$

$$
\begin{aligned}
& -\Delta_{E_{2}}=\{P(a) / \neg Q(a), \top / \neg R(a)\} . \\
& -\Gamma_{\bar{T}}\left(E_{2}\right)=\operatorname{Cn}(\bar{W} \cup\{\neg R(a), \neg Q(a)\})=E_{6} \neq E_{2} .
\end{aligned}
$$

- $E_{3}=\operatorname{Cn}(\bar{W} \cup\{\neg P(a)\})$:

$$
\begin{aligned}
& -\Delta_{E_{3}}=\{Q(a) / \neg P(a)\} \\
& -\Gamma_{\bar{T}}\left(E_{3}\right)=C n(\bar{W})=E_{1} \neq E_{3} .
\end{aligned}
$$

Solution to Exercise 2.3 (ctd.)

$$
\begin{aligned}
\bar{W} & =\{\forall x(P(x) \vee Q(x)), R(a) \vee P(a), \forall x(\neg Q(x) \rightarrow \neg R(x))\}, \\
\bar{\Delta} & =\left\{\frac{P(a): \neg Q(a)}{\neg Q(a)}, \frac{Q(a): \neg P(a)}{\neg P(a)}, \frac{\top: \neg R(a)}{\neg R(a)}\right\} .
\end{aligned}
$$

- $E_{4}=C n(\bar{W} \cup\{\neg R(a)\}):$

$$
\begin{aligned}
& -\Delta_{E_{4}}=\{P(a) / \neg Q(a), \top / \neg R(a)\} . \\
& -\Gamma_{\bar{T}}\left(E_{4}\right)=\operatorname{Cn}(\bar{W} \cup\{\neg R(a), \neg Q(a)\})=E_{6} \neq E_{4} .
\end{aligned}
$$

- $E_{5}=\operatorname{Cn}(\bar{W} \cup\{\neg Q(a), \neg P(a)\})$ (inconsistent):

$$
\begin{aligned}
& -\Delta_{E_{5}}=\emptyset \\
& -\Gamma_{\bar{T}}\left(E_{5}\right)=\operatorname{Cn}(\bar{W})=E_{1} \neq E_{5}
\end{aligned}
$$

- $E_{6}=C n(\bar{W} \cup\{\neg Q(a), \neg R(a)\}):$
$-\Delta_{E_{6}}=\{P(a) / \neg Q(a), T / \neg R(a)\}=\Delta_{E_{2}}$.
$-\Gamma_{\bar{T}}\left(E_{6}\right)=\Gamma_{\bar{T}}\left(E_{2}\right)=E_{6} . \Longrightarrow$ Extension!

Solution to Exercise 2.3 (ctd.)

$$
\begin{aligned}
\bar{W} & =\{\forall x(P(x) \vee Q(x)), R(a) \vee P(a), \forall x(\neg Q(x) \rightarrow \neg R(x))\}, \\
\bar{\Delta} & =\left\{\frac{P(a): \neg Q(a)}{\neg Q(a)}, \frac{Q(a): \neg P(a)}{\neg P(a)}, \frac{\top: \neg R(a)}{\neg R(a)}\right\} .
\end{aligned}
$$

- $E_{7}=C n(\bar{W} \cup\{\neg P(a), \neg R(a)\})$ (inconsistent):

$$
\begin{aligned}
& -\Delta_{E_{7}}=\emptyset \\
& -\Gamma_{\bar{T}}\left(E_{7}\right)=\operatorname{Cn}(\bar{W})=E_{1} \neq E_{7}
\end{aligned}
$$

- $E_{8}=C n(\bar{W} \cup\{\neg Q(a), \neg P(a), \neg R(a)\})$ (inconsistent):

$$
\begin{aligned}
& -\Delta_{E_{8}}=\emptyset \\
& -\Gamma_{\bar{T}}\left(E_{8}\right)=C n(\bar{W})=E_{1} \neq E_{8}
\end{aligned}
$$

$E_{6} \cap \mathcal{L}_{T}$ is the single extension of T !

Exercise 2.4

$>$ Show that any closed normal default theory (W, Δ) has an extension.

Solution:

> Let $T=(W, \Delta)$ be a closed normal default theory.

- If W is inconsistent, then $\operatorname{Cn}(W)$ is an extension as it satisfies all properties of an extension.
- Assume now that W is consistent. We define a sequence $\left(E_{i}\right)_{i \geq 0}$ as follows:

$$
\begin{aligned}
E_{0} & =W \\
E_{i+1} & =\operatorname{Cn}\left(E_{i}\right) \cup T_{i},
\end{aligned}
$$

where T_{i} is a maximal set of closed formulas satisfying the following conditions:

1. $E_{i} \cup T_{i}$ is consistent;
2. if $B \in T_{i}$, then there is a default $(A: B / B) \in \Delta$ such that $E_{i} \models A$.

Solution to Exercise 2.4 (ctd.)

$>$ Let $E=\bigcup_{i \geq 0} E_{i}$.
$>$ Claim: E is an extension of T.
> Proof of claim: Let $H_{i}=\left\{B \mid(A: B / B) \in \Delta, E_{i} \models A, \neg B \notin E\right\}$. We show that $T_{i}=H_{i}$, for all i. This proves the claim by the semirecursive characterisation of extensions (cf. the hint in Ex. Sheet 2).

1. We first show that $T_{i} \subseteq H_{i}$.

- Let $B \in T_{i}$. Then, by definition of T_{i}, there is some default $(A: B / B) \in \Delta$ such that $E_{i} \models A$.
- Suppose $\neg B \in E$. Since $E=\bigcup_{i \geq 0} E_{i}$, there is some $k \geq 0$ such that $\neg B \in E_{k}$.
- Since $B \in T_{i}$ and $T_{i} \subseteq E_{i+1}$, we have that $B \in E_{i+1}$.
- Let $m=\max (i+1, k)$. Since $E_{I} \subseteq E_{I+1}$, for all $I \geq 0$, it follows that $B \in E_{m}$ and $\neg B \in E_{m}$. $\Longrightarrow E_{m}$ is inconsistent. Contradiction.
- Therefore, $\neg B \notin E$ must hold. We obtain $B \in H_{i}$.
\Longrightarrow This proves that $T_{i} \subseteq H_{i}$.

Solution to Exercise 2.4 (ctd.)

2. Suppose that $T_{i} \subset H_{i}$ holds. Then, there is some $B \in H_{i}$ such that $B \notin T_{i}$.

- By the maximality of T_{i}, we have that $E_{i} \cup T_{i} \cup\{B\}$ is inconsistent. Since $E_{i} \cup T_{i} \subseteq E_{i+1} \subseteq E$ holds, $E \cup\{B\}$ is also inconsistent.
- It follows that $E \models \neg B$. Furthermore, it is easy to see that $E=C n(E)$. Hence, $\neg B \in E$.
- But $B \in H_{i}$, and so $\neg B \notin E$ must hold, by definition of H_{i}. Contradiction.
$\Longrightarrow T_{i} \subset H_{i}$ cannot hold and we obtain $T_{i}=H_{i}$.

Exercise 2.5

> Consider the theory

$$
\begin{aligned}
W:=\{ & \forall x \forall y((P(x) \vee Q(y)) \rightarrow R(x, y)), \\
& \forall x((S(x) \wedge Q(x)) \rightarrow P(x)), \\
& Q(b), P(a), S(b), \\
& \forall x(\neg S(x) \rightarrow \neg R(x, x))\} .
\end{aligned}
$$

> Construct a closed, normal default theory $T:=(W, \Delta)$ such that there exists an extension E of T with $\operatorname{CWA}(W)=E$.

Solution to Exercise 2.5

$>$ We define the closed normal default theory $T=(W, \Delta)$ with

$$
\begin{aligned}
\Delta:= & \left\{\frac{\top: \neg P(a)}{\neg P(a)}, \frac{\top: \neg Q(a)}{\neg Q(a)}, \frac{\top: \neg S(a)}{\neg S(a)}, \frac{\top: \neg R(a, a)}{\neg R(a, a)}\right\} \cup \\
& \left\{\frac{\top: \neg P(b)}{\neg P(b)}, \frac{\top: \neg Q(b)}{\neg Q(b)}, \frac{\top: \neg S(b)}{\neg S(b)}, \frac{\top: \neg R(b, b)}{\neg R(b, b)}\right\} \cup \\
& \left\{\frac{\top: \neg R(a, b)}{\neg R(a, b)}, \frac{\top: \neg R(b, a)}{\neg R(b, a)}\right\} .
\end{aligned}
$$

$>$ Now, theory W is actually theory T_{2} from Exercise 2.1. $\Longrightarrow \operatorname{CWA}(W)=C n(W \cup\{\neg Q(a)\})$.
> To show that CWA (W) is an extension of T, we only need to construct the reduct $\Delta_{\mathrm{CWA}(W)}$ and show that $\Gamma_{T}(\operatorname{CWA}(W))=\operatorname{CWA}(W)$.
> From what we know from Exercise 2.1, it follows that $\Delta_{\mathrm{CWA}(W)}=\{\top / \neg Q(a)\}$, so $\Gamma_{T}(\mathrm{CWA}(W))=\operatorname{CWA}(W)$ indeed holds.

Exercise 2.6

$>$ Extend the default theory $T=(W, \Delta)$, where

$$
\begin{aligned}
W & =\{\forall x(P(x) \vee Q(x)), R(a), \forall x(R(x) \rightarrow P(x))\} \text { and } \\
\Delta & =\left\{\frac{P(x): \neg Q(x)}{\neg Q(x)}, \frac{Q(x): \neg P(x)}{\neg P(x)}\right\},
\end{aligned}
$$

such that it has no extensions anymore.
> For achieving this, use only predicates occurring in T.
> Show then that your enlarged theory has no extensions, i.e., consider possible extensions, compute the classical reducts and fixed points, and show that no candidate set is an extension.

Solution to Exercise 2.6

- Since T is normal, we have to add a non-normal default.
> We define $T^{\prime}=\left(W, \Delta^{\prime}\right)$, where

$$
\Delta^{\prime}=\left\{\frac{P(x): \neg Q(x)}{\neg Q(x)}, \frac{Q(x): \neg P(x)}{\neg P(x)}, \frac{T: \neg Q(x)}{\neg P(x)}\right\} .
$$

> To determine the extensions of T^{\prime}, we first built its closure $\overline{T^{\prime}}=\left(\bar{W}, \overline{\Delta^{\prime}}\right)$, where $\bar{W}=W$ and

$$
\overline{\Delta^{\prime}}=\left\{\frac{P(a): \neg Q(a)}{\neg Q(a)}, \frac{Q(a): \neg P(a)}{\neg P(a)}, \frac{T: \neg Q(a)}{\neg P(a)}\right\} .
$$

> Candidates for being extensions of $\overline{T^{\prime}}$:

- $E_{1}=C n(W)$;
- $E_{2}=C n(W \cup\{\neg Q(a)\}) ;$
- $E_{3}=C n(W \cup\{\neg P(a)\})$ (inconsistent);
- $E_{4}=C n(W \cup\{\neg Q(a), \neg P(a)\})$ (inconsistent). $\Longrightarrow E_{3}=E_{4}$.

Solution to Exercise 2.6 (ctd.)

$$
\begin{aligned}
\bar{W}=W & =\{\forall x(P(x) \vee Q(x)), R(a), \forall x(R(x) \rightarrow P(x))\}, \\
\bar{\Delta} & =\left\{\frac{P(a): \neg Q(a)}{\neg Q(a)}, \frac{Q(a): \neg P(a)}{\neg P(a)}, \frac{T: \neg Q(a)}{\neg P(a)}\right\} .
\end{aligned}
$$

$>$ We determine the classical reducts $\Delta_{E_{i}}$ and $\Gamma_{\bar{T}}\left(E_{i}\right)=C n^{\Delta_{E_{i}}}(\bar{W})$ for $i=1, \ldots, 4$:

- $E_{1}=C n(W)$:

$$
\begin{aligned}
& -\Delta_{E_{1}}=\{P(a) / \neg Q(a), \top / \neg P(a)\} . \\
& -\Gamma_{\bar{T}}\left(E_{1}\right)=\operatorname{Cn}(W \cup\{\neg P(a), \neg Q(a)\})=E_{4} \neq E_{1} .
\end{aligned}
$$

- $E_{2}=C n(W \cup\{\neg Q(a)\}):$

$$
\begin{aligned}
& -\Delta_{E_{2}}=\{P(a) / \neg Q(a), \top / \neg P(a)\}=\Delta_{E_{1}} . \\
& -\Gamma_{\bar{T}}\left(E_{2}\right)=\Gamma_{\bar{T}}\left(E_{1}\right)=E_{4} \neq E_{2} .
\end{aligned}
$$

Solution to Exercise 2.6 (ctd.)

$$
\begin{aligned}
\bar{W}=W & =\{\forall x(P(x) \vee Q(x)), R(a), \forall x(R(x) \rightarrow P(x))\}, \\
\bar{\Delta} & =\left\{\frac{P(a): \neg Q(a)}{\neg Q(a)}, \frac{Q(a): \neg P(a)}{\neg P(a)}, \frac{T: \neg Q(a)}{\neg P(a)}\right\} .
\end{aligned}
$$

- $E_{3}=C n(W \cup\{\neg P(a)\})$ (inconsistent):

$$
\begin{aligned}
& -\Delta_{E_{3}}=\emptyset \\
& -\Gamma_{\bar{T}}\left(E_{3}\right)=C n(W)=E_{1} \neq E_{3} .
\end{aligned}
$$

- $E_{4}=C n(W \cup\{\neg Q(a), \neg P(a)\})=E_{3}$ (inconsistent):

$$
-\Delta_{E_{4}}=\Delta_{E_{3}}=\emptyset
$$

$$
-\Gamma_{\bar{T}}\left(E_{4}\right)=\Gamma_{\bar{T}}\left(E_{3}\right)=E_{1} \neq E_{4}
$$

No candidate set satisfies the fixed-point condition.
$\Longrightarrow \bar{T}$, and hence also T, has no extension.

Exercise 2.7

> Consider the following information:

1. British People usually like tea.
2. British People who drink tea usually do not drink coffee.
3. Scientists usually prefer to drink coffee.
4. Lisa is a British scientist.

- Formalise the given information in terms of an open default theory.
$>$ To this end, use
- $B(x)$ for " x is British",
- $T(x)$ for " x drinks tea",
- $C(x)$ for " x drinks coffee",
- $S(x)$ for " x is a scientist",
- the constant symbol / for "Lisa".

Exercise 2.7 (ctd.)

- Furthermore, determine the closure $\bar{T}=\left(W^{\prime}, \Delta^{\prime}\right)$ of T and decide which of the following extension candidates of \bar{T} are actually extensions of \bar{T} :
- $E_{2}=C n\left(W^{\prime} \cup\{T(I)\}\right)$,
- $E_{3}=C n\left(W^{\prime} \cup\{\neg C(I)\}\right)$,
- $E_{5}=C n\left(W^{\prime} \cup\{T(I), \neg C(I)\}\right)$,
- $E_{6}=C n\left(W^{\prime} \cup\{T(I), C(I)\}\right)$.
> Lastly, determine how many unique extension candidates of \bar{T} there would have been.

Solution to Exercise 2.7

$>$ We formalise the information as the theory $T=(W, \Delta)$, where

$$
\begin{aligned}
W & =\{B(I), S(I)\} \\
\Delta & =\left\{\frac{B(x): T(x)}{T(x)}, \frac{B(x) \wedge T(x): \neg C(x)}{\neg C(x)}, \frac{S(x): C(x)}{C(x)}\right\} .
\end{aligned}
$$

> Next, we determine the closure $\bar{T}=(\bar{W}, \bar{\Delta})=\left(W^{\prime}, \Delta^{\prime}\right)$ of T :

$$
\begin{aligned}
W^{\prime} & =\{B(I), S(I)\}, \\
\Delta^{\prime} & =\left\{\frac{B(I): T(I)}{T(I)}, \frac{B(I) \wedge T(I): \neg C(I)}{\neg C(I)}, \frac{S(I): C(I)}{C(I)}\right\} .
\end{aligned}
$$

Solution to Exercise 2.7 (ctd.)

$$
\begin{aligned}
& \bar{W}=W^{\prime}=W \\
& \bar{\Delta}=\{B(I), S(I)\}, \\
&=\Delta^{\prime}=\left\{\frac{B(I): T(I)}{T(I)}, \frac{B(I) \wedge T(I): \neg C(I)}{\neg C(I)}, \frac{S(I): C(I)}{C(I)}\right\} .
\end{aligned}
$$

> Candidates for being extensions of \bar{T} are:

- $E_{1}=C n\left(W^{\prime}\right)$;
- $E_{2}=\operatorname{Cn}\left(W^{\prime} \cup\{T(I)\}\right)$;
- $E_{3}=C n\left(W^{\prime} \cup\{\neg C(I)\}\right) ;$
- $E_{4}=C n\left(W^{\prime} \cup\{C(I)\}\right)$;
- $E_{5}=C n\left(W^{\prime} \cup\{T(I), \neg C(I)\}\right)$;
- $E_{6}=C n\left(W^{\prime} \cup\{T(I), C(I)\}\right) ;$
- $E_{7}=C n\left(W^{\prime} \cup\{\neg C(I), C(I)\}\right)$;
- $E_{8}=C n\left(W^{\prime} \cup\{T(I), \neg C(I), C(I)\}\right)$.
$>E_{7}$ and E_{8} are inconsistent $\Longrightarrow E_{7}=E_{8}$.
\Longrightarrow We have only 7 unique candidates.

Solution to Exercise 2.7 (ctd.)

$$
\begin{aligned}
\bar{W}=W^{\prime} & =W \\
\bar{\Delta} & =\{B(I), S(I)\}, \\
\Delta^{\prime} & =\left\{\frac{B(I): T(I)}{T(I)}, \frac{B(I) \wedge T(I): \neg C(I)}{\neg C(I)}, \frac{S(I): C(I)}{C(I)}\right\} .
\end{aligned}
$$

$>$ Our task is to check which of E_{2}, E_{3}, E_{5}, and E_{6} are extensions.
$>$ To this end, we determine the classical reducts $\Delta_{E_{i}}$ and $\Gamma_{\bar{T}}\left(E_{i}\right)=C n^{\Delta_{E_{i}}}(\bar{W})$ for $i=2,3,5,6$:

- $E_{2}=C n\left(W^{\prime} \cup\{T(I)\}\right):$

$$
\begin{aligned}
& -\Delta_{E_{2}}=\{B(I) / T(I), B(I) \wedge T(I) / \neg C(I), S(I) / C(I)\} . \\
& -\Gamma_{\bar{T}}\left(E_{2}\right)=C n\left(W^{\prime} \cup\{T(I), \neg C(I), C(I)\}\right)=E_{8} \neq E_{2} .
\end{aligned}
$$

- $E_{3}=C n\left(W^{\prime} \cup\{\neg C(I)\}\right):$

$$
\begin{aligned}
& -\Delta_{E_{3}}=\{B(I) / T(I), B(I) \wedge T(I) / \neg C(I)\} . \\
& -\Gamma_{\bar{T}}\left(E_{3}\right)=C n\left(W^{\prime} \cup\{T(I), \neg C(I)\}\right)=E_{5} \neq E_{3} .
\end{aligned}
$$

Solution to Exercise 2.7 (ctd.)

$$
\begin{aligned}
\bar{W}=W^{\prime} & =W \\
\bar{\Delta} & =\{B(I), S(I)\}, \\
\Delta^{\prime} & =\left\{\frac{B(I): T(I)}{T(I)}, \frac{B(I) \wedge T(I): \neg C(I)}{\neg C(I)}, \frac{S(I): C(I)}{C(I)}\right\} .
\end{aligned}
$$

- $E_{5}=C n\left(W^{\prime} \cup\{T(I), \neg C(I)\}\right)$:

$$
\begin{aligned}
& -\Delta_{E_{5}}=\{B(I) / T(I), B(I) \wedge T(I) / \neg C(I)\}=\Delta_{E_{3}} . \\
& -\Gamma_{\bar{T}}\left(E_{5}\right)=\Gamma_{\bar{T}}\left(E_{3}\right)=E_{5} \Longrightarrow \text { Extension! }
\end{aligned}
$$

- $E_{6}=C n\left(W^{\prime} \cup\{T(I), C(I)\}\right):$

$$
\begin{aligned}
& -\Delta_{E_{6}}=\{B(I) / T(I), S(I) / C(I)\} \\
& -\Gamma_{\bar{T}}\left(E_{6}\right)=\operatorname{Cn}\left(W^{\prime} \cup\{T(I), C(I)\}\right)=E_{6} \Longrightarrow \text { Extension! }
\end{aligned}
$$

$\Leftrightarrow E_{2}$ and E_{3} are not extensions of T; E_{5} and E_{6} are extensions of T.

