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History

I 1964: MIT, General Electrics, Bell Labs and AT&T
wanted to create a new operating system (Multics)

I 1969: Too expensive ⇒ Bell Labs quits

I Group around Ken Thompson (Bell Labs) is looking for
alternatives to Multics and wanted to create the OS in
assembler

I not portable

I time consuming

I prone to errors

movl -8(%ebp, %edx, 4), %eax
movl -4(%ebp), %eax
movl (%ecx), %edx
leal 8(,%eax,4), %eax
leal (%edx,%eax,2), %eax

I Alternatives to assembler were needed. C was developed
as successor to the language B, ALGOL (ALGOrithmitc
Language)
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Why C ?

I Past:
I Portability
I Extensibility with libraries

I Today:
I Performance (compare OS-kernel: Windows, Linux, BSDs,

. . . )
I Many libraries are available
I Programming hardware
I Computer graphics and games
I Modern languages/interpretors are written in C (Python,

Perl, Ruby, . . . )
I A lot of compilers generate C-code (e.g., Matlab/Simulink)
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Standards

I 1978: De facto standard by Ritchie and Kernighan in the
book The C Programming Language

I 1989: C-89 / ANSI-C
I 1999: C-99

I Not supported by all compilers
I Even gcc does not fully support it
I This standard is used for OSUE lab exercises

$ gcc -std=c99 -pedantic -Wall \
-D_DEFAULT_SOURCE -g -c filename.c

I 2011: C-11
I today: new quasi-standard (at least in the free/open

source community) with gcc1 and gnu extensions
I However, some gnu-extensions are specified only informally
I Recently LLVM/clang appeared as a potential successor to

gcc

1http://gcc.gnu.org 5 / 66
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Hello, C World

#include <stdio.h>

int main(void)
{
printf("Hello, C World\n");

return 0;
}
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Compilation

I Source code needs to be translated to machine code

I Code → pre-processor → compiler → linker

$ gcc -o prog prog.c # all done in one step
$ ./prog # start the program

Single steps (fyi only):

I pre-processor:

$ gcc -E prog.c

I Compiler, linker:

$ gcc -v -o prog prog.c
[..]
<..>/cc1 [..] prog.c [..] -o /tmp/ccpMJ9ab.s
[..]
as -V -Qy -o /tmp/ccdR6Ueb.o /tmp/ccpMJ9ab.s
[..]
<..>/collect2 [..] -o prog [..] crtn.o
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Comments

/* I am a comment in C-89 */

// I am a comment in C-99 standard
// I end at the end of the line

/* multi-line comments
require the old syntax */

Code

I comment (functions, etc.)

I structure (indent, line breaks, etc.)

8 / 66



C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Part II

Variables & Constants

9 / 66



C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Definition

I For variables memory space needs to be reserved
(depending on the data type)

I The name is set

I This happens at the definition

I The definition of a variable must happen only one time in
the code

int i; // Integer variable i, declaration + definition

// Function declaration + definition:
int f(void)
{

...
}

10 / 66
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Declaration

I Variables have a type

I The compiler needs to know this type

I This is done with the declaration

extern int j; // declared, but defined somewhere else

/* Function declaration
(but not defined, i.e. no body): */

int f(void);

I The declaration can happen several times

I Not each declaration is also a definition

I However, each definition is also a declaration

I The term declaration is often not distinguished from the
term definition → declaration is used for both

11 / 66
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Initialization

I Although the variable already has its memory, its value is
still undefined (unless it was placed in an pre-initialized
memory at compile time)

I Initialization assigns a value to a variable

I Assignment is done with =

int k = 23; /* declaration, definition
and initialization */

12 / 66
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Examples

int i; /* declaration and definition
of a single integer variable */

int i, j, k; // -"- of multiple integers at once

int i, j = 23, k = 42; /* same, but some variables
are initialized */

int i, char b; // incorrect syntax

int i; char b; /* correct, declares and defines an
integer and a character variable */

int i = 4; char b = ’A’; // same with initializations

13 / 66
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Byte in C99-standard

A byte is composed of a contiguous sequence of bits,
the number of which is implementation-defined.

ISO/IEC 9899:TC3, Committee Draft – September 7, 2007
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Integral Number

I char: 1 byte (according to the standard a byte does not
have to have 8 bit of length). Is often used to store
characters and strings

I short int: min. 16 bit

I int: often 32 or 64 bit

I long int: min. 32 bit

I long long int: min. 64 bit. Since C-99

I Actual size is available in <limits.h>
I C-99 introduced standardized types (<stdint.h>): e.g.,
uint32_t, int8_t, . . .

I All types have signed and unsigned variants (e.g. signed
int, unsigned int), by default everything is signed

I Literals can be declared hexadecimal (0x as prefix) and
octal (0 as prefix), e.g., 0x10 (16 in decimal), 024 (20 in
decimal)

15 / 66
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Range of Values

I Signed variables have another range of values than
unsigned variables

I The following ranges of values are not specified by the
standard, they are used for presentation purposes

Type signed unsigned

char -128 to 127 0 to 255
short int -32.768 to 32.767 0 to 65.535
long int -2.147.483.648 to 0 to 4.294.967.295

2.147.483.647
. . . . . . . . .

16 / 66
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Real Numbers

Floating point numbers:

I float: single precision

I double: double precision

I long double: extended precision

I There is no statement about the internal representation in
the standard

I Signed and unsigned are not differentiated → it’s always
signed

17 / 66
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sizeof

I The operator sizeof is used to obtain the memory
consumption of a type

int i;
printf("%lu byte(s)\n", sizeof i);
printf("%lu byte(s)\n", sizeof (int));
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Constants

const int i = 23; // C constant

#define MYCONST 23 // pre-processor constant;
// all ocurrences are replaced
// with 23 by the pre-processor

I const defines a typed constant in the code. Should/Can
not be changed

I MYCONST is replaced by the pre-processor

19 / 66
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Scope

I Variables are visible only within their block

#include <stdio.h>

int main(void)
{
int i = 23, j = 42;
{
int i; // redeclaration of i within a new block
i = 2323; // assigning the local i

printf("%d, ", i);
printf("%d, ", j);

}
printf("%d\n", i); /* in this block the value

of i has not changed */
return 0;

}

$ 2323, 42, 23

20 / 66
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C99

I Before C-99, variables had do be declared at the beginning
of a block

I With C-99 (which we are using) this is no longer required

#include <stdio.h>

int main(void)
{

/* i, j not at the beginning of the block */
for (int i = 0; i < 10; ++i)
{

printf("%d\n", i);
int j = 23;
printf("%d\n", j);

}
return 0;

}

21 / 66
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static

I static assigns to a variable a fixed memory space, its
state remains

I A static variable cannot be accessed from an outside block
or file

#include <stdio.h>

void foo()
{
static int i = 23;
printf("%d, ", i);
i = i + 1;

}

int main(void)
{
foo();
foo();
foo();
return 0;

}

$ 23, 24, 25,

22 / 66
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extern

I Declares variables which are defined in another file

inc.c

int g_variable = 1;
[..]
g_variable++;

[..]

dec.c

extern int g_variable;
[..]
g_variable--;

[..]

23 / 66
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volatile

I Variable can change outside of the program context

I Important for hardware oriented programming (e.g.,
interrupt handler that change the values of variables)

I (fyi only:) The implementation of volatile is compiler
specific; a ’clean’ solution uses Memory Barriers2

volatile char keyPressed = ’ ’;
long count = 0;
while (keyPressed != ’x’) {

++count;
}

Without volatile, the while-loop would by optimized to
while(1) by the compiler, because from the compiler’s point
of view the variable never changes

2https://lwn.net/Articles/234017/ 24 / 66

https://lwn.net/Articles/234017/
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Example

extern const volatile unsigned long int rt_clk;

A ”‘long int”’ variable, no sign, values can’t be assigned (but
the value can be read), the value can change outside of the
program context and it is defined somewhere else

25 / 66
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Increment/Decrement

I Using ++ and -- variables can be incremented or
decremented by one

I Prefix (++i) und postfix (i++) are possible:
I Prefix operator in/decrements, returns new value
I Postfix operator in/decrements, returns old value

I Use prefix operator if possible (also with regard to C++)

int n;
int m = 0;
n = ++m;
$ n = 1, m = 1

int n;
int m = 0;
n = m++;
$ n = 0, m = 1
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Ordering/Associativity

c = sizeof (x) + ++a / 3;

c = (sizeof (x) + ((++a) / 3));

a = 5 / 2 * 3;

a = (5 / 2) * 3; /* left to right */

i = 3;
a = i + i++;
/* i == 4, a == ? (according to the standard
* it depends on the compiler implementation!) */

i = 2;
a = i++ + ++i; /* ??? */
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Equality- & Logic Operators

Operator Explanation

< less than
> greater than
<= less than or equal
>= greater than or equal
! = not equals
== equals

&& logical and
|| logical or
! negation

I || and && are evaluated short circuit
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Bitwise Operators

Operator Explanation

& and
— or
∧ exclusive or (xor)
∼ bit-wise complement
>> shift right
<< shift left

x: 1 0 0 1 1 0 1 1

y: 0 0 0 1 0 0 0 1

x & y: 0 0 0 1 0 0 0 1

I For bitwise and arithmetic operators there are the versions
Op= (e.g., i += 5 which is the same as i = i + 5)
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Shift

I << and >> do bit-wise shifting

unsigned char i = 7; /* 00000111 */
i <<= 1; /* 00001110 */
printf("%d\n", i); /* 14 */

/* 128 == 2 to the power of 7 */
printf("%d\n", 1 << 7);

I The behavior of signed variables with negative values is
undefined

int i = -7;
i <<= 1;
printf("%d\n", i); /* -14 ??? undefined */
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Example

unsigned char a, b, c;
a = 4; b = 2; /* binary: a = 100, b = 010 */
c = a | b; /* c = 6 */
b = a & c; /* b = 4 */
a += 3; /* a = a + 3 = 7 */
b %= 3; /* b = b % 3 = 1 (% .. modulo div) */
b = 0;
if ( (b > 0) && ( (a / b) > 5) ) /* ... */
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if

if (expression)
statement

else if (expression)
statement

else if (expression)
statement

/* . . . */
else

statement

I In C: 0 is false, everything else is true (even -1)

I Tip: never go without/forget embracing the
statement-blocks; do also embrace one-line statements
with {}
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goto fail; goto fail;
Apple’s libsecurity ssl, sslKeyExchange.c:

SSLVerifySignedServerKeyExchange(..)
.

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

.
fail:
SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

References:

I http://opensource.apple.com/source/Security/
Security-55471/libsecurity_ssl/lib/sslKeyExchange.c

I http://www.theregister.co.uk/2014/02/25/apple_mac_os_x_
10_9_2_ssl/

Thanks to Roland Kammerer for this case study!
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goto fail; goto fail;

http://teespring.com/goto-fail-goto-fail
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goto fail; goto fail;
I Please, go without goto in the regular exercises

I Negative example:

#include <stdio.h>
int main(void)
{
int i = 0;

loopstart:
++i;
if(i >= 5)
goto printnum;

contloop:
if (i < 9)
goto loopstart;

goto end;
printnum:
printf("i is %d\n", i);
goto contloop;

end:
return 0;

}
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switch

switch (expression)
{

case const_expr: statements
case const_expr: statements
/* . . . */
default: statements

}

I Only constant values can be used for equality checks

I A case should always end with break, otherwise the
successing cases will be evaluated (see example at the
end)

I You should always provide a default case
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for

for (expression1; expression2; expression3)
statement

I All three expression are not mandatory
I Basic example:

I expression1: Init the counter
I expression2: Check whether the loop should continue
I expression3: Incement the counter
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while/do-while

while (expression)
statement

do
statement

while (expression);

I Do-while executes statement at least one time
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do
statement
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continue/break

I continue continues at the next run of the most inner
loop

I for-loop: expression3 is executed, expression2 is
checked

I break exits the most inner loop and continues to run the
code after the loop

I for-loop: expression3 is not executed
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Example

int i;

for (i = 0; i < 10; ++i)
{
(void) printf("hello\n");

}

switch (input)
{

case ’a’:
case ’A’:

printf("a or A\n");
break;

default:
printf("Error");
break;

}

i = 23;
if (i == 42)
{
printf("i ist 42\n");

}
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One Dimensional

I Arrays are used to combine related values of the same type

Type name[size];

int myarray[8];

I myarray stores 8 integer variables

I Indexed from 0 to 7

I myarray[8] out-of-bounds
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Multi Dimensional

I Arrays can have multi dimensions

I In C it is basically ”syntactic sugar”

int myarray[2][3];
int myarray2[2][3][4];
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Initialization

int myarr[2][3]= {
{1,2,3},
{4,5,6},
};

int myarr2[2][3] = {1,2,3,4,5,6};
/* first version is preferred */
int myarr3[] = {1, 2, 3, 4};
/* if the whole array is initialized

you do not need to declare the size */
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Strings

I Strings are arrays of characters (char) (in C)

I Strings are terminated with ’\0’ by definition; this is
essential for functions that work on strings to know the
end of the string

char string[] = "hello, world";
/* string is auto \0 terminated */
char s[6];
s[0] = ’h’; s[1] = ’e’; s[2] = ’l’;
s[3] = ’l’; s[4] = ’o’; s[5] = ’\0’;
char str[] = {’f’,’o’,’o’,’b’,’a’,’r’,’\0’};

printf("%s\n", s); /* prints "hello" */
s[3] = ’\0’;
printf("%s\n", s); /* prints "hel" */
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Definition of Functions

type name(type1 param1, type2 param2, ...)
{

/* code */
}

I Increase the readability, re-usability and maintainability

I Need to be declared before they can be used

int add(int a, int b)
{

return a + b;
}

int main(void)
{

int i;
i = add(2, 3);
/* i == 5 */
return 0;

}
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Prototypes

I Like variable, declaration and definition are differentiated

I A prototype represents a declaration and ends with an ’;’

/* Prototype */
int add(int a, int b);
/* int add(int x, int v); also okay */
/* int add(int, int); also okay */
/* int add(double, int); wrong,

because int is used later */

int main(void)
{

int i;
i = add(2, 3); /* i == 5 */
return 0;

}

/* now add can be defined after it has been called */
int add(int a, int b)
{

return a + b;
}
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Global vs Local

I Local variables get invisible when the function or the block
ends

I Global variables (declared outside of functions, normally at
the beginning of the source code) are valid and accessible
until the program ends

I Local variables mask global variables

I Local variables have a random value at definition

I Global variables are placed at a memory space which is
initialized with 0

50 / 66



C
Programming

Functions

Definition

Global and
Local
Variables

Example

Example

int i;
int j = 23;

void foo()
{

int j = 42;
printf("%d\n", j); /* 42 */

}

int main(void)
{

int k;
printf("%d\n", j); /* 23 */
foo(); /* 42 */
printf("%d\n", i); /* 0 */
printf("%d\n", k); /* 1863 (random) */
return 0;

}
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Pointer

I In C the values of variables do not need to be accessed via
their names

I This can also be done by pointers

I Pointers are no ”black magic”, they are variables like
others

I Difference: they store an address

I This is important for hardware oriented programming
(speed increase)

I Unfortunately it is also prone to errors

I Even new programming languages have pointers, however
they hide it from the programmer
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Declaration

I Pointers are declared with Typ *name
I The allocated memory does not have the size of Typ,

instead, it has the size of Typ *, in which an address can
be stored

I The value, to which a pointer points to, can be accessed
with the dereferencing operator *

I The address of a variable can be accessed with the address
operator &

int *p; /* I’m a pointer */
int* q; /* Me too */
int* a, b; /* a is a pointer, but

b is _not_ a pointer */
int *a, b; /* a yep, b nope */
int *a, *b; /* a and b are pointers */
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Memory Layout

int *a;
int b = 17;
a = &b;
printf("value b: %d\n", b); /* 17 */
printf("address b: %p\n", &b); /* 1462 */
printf("value a: %p\n", a); /* 1462 */
printf("value to which a points to: %d\n", *a); /* 17 */
printf("addresse of a: %p\n", &a); /* 874 */
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Simple Pointer Arithmetic

int ar[5] = {1, 2, 3, 4, 5};
int *p;

p = &ar[0];
/* or */
p = ar; /* ar is no pointer, only the address! */

printf("%d\n", *p); /* 1 */
*p += 22;
printf("%d\n", ar[0]); /* 23 */
p += 1; /* pointer points to the next element */
printf("%d\n", *p); /* 2 */
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Pointer and man

$ man strcpy

char *strcpy(char *dest, const char *src);

/* my C code */
char *mysrc = "mystring";
char *mydest = /* does not matter at the moment:

we have enough memory space */

strcpy(mydest, mysrc); /* ? */
/* ?? or ?? */
strcpy(*mydest, *mysrc); /* ? */

man-page are read that way: strcpy needs variables to
addresses (*dest, *src). Where is this Address? In the
pointers! So you do not need do dereference them.
⇒ (void) strcpy(mydest, mysrc)
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Risks of Pointers

I Pointer arithmetic can get risky if you do not work with
care

I Attention: null-pointer dereferencing was the most
frequent security problem at Red Hat in 20093

int ar[5] = {1, 2, 3, 4, 5};
int *p = &ar[0];

/* no way! */
p += 23; /* that might cause a problem */
printf("%d\n", *p); /* FAIL */
p = NULL;
printf("%d\n", *p); /* FAIL */

3www.awe.com/mark/blog/20100216.html 58 / 66
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Preprocessor

I The preprocessor is called before the compiler run

I Is doing simple replacements in the source code (case
sensitive)

I Resulting source code can be viewed by running gcc -E
I Motivation

I Past: defining constants, inline code
I Today: portability. using compiler specifications

A preprocessors tasks (temporal order, not complete):

I fyi: Trigraph → ASCII (e.g., ??) replaced with ])4

I Combining lines that are split by ’\’
I Replace macros and copy files (#include) in the source

code

4en.wikipedia.org/wiki/Digraphs_and_trigraphs 60 / 66
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Replacing Constants

#define ANSWER (42) /* Constant */

printf("ANSWER: %d\n", ANSWER);

ends up:

printf("ANSWER: %d\n", (42));

There is no replacement in string literals.
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Conditional Replacements

#if, #ifdef, #ifndef, #elif, #else, #endif:

#ifdef WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif

#if DEBUG >= 2
printf("debug, debug\n");
#endif
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Macros

I Complex macros with parameters can be defined

#define NRELEMENTS(a) (sizeof(a) / sizeof(a[0]))

I Macros should be handled with care! There are a lot of
risks and side effects
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#define DOUBLE(a) a+a

int x = DOUBLE(5) * 3;
/* x = 5 + 5 * 3 <=> 5 + (5 * 3)
=> #define DOUBLE (a) ( (a) + (a) ) */

#define DOUBLE(a) ( (a) + (a) )

int x = 3;
int y = DOUBLE(++x);
/* y = ( (++x) + (++x) ) */
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