
C
Programming

Introduction to C

Operating Systems UE
2022W

David Lung, Florian Mihola, Andreas Brandstätter,
Axel Brunnbauer, Peter Puschner

Technische Universität Wien
Computer Engineering

Cyber-Physical Systems

2022-10-03

C
Programming

Introduction

History

Why C ?

Standards

First Steps Part I

Introduction

2 / 66

C
Programming

Introduction

History

Why C ?

Standards

First Steps

History

I 1964: MIT, General Electrics, Bell Labs and AT&T
wanted to create a new operating system (Multics)

I 1969: Too expensive ⇒ Bell Labs quits

I Group around Ken Thompson (Bell Labs) is looking for
alternatives to Multics and wanted to create the OS in
assembler

I not portable

I time consuming

I prone to errors

movl -8(%ebp, %edx, 4), %eax
movl -4(%ebp), %eax
movl (%ecx), %edx
leal 8(,%eax,4), %eax
leal (%edx,%eax,2), %eax

I Alternatives to assembler were needed. C was developed
as successor to the language B, ALGOL (ALGOrithmitc
Language)

3 / 66

C
Programming

Introduction

History

Why C ?

Standards

First Steps

History

I 1964: MIT, General Electrics, Bell Labs and AT&T
wanted to create a new operating system (Multics)

I 1969: Too expensive ⇒ Bell Labs quits

I Group around Ken Thompson (Bell Labs) is looking for
alternatives to Multics and wanted to create the OS in
assembler

I not portable

I time consuming

I prone to errors

movl -8(%ebp, %edx, 4), %eax
movl -4(%ebp), %eax
movl (%ecx), %edx
leal 8(,%eax,4), %eax
leal (%edx,%eax,2), %eax

I Alternatives to assembler were needed. C was developed
as successor to the language B, ALGOL (ALGOrithmitc
Language)

3 / 66

C
Programming

Introduction

History

Why C ?

Standards

First Steps

History

I 1964: MIT, General Electrics, Bell Labs and AT&T
wanted to create a new operating system (Multics)

I 1969: Too expensive ⇒ Bell Labs quits

I Group around Ken Thompson (Bell Labs) is looking for
alternatives to Multics and wanted to create the OS in
assembler

I not portable

I time consuming

I prone to errors

movl -8(%ebp, %edx, 4), %eax
movl -4(%ebp), %eax
movl (%ecx), %edx
leal 8(,%eax,4), %eax
leal (%edx,%eax,2), %eax

I Alternatives to assembler were needed. C was developed
as successor to the language B, ALGOL (ALGOrithmitc
Language)

3 / 66

C
Programming

Introduction

History

Why C ?

Standards

First Steps

Why C ?

I Past:
I Portability
I Extensibility with libraries

I Today:
I Performance (compare OS-kernel: Windows, Linux, BSDs,

. . .)
I Many libraries are available
I Programming hardware
I Computer graphics and games
I Modern languages/interpretors are written in C (Python,

Perl, Ruby, . . .)
I A lot of compilers generate C-code (e.g., Matlab/Simulink)

4 / 66

C
Programming

Introduction

History

Why C ?

Standards

First Steps

Why C ?

I Past:
I Portability
I Extensibility with libraries

I Today:
I Performance (compare OS-kernel: Windows, Linux, BSDs,

. . .)
I Many libraries are available
I Programming hardware
I Computer graphics and games
I Modern languages/interpretors are written in C (Python,

Perl, Ruby, . . .)
I A lot of compilers generate C-code (e.g., Matlab/Simulink)

4 / 66

C
Programming

Introduction

History

Why C ?

Standards

First Steps

Standards

I 1978: De facto standard by Ritchie and Kernighan in the
book The C Programming Language

I 1989: C-89 / ANSI-C
I 1999: C-99

I Not supported by all compilers
I Even gcc does not fully support it
I This standard is used for OSUE lab exercises

$ gcc -std=c99 -pedantic -Wall \
-D_DEFAULT_SOURCE -g -c filename.c

I 2011: C-11
I today: new quasi-standard (at least in the free/open

source community) with gcc1 and gnu extensions
I However, some gnu-extensions are specified only informally
I Recently LLVM/clang appeared as a potential successor to

gcc

1http://gcc.gnu.org 5 / 66

http://gcc.gnu.org

C
Programming

Introduction

History

Why C ?

Standards

First Steps

Standards

I 1978: De facto standard by Ritchie and Kernighan in the
book The C Programming Language

I 1989: C-89 / ANSI-C

I 1999: C-99
I Not supported by all compilers
I Even gcc does not fully support it
I This standard is used for OSUE lab exercises

$ gcc -std=c99 -pedantic -Wall \
-D_DEFAULT_SOURCE -g -c filename.c

I 2011: C-11
I today: new quasi-standard (at least in the free/open

source community) with gcc1 and gnu extensions
I However, some gnu-extensions are specified only informally
I Recently LLVM/clang appeared as a potential successor to

gcc

1http://gcc.gnu.org 5 / 66

http://gcc.gnu.org

C
Programming

Introduction

History

Why C ?

Standards

First Steps

Standards

I 1978: De facto standard by Ritchie and Kernighan in the
book The C Programming Language

I 1989: C-89 / ANSI-C
I 1999: C-99

I Not supported by all compilers
I Even gcc does not fully support it
I This standard is used for OSUE lab exercises

$ gcc -std=c99 -pedantic -Wall \
-D_DEFAULT_SOURCE -g -c filename.c

I 2011: C-11
I today: new quasi-standard (at least in the free/open

source community) with gcc1 and gnu extensions
I However, some gnu-extensions are specified only informally
I Recently LLVM/clang appeared as a potential successor to

gcc

1http://gcc.gnu.org 5 / 66

http://gcc.gnu.org

C
Programming

Introduction

History

Why C ?

Standards

First Steps

Standards

I 1978: De facto standard by Ritchie and Kernighan in the
book The C Programming Language

I 1989: C-89 / ANSI-C
I 1999: C-99

I Not supported by all compilers
I Even gcc does not fully support it
I This standard is used for OSUE lab exercises

$ gcc -std=c99 -pedantic -Wall \
-D_DEFAULT_SOURCE -g -c filename.c

I 2011: C-11

I today: new quasi-standard (at least in the free/open
source community) with gcc1 and gnu extensions

I However, some gnu-extensions are specified only informally
I Recently LLVM/clang appeared as a potential successor to

gcc

1http://gcc.gnu.org 5 / 66

http://gcc.gnu.org

C
Programming

Introduction

History

Why C ?

Standards

First Steps

Standards

I 1978: De facto standard by Ritchie and Kernighan in the
book The C Programming Language

I 1989: C-89 / ANSI-C
I 1999: C-99

I Not supported by all compilers
I Even gcc does not fully support it
I This standard is used for OSUE lab exercises

$ gcc -std=c99 -pedantic -Wall \
-D_DEFAULT_SOURCE -g -c filename.c

I 2011: C-11
I today: new quasi-standard (at least in the free/open

source community) with gcc1 and gnu extensions
I However, some gnu-extensions are specified only informally
I Recently LLVM/clang appeared as a potential successor to

gcc

1http://gcc.gnu.org 5 / 66

http://gcc.gnu.org

C
Programming

Introduction

History

Why C ?

Standards

First Steps

Hello, C World

#include <stdio.h>

int main(void)
{
printf("Hello, C World\n");

return 0;
}

6 / 66

C
Programming

Introduction

History

Why C ?

Standards

First Steps

Compilation

I Source code needs to be translated to machine code

I Code → pre-processor → compiler → linker

$ gcc -o prog prog.c # all done in one step
$./prog # start the program

Single steps (fyi only):

I pre-processor:

$ gcc -E prog.c

I Compiler, linker:

$ gcc -v -o prog prog.c
[..]
<..>/cc1 [..] prog.c [..] -o /tmp/ccpMJ9ab.s
[..]
as -V -Qy -o /tmp/ccdR6Ueb.o /tmp/ccpMJ9ab.s
[..]
<..>/collect2 [..] -o prog [..] crtn.o

7 / 66

C
Programming

Introduction

History

Why C ?

Standards

First Steps

Compilation

I Source code needs to be translated to machine code

I Code → pre-processor → compiler → linker

$ gcc -o prog prog.c # all done in one step
$./prog # start the program

Single steps (fyi only):

I pre-processor:

$ gcc -E prog.c

I Compiler, linker:

$ gcc -v -o prog prog.c
[..]
<..>/cc1 [..] prog.c [..] -o /tmp/ccpMJ9ab.s
[..]
as -V -Qy -o /tmp/ccdR6Ueb.o /tmp/ccpMJ9ab.s
[..]
<..>/collect2 [..] -o prog [..] crtn.o

7 / 66

C
Programming

Introduction

History

Why C ?

Standards

First Steps

Compilation

I Source code needs to be translated to machine code

I Code → pre-processor → compiler → linker

$ gcc -o prog prog.c # all done in one step
$./prog # start the program

Single steps (fyi only):

I pre-processor:

$ gcc -E prog.c

I Compiler, linker:

$ gcc -v -o prog prog.c
[..]
<..>/cc1 [..] prog.c [..] -o /tmp/ccpMJ9ab.s
[..]
as -V -Qy -o /tmp/ccdR6Ueb.o /tmp/ccpMJ9ab.s
[..]
<..>/collect2 [..] -o prog [..] crtn.o

7 / 66

C
Programming

Introduction

History

Why C ?

Standards

First Steps

Comments

/* I am a comment in C-89 */

// I am a comment in C-99 standard
// I end at the end of the line

/* multi-line comments
require the old syntax */

Code

I comment (functions, etc.)

I structure (indent, line breaks, etc.)

8 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Part II

Variables & Constants

9 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Definition

I For variables memory space needs to be reserved
(depending on the data type)

I The name is set

I This happens at the definition

I The definition of a variable must happen only one time in
the code

int i; // Integer variable i, declaration + definition

// Function declaration + definition:
int f(void)
{

...
}

10 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Declaration

I Variables have a type

I The compiler needs to know this type

I This is done with the declaration

extern int j; // declared, but defined somewhere else

/* Function declaration
(but not defined, i.e. no body): */

int f(void);

I The declaration can happen several times

I Not each declaration is also a definition

I However, each definition is also a declaration

I The term declaration is often not distinguished from the
term definition → declaration is used for both

11 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Declaration

I Variables have a type

I The compiler needs to know this type

I This is done with the declaration

extern int j; // declared, but defined somewhere else

/* Function declaration
(but not defined, i.e. no body): */

int f(void);

I The declaration can happen several times

I Not each declaration is also a definition

I However, each definition is also a declaration

I The term declaration is often not distinguished from the
term definition → declaration is used for both

11 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Initialization

I Although the variable already has its memory, its value is
still undefined (unless it was placed in an pre-initialized
memory at compile time)

I Initialization assigns a value to a variable

I Assignment is done with =

int k = 23; /* declaration, definition
and initialization */

12 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Examples

int i; /* declaration and definition
of a single integer variable */

int i, j, k; // -"- of multiple integers at once

int i, j = 23, k = 42; /* same, but some variables
are initialized */

int i, char b; // incorrect syntax

int i; char b; /* correct, declares and defines an
integer and a character variable */

int i = 4; char b = ’A’; // same with initializations

13 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Byte in C99-standard

A byte is composed of a contiguous sequence of bits,
the number of which is implementation-defined.

ISO/IEC 9899:TC3, Committee Draft – September 7, 2007

14 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Integral Number

I char: 1 byte (according to the standard a byte does not
have to have 8 bit of length). Is often used to store
characters and strings

I short int: min. 16 bit

I int: often 32 or 64 bit

I long int: min. 32 bit

I long long int: min. 64 bit. Since C-99

I Actual size is available in <limits.h>
I C-99 introduced standardized types (<stdint.h>): e.g.,
uint32_t, int8_t, . . .

I All types have signed and unsigned variants (e.g. signed
int, unsigned int), by default everything is signed

I Literals can be declared hexadecimal (0x as prefix) and
octal (0 as prefix), e.g., 0x10 (16 in decimal), 024 (20 in
decimal)

15 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Integral Number

I char: 1 byte (according to the standard a byte does not
have to have 8 bit of length). Is often used to store
characters and strings

I short int: min. 16 bit

I int: often 32 or 64 bit

I long int: min. 32 bit

I long long int: min. 64 bit. Since C-99

I Actual size is available in <limits.h>
I C-99 introduced standardized types (<stdint.h>): e.g.,
uint32_t, int8_t, . . .

I All types have signed and unsigned variants (e.g. signed
int, unsigned int), by default everything is signed

I Literals can be declared hexadecimal (0x as prefix) and
octal (0 as prefix), e.g., 0x10 (16 in decimal), 024 (20 in
decimal)

15 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Integral Number

I char: 1 byte (according to the standard a byte does not
have to have 8 bit of length). Is often used to store
characters and strings

I short int: min. 16 bit

I int: often 32 or 64 bit

I long int: min. 32 bit

I long long int: min. 64 bit. Since C-99

I Actual size is available in <limits.h>

I C-99 introduced standardized types (<stdint.h>): e.g.,
uint32_t, int8_t, . . .

I All types have signed and unsigned variants (e.g. signed
int, unsigned int), by default everything is signed

I Literals can be declared hexadecimal (0x as prefix) and
octal (0 as prefix), e.g., 0x10 (16 in decimal), 024 (20 in
decimal)

15 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Integral Number

I char: 1 byte (according to the standard a byte does not
have to have 8 bit of length). Is often used to store
characters and strings

I short int: min. 16 bit

I int: often 32 or 64 bit

I long int: min. 32 bit

I long long int: min. 64 bit. Since C-99

I Actual size is available in <limits.h>
I C-99 introduced standardized types (<stdint.h>): e.g.,
uint32_t, int8_t, . . .

I All types have signed and unsigned variants (e.g. signed
int, unsigned int), by default everything is signed

I Literals can be declared hexadecimal (0x as prefix) and
octal (0 as prefix), e.g., 0x10 (16 in decimal), 024 (20 in
decimal)

15 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Integral Number

I char: 1 byte (according to the standard a byte does not
have to have 8 bit of length). Is often used to store
characters and strings

I short int: min. 16 bit

I int: often 32 or 64 bit

I long int: min. 32 bit

I long long int: min. 64 bit. Since C-99

I Actual size is available in <limits.h>
I C-99 introduced standardized types (<stdint.h>): e.g.,
uint32_t, int8_t, . . .

I All types have signed and unsigned variants (e.g. signed
int, unsigned int), by default everything is signed

I Literals can be declared hexadecimal (0x as prefix) and
octal (0 as prefix), e.g., 0x10 (16 in decimal), 024 (20 in
decimal)

15 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Integral Number

I char: 1 byte (according to the standard a byte does not
have to have 8 bit of length). Is often used to store
characters and strings

I short int: min. 16 bit

I int: often 32 or 64 bit

I long int: min. 32 bit

I long long int: min. 64 bit. Since C-99

I Actual size is available in <limits.h>
I C-99 introduced standardized types (<stdint.h>): e.g.,
uint32_t, int8_t, . . .

I All types have signed and unsigned variants (e.g. signed
int, unsigned int), by default everything is signed

I Literals can be declared hexadecimal (0x as prefix) and
octal (0 as prefix), e.g., 0x10 (16 in decimal), 024 (20 in
decimal)

15 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Range of Values

I Signed variables have another range of values than
unsigned variables

I The following ranges of values are not specified by the
standard, they are used for presentation purposes

Type signed unsigned

char -128 to 127 0 to 255
short int -32.768 to 32.767 0 to 65.535
long int -2.147.483.648 to 0 to 4.294.967.295

2.147.483.647
.

16 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Real Numbers

Floating point numbers:

I float: single precision

I double: double precision

I long double: extended precision

I There is no statement about the internal representation in
the standard

I Signed and unsigned are not differentiated → it’s always
signed

17 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Real Numbers

Floating point numbers:

I float: single precision

I double: double precision

I long double: extended precision

I There is no statement about the internal representation in
the standard

I Signed and unsigned are not differentiated → it’s always
signed

17 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Real Numbers

Floating point numbers:

I float: single precision

I double: double precision

I long double: extended precision

I There is no statement about the internal representation in
the standard

I Signed and unsigned are not differentiated → it’s always
signed

17 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

sizeof

I The operator sizeof is used to obtain the memory
consumption of a type

int i;
printf("%lu byte(s)\n", sizeof i);
printf("%lu byte(s)\n", sizeof (int));

18 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Constants

const int i = 23; // C constant

#define MYCONST 23 // pre-processor constant;
// all ocurrences are replaced
// with 23 by the pre-processor

I const defines a typed constant in the code. Should/Can
not be changed

I MYCONST is replaced by the pre-processor

19 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Scope

I Variables are visible only within their block

#include <stdio.h>

int main(void)
{
int i = 23, j = 42;
{
int i; // redeclaration of i within a new block
i = 2323; // assigning the local i

printf("%d, ", i);
printf("%d, ", j);

}
printf("%d\n", i); /* in this block the value

of i has not changed */
return 0;

}

$ 2323, 42, 23

20 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Scope

I Variables are visible only within their block

#include <stdio.h>

int main(void)
{
int i = 23, j = 42;
{
int i; // redeclaration of i within a new block
i = 2323; // assigning the local i

printf("%d, ", i);
printf("%d, ", j);

}
printf("%d\n", i); /* in this block the value

of i has not changed */
return 0;

}

$ 2323, 42, 23
20 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

C99

I Before C-99, variables had do be declared at the beginning
of a block

I With C-99 (which we are using) this is no longer required

#include <stdio.h>

int main(void)
{

/* i, j not at the beginning of the block */
for (int i = 0; i < 10; ++i)
{

printf("%d\n", i);
int j = 23;
printf("%d\n", j);

}
return 0;

}

21 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

static

I static assigns to a variable a fixed memory space, its
state remains

I A static variable cannot be accessed from an outside block
or file

#include <stdio.h>

void foo()
{
static int i = 23;
printf("%d, ", i);
i = i + 1;

}

int main(void)
{
foo();
foo();
foo();
return 0;

}

$ 23, 24, 25,

22 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

static

I static assigns to a variable a fixed memory space, its
state remains

I A static variable cannot be accessed from an outside block
or file

#include <stdio.h>

void foo()
{
static int i = 23;
printf("%d, ", i);
i = i + 1;

}

int main(void)
{
foo();
foo();
foo();
return 0;

}

$ 23, 24, 25,

22 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

extern

I Declares variables which are defined in another file

inc.c

int g_variable = 1;
[..]
g_variable++;

[..]

dec.c

extern int g_variable;
[..]
g_variable--;

[..]

23 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

volatile

I Variable can change outside of the program context

I Important for hardware oriented programming (e.g.,
interrupt handler that change the values of variables)

I (fyi only:) The implementation of volatile is compiler
specific; a ’clean’ solution uses Memory Barriers2

volatile char keyPressed = ’ ’;
long count = 0;
while (keyPressed != ’x’) {

++count;
}

Without volatile, the while-loop would by optimized to
while(1) by the compiler, because from the compiler’s point
of view the variable never changes

2https://lwn.net/Articles/234017/ 24 / 66

https://lwn.net/Articles/234017/

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

volatile

I Variable can change outside of the program context

I Important for hardware oriented programming (e.g.,
interrupt handler that change the values of variables)

I (fyi only:) The implementation of volatile is compiler
specific; a ’clean’ solution uses Memory Barriers2

volatile char keyPressed = ’ ’;
long count = 0;
while (keyPressed != ’x’) {

++count;
}

Without volatile, the while-loop would by optimized to
while(1) by the compiler, because from the compiler’s point
of view the variable never changes

2https://lwn.net/Articles/234017/ 24 / 66

https://lwn.net/Articles/234017/

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

volatile

I Variable can change outside of the program context

I Important for hardware oriented programming (e.g.,
interrupt handler that change the values of variables)

I (fyi only:) The implementation of volatile is compiler
specific; a ’clean’ solution uses Memory Barriers2

volatile char keyPressed = ’ ’;
long count = 0;
while (keyPressed != ’x’) {

++count;
}

Without volatile, the while-loop would by optimized to
while(1) by the compiler, because from the compiler’s point
of view the variable never changes

2https://lwn.net/Articles/234017/ 24 / 66

https://lwn.net/Articles/234017/

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Example

extern const volatile unsigned long int rt_clk;

A ”‘long int”’ variable, no sign, values can’t be assigned (but
the value can be read), the value can change outside of the
program context and it is defined somewhere else

25 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Example

extern const volatile unsigned long int rt_clk;

A ”‘long int”’ variable, no sign, values can’t be assigned (but
the value can be read), the value can change outside of the
program context and it is defined somewhere else

25 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Increment/Decrement

I Using ++ and -- variables can be incremented or
decremented by one

I Prefix (++i) und postfix (i++) are possible:
I Prefix operator in/decrements, returns new value
I Postfix operator in/decrements, returns old value

I Use prefix operator if possible (also with regard to C++)

int n;
int m = 0;
n = ++m;
$ n = 1, m = 1

int n;
int m = 0;
n = m++;
$ n = 0, m = 1

26 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Increment/Decrement

I Using ++ and -- variables can be incremented or
decremented by one

I Prefix (++i) und postfix (i++) are possible:
I Prefix operator in/decrements, returns new value
I Postfix operator in/decrements, returns old value

I Use prefix operator if possible (also with regard to C++)

int n;
int m = 0;
n = ++m;
$ n = 1, m = 1

int n;
int m = 0;
n = m++;
$ n = 0, m = 1

26 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Increment/Decrement

I Using ++ and -- variables can be incremented or
decremented by one

I Prefix (++i) und postfix (i++) are possible:
I Prefix operator in/decrements, returns new value
I Postfix operator in/decrements, returns old value

I Use prefix operator if possible (also with regard to C++)

int n;
int m = 0;
n = ++m;
$ n = 1, m = 1

int n;
int m = 0;
n = m++;
$ n = 0, m = 1

26 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Ordering/Associativity

c = sizeof (x) + ++a / 3;

c = (sizeof (x) + ((++a) / 3));

a = 5 / 2 * 3;

a = (5 / 2) * 3; /* left to right */

i = 3;
a = i + i++;
/* i == 4, a == ? (according to the standard
* it depends on the compiler implementation!) */

i = 2;
a = i++ + ++i; /* ??? */

27 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Ordering/Associativity

c = sizeof (x) + ++a / 3;

c = (sizeof (x) + ((++a) / 3));

a = 5 / 2 * 3;

a = (5 / 2) * 3; /* left to right */

i = 3;
a = i + i++;
/* i == 4, a == ? (according to the standard
* it depends on the compiler implementation!) */

i = 2;
a = i++ + ++i; /* ??? */

27 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Ordering/Associativity

c = sizeof (x) + ++a / 3;

c = (sizeof (x) + ((++a) / 3));

a = 5 / 2 * 3;

a = (5 / 2) * 3; /* left to right */

i = 3;
a = i + i++;
/* i == 4, a == ? (according to the standard
* it depends on the compiler implementation!) */

i = 2;
a = i++ + ++i; /* ??? */

27 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Ordering/Associativity

c = sizeof (x) + ++a / 3;

c = (sizeof (x) + ((++a) / 3));

a = 5 / 2 * 3;

a = (5 / 2) * 3; /* left to right */

i = 3;
a = i + i++;
/* i == 4, a == ? (according to the standard
* it depends on the compiler implementation!) */

i = 2;
a = i++ + ++i; /* ??? */

27 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Equality- & Logic Operators

Operator Explanation

< less than
> greater than
<= less than or equal
>= greater than or equal
! = not equals
== equals

&& logical and
|| logical or
! negation

I || and && are evaluated short circuit

28 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Equality- & Logic Operators

Operator Explanation

< less than
> greater than
<= less than or equal
>= greater than or equal
! = not equals
== equals

&& logical and
|| logical or
! negation

I || and && are evaluated short circuit

28 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Bitwise Operators

Operator Explanation

& and
— or
∧ exclusive or (xor)
∼ bit-wise complement
>> shift right
<< shift left

x: 1 0 0 1 1 0 1 1

y: 0 0 0 1 0 0 0 1

x & y: 0 0 0 1 0 0 0 1

I For bitwise and arithmetic operators there are the versions
Op= (e.g., i += 5 which is the same as i = i + 5)

29 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Bitwise Operators

Operator Explanation

& and
— or
∧ exclusive or (xor)
∼ bit-wise complement
>> shift right
<< shift left

x: 1 0 0 1 1 0 1 1

y: 0 0 0 1 0 0 0 1

x & y: 0 0 0 1 0 0 0 1

I For bitwise and arithmetic operators there are the versions
Op= (e.g., i += 5 which is the same as i = i + 5)

29 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Bitwise Operators

Operator Explanation

& and
— or
∧ exclusive or (xor)
∼ bit-wise complement
>> shift right
<< shift left

x: 1 0 0 1 1 0 1 1

y: 0 0 0 1 0 0 0 1

x & y: 0 0 0 1 0 0 0 1

I For bitwise and arithmetic operators there are the versions
Op= (e.g., i += 5 which is the same as i = i + 5)

29 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Shift

I << and >> do bit-wise shifting

unsigned char i = 7; /* 00000111 */
i <<= 1; /* 00001110 */
printf("%d\n", i); /* 14 */

/* 128 == 2 to the power of 7 */
printf("%d\n", 1 << 7);

I The behavior of signed variables with negative values is
undefined

int i = -7;
i <<= 1;
printf("%d\n", i); /* -14 ??? undefined */

30 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Shift

I << and >> do bit-wise shifting

unsigned char i = 7; /* 00000111 */
i <<= 1; /* 00001110 */
printf("%d\n", i); /* 14 */

/* 128 == 2 to the power of 7 */
printf("%d\n", 1 << 7);

I The behavior of signed variables with negative values is
undefined

int i = -7;
i <<= 1;
printf("%d\n", i); /* -14 ??? undefined */

30 / 66

C
Programming

Variables &
Constants

Definition

Declaration

Initialization

Types

Constants

Scope

Modifications

Operators

Example

Example

unsigned char a, b, c;
a = 4; b = 2; /* binary: a = 100, b = 010 */
c = a | b; /* c = 6 */
b = a & c; /* b = 4 */
a += 3; /* a = a + 3 = 7 */
b %= 3; /* b = b % 3 = 1 (% .. modulo div) */
b = 0;
if ((b > 0) && ((a / b) > 5)) /* ... */

31 / 66

C
Programming

Control
Structures

if

switch

for

while/do-
while

continue/break

Example

Part III

Control Structures

32 / 66

C
Programming

Control
Structures

if

switch

for

while/do-
while

continue/break

Example

if

if (expression)
statement

else if (expression)
statement

else if (expression)
statement

/* . . . */
else

statement

I In C: 0 is false, everything else is true (even -1)

I Tip: never go without/forget embracing the
statement-blocks; do also embrace one-line statements
with {}

33 / 66

C
Programming

Control
Structures

if

switch

for

while/do-
while

continue/break

Example

if

if (expression)
statement

else if (expression)
statement

else if (expression)
statement

/* . . . */
else

statement

I In C: 0 is false, everything else is true (even -1)

I Tip: never go without/forget embracing the
statement-blocks; do also embrace one-line statements
with {}

33 / 66

C
Programming

Control
Structures

if

switch

for

while/do-
while

continue/break

Example

goto fail; goto fail;
Apple’s libsecurity ssl, sslKeyExchange.c:

SSLVerifySignedServerKeyExchange(..)
.

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

.
fail:
SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

References:

I http://opensource.apple.com/source/Security/
Security-55471/libsecurity_ssl/lib/sslKeyExchange.c

I http://www.theregister.co.uk/2014/02/25/apple_mac_os_x_
10_9_2_ssl/

Thanks to Roland Kammerer for this case study!

34 / 66

http://opensource.apple.com/source/Security/Security-55471/libsecurity_ssl/lib/sslKeyExchange.c
http://opensource.apple.com/source/Security/Security-55471/libsecurity_ssl/lib/sslKeyExchange.c
http://www.theregister.co.uk/2014/02/25/apple_mac_os_x_10_9_2_ssl/
http://www.theregister.co.uk/2014/02/25/apple_mac_os_x_10_9_2_ssl/

C
Programming

Control
Structures

if

switch

for

while/do-
while

continue/break

Example

goto fail; goto fail;
Apple’s libsecurity ssl, sslKeyExchange.c:

SSLVerifySignedServerKeyExchange(..)
.

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

.
fail:
SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

References:

I http://opensource.apple.com/source/Security/
Security-55471/libsecurity_ssl/lib/sslKeyExchange.c

I http://www.theregister.co.uk/2014/02/25/apple_mac_os_x_
10_9_2_ssl/

Thanks to Roland Kammerer for this case study! 34 / 66

http://opensource.apple.com/source/Security/Security-55471/libsecurity_ssl/lib/sslKeyExchange.c
http://opensource.apple.com/source/Security/Security-55471/libsecurity_ssl/lib/sslKeyExchange.c
http://www.theregister.co.uk/2014/02/25/apple_mac_os_x_10_9_2_ssl/
http://www.theregister.co.uk/2014/02/25/apple_mac_os_x_10_9_2_ssl/

C
Programming

Control
Structures

if

switch

for

while/do-
while

continue/break

Example

goto fail; goto fail;

http://teespring.com/goto-fail-goto-fail
35 / 66

http://teespring.com/goto-fail-goto-fail

C
Programming

Control
Structures

if

switch

for

while/do-
while

continue/break

Example

goto fail; goto fail;
I Please, go without goto in the regular exercises

I Negative example:

#include <stdio.h>
int main(void)
{
int i = 0;

loopstart:
++i;
if(i >= 5)
goto printnum;

contloop:
if (i < 9)
goto loopstart;

goto end;
printnum:
printf("i is %d\n", i);
goto contloop;

end:
return 0;

}

36 / 66

C
Programming

Control
Structures

if

switch

for

while/do-
while

continue/break

Example

goto fail; goto fail;
I Please, go without goto in the regular exercises
I Negative example:

#include <stdio.h>
int main(void)
{
int i = 0;

loopstart:
++i;
if(i >= 5)
goto printnum;

contloop:
if (i < 9)
goto loopstart;

goto end;
printnum:
printf("i is %d\n", i);
goto contloop;

end:
return 0;

}
36 / 66

C
Programming

Control
Structures

if

switch

for

while/do-
while

continue/break

Example

switch

switch (expression)
{

case const_expr: statements
case const_expr: statements
/* . . . */
default: statements

}

I Only constant values can be used for equality checks

I A case should always end with break, otherwise the
successing cases will be evaluated (see example at the
end)

I You should always provide a default case

37 / 66

C
Programming

Control
Structures

if

switch

for

while/do-
while

continue/break

Example

switch

switch (expression)
{

case const_expr: statements
case const_expr: statements
/* . . . */
default: statements

}

I Only constant values can be used for equality checks

I A case should always end with break, otherwise the
successing cases will be evaluated (see example at the
end)

I You should always provide a default case

37 / 66

C
Programming

Control
Structures

if

switch

for

while/do-
while

continue/break

Example

for

for (expression1; expression2; expression3)
statement

I All three expression are not mandatory
I Basic example:

I expression1: Init the counter
I expression2: Check whether the loop should continue
I expression3: Incement the counter

38 / 66

C
Programming

Control
Structures

if

switch

for

while/do-
while

continue/break

Example

for

for (expression1; expression2; expression3)
statement

I All three expression are not mandatory
I Basic example:

I expression1: Init the counter
I expression2: Check whether the loop should continue
I expression3: Incement the counter

38 / 66

C
Programming

Control
Structures

if

switch

for

while/do-
while

continue/break

Example

while/do-while

while (expression)
statement

do
statement

while (expression);

I Do-while executes statement at least one time

39 / 66

C
Programming

Control
Structures

if

switch

for

while/do-
while

continue/break

Example

while/do-while

while (expression)
statement

do
statement

while (expression);

I Do-while executes statement at least one time

39 / 66

C
Programming

Control
Structures

if

switch

for

while/do-
while

continue/break

Example

continue/break

I continue continues at the next run of the most inner
loop

I for-loop: expression3 is executed, expression2 is
checked

I break exits the most inner loop and continues to run the
code after the loop

I for-loop: expression3 is not executed

40 / 66

C
Programming

Control
Structures

if

switch

for

while/do-
while

continue/break

Example

Example

int i;

for (i = 0; i < 10; ++i)
{
(void) printf("hello\n");

}

switch (input)
{

case ’a’:
case ’A’:

printf("a or A\n");
break;

default:
printf("Error");
break;

}

i = 23;
if (i == 42)
{
printf("i ist 42\n");

}

41 / 66

C
Programming

Arrays

One
Dimensional

Multi
Dimensional

Initialization

Strings

Part IV

Arrays

42 / 66

C
Programming

Arrays

One
Dimensional

Multi
Dimensional

Initialization

Strings

One Dimensional

I Arrays are used to combine related values of the same type

Type name[size];

int myarray[8];

I myarray stores 8 integer variables

I Indexed from 0 to 7

I myarray[8] out-of-bounds

43 / 66

C
Programming

Arrays

One
Dimensional

Multi
Dimensional

Initialization

Strings

Multi Dimensional

I Arrays can have multi dimensions

I In C it is basically ”syntactic sugar”

int myarray[2][3];
int myarray2[2][3][4];

44 / 66

C
Programming

Arrays

One
Dimensional

Multi
Dimensional

Initialization

Strings

Initialization

int myarr[2][3]= {
{1,2,3},
{4,5,6},
};

int myarr2[2][3] = {1,2,3,4,5,6};
/* first version is preferred */
int myarr3[] = {1, 2, 3, 4};
/* if the whole array is initialized

you do not need to declare the size */

45 / 66

C
Programming

Arrays

One
Dimensional

Multi
Dimensional

Initialization

Strings

Strings

I Strings are arrays of characters (char) (in C)

I Strings are terminated with ’\0’ by definition; this is
essential for functions that work on strings to know the
end of the string

char string[] = "hello, world";
/* string is auto \0 terminated */
char s[6];
s[0] = ’h’; s[1] = ’e’; s[2] = ’l’;
s[3] = ’l’; s[4] = ’o’; s[5] = ’\0’;
char str[] = {’f’,’o’,’o’,’b’,’a’,’r’,’\0’};

printf("%s\n", s); /* prints "hello" */
s[3] = ’\0’;
printf("%s\n", s); /* prints "hel" */

46 / 66

C
Programming

Functions

Definition

Global and
Local
Variables

Example Part V

Functions

47 / 66

C
Programming

Functions

Definition

Global and
Local
Variables

Example

Definition of Functions

type name(type1 param1, type2 param2, ...)
{

/* code */
}

I Increase the readability, re-usability and maintainability

I Need to be declared before they can be used

int add(int a, int b)
{

return a + b;
}

int main(void)
{

int i;
i = add(2, 3);
/* i == 5 */
return 0;

}

48 / 66

C
Programming

Functions

Definition

Global and
Local
Variables

Example

Prototypes

I Like variable, declaration and definition are differentiated

I A prototype represents a declaration and ends with an ’;’

/* Prototype */
int add(int a, int b);
/* int add(int x, int v); also okay */
/* int add(int, int); also okay */
/* int add(double, int); wrong,

because int is used later */

int main(void)
{

int i;
i = add(2, 3); /* i == 5 */
return 0;

}

/* now add can be defined after it has been called */
int add(int a, int b)
{

return a + b;
}

49 / 66

C
Programming

Functions

Definition

Global and
Local
Variables

Example

Global vs Local

I Local variables get invisible when the function or the block
ends

I Global variables (declared outside of functions, normally at
the beginning of the source code) are valid and accessible
until the program ends

I Local variables mask global variables

I Local variables have a random value at definition

I Global variables are placed at a memory space which is
initialized with 0

50 / 66

C
Programming

Functions

Definition

Global and
Local
Variables

Example

Example

int i;
int j = 23;

void foo()
{

int j = 42;
printf("%d\n", j); /* 42 */

}

int main(void)
{

int k;
printf("%d\n", j); /* 23 */
foo(); /* 42 */
printf("%d\n", i); /* 0 */
printf("%d\n", k); /* 1863 (random) */
return 0;

}

51 / 66

C
Programming

Pointer

Pointer

Declaration

Memory
Layout

Arithmetic

man-pages

Risks

Part VI

Pointer

52 / 66

C
Programming

Pointer

Pointer

Declaration

Memory
Layout

Arithmetic

man-pages

Risks

Pointer

I In C the values of variables do not need to be accessed via
their names

I This can also be done by pointers

I Pointers are no ”black magic”, they are variables like
others

I Difference: they store an address

I This is important for hardware oriented programming
(speed increase)

I Unfortunately it is also prone to errors

I Even new programming languages have pointers, however
they hide it from the programmer

53 / 66

C
Programming

Pointer

Pointer

Declaration

Memory
Layout

Arithmetic

man-pages

Risks

Pointer

I In C the values of variables do not need to be accessed via
their names

I This can also be done by pointers

I Pointers are no ”black magic”, they are variables like
others

I Difference: they store an address

I This is important for hardware oriented programming
(speed increase)

I Unfortunately it is also prone to errors

I Even new programming languages have pointers, however
they hide it from the programmer

53 / 66

C
Programming

Pointer

Pointer

Declaration

Memory
Layout

Arithmetic

man-pages

Risks

Declaration

I Pointers are declared with Typ *name
I The allocated memory does not have the size of Typ,

instead, it has the size of Typ *, in which an address can
be stored

I The value, to which a pointer points to, can be accessed
with the dereferencing operator *

I The address of a variable can be accessed with the address
operator &

int *p; /* I’m a pointer */
int* q; /* Me too */
int* a, b; /* a is a pointer, but

b is _not_ a pointer */
int *a, b; /* a yep, b nope */
int *a, *b; /* a and b are pointers */

54 / 66

C
Programming

Pointer

Pointer

Declaration

Memory
Layout

Arithmetic

man-pages

Risks

Memory Layout

int *a;
int b = 17;
a = &b;
printf("value b: %d\n", b); /* 17 */
printf("address b: %p\n", &b); /* 1462 */
printf("value a: %p\n", a); /* 1462 */
printf("value to which a points to: %d\n", *a); /* 17 */
printf("addresse of a: %p\n", &a); /* 874 */

55 / 66

C
Programming

Pointer

Pointer

Declaration

Memory
Layout

Arithmetic

man-pages

Risks

Simple Pointer Arithmetic

int ar[5] = {1, 2, 3, 4, 5};
int *p;

p = &ar[0];
/* or */
p = ar; /* ar is no pointer, only the address! */

printf("%d\n", *p); /* 1 */
*p += 22;
printf("%d\n", ar[0]); /* 23 */
p += 1; /* pointer points to the next element */
printf("%d\n", *p); /* 2 */

56 / 66

C
Programming

Pointer

Pointer

Declaration

Memory
Layout

Arithmetic

man-pages

Risks

Pointer and man

$ man strcpy

char *strcpy(char *dest, const char *src);

/* my C code */
char *mysrc = "mystring";
char *mydest = /* does not matter at the moment:

we have enough memory space */

strcpy(mydest, mysrc); /* ? */
/* ?? or ?? */
strcpy(*mydest, *mysrc); /* ? */

man-page are read that way: strcpy needs variables to
addresses (*dest, *src). Where is this Address? In the
pointers! So you do not need do dereference them.
⇒ (void) strcpy(mydest, mysrc)

57 / 66

C
Programming

Pointer

Pointer

Declaration

Memory
Layout

Arithmetic

man-pages

Risks

Risks of Pointers

I Pointer arithmetic can get risky if you do not work with
care

I Attention: null-pointer dereferencing was the most
frequent security problem at Red Hat in 20093

int ar[5] = {1, 2, 3, 4, 5};
int *p = &ar[0];

/* no way! */
p += 23; /* that might cause a problem */
printf("%d\n", *p); /* FAIL */
p = NULL;
printf("%d\n", *p); /* FAIL */

3www.awe.com/mark/blog/20100216.html 58 / 66

C
Programming

Preprocessor

Preprocessor

Macros

Part VII

Preprocessor

59 / 66

C
Programming

Preprocessor

Preprocessor

Macros

Preprocessor

I The preprocessor is called before the compiler run

I Is doing simple replacements in the source code (case
sensitive)

I Resulting source code can be viewed by running gcc -E
I Motivation

I Past: defining constants, inline code
I Today: portability. using compiler specifications

A preprocessors tasks (temporal order, not complete):

I fyi: Trigraph → ASCII (e.g., ??) replaced with])4

I Combining lines that are split by ’\’
I Replace macros and copy files (#include) in the source

code

4en.wikipedia.org/wiki/Digraphs_and_trigraphs 60 / 66

en.wikipedia.org/wiki/Digraphs_and_trigraphs

C
Programming

Preprocessor

Preprocessor

Macros

Replacing Constants

#define ANSWER (42) /* Constant */

printf("ANSWER: %d\n", ANSWER);

ends up:

printf("ANSWER: %d\n", (42));

There is no replacement in string literals.

61 / 66

C
Programming

Preprocessor

Preprocessor

Macros

Conditional Replacements

#if, #ifdef, #ifndef, #elif, #else, #endif:

#ifdef WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif

#if DEBUG >= 2
printf("debug, debug\n");
#endif

62 / 66

C
Programming

Preprocessor

Preprocessor

Macros

Macros

I Complex macros with parameters can be defined

#define NRELEMENTS(a) (sizeof(a) / sizeof(a[0]))

I Macros should be handled with care! There are a lot of
risks and side effects

63 / 66

C
Programming

Preprocessor

Preprocessor

Macros

Risks

#define DOUBLE(a) a+a

int x = DOUBLE(5) * 3;
/* x = 5 + 5 * 3 <=> 5 + (5 * 3)
=> #define DOUBLE (a) ((a) + (a)) */

#define DOUBLE(a) ((a) + (a))

int x = 3;
int y = DOUBLE(++x);
/* y = ((++x) + (++x)) */

64 / 66

C
Programming

Preprocessor

Preprocessor

Macros

Risks

#define DOUBLE(a) a+a

int x = DOUBLE(5) * 3;
/* x = 5 + 5 * 3 <=> 5 + (5 * 3)
=> #define DOUBLE (a) ((a) + (a)) */

#define DOUBLE(a) ((a) + (a))

int x = 3;
int y = DOUBLE(++x);
/* y = ((++x) + (++x)) */

64 / 66

C
Programming

Material

Part VIII

Material

65 / 66

C
Programming

Material

Material

I C Programming Language - Kernighan & Ritchie

I https:
//en.wikibooks.org/wiki/C_Programming

I https:
//de.wikibooks.org/wiki/C-Programmierung

66 / 66

https://en.wikibooks.org/wiki/C_Programming
https://en.wikibooks.org/wiki/C_Programming
https://de.wikibooks.org/wiki/C-Programmierung
https://de.wikibooks.org/wiki/C-Programmierung

	Introduction
	Introduction
	History
	Why C ?
	Standards
	First Steps

	Variables & Constants
	Variables & Constants
	Definition
	Declaration
	Initialization
	Types
	Constants
	Scope
	Modifications
	Operators
	Example

	Control Structures
	Control Structures
	if
	switch
	for
	while/do-while
	continue/break
	Example

	Arrays
	Arrays
	One Dimensional
	Multi Dimensional
	Initialization
	Strings

	Functions
	Functions
	Definition
	Global and Local Variables
	Example

	Pointer
	Pointer
	Pointer
	Declaration
	Memory Layout
	Arithmetic
	man-pages
	Risks

	Preprocessor
	Preprocessor
	Preprocessor
	Macros

	Material

