
Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Exercise 2: Shared Memory &
Semaphores

Operating SystemsVU
2023W

Axel Brunnbauer, Florian Mihola, David Lung,
Andreas Brandstätter, Peter Puschner

Technische Universität Wien
Computer Engineering

Cyber-Physical Systems

2023-11-07

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Outline

I Exchanging data via same memory
I POSIX Shared Memory (SHM)
I Memory Mappings

I Explicit synchronization of multiple processes
I POSIX Semaphore
I Synchronization tasks

I Guidelines for the programming assignments
I Exercise 2

2 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Shared Memory
I Common memory area: Multiple processes (related or

unrelated) can access the same region in the physical
memory (i.e., share data). This memory region is mapped
into the address space of these processes.

I Read and modify by normal memory access operations
I Fast inter process communication

Concurrent access!
→ Explicit synchronization is necessary

3 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Shared Memory
I Common memory area: Multiple processes (related or

unrelated) can access the same region in the physical
memory (i.e., share data). This memory region is mapped
into the address space of these processes.

I Read and modify by normal memory access operations
I Fast inter process communication

Concurrent access!
→ Explicit synchronization is necessary

3 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Shared Memory
I Common memory area: Multiple processes (related or

unrelated) can access the same region in the physical
memory (i.e., share data). This memory region is mapped
into the address space of these processes.

I Read and modify by normal memory access operations
I Fast inter process communication

Concurrent access!
→ Explicit synchronization is necessary

3 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

POSIX Shared Memory

I Makes it possible to create shared memory between
non-related processes without creating a file

I Shared memory objects identified via names
I Created on file system for volatile memory: tmpfs
I Behaves as a usual file system (e.g. access rights)
I Available as long as system is running
I mmap is used to map it into the virtual memory of a

process

4 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

POSIX Shared Memory

I Makes it possible to create shared memory between
non-related processes without creating a file

I Shared memory objects identified via names

I Created on file system for volatile memory: tmpfs
I Behaves as a usual file system (e.g. access rights)
I Available as long as system is running
I mmap is used to map it into the virtual memory of a

process

4 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

POSIX Shared Memory

I Makes it possible to create shared memory between
non-related processes without creating a file

I Shared memory objects identified via names
I Created on file system for volatile memory: tmpfs

I Behaves as a usual file system (e.g. access rights)
I Available as long as system is running
I mmap is used to map it into the virtual memory of a

process

4 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

POSIX Shared Memory

I Makes it possible to create shared memory between
non-related processes without creating a file

I Shared memory objects identified via names
I Created on file system for volatile memory: tmpfs
I Behaves as a usual file system (e.g. access rights)

I Available as long as system is running
I mmap is used to map it into the virtual memory of a

process

4 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

POSIX Shared Memory

I Makes it possible to create shared memory between
non-related processes without creating a file

I Shared memory objects identified via names
I Created on file system for volatile memory: tmpfs
I Behaves as a usual file system (e.g. access rights)
I Available as long as system is running

I mmap is used to map it into the virtual memory of a
process

4 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

POSIX Shared Memory

I Makes it possible to create shared memory between
non-related processes without creating a file

I Shared memory objects identified via names
I Created on file system for volatile memory: tmpfs
I Behaves as a usual file system (e.g. access rights)
I Available as long as system is running
I mmap is used to map it into the virtual memory of a

process

4 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Client-Server Example

5 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Client-Server Example

6 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Shared Memory API
Create/Open

I Create and/or open a new/existing object:
shm_open(3)

#include <sys/mman.h>
#include <fcntl.h> /* For O_* constants */

int shm_open(const char *name, int oflag,
mode_t mode);

name Name like “/somename”
oflag Bit mask: O_RDONLY or O_RDWR and eventually. . .

I O_CREAT: creates an object unless it exists
I additionally O_EXCL: error if already created

mode Access rights at creation time, otherwise 0

I Return value: file descriptor on success,
-1 on error (→ errno)

I Linux: Object at /dev/shm/somename created

7 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Shared Memory API
Create/Open

I Create and/or open a new/existing object:
shm_open(3)

#include <sys/mman.h>
#include <fcntl.h> /* For O_* constants */

int shm_open(const char *name, int oflag,
mode_t mode);

name Name like “/somename”
oflag Bit mask: O_RDONLY or O_RDWR and eventually. . .

I O_CREAT: creates an object unless it exists
I additionally O_EXCL: error if already created

mode Access rights at creation time, otherwise 0

I Return value: file descriptor on success,
-1 on error (→ errno)

I Linux: Object at /dev/shm/somename created

7 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Shared Memory API
Create/Open

I Create and/or open a new/existing object:
shm_open(3)

#include <sys/mman.h>
#include <fcntl.h> /* For O_* constants */

int shm_open(const char *name, int oflag,
mode_t mode);

name Name like “/somename”
oflag Bit mask: O_RDONLY or O_RDWR and eventually. . .

I O_CREAT: creates an object unless it exists
I additionally O_EXCL: error if already created

mode Access rights at creation time, otherwise 0

I Return value: file descriptor on success,
-1 on error (→ errno)

I Linux: Object at /dev/shm/somename created

7 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Shared Memory API
Create/Open

I Create and/or open a new/existing object:
shm_open(3)

#include <sys/mman.h>
#include <fcntl.h> /* For O_* constants */

int shm_open(const char *name, int oflag,
mode_t mode);

name Name like “/somename”
oflag Bit mask: O_RDONLY or O_RDWR and eventually. . .

I O_CREAT: creates an object unless it exists
I additionally O_EXCL: error if already created

mode Access rights at creation time, otherwise 0

I Return value: file descriptor on success,
-1 on error (→ errno)

I Linux: Object at /dev/shm/somename created
7 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Shared Memory API
Set Size

I The creating process normally sets the size (in bytes)
based on the file descriptor: ftruncate(2)

#include <unistd.h>
#include <sys/types.h>

int ftruncate(int fd, off_t length);

I Return value: 0 on success, -1 on error (→ errno)

I Then the file descriptor can be used to create a common
mapping (mmap(2)) and finally it can be closed (close(2))

8 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Shared Memory API
Set Size

I The creating process normally sets the size (in bytes)
based on the file descriptor: ftruncate(2)

#include <unistd.h>
#include <sys/types.h>

int ftruncate(int fd, off_t length);

I Return value: 0 on success, -1 on error (→ errno)

I Then the file descriptor can be used to create a common
mapping (mmap(2)) and finally it can be closed (close(2))

8 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Shared Memory API
Remove

I Remove a shared memory object name: shm_unlink(3)

int shm_unlink(const char *name);

I Name, which was specified at creation
I Return value: 0 on success, -1 on error (→ errno)

I Further shm_open() with the same name raises an error
(unless a new object is created by specifying O_CREAT)

I The memory is released when the last process has closed
the file descriptor with close() and released any mappings
with munmap()

I Common commands (ls, rm) can be used to list and
remove /dev/shm/ (e.g. if program crashes)

9 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Shared Memory API
Remove

I Remove a shared memory object name: shm_unlink(3)

int shm_unlink(const char *name);

I Name, which was specified at creation
I Return value: 0 on success, -1 on error (→ errno)
I Further shm_open() with the same name raises an error

(unless a new object is created by specifying O_CREAT)

I The memory is released when the last process has closed
the file descriptor with close() and released any mappings
with munmap()

I Common commands (ls, rm) can be used to list and
remove /dev/shm/ (e.g. if program crashes)

9 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Shared Memory API
Remove

I Remove a shared memory object name: shm_unlink(3)

int shm_unlink(const char *name);

I Name, which was specified at creation
I Return value: 0 on success, -1 on error (→ errno)
I Further shm_open() with the same name raises an error

(unless a new object is created by specifying O_CREAT)
I The memory is released when the last process has closed

the file descriptor with close() and released any mappings
with munmap()

I Common commands (ls, rm) can be used to list and
remove /dev/shm/ (e.g. if program crashes)

9 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Shared Memory API
Remove

I Remove a shared memory object name: shm_unlink(3)

int shm_unlink(const char *name);

I Name, which was specified at creation
I Return value: 0 on success, -1 on error (→ errno)
I Further shm_open() with the same name raises an error

(unless a new object is created by specifying O_CREAT)
I The memory is released when the last process has closed

the file descriptor with close() and released any mappings
with munmap()

I Common commands (ls, rm) can be used to list and
remove /dev/shm/ (e.g. if program crashes)

9 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Client-Server Example

10 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Memory Mapping
Recall: mmap(2)

mmap(2)
= maps a file into the virtual memory of a process

I Multiple processes can access the underlying memory
I Shared memory is based on sharing a resource (a file)

“shared file mapping”

11 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Memory Mapping
Create

I Create a mapping: mmap(2)

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot,
int flags, int fd, off_t offset);

addr Suggestion for starting address, should be NULL
length Size of the mapping in bytes, often the size of a file

(see fstat(2))
prot Bit mask for memory protection: PROT_NONE (no

access allowed), PROT_READ, PROT_WRITE
flags Bit mask, e.g., MAP_PRIVATE, MAP_SHARED,

MAP_ANONYMOUS
fd The file descriptor to be mapped

offset Offset in the file (multiple of page size), 0
I Return value: Starting address of the mapping (aligned to

page limit), MAP_FAILED on error (errno)

12 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Memory Mapping
Create

I Create a mapping: mmap(2)

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot,
int flags, int fd, off_t offset);

addr Suggestion for starting address, should be NULL

length Size of the mapping in bytes, often the size of a file
(see fstat(2))

prot Bit mask for memory protection: PROT_NONE (no
access allowed), PROT_READ, PROT_WRITE

flags Bit mask, e.g., MAP_PRIVATE, MAP_SHARED,
MAP_ANONYMOUS

fd The file descriptor to be mapped
offset Offset in the file (multiple of page size), 0

I Return value: Starting address of the mapping (aligned to
page limit), MAP_FAILED on error (errno)

12 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Memory Mapping
Create

I Create a mapping: mmap(2)

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot,
int flags, int fd, off_t offset);

addr Suggestion for starting address, should be NULL
length Size of the mapping in bytes, often the size of a file

(see fstat(2))

prot Bit mask for memory protection: PROT_NONE (no
access allowed), PROT_READ, PROT_WRITE

flags Bit mask, e.g., MAP_PRIVATE, MAP_SHARED,
MAP_ANONYMOUS

fd The file descriptor to be mapped
offset Offset in the file (multiple of page size), 0

I Return value: Starting address of the mapping (aligned to
page limit), MAP_FAILED on error (errno)

12 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Memory Mapping
Create

I Create a mapping: mmap(2)

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot,
int flags, int fd, off_t offset);

addr Suggestion for starting address, should be NULL
length Size of the mapping in bytes, often the size of a file

(see fstat(2))
prot Bit mask for memory protection: PROT_NONE (no

access allowed), PROT_READ, PROT_WRITE

flags Bit mask, e.g., MAP_PRIVATE, MAP_SHARED,
MAP_ANONYMOUS

fd The file descriptor to be mapped
offset Offset in the file (multiple of page size), 0

I Return value: Starting address of the mapping (aligned to
page limit), MAP_FAILED on error (errno)

12 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Memory Mapping
Create

I Create a mapping: mmap(2)

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot,
int flags, int fd, off_t offset);

addr Suggestion for starting address, should be NULL
length Size of the mapping in bytes, often the size of a file

(see fstat(2))
prot Bit mask for memory protection: PROT_NONE (no

access allowed), PROT_READ, PROT_WRITE
flags Bit mask, e.g., MAP_PRIVATE, MAP_SHARED,

MAP_ANONYMOUS

fd The file descriptor to be mapped
offset Offset in the file (multiple of page size), 0

I Return value: Starting address of the mapping (aligned to
page limit), MAP_FAILED on error (errno)

12 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Memory Mapping
Create

I Create a mapping: mmap(2)

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot,
int flags, int fd, off_t offset);

addr Suggestion for starting address, should be NULL
length Size of the mapping in bytes, often the size of a file

(see fstat(2))
prot Bit mask for memory protection: PROT_NONE (no

access allowed), PROT_READ, PROT_WRITE
flags Bit mask, e.g., MAP_PRIVATE, MAP_SHARED,

MAP_ANONYMOUS
fd The file descriptor to be mapped

offset Offset in the file (multiple of page size), 0
I Return value: Starting address of the mapping (aligned to

page limit), MAP_FAILED on error (errno)

12 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Memory Mapping
Create

I Create a mapping: mmap(2)

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot,
int flags, int fd, off_t offset);

addr Suggestion for starting address, should be NULL
length Size of the mapping in bytes, often the size of a file

(see fstat(2))
prot Bit mask for memory protection: PROT_NONE (no

access allowed), PROT_READ, PROT_WRITE
flags Bit mask, e.g., MAP_PRIVATE, MAP_SHARED,

MAP_ANONYMOUS
fd The file descriptor to be mapped

offset Offset in the file (multiple of page size), 0

I Return value: Starting address of the mapping (aligned to
page limit), MAP_FAILED on error (errno)

12 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Memory Mapping
Create

I Create a mapping: mmap(2)

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot,
int flags, int fd, off_t offset);

addr Suggestion for starting address, should be NULL
length Size of the mapping in bytes, often the size of a file

(see fstat(2))
prot Bit mask for memory protection: PROT_NONE (no

access allowed), PROT_READ, PROT_WRITE
flags Bit mask, e.g., MAP_PRIVATE, MAP_SHARED,

MAP_ANONYMOUS
fd The file descriptor to be mapped

offset Offset in the file (multiple of page size), 0
I Return value: Starting address of the mapping (aligned to

page limit), MAP_FAILED on error (errno)
12 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Memory Mapping
Virtual Address Space

I Mappings in different processes
are created at different virtual addresses
but point to the same physical address

I Take care by storing pointers!

13 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Memory Mapping
Comments

I The file descriptor (e.g. of a shared memory) can be
closed after the creation of the mapping

I In Linux, mappings are listed under /proc/PID/maps
I Disadvantages of actual file mappings (not a virtual file)

for shared memory: Persistent → costs for disk I/O
I For related processes: shared, anonymous mappings

(MAP_SHARED | MAP_ANONYMOUS)
I No underlying file, not even a virtual file
I Create mapping before fork():

→ child processes can access the mapping at the same
address

14 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Memory Mapping
Comments

I The file descriptor (e.g. of a shared memory) can be
closed after the creation of the mapping

I In Linux, mappings are listed under /proc/PID/maps

I Disadvantages of actual file mappings (not a virtual file)
for shared memory: Persistent → costs for disk I/O

I For related processes: shared, anonymous mappings
(MAP_SHARED | MAP_ANONYMOUS)

I No underlying file, not even a virtual file
I Create mapping before fork():

→ child processes can access the mapping at the same
address

14 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Memory Mapping
Comments

I The file descriptor (e.g. of a shared memory) can be
closed after the creation of the mapping

I In Linux, mappings are listed under /proc/PID/maps
I Disadvantages of actual file mappings (not a virtual file)

for shared memory: Persistent → costs for disk I/O

I For related processes: shared, anonymous mappings
(MAP_SHARED | MAP_ANONYMOUS)

I No underlying file, not even a virtual file
I Create mapping before fork():

→ child processes can access the mapping at the same
address

14 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Memory Mapping
Comments

I The file descriptor (e.g. of a shared memory) can be
closed after the creation of the mapping

I In Linux, mappings are listed under /proc/PID/maps
I Disadvantages of actual file mappings (not a virtual file)

for shared memory: Persistent → costs for disk I/O
I For related processes: shared, anonymous mappings

(MAP_SHARED | MAP_ANONYMOUS)
I No underlying file, not even a virtual file
I Create mapping before fork():

→ child processes can access the mapping at the same
address

14 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Memory Mapping
Release

I Releasing a mapping: munmap()

#include <sys/mman.h>

int munmap(void *addr, size_t length);

I Removes whole memory pages from the given space,
starting address has to be page-aligned

I Return value: 0 on success, -1 on error (→ errno)

15 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Memory Mapping
Release

I Releasing a mapping: munmap()

#include <sys/mman.h>

int munmap(void *addr, size_t length);

I Removes whole memory pages from the given space,
starting address has to be page-aligned

I Return value: 0 on success, -1 on error (→ errno)

15 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Memory Mapping
Release

I Releasing a mapping: munmap()

#include <sys/mman.h>

int munmap(void *addr, size_t length);

I Removes whole memory pages from the given space,
starting address has to be page-aligned

I Return value: 0 on success, -1 on error (→ errno)

15 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example
Define Structure of the shared memory

#include <fcntl.h>
#include <stdio.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <unistd.h>

#define SHM_NAME "/myshm"
#define MAX_DATA (50)

struct myshm {
unsigned int state;
unsigned int data[MAX_DATA];

};

16 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example
Create and map the shared memory

// create and/or open the shared memory object:
int shmfd = shm_open(SHM_NAME, O_RDWR | O_CREAT, 0600);
if (shmfd == -1)

... // error

// set the size of the shared memory:
if (ftruncate(shmfd, sizeof(struct myshm)) < 0)

... // error

// map shared memory object:
struct myshm *myshm;
myshm = mmap(NULL, sizeof(*myshm), PROT_READ | PROT_WRITE,

MAP_SHARED, shmfd, 0);

if (myshm == MAP_FAILED)
... // error

if (close(shmfd)) == -1)
... // error

17 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example
Cleanup

// unmap shared memory:
if (munmap(myshm, sizeof(*myshm)) == -1)

... // error

// remove shared memory object:
if (shm_unlink(SHM_NAME) == -1)

... // error

18 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Semaphores

Synchronization
= control access of concurrent processes to a critical section

I Conditional synchronization: In which order is a critical
section accessed: A before B? B before A?

I Mutual exclusion: Ensure that only one process is
accessing a shared resource ().
Not necessarily fair/alternating.

19 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Semaphores

Synchronization
= control access of concurrent processes to a critical section

I Conditional synchronization: In which order is a critical
section accessed: A before B? B before A?

I Mutual exclusion: Ensure that only one process is
accessing a shared resource ().
Not necessarily fair/alternating.

19 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example (1)

Thread A:

a1: print ‘‘yes’’

Thread B:

b1: print ‘‘no’’

I No deterministic sequence of “yes” and “no”. Depends on,
e.g., the scheduler.

I Multiple calls might cause different outputs. Are other
outputs possible?

20 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example (1)

Thread A:

a1: print ‘‘yes’’

Thread B:

b1: print ‘‘no’’

I No deterministic sequence of “yes” and “no”. Depends on,
e.g., the scheduler.

I Multiple calls might cause different outputs. Are other
outputs possible?

20 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example (1)

Thread A:

a1: print ‘‘yes’’

Thread B:

b1: print ‘‘no’’

I No deterministic sequence of “yes” and “no”. Depends on,
e.g., the scheduler.

I Multiple calls might cause different outputs. Are other
outputs possible?

20 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example (2)

Thread A:

a1: x = 5
a2: print x

Thread B:

b1: x = 7

I Path to output “5” and in the end x = 5?

I b1,a1,a2
I Path to output “7” and in the end x = 7?

I a1,b1,a2

I Path to output “5” and in the end x = 7?

I a1,a2,b1

I Path to output “7” and in the end x = 5?

21 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example (2)

Thread A:

a1: x = 5
a2: print x

Thread B:

b1: x = 7

I Path to output “5” and in the end x = 5?
I b1,a1,a2

I Path to output “7” and in the end x = 7?

I a1,b1,a2

I Path to output “5” and in the end x = 7?

I a1,a2,b1

I Path to output “7” and in the end x = 5?

21 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example (2)

Thread A:

a1: x = 5
a2: print x

Thread B:

b1: x = 7

I Path to output “5” and in the end x = 5?
I b1,a1,a2

I Path to output “7” and in the end x = 7?

I a1,b1,a2
I Path to output “5” and in the end x = 7?

I a1,a2,b1

I Path to output “7” and in the end x = 5?

21 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example (2)

Thread A:

a1: x = 5
a2: print x

Thread B:

b1: x = 7

I Path to output “5” and in the end x = 5?
I b1,a1,a2

I Path to output “7” and in the end x = 7?
I a1,b1,a2

I Path to output “5” and in the end x = 7?

I a1,a2,b1

I Path to output “7” and in the end x = 5?

21 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example (2)

Thread A:

a1: x = 5
a2: print x

Thread B:

b1: x = 7

I Path to output “5” and in the end x = 5?
I b1,a1,a2

I Path to output “7” and in the end x = 7?
I a1,b1,a2

I Path to output “5” and in the end x = 7?

I a1,a2,b1
I Path to output “7” and in the end x = 5?

21 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example (2)

Thread A:

a1: x = 5
a2: print x

Thread B:

b1: x = 7

I Path to output “5” and in the end x = 5?
I b1,a1,a2

I Path to output “7” and in the end x = 7?
I a1,b1,a2

I Path to output “5” and in the end x = 7?
I a1,a2,b1

I Path to output “7” and in the end x = 5?

21 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example (2)

Thread A:

a1: x = 5
a2: print x

Thread B:

b1: x = 7

I Path to output “5” and in the end x = 5?
I b1,a1,a2

I Path to output “7” and in the end x = 7?
I a1,b1,a2

I Path to output “5” and in the end x = 7?
I a1,a2,b1

I Path to output “7” and in the end x = 5?

21 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example (3)

Thread A:

a1: x = x + 1

Thread B:

b1: x = x + 1

I Assumption: x is initialized with 1. What are possible
values for x after execution?

I Is x++ atomic?

22 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example (3)

Thread A:

a1: x = x + 1

Thread B:

b1: x = x + 1

I Assumption: x is initialized with 1. What are possible
values for x after execution?

I Is x++ atomic?

22 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Semaphores
Functions

Semaphore
= “Shared variable” used for synchronization

I 3 basic operations:

I S = Init(N)
create semaphore S with value N

I P(S), Wait(S), Down(S)
decrement S and block when S gets negative

I V(S), Post(S), Signal(S), Up(S)
increment S and wake up waiting process

23 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Semaphores
Functions

Semaphore
= “Shared variable” used for synchronization

I 3 basic operations:

I S = Init(N)
create semaphore S with value N

I P(S), Wait(S), Down(S)
decrement S and block when S gets negative

I V(S), Post(S), Signal(S), Up(S)
increment S and wake up waiting process

23 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Semaphores
Functions

Semaphore
= “Shared variable” used for synchronization

I 3 basic operations:

I S = Init(N)
create semaphore S with value N

I P(S), Wait(S), Down(S)
decrement S and block when S gets negative

I V(S), Post(S), Signal(S), Up(S)
increment S and wake up waiting process

23 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Semaphores
Functions

Semaphore
= “Shared variable” used for synchronization

I 3 basic operations:

I S = Init(N)
create semaphore S with value N

I P(S), Wait(S), Down(S)
decrement S and block when S gets negative

I V(S), Post(S), Signal(S), Up(S)
increment S and wake up waiting process

23 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example - Serialization

Thread A:

statement a1

Thread B:

statement b1

How to guarantee that a1 < b1 (a1 before b1)?

24 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example - Serialization

Initialization:

S = Init(0)

Thread A:

statement a1
V(S) // post

Thread B:

P(S) // wait
statement b1

25 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example - Mutex

Thread A:

x = x + 1

Thread B:

x = x + 1

How to guarantee that only one thread is entering the
critical section?

26 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example - Mutex

Initialization:

mutex = Init(1)

Thread A:

P(mutex) // wait
x = x + 1
V(mutex) // post

Thread B:

P(mutex) // wait
x = x + 1
V(mutex) // post

⇒ Critical section seems to be atomic

27 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example - Mutex

Initialization:

mutex = Init(1)

Thread A:

P(mutex) // wait
x = x + 1
V(mutex) // post

Thread B:

P(mutex) // wait
x = x + 1
V(mutex) // post

⇒ Critical section seems to be atomic

27 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example - Alternating Execution

Thread A:

for(;;) {
x = x + 1

}

Thread B:

for(;;) {
x = x + 1

}

How to achieve that A and B are called alternately?

28 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example - Alternating Execution
Initialization:

S1 = Init(1)
S2 = Init(0)

Thread A:

for(;;) {
P(S1) // wait
x = x + 1
V(S2) // post

}

Thread B:

for(;;) {
P(S2) // wait
x = x + 1
V(S1) // post

}

⇒ 2 semaphores are necessary!

How does the synchronization look like for 3 threads
that should work alternately? How about N threads?

29 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example - Alternating Execution
Initialization:

S1 = Init(1)
S2 = Init(0)

Thread A:

for(;;) {
P(S1) // wait
x = x + 1
V(S2) // post

}

Thread B:

for(;;) {
P(S2) // wait
x = x + 1
V(S1) // post

}

⇒ 2 semaphores are necessary!

How does the synchronization look like for 3 threads
that should work alternately? How about N threads?

29 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example - Alternating Execution
Initialization:

S1 = Init(1)
S2 = Init(0)

Thread A:

for(;;) {
P(S1) // wait
x = x + 1
V(S2) // post

}

Thread B:

for(;;) {
P(S2) // wait
x = x + 1
V(S1) // post

}

⇒ 2 semaphores are necessary!

How does the synchronization look like for 3 threads
that should work alternately? How about N threads?

29 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

POSIX Semaphore

I Synchronization of processes

I Non-related processes: named semaphores
I (Related processes or threads within a process: unnamed

semaphores)
I Similar to POSIX shared memory. . .

I Identified by name
I Created on dedicated file system for volatile memory:

tmpfs
I Lifetime limited to system runtime

I Linked with -pthread
I See also sem_overview(7)
I Linux: object is created at /dev/shm/sem.somename

30 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

POSIX Semaphore

I Synchronization of processes
I Non-related processes: named semaphores

I (Related processes or threads within a process: unnamed
semaphores)

I Similar to POSIX shared memory. . .
I Identified by name
I Created on dedicated file system for volatile memory:

tmpfs
I Lifetime limited to system runtime

I Linked with -pthread
I See also sem_overview(7)
I Linux: object is created at /dev/shm/sem.somename

30 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

POSIX Semaphore

I Synchronization of processes
I Non-related processes: named semaphores
I (Related processes or threads within a process: unnamed

semaphores)

I Similar to POSIX shared memory. . .
I Identified by name
I Created on dedicated file system for volatile memory:

tmpfs
I Lifetime limited to system runtime

I Linked with -pthread
I See also sem_overview(7)
I Linux: object is created at /dev/shm/sem.somename

30 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

POSIX Semaphore

I Synchronization of processes
I Non-related processes: named semaphores
I (Related processes or threads within a process: unnamed

semaphores)
I Similar to POSIX shared memory. . .

I Identified by name
I Created on dedicated file system for volatile memory:

tmpfs
I Lifetime limited to system runtime

I Linked with -pthread
I See also sem_overview(7)
I Linux: object is created at /dev/shm/sem.somename

30 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

POSIX Semaphore

I Synchronization of processes
I Non-related processes: named semaphores
I (Related processes or threads within a process: unnamed

semaphores)
I Similar to POSIX shared memory. . .

I Identified by name
I Created on dedicated file system for volatile memory:

tmpfs
I Lifetime limited to system runtime

I Linked with -pthread
I See also sem_overview(7)
I Linux: object is created at /dev/shm/sem.somename

30 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Client-Server Example

31 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Semaphore API
Create/Open

I Create/open a new/existing semaphore: sem_open(3)

#include <semaphore.h>
#include <fcntl.h> /* For O_* constants */

/* create a new named semaphore */
sem_t *sem_open(const char *name, int oflag,

mode_t mode, unsigned int value);

/* open an existing named semaphore */
sem_t *sem_open(const char *name, int oflag);

name Name of the form “/somename”
oflag Bit mask: O_CREAT, O_EXCL
mode Access rights (at creation time only)
value Initial value (when creating)

I Return value: Semaphore address on success,
SEM_FAILED on error (→ errno)

32 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Semaphore API
Create/Open

I Create/open a new/existing semaphore: sem_open(3)

#include <semaphore.h>
#include <fcntl.h> /* For O_* constants */

/* create a new named semaphore */
sem_t *sem_open(const char *name, int oflag,

mode_t mode, unsigned int value);

/* open an existing named semaphore */
sem_t *sem_open(const char *name, int oflag);

name Name of the form “/somename”
oflag Bit mask: O_CREAT, O_EXCL
mode Access rights (at creation time only)
value Initial value (when creating)

I Return value: Semaphore address on success,
SEM_FAILED on error (→ errno)

32 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Semaphore API
Create/Open

I Create/open a new/existing semaphore: sem_open(3)

#include <semaphore.h>
#include <fcntl.h> /* For O_* constants */

/* create a new named semaphore */
sem_t *sem_open(const char *name, int oflag,

mode_t mode, unsigned int value);

/* open an existing named semaphore */
sem_t *sem_open(const char *name, int oflag);

name Name of the form “/somename”
oflag Bit mask: O_CREAT, O_EXCL
mode Access rights (at creation time only)
value Initial value (when creating)

I Return value: Semaphore address on success,
SEM_FAILED on error (→ errno)

32 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Semaphore API
Close and Remove

I Close a semaphore: sem_close(3)

int sem_close(sem_t *sem);

I Remove a semaphore: sem_unlink(3)

int sem_unlink(const char *name);

Is released after all processes have closed it.

I Return value: 0 on success, -1 on error (→ errno)

33 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Semaphore API
Close and Remove

I Close a semaphore: sem_close(3)

int sem_close(sem_t *sem);

I Remove a semaphore: sem_unlink(3)

int sem_unlink(const char *name);

Is released after all processes have closed it.

I Return value: 0 on success, -1 on error (→ errno)

33 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Semaphore API
Close and Remove

I Close a semaphore: sem_close(3)

int sem_close(sem_t *sem);

I Remove a semaphore: sem_unlink(3)

int sem_unlink(const char *name);

Is released after all processes have closed it.

I Return value: 0 on success, -1 on error (→ errno)

33 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Semaphore API
Wait, P()

I Decrement a semaphore: sem_wait(3)

int sem_wait(sem_t *sem);

I If the value > 0, the method returns immediately
I It blocks the function until the value gets positive

otherwise
I Return value: 0 on success, -1 on error (→ errno) and the

value of the semaphore is not changed

Signal Handling
The function sem_wait() can be interrupted by a signal
(errno == EINTR)!

34 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Semaphore API
Wait, P()

I Decrement a semaphore: sem_wait(3)

int sem_wait(sem_t *sem);

I If the value > 0, the method returns immediately
I It blocks the function until the value gets positive

otherwise

I Return value: 0 on success, -1 on error (→ errno) and the
value of the semaphore is not changed

Signal Handling
The function sem_wait() can be interrupted by a signal
(errno == EINTR)!

34 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Semaphore API
Wait, P()

I Decrement a semaphore: sem_wait(3)

int sem_wait(sem_t *sem);

I If the value > 0, the method returns immediately
I It blocks the function until the value gets positive

otherwise
I Return value: 0 on success, -1 on error (→ errno) and the

value of the semaphore is not changed

Signal Handling
The function sem_wait() can be interrupted by a signal
(errno == EINTR)!

34 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Semaphore API
Wait, P()

I Decrement a semaphore: sem_wait(3)

int sem_wait(sem_t *sem);

I If the value > 0, the method returns immediately
I It blocks the function until the value gets positive

otherwise
I Return value: 0 on success, -1 on error (→ errno) and the

value of the semaphore is not changed

Signal Handling
The function sem_wait() can be interrupted by a signal
(errno == EINTR)!

34 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Semaphore API
Post, V()

I Increment a semaphore: sem_post(3)

int sem_post(sem_t *sem);

I If the value of a semaphore gets positive, a blocked
process will continue

I If multiple processes are waiting: the order is not defined
(= weak semaphore)

I Return value: 0 on success, -1 on error (→ errno) and the
semaphore value is not changed

35 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Semaphore API
Post, V()

I Increment a semaphore: sem_post(3)

int sem_post(sem_t *sem);

I If the value of a semaphore gets positive, a blocked
process will continue

I If multiple processes are waiting: the order is not defined
(= weak semaphore)

I Return value: 0 on success, -1 on error (→ errno) and the
semaphore value is not changed

35 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Semaphore API
Post, V()

I Increment a semaphore: sem_post(3)

int sem_post(sem_t *sem);

I If the value of a semaphore gets positive, a blocked
process will continue

I If multiple processes are waiting: the order is not defined
(= weak semaphore)

I Return value: 0 on success, -1 on error (→ errno) and the
semaphore value is not changed

35 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Semaphore API
Post, V()

I Increment a semaphore: sem_post(3)

int sem_post(sem_t *sem);

I If the value of a semaphore gets positive, a blocked
process will continue

I If multiple processes are waiting: the order is not defined
(= weak semaphore)

I Return value: 0 on success, -1 on error (→ errno) and the
semaphore value is not changed

35 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example - Alternating Execution
Process A (code without error handling)

#include <stdio.h>
#include <unistd.h>
#include <semaphore.h>
#include <fcntl.h>

#define SEM_1 "/sem_1"
#define SEM_2 "/sem_2"

int main(int argc, char **argv) {
sem_t *s1 = sem_open(SEM_1, O_CREAT | O_EXCL, 0600, 1);
sem_t *s2 = sem_open(SEM_2, O_CREAT | O_EXCL, 0600, 0);

for(int i = 0; i < 3; ++i) {
sem_wait(s1);
printf("critical: %s: i = %d\n", argv[0], i);
sleep(1);
sem_post(s2);

}
sem_close(s1); sem_close(s2);

return 0;
}

36 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example - Alternating Execution
Process B (code without error handling)

#include <stdio.h>
#include <unistd.h>
#include <semaphore.h>
#include <fcntl.h>

#define SEM_1 "/sem_1"
#define SEM_2 "/sem_2"

int main(int argc, char **argv) {
sem_t *s1 = sem_open(SEM_1, 0);
sem_t *s2 = sem_open(SEM_2, 0);

for(int i = 0; i < 3; ++i) {
sem_wait(s2);
printf("critical: %s: i = %d\n", argv[0], i);
sleep(1);
sem_post(s1);

}
sem_close(s1); sem_close(s2);
sem_unlink(SEM_1); sem_unlink(SEM_2);
return 0;

}

37 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Example - Handling Signals
volatile sig_atomic_t quit = 0;

void handle_signal(int signal) { quit = 1; }

int main(void)
{

sem_t *sem = sem_open(...);

struct sigaction sa = { .sa_hander = handle_signal; };
sigaction(SIGINT, &sa, NULL);

while (!quit) {
if (sem_wait(sem) == -1) {

if (errno == EINTR) // interrupted by signal?
continue;

error_exit(); // other error
}

...
}

}

38 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

void write(int val) {

}

int read() {

} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

write pos

int wr_pos = 0;

void write(int val) {

buf[wr_pos] = val;

wr_pos += 1;
wr_pos %= sizeof(buf);

}

int read() {

} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

write pos

read pos

int wr_pos = 0;

void write(int val) {

buf[wr_pos] = val;

wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;

int read() {

int val = buf[rd_pos];

rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

C3

write pos

read pos

int wr_pos = 0;

void write(int val) {

buf[wr_pos] = val;

wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;

int read() {

int val = buf[rd_pos];

rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

C3 5A

write pos

read pos

int wr_pos = 0;

void write(int val) {

buf[wr_pos] = val;

wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;

int read() {

int val = buf[rd_pos];

rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

C3 5A B7

write pos

read pos

int wr_pos = 0;

void write(int val) {

buf[wr_pos] = val;

wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;

int read() {

int val = buf[rd_pos];

rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

5A B7

write pos

read pos

int wr_pos = 0;

void write(int val) {

buf[wr_pos] = val;

wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;

int read() {

int val = buf[rd_pos];

rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

B7

write pos

read pos

int wr_pos = 0;

void write(int val) {

buf[wr_pos] = val;

wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;

int read() {

int val = buf[rd_pos];

rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

B7 11

write pos

read pos

int wr_pos = 0;

void write(int val) {

buf[wr_pos] = val;

wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;

int read() {

int val = buf[rd_pos];

rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

B7 11 08

write pos

read pos

int wr_pos = 0;

void write(int val) {

buf[wr_pos] = val;

wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;

int read() {

int val = buf[rd_pos];

rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

B7 11 08 EF

write pos

read pos

int wr_pos = 0;

void write(int val) {

buf[wr_pos] = val;

wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;

int read() {

int val = buf[rd_pos];

rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

B7 11 08 EF 62

write pos

read pos

int wr_pos = 0;

void write(int val) {

buf[wr_pos] = val;

wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;

int read() {

int val = buf[rd_pos];

rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

11 08 EF 62

write pos

read pos

int wr_pos = 0;

void write(int val) {

buf[wr_pos] = val;

wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;

int read() {

int val = buf[rd_pos];

rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

08 EF 62

write pos

read pos

int wr_pos = 0;

void write(int val) {

buf[wr_pos] = val;

wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;

int read() {

int val = buf[rd_pos];

rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

EF 62

write pos

read pos

int wr_pos = 0;

void write(int val) {

buf[wr_pos] = val;

wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;

int read() {

int val = buf[rd_pos];

rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

EF 62 0D

write pos

read pos

int wr_pos = 0;

void write(int val) {

buf[wr_pos] = val;

wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;

int read() {

int val = buf[rd_pos];

rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

C3 EF 62 0D

write pos

read pos

int wr_pos = 0;

void write(int val) {

buf[wr_pos] = val;

wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;

int read() {

int val = buf[rd_pos];

rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

C3 5A EF 62 0D

write pos

read pos

int wr_pos = 0;

void write(int val) {

buf[wr_pos] = val;

wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;

int read() {

int val = buf[rd_pos];

rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

C3 5A EF 62 0D

write pos

read pos used
space

free
space

int wr_pos = 0;

void write(int val) {

buf[wr_pos] = val;

wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;

int read() {

int val = buf[rd_pos];

rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

C3 5A EF 62 0D

write pos

read pos used
space

free
space

int wr_pos = 0;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
void write(int val) {

buf[wr_pos] = val;

wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
int read() {

int val = buf[rd_pos];

rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

C3 5A B7 EF 62 0D

write pos

read pos used
space

free
space

int wr_pos = 0;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
void write(int val) {

sem_wait(free);
buf[wr_pos] = val;
sem_post(used);
wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
int read() {
sem_wait(used);
int val = buf[rd_pos];
sem_post(free);
rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

C3 5A B7 11 EF 62 0D

write pos

read pos used
space

free
space

int wr_pos = 0;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
void write(int val) {

sem_wait(free);
buf[wr_pos] = val;
sem_post(used);
wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
int read() {
sem_wait(used);
int val = buf[rd_pos];
sem_post(free);
rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

C3 5A B7 11 08 EF 62 0D

write pos

read pos used
space

free
space

int wr_pos = 0;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
void write(int val) {

sem_wait(free);
buf[wr_pos] = val;
sem_post(used);
wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
int read() {
sem_wait(used);
int val = buf[rd_pos];
sem_post(free);
rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

C3 5A B7 11 08 62 0D

write pos

read pos used
space

free
space

int wr_pos = 0;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
void write(int val) {

sem_wait(free);
buf[wr_pos] = val;
sem_post(used);
wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
int read() {
sem_wait(used);
int val = buf[rd_pos];
sem_post(free);
rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

C3 5A B7 11 08 0D

write pos

read pos used
space

free
space

int wr_pos = 0;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
void write(int val) {

sem_wait(free);
buf[wr_pos] = val;
sem_post(used);
wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
int read() {
sem_wait(used);
int val = buf[rd_pos];
sem_post(free);
rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

C3 5A B7 11 08

write pos

read pos used
space

free
space

int wr_pos = 0;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
void write(int val) {

sem_wait(free);
buf[wr_pos] = val;
sem_post(used);
wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
int read() {
sem_wait(used);
int val = buf[rd_pos];
sem_post(free);
rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

5A B7 11 08

write pos

read pos used
space

free
space

int wr_pos = 0;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
void write(int val) {

sem_wait(free);
buf[wr_pos] = val;
sem_post(used);
wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
int read() {
sem_wait(used);
int val = buf[rd_pos];
sem_post(free);
rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

B7 11 08

write pos

read pos used
space

free
space

int wr_pos = 0;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
void write(int val) {

sem_wait(free);
buf[wr_pos] = val;
sem_post(used);
wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
int read() {
sem_wait(used);
int val = buf[rd_pos];
sem_post(free);
rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

11 08

write pos

read pos used
space

free
space

int wr_pos = 0;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
void write(int val) {

sem_wait(free);
buf[wr_pos] = val;
sem_post(used);
wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
int read() {
sem_wait(used);
int val = buf[rd_pos];
sem_post(free);
rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

08

write pos

read pos used
space

free
space

int wr_pos = 0;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
void write(int val) {

sem_wait(free);
buf[wr_pos] = val;
sem_post(used);
wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
int read() {
sem_wait(used);
int val = buf[rd_pos];
sem_post(free);
rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Circular Buffer
= simple FIFO implementation with shared memory and semaphores

0 1 2 3 4 5 6 7

write pos

read pos used
space

free
space

int wr_pos = 0;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
void write(int val) {

sem_wait(free);
buf[wr_pos] = val;
sem_post(used);
wr_pos += 1;
wr_pos %= sizeof(buf);

}

int rd_pos = 0, LEN = 8;
sem_t *free; // to BUF_LEN
sem_t *used; // to 0
int read() {
sem_wait(used);
int val = buf[rd_pos];
sem_post(free);
rd_pos = (rd_pos+1) % LEN;
return val;
} 39 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Exercise guidelines

The full guidelines are appended to the exercise
assignments and can be found on TUWEL!

Important
Failing to adhere to the formal coding guidelines leads to
deductions! No points are awarded if the program does not
compile or if it does not work as described by the testcases.

Most common mistakes

I Not tested in the TI-Lab
(“But at home, it worked on my computer!” → use ssh)

I Failure to check return values
I Resources not de-allocated explicitly
I Missing usage message and insufficient argument handling (also

check number of supplied arguments, surplus options, etc.)

40 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Exercise guidelines

The full guidelines are appended to the exercise
assignments and can be found on TUWEL!

Important
Failing to adhere to the formal coding guidelines leads to
deductions! No points are awarded if the program does not
compile or if it does not work as described by the testcases.

Most common mistakes

I Not tested in the TI-Lab
(“But at home, it worked on my computer!” → use ssh)

I Failure to check return values
I Resources not de-allocated explicitly
I Missing usage message and insufficient argument handling (also

check number of supplied arguments, surplus options, etc.)

40 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Exercise guidelines

The full guidelines are appended to the exercise
assignments and can be found on TUWEL!

Important
Failing to adhere to the formal coding guidelines leads to
deductions! No points are awarded if the program does not
compile or if it does not work as described by the testcases.

Most common mistakes

I Not tested in the TI-Lab
(“But at home, it worked on my computer!” → use ssh)

I Failure to check return values
I Resources not de-allocated explicitly
I Missing usage message and insufficient argument handling (also

check number of supplied arguments, surplus options, etc.)

40 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Exercise guidelines

The full guidelines are appended to the exercise
assignments and can be found on TUWEL!

Important
Failing to adhere to the formal coding guidelines leads to
deductions! No points are awarded if the program does not
compile or if it does not work as described by the testcases.

Most common mistakes

I Not tested in the TI-Lab
(“But at home, it worked on my computer!” → use ssh)

I Failure to check return values

I Resources not de-allocated explicitly
I Missing usage message and insufficient argument handling (also

check number of supplied arguments, surplus options, etc.)

40 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Exercise guidelines

The full guidelines are appended to the exercise
assignments and can be found on TUWEL!

Important
Failing to adhere to the formal coding guidelines leads to
deductions! No points are awarded if the program does not
compile or if it does not work as described by the testcases.

Most common mistakes

I Not tested in the TI-Lab
(“But at home, it worked on my computer!” → use ssh)

I Failure to check return values
I Resources not de-allocated explicitly

I Missing usage message and insufficient argument handling (also
check number of supplied arguments, surplus options, etc.)

40 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Exercise guidelines

The full guidelines are appended to the exercise
assignments and can be found on TUWEL!

Important
Failing to adhere to the formal coding guidelines leads to
deductions! No points are awarded if the program does not
compile or if it does not work as described by the testcases.

Most common mistakes

I Not tested in the TI-Lab
(“But at home, it worked on my computer!” → use ssh)

I Failure to check return values
I Resources not de-allocated explicitly
I Missing usage message and insufficient argument handling (also

check number of supplied arguments, surplus options, etc.)

40 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Exercise guidelines
I Build: Write a Makefile

I Targets all (first target; build your program) and clean
(remove all files produced during the build process)

I Compilation flags:
$ gcc -std=c99 -pedantic -Wall -g -c filename.c
-D_DEFAULT_SOURCE -D_BSD_SOURCE -D_SVID_SOURCE
-D_POSIX_C_SOURCE=200809L

I Argument handling
I Use getopt(3)
I Usage message to show the correct invocation

I Error handling:
I If subsequent code depends on the successful
execution of a function (e.g. resource allocation),
then the return value must be checked.

I Print a meaningful error message to stderr and exit with
EXIT_FAILURE

→ see lecture “Development in C”

41 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Exercise guidelines
I Build: Write a Makefile

I Targets all (first target; build your program) and clean
(remove all files produced during the build process)

I Compilation flags:
$ gcc -std=c99 -pedantic -Wall -g -c filename.c
-D_DEFAULT_SOURCE -D_BSD_SOURCE -D_SVID_SOURCE
-D_POSIX_C_SOURCE=200809L

I Argument handling
I Use getopt(3)
I Usage message to show the correct invocation

I Error handling:
I If subsequent code depends on the successful
execution of a function (e.g. resource allocation),
then the return value must be checked.

I Print a meaningful error message to stderr and exit with
EXIT_FAILURE

→ see lecture “Development in C”

41 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Exercise guidelines
I Build: Write a Makefile

I Targets all (first target; build your program) and clean
(remove all files produced during the build process)

I Compilation flags:
$ gcc -std=c99 -pedantic -Wall -g -c filename.c
-D_DEFAULT_SOURCE -D_BSD_SOURCE -D_SVID_SOURCE
-D_POSIX_C_SOURCE=200809L

I Argument handling
I Use getopt(3)

I Usage message to show the correct invocation
I Error handling:

I If subsequent code depends on the successful
execution of a function (e.g. resource allocation),
then the return value must be checked.

I Print a meaningful error message to stderr and exit with
EXIT_FAILURE

→ see lecture “Development in C”

41 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Exercise guidelines
I Build: Write a Makefile

I Targets all (first target; build your program) and clean
(remove all files produced during the build process)

I Compilation flags:
$ gcc -std=c99 -pedantic -Wall -g -c filename.c
-D_DEFAULT_SOURCE -D_BSD_SOURCE -D_SVID_SOURCE
-D_POSIX_C_SOURCE=200809L

I Argument handling
I Use getopt(3)
I Usage message to show the correct invocation

I Error handling:
I If subsequent code depends on the successful
execution of a function (e.g. resource allocation),
then the return value must be checked.

I Print a meaningful error message to stderr and exit with
EXIT_FAILURE

→ see lecture “Development in C”

41 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Exercise guidelines
I Build: Write a Makefile

I Targets all (first target; build your program) and clean
(remove all files produced during the build process)

I Compilation flags:
$ gcc -std=c99 -pedantic -Wall -g -c filename.c
-D_DEFAULT_SOURCE -D_BSD_SOURCE -D_SVID_SOURCE
-D_POSIX_C_SOURCE=200809L

I Argument handling
I Use getopt(3)
I Usage message to show the correct invocation

I Error handling:
I If subsequent code depends on the successful
execution of a function (e.g. resource allocation),
then the return value must be checked.

I Print a meaningful error message to stderr and exit with
EXIT_FAILURE

→ see lecture “Development in C”

41 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Exercise guidelines
I Build: Write a Makefile

I Targets all (first target; build your program) and clean
(remove all files produced during the build process)

I Compilation flags:
$ gcc -std=c99 -pedantic -Wall -g -c filename.c
-D_DEFAULT_SOURCE -D_BSD_SOURCE -D_SVID_SOURCE
-D_POSIX_C_SOURCE=200809L

I Argument handling
I Use getopt(3)
I Usage message to show the correct invocation

I Error handling:
I If subsequent code depends on the successful
execution of a function (e.g. resource allocation),
then the return value must be checked.

I Print a meaningful error message to stderr and exit with
EXIT_FAILURE

→ see lecture “Development in C”

41 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Exercise guidelines
I Build: Write a Makefile

I Targets all (first target; build your program) and clean
(remove all files produced during the build process)

I Compilation flags:
$ gcc -std=c99 -pedantic -Wall -g -c filename.c
-D_DEFAULT_SOURCE -D_BSD_SOURCE -D_SVID_SOURCE
-D_POSIX_C_SOURCE=200809L

I Argument handling
I Use getopt(3)
I Usage message to show the correct invocation

I Error handling:
I If subsequent code depends on the successful
execution of a function (e.g. resource allocation),
then the return value must be checked.

I Print a meaningful error message to stderr and exit with
EXIT_FAILURE

→ see lecture “Development in C”
41 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Plagiarism

I Discussing possible approaches with colleagues is fine

I However, everyone must implement his/her own solution
independently!

I Multiple students handing in the same solution or copying
from eachother is not acceptable!

I Copying solutions from online sources is equally not
acceptable!

Important
There will be a zero tolerance policy for cheating/copying
solutions!

I First time you are caught: 0 points on the assignment
I Second time caught: Exclusion from the course with

negative certificate

42 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Plagiarism

I Discussing possible approaches with colleagues is fine
I However, everyone must implement his/her own solution
independently!

I Multiple students handing in the same solution or copying
from eachother is not acceptable!

I Copying solutions from online sources is equally not
acceptable!

Important
There will be a zero tolerance policy for cheating/copying
solutions!

I First time you are caught: 0 points on the assignment
I Second time caught: Exclusion from the course with

negative certificate

42 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Plagiarism

I Discussing possible approaches with colleagues is fine
I However, everyone must implement his/her own solution
independently!

I Multiple students handing in the same solution or copying
from eachother is not acceptable!

I Copying solutions from online sources is equally not
acceptable!

Important
There will be a zero tolerance policy for cheating/copying
solutions!

I First time you are caught: 0 points on the assignment
I Second time caught: Exclusion from the course with

negative certificate

42 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Plagiarism

I Discussing possible approaches with colleagues is fine
I However, everyone must implement his/her own solution
independently!

I Multiple students handing in the same solution or copying
from eachother is not acceptable!

I Copying solutions from online sources is equally not
acceptable!

Important
There will be a zero tolerance policy for cheating/copying
solutions!

I First time you are caught: 0 points on the assignment
I Second time caught: Exclusion from the course with

negative certificate

42 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Plagiarism

I Discussing possible approaches with colleagues is fine
I However, everyone must implement his/her own solution
independently!

I Multiple students handing in the same solution or copying
from eachother is not acceptable!

I Copying solutions from online sources is equally not
acceptable!

Important
There will be a zero tolerance policy for cheating/copying
solutions!

I First time you are caught: 0 points on the assignment
I Second time caught: Exclusion from the course with

negative certificate

42 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Plagiarism
I Plagiarism can be detected with checker programs
I There exist specialized checkers for source code

I Copying code and only altering it slightly (e.g. renaming
variables) does not fool an automated checker!

I Neither do following examples:

if (x < y) {
...

}

if (!(x >= y)) {
...

}

switch (diff) {
case 3:

...
break;

case 2:
...
break;

case 1:
...

}

if (diff == 3) {
...

}
if (diff == 2) {

...
}
if (diff == 1) {

...
}

43 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Plagiarism
I Plagiarism can be detected with checker programs
I There exist specialized checkers for source code
I Copying code and only altering it slightly (e.g. renaming

variables) does not fool an automated checker!

I Neither do following examples:

if (x < y) {
...

}

if (!(x >= y)) {
...

}

switch (diff) {
case 3:

...
break;

case 2:
...
break;

case 1:
...

}

if (diff == 3) {
...

}
if (diff == 2) {

...
}
if (diff == 1) {

...
}

43 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Plagiarism
I Plagiarism can be detected with checker programs
I There exist specialized checkers for source code
I Copying code and only altering it slightly (e.g. renaming

variables) does not fool an automated checker!
I Neither do following examples:

if (x < y) {
...

}

if (!(x >= y)) {
...

}

switch (diff) {
case 3:

...
break;

case 2:
...
break;

case 1:
...

}

if (diff == 3) {
...

}
if (diff == 2) {

...
}
if (diff == 1) {

...
}

43 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Plagiarism
I Plagiarism can be detected with checker programs
I There exist specialized checkers for source code
I Copying code and only altering it slightly (e.g. renaming

variables) does not fool an automated checker!
I Neither do following examples:

if (x < y) {
...

}

if (!(x >= y)) {
...

}

switch (diff) {
case 3:

...
break;

case 2:
...
break;

case 1:
...

}

if (diff == 3) {
...

}
if (diff == 2) {

...
}
if (diff == 1) {

...
}

43 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Exercise 2

Producer/consumer example using a circular buffer

I Producer(s) write(s) data to the circular buffer
I Consumer reads from the circular buffer
I Synchronization using semaphores

44 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Summary

I Shared memory is a fast method for IPC
I Explicit synchronization with semaphores
I Synchronization tasks
I Strategies to resource (de-)allocation

45 / 46

Exercise 2:
Shared

Memory &
Semaphores

Shared
Memory
Shared
Memory API
Memory
Mapping
Example

Semaphores
Motivation
Synchronization
Tasks
POSIX
Semaphore
Examples

Circular
Buffer

Exercise 2

Summary

Material

I Michael Kerrisk: A Linux and UNIX System Programming
Handbook, No Starch Press, 2010.

I Linux implementation of shared memory/tmpfs:
http://www.technovelty.org/linux/shared-memory.html

I Richard W. Stevens: UNIX Network Programming,
Vol. 2: Interprocess Communications

46 / 46

http://www.technovelty.org/linux/shared-memory.html

	Shared Memory
	Shared Memory API
	Memory Mapping
	Example

	Semaphores
	Motivation
	Synchronization Tasks
	POSIX Semaphore
	Examples

	Circular Buffer
	Exercise 2
	Summary

