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A hybrid system is a dynamical system with both discrete and
continuous state changes. For analysis purposes, it is often useful
to abstract a system in a way that preserves the properties being an-
alyzed while hiding the details that are of no interest. We show that
interesting classes of hybrid systems can be abstracted to purely
discrete systems while preserving all properties that are definable
in temporal logic. The classes that permit discrete abstractions fall
into two categories. Either the continuous dynamics must be re-
stricted, as is the case for timed and rectangular hybrid systems, or
the discrete dynamics must be restricted, as is the case for o-min-
imal hybrid systems. In this paper, we survey and unify results from
both areas.
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I. INTRODUCTION

Hybrid systems combine both digital and analog com-
ponents in a way that is useful for the analysis and design
of distributed, embedded control systems. Hybrid systems
have been used as mathematical models for many important
applications, such as automated highway systems [40],
[50], [79], air-traffic management systems [49], [51], [74],
embedded automotive controllers [12], [59], manufacturing
systems [64], chemical processes [28], robotics [6], [71],
real-time communication networks, and real-time circuits
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[53]. Their wide applicability has inspired a great deal of
research from both control theory and theoretical computer
science [1], [2], [7], [9], [10], [29], [31], [52], [75].

Many of the above motivating applications aresafety crit-
ical and require guarantees of safe operation. Consequently,
much research focuses on formalanalysis and design
of hybrid systems. Formal analysis of hybrid systems is
concerned with verifying whether a hybrid system satisfies
a desired specification, like avoiding an unsafe region of
the state space. The process of formal design consists of
synthesizing controllers for hybrid systems in order to meet
a given specification. Both directions have received large
attention in the hybrid systems community, and the reader is
referred to [3], [11], [23], [25], [33], [42], [55], and [73] for
expositions to much of the research in the field.

In this paper, we are interested in the formal analysis of
hybrid systems. The formal analysis of large-scale, hybrid
systems is typically a very difficult process due to the com-
plexity and scale of the system. This makes the use ofcom-
putationalor algorithmic approaches to the verification of
hybrid systems very desirable, whenever possible. We are
therefore interested in developing computational procedures,
which, given a hybrid system and a desired property, will
verify in a finite number of steps whether the system satis-
fies the specification or not. Given a class of hybrid systems

and a class of desired properties, a class of verification
problems is calleddecidableif there exists a computational
procedure that, givenanysystem andany ,
will decide in a finite number of steps whether satisfies

. Decidability is not an issue in the verification of purely
discrete systems modeled by finite-state machines, since in
the worst case verification can be performed by exhaustively
searching the whole state space. However, in the case of hy-
brid systems, decidability is a central issue in algorithmic
analysis, because of the uncountability of the state space. The
main focus of this paper is on identifying decidable verifica-
tion problems for hybrid systems.

A natural way to show that a class of analysis problems
is decidable is the process ofabstraction. Given a hybrid
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system and some desired property, one extracts a finite, dis-
crete system while preserving all properties of interest. This
is achieved by constructing suitable,finite, andcomputable
partitions of the state space of the hybrid system. By ob-
taining discrete abstractions that are finite and preserve prop-
erties of interest, analysis can be equivalently performed on
the finite system, which requires only a finite number of
steps. Checking the desired property on the abstracted system
should beequivalent tochecking the property on the original
system. Only if no equivalent abstraction can be found may
one be content with asufficientabstraction, where checking
the desired property on the abstracted system is sufficient for
checking the property on the original system [20].

In this paper, we focus onequivalent discrete abstractions
of hybrid systemsalong with the classes of properties they
preserve. We show that there are many interesting classes of
hybrid systems that can be abstracted by finite systems for
analysis purposes. Properties about the behavior of a system
over time are naturally expressible in temporal logics, such
as linear temporal logic (LTL) and computation tree logic
(CTL) [26]. Preserving LTL properties leads to special par-
titions of the state space given bylanguage equivalence re-
lations, whereas CTL properties are abstracted bybisimula-
tions. A detailed exposition to the use of various logics in hy-
brid systems can be found in [23]. Similar concepts and con-
structions, but from a hierarchical control perspective, can be
found in [16] and [61]–[63].

There are immediate obstacles due to undecidability. For
example, in [37], it was shown that checkingreachability
(whether a certain region of the state space can be reached) is
undecidable for a very simple class of hybrid systems, where
the continuous dynamics involves only variables that proceed
at two constant slopes. These results immediately imply that
more general classes of hybrid systems cannot have finite
bisimulation or language equivalence quotients. Therefore,
our search for discrete abstractions of hybrid systems is lim-
ited by this result. Given this limit, we show that hybrid sys-
tems that can be abstracted fall into two classes. In the first
class, the continuous behavior of the hybrid system must be
restricted, as in the case of timed automata [5], multirate au-
tomata [4], [58], and rectangular automata [37], [68]. In the
second class, the discrete behavior of the hybrid system must
be restricted, as in the case of order-minimal hybrid systems
[44]–[46].

In this paper, we present in a unified way all these results,
which collectively define a very tight boundary between de-
cidable and undecidable questions about hybrid systems. We
do not focus on complexity issues or the implementation
of these algorithms by verification tools like KRONOS[24],
COSPAN [8], UPAAL [48], and HYTECH [35]. It should be
noted that, in practice, the algorithms implemented by the
above tools work directly on the original system and do not
construct an equivalent finite abstraction first. However, the
decidability results presented in this paper for finite abstrac-
tions provide correctness and termination arguments for the
algorithms implemented by the tools [37]–[39]. Therefore,
the approach described in this paper should be understood as
theoretical background underlying the implementations.

More specifically, in Section II, we introduce the reader
to the notion of transition systems, which should be thought
of as graphs with a possibly infinite number of nodes (repre-
senting states) and edges (representing transitions). Desired
properties of transition systems will be expressed as formulas
in various temporal logics. We will review the important no-
tions of language equivalencies and bisimulations of transi-
tion systems, along with temporal logic properties they pre-
serve, namely, LTL and CTL. In Section III, after a general
definition of hybrid systems, we describe the transition sys-
tems generated by our hybrid system model. This allows us
to apply the framework of Section II to the various classes
of hybrid systems we consider in this paper. We then imme-
diately present some undecidability results, which provide a
clear boundary for applying the framework of Section II. As
a result, our search for decidable classes of hybrid systems
is limited by this boundary. This forces us to consider hy-
brid systems with either simple continuous dynamics (Sec-
tion IV), or simple discrete dynamics (Section V). The latter
are based on various first-order logical theories. A brief in-
troduction to first-order logic is given in Appendix A.

II. TRANSITION SYSTEMS

Transition systems are graph models, possibly with an in-
finite number of states or transitions.

Definition 2.1 (Transition Systems):A transition system
consists of

• a (possibly infinite) set of states;
• a finite alphabet of propositions;
• a transition relation ;
• a satisfaction relation ;
• a set of initial states.

A state ispredecessorof a state , and is asuccessor
of , written if the transition relation contains
the pair . A state satisfiesa proposition written

if the satisfaction relation contains the pair .
The transition system is finite if the cardinality of is
finite, and it is infinite otherwise. We assume that every tran-
sition system isdeadlock free, that is, for every state ,
there exists a state such that .

A region is a subset of the states. The sets of
predecessor and successor states ofare

(2.1)

(2.2)

The set of states that are accessible fromin two transitions
is and is denoted by . In general,

consists of the states that are accessible fromin
transitions. is defined similarly. Then

(2.3)

(2.4)

are the set of states that arebackwardandforward reachable
from , that is, accessible in any number of transitions. In
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particular, is the set ofreachable statesof the
transition system and is denoted by .

A problem that is of great interest for transition systems
is the reachability problem. Given a proposition , we
write for the set of states that satisfy

.
Problem 2.2 (Reachability Problem):Given a transition

system and a proposition , is
?

If the proposition encodes an undesirable or unsafe re-
gion of the state space, then solving reachability corresponds
to checking if the system is safe. In this paper, we are in-
terested in computational approaches to the solution of the
reachability problem. The following algorithm computes the
reachable space until either a state satisfyingis reached or
no more reachable states can be added.

Algorithm 1 (Forward Reachability)
initially ;
while true do

if return “unsafe” end if ;
if return “safe” end if ;

end while

A backward reachability algorithm that starts with and
checks whether can be similarly con-
structed. Such iterative algorithmic approaches to checking
system properties are guaranteed to terminate if the state
space of the transition system is finite, since in the worst
case they can only visit a finite number of states. If the state
space is infinite, then there is, in general, no guarantee that
the forward reachability algorithm will terminate within a fi-
nite number of iterations of the loop. It could continue adding
states forever without ever reaching the target regionor
a fixed point such that . In this paper, our
goal is to find classes of infinite transition systems whose
analysis can be performed onequivalentbut finite transition
systems. This is accomplished by constructing suitable finite
quotients ordiscrete abstractionsof the original system in
the sense that they preserve the properties of interest while
omitting detail.

In addition to reachability, the desired system specifica-
tion may require more detailed system properties. For ex-
ample, one may wish to encode the requirement that a system
failure is eventually followed by a return to the normal mode
of operation. More abstractly, if the transition system visits
a region , encoding a failure, then eventually it will reach
a region , encoding normal operation. Such properties can
be encoded as formulas in temporal logic [65]. Formulas of
temporal logic are thus used to formally specify properties of
systems, such as reachability, invariance, or response proper-
ties. In the sequel, after defining the notion of quotient tran-
sition systems, two kinds of equivalence relations,language
equivalencesand bisimulations, are considered along with
two popular temporal logics, LTL and CTL, whose proper-
ties they preserve.

An equivalence relation on the state space
is proposition preservingif for all states and all
propositions , if and , then ; that
is, the region is a union of equivalence classes. Given a
proposition-preserving equivalence relation, the definition
of quotient transition system is natural. Let denote
the quotient space, that is, the set of equivalence classes. For a
region , we denote by the collection of all equivalence
classes that intersect. The transition relation on the
quotient space is defined as follows: for , we
have iff there exist two states and

such that . The satisfaction relation on the
quotient space is defined as follows: for , we have

iff there exists a state such that .
The quotient transition system is then ,

.
1) Language Equivalences Preserve Linear Temporal

Properties: Let be a state of the transition system
. Given a state , let
be the set of propositions that

are satisfied by . A trajectory generated from is an
infinite sequence such that and for all

, we have . This trajectory defines the
word The set of words that are defined by
trajectories generated fromis denoted by and called
the languageof the state . The set of words
that are defined by trajectories generated from initial states
is denoted by and called thelanguageof the transition
system .

Definition 2.3 (Language Equivalencies):Let be a tran-
sition system with state space. An equivalence relation
on is a language equivalence ofif for all states ,
if , then .

Note that every language equivalence is proposition
preserving. Every language equivalence partitions the
state space and gives rise to the quotient transition system

, which is called alanguage equivalence quotientof .
The formulas of LTL are interpreted over words, and hence
the properties expressed in LTL are preserved by language
equivalence quotients.

Definition 2.4 (Linear Temporal Logic [66], [54]):The
formulas of LTL are defined inductively as follows.

• Propositions: Every proposition is a formula.
• Formulas: If and are formulas, then the fol-

lowing are also formulas:

The formulas of LTL are interpreted over infinite
sequences of sets of propositions. Consider a word

, where each is a set of propositions.
The satisfaction of a propositionat position of word

is denoted by (which should not be confused
with the satisfaction relation , which tells us whether a
state satisfies a proposition), and holds iff . We can
then recursively define the semantics for any LTL formula
as follows.
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• if either or
.

• if .
• if .
• if there is a such that

and for all , we have .

A word satisfiesan LTL formula if . From
and , which stand for negation and disjunction, respec-

tively, we can also define conjunction, implication , and
equivalence . Thetemporal operators and are called
the nextanduntil operators. The formula holds for a
word iff the subformula is true for the suffix

The formula intuitively expresses the prop-
erty that is true until becomes true. Using the next and
until operators, we can also define the following temporal
operators in LTL:

• Eventually: true ;
• Always: .

Therefore, indicates that becomes eventually true,
whereas indicates that is true at all positions of a
word. The LTL formula is true for words that satisfy
infinitely often, whereas a word satisfies if becomes
eventually true and then stays true forever.

A transition system satisfiesan LTL formula if some
word in the language satisfies . For example, if is
a proposition encoding an unsafe region, then violation of
safety can be expressed as . Violation of the more elabo-
rate requirement that visiting region will eventually be
followed by visiting region , is expressed by the formula

.
Problem 2.5 (LTL Model Checking Problem):Given a

transition system and an LTL formula , determine if
satisfies .

Since reachability can be expressed by an LTL formula of
the form , it is immediate that Problem 2.2 is contained
in Problem 2.5. Given the definition of language equivalence,
the following theorem should come as no surprise.

Theorem 2.6 (Language Equivalencies Preserve LTL
Properties): Let be a transition system and let be
a language equivalence of. Then satisfies the LTL
formula if and only if the language equivalence quotient

satisfies .
Therefore, given a transition systemand an LTL formula

, we can equivalently perform the model checking problem
on . In general, language equivalence quotients are not
finite. If, however, we aregivena finite language equivalence
quotient of a transition system, then using the above the-
orem, LTL model checking can be decided for.

2) Bisimulations Preserve Branching Temporal Proper-
ties: We now define a different way of partitioning the state
space along with a class of properties it preserves.

Definition 2.7 (Bisimulations [57]):Let ,
be a transition system. A proposition-preserving

equivalence relation on is a bisimulation of if for
all states , if , then for all states ,
if , there exists a state such that and

.

If is a bisimulation, then the quotient transition system
is called abisimulation quotientof . The crucial

property of bisimulations is that for every equivalence class
, the predecessor region is a union of

equivalence classes. Therefore, if , then
is either the empty set or all of . It is

not difficult to check that every bisimulation is a language
equivalence, but a language equivalence is not necessarily
a bisimulation.

CTL is a temporal logic, which, contrary to LTL, contains
existential quantifiers that range over trajectories.

Definition 2.8 (Computation Tree Logic [19], [69]):The
formulas of CTL are defined inductively as follows.

• Propositions: Every proposition is a formula.
• Formulas: If and are formulas, then the fol-

lowing are also formulas:

The difference between the semantics of LTL and CTL is
that LTL formulas are interpreted over words, whereas CTL
formulas are interpreted over the tree of trajectories gener-
ated from a given state of a transition system. More precisely,
the state of the transition system satisfies the proposi-
tion if , as usual, and the semantics of any CTL
formula is then recursively defined as follows.

• if either or .
• if .
• if there exists a state such that

and .
• if there exists a trajectory gen-

erated from such that for all , we have .
• if there exists a trajectory

generated from such that for some ,
and for all , we have .

As in LTL, we can define , , and from and .
The temporal operators , , and are calledpos-
sibly next, possibly always, andpossibly until, as they refer
to the existence of a trajectory from a given state. Thepos-
sibly eventuallyoperator is defined astrue . Addi-
tional temporal operators, which refer to all trajectories from
a given state, can be defined as follows:

• inevitably next: ;
• inevitably always: ;
• inevitably eventually: ;

A transition system satisfiesa CTL formula if some
initial state of satisfies . For example, reachability can
be captured in CTL by the formula . The CTL formula

encodes the requirement that there is some reach-
able state from which all trajectories stay within the region

.
Problem 2.9 (CTL Model Checking Problem):Given a

transition system and a CTL formula , determine if
satisfies .

As in LTL model checking, Problem 2.2 is contained
in Problem 2.9. However, Problem 2.5 is incomparable
to Problem 2.9, as there are requirements which can be
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expressed in LTL but not in CTL (such as the requirement
), and there are requirements which can be expressed

in CTL but not in LTL (such as the requirement )
[26]. The following theorem shows that bisimulations
preserve CTL properties.

Theorem 2.10 (Bisimulation preserves CTL properties
[15]): Let be a transition system and let be a bisimu-
lation of . Then satisfies the CTL formula if and only
if the bisimulation quotient satisfies .

Therefore, CTL model checking for can be performed
equivalently on . Bisimulations can be computed using
the following algorithm. If the algorithm terminates within
a finite number of iterations of the loop, then there is a fi-
nite bisimulation quotient, and the algorithm returns a finite
partition of the state space which is the coarsest bisimulation
(i.e., the bisimulation with the fewest equivalence classes).

Algorithm 2 (Bisimulation Algorithm
[14], [41])
initially ;
while there exist such that

do
;

end while ;
return

Therefore, in order to show that CTL model checking can
be decided for a transition system, it suffices to show that
the bisimulation algorithm terminates on and that each
step of the algorithm iscomputableor effective. This means
that we must be able to represent (possibly infinite) state sets
symbolically, perform Boolean operations, check emptiness,
and compute the predecessor operation on the symbolic
representation of state sets [33].

Even though LTL and CTL are incomparable, they are
both sublogics of CTL, a more expressive temporal logic,
and of a fixed-point logic called the-calculus[23], [26].
Bisimulations preserve not only CTL properties according
to Theorem 2.10 but also all CTLand -calculus properties
[15].

III. H YBRID SYSTEMS

In this section, we apply the framework presented in Sec-
tion II to transition systems generated by hybrid systems. We
then immediately present various barriers for obtaining finite
discrete abstractions for general hybrid systems by showing
classes of hybrid systems whose reachability problems are
undecidable. We start with a definition of hybrid systems.

Definition 3.1 (Hybrid Systems [3]):A hybrid system is a
tuple with the following com-
ponents.

• is a finite set oflocations, and is a nonnegative
integer called thedimensionof . The state space of
is . Each state thus has the form ,
where is thediscretepart of the state and
is thecontinuouspart.

• is the set of initial states.
• : assigns to each state a set

, which constrains the time derivative of
the continuous part of the state. Thus in discrete loca-
tion , the continuous part of the state satisfies thedif-
ferential inclusion .

• : assigns to each location an
invariant set , which constrains the value
of the continuous part of the state while the discrete part
is .

• is a relation capturing discontinuous state
changes.

We refer to the individual coordinates of the continuous
part of the state space as real-valuedvariables, and we
view the continuous part of a state as an
assignment of values to the variables.

Hybrid systems are typically represented as finite graphs
with vertices and edges defined by

for some and

With each vertex , we associate aninitial set defined
as

With each edge , we associate aguard set
defined as

for some

and a set-valuedresetmap

Trajectories of the hybrid system originate at any
initial state and consist of concatenations of
continuous flowsanddiscrete jumps. Continuous flows keep
the discrete part of the state constant, and the continuous
part evolves over time according to the differential inclu-
sions , as long as remains inside the invariant
set . If during the continuous flow it happens that

for some , then the edge
becomesenabled. The state of the hybrid system may

then instantaneously jump from to any with
. Then the process repeats, and the contin-

uous part of the state evolves according to the differential
inclusions . Even though Definition 3.1 places
no well-posedness conditions on the class of hybrid systems
we consider, the results presented in this paper will assume
strong restrictions regarding the types of, , , and
that are permitted.

Example 3.2:Fig. 1 is a graphical illustration of a spe-
cial kind of hybrid system, called atimed automaton, which
is a finite-state machine coupled with real-valuedclockvari-
ables. This timed automaton consists of two locationsand

and two variables and , which always evolve in
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under the differential equations and . There-
fore and simply measure time. The initial state of the
system is , and the invariant sets asso-
ciated with the locations and are and ,
respectively. There are two edges, and

. The guard of is the set and the reset map
is , whereas the guard and reset of

are and , respectively. No-
tice that the identity map on thevariable on the edge is
suppressed from Fig. 1. A simple reachability specification
may require that the timed automaton never enters the region

and .

A. Rectangular, Multirate, and Timed Automata

Consider the space with the variables .
A rectangular setis defined by a conjunction of linear
(in)equalities of the form , where is one of

, and . For a rectangular set , let
be its projection onto theth coordinate. Thus a rectangular
set is of the form , where each

is a bounded or unbounded interval.
Definition 3.3 (Rectangular Automata [37]):A rectan-

gular automaton is a hybrid system that satisfies the fol-
lowing constraints.

• For every location , the sets and
are rectangular sets.

• For every location , there is a rectangular set
such that for all .

• For every edge , the set is a rectan-
gular set, and there is a rectangular setand a subset

such that for all

Reset for all

if then else

Therefore, in a rectangular automaton, the derivative of each
variable stays between two fixed bounds, which may be dif-
ferent in different locations. This is because in each location
, the differential inclusions are constant and coordinate-wise

decoupled, that is, for all . With each
discrete jump across an edge, the value of a variable is
either left unchanged (if ), or reset nondeterministi-
cally to a new value within some fixed, constant interval
(if ). An example of a rectangular automaton is shown
in Fig. 2.

A rectangular automaton isinitialized if for every edge
and all , Reset ,

then . In other words, if after a discrete
jump the bounds on the derivative of a variable change, then
its value must be nondeterministically reset (“reinitialized”)
within a fixed interval. The rectangular automaton of Fig. 2
is initialized.

Definition 3.4 (Multirate Automata [3]):A multirate
automaton is a rectangular automaton that satisfies the
following constraints.

• For each location , the set is either empty
or a singleton set.

Fig. 1. Timed automaton.

Fig. 2. Rectangular automaton.

• For each edge , the set is a singleton set.
• For each location , the set is a singleton set.

Therefore, in a multirate automaton, each variable follows
constant, rational slope, which may be different in different
locations. Multirate automata may or may not be initialized.

Definition 3.5 (Timed Automata [5]):A timed automaton
is a multirate automaton such that for
each location .

Therefore, in a timed automaton, in every location each
variable follows the constant slope 1, that is, for all

. Each is thus referred to as a clock variable.
Notice that timed automata are initialized by definition, be-
cause the differential inclusion never changes.

B. Transition Systems of Hybrid Systems

Let be a hybrid system, and
let be a finite set of subsets of . The hybrid system
generates a transition system
with respect to . Set and . Set

, that is, the propositions are the locations and
the given sets in . For , define iff ,
and for , define iff . Finally, define

as follows.
Discrete transitions: for

iff and .
Continuous transitions: iff

and there exists a real and a differentiable curve:
with , , for all

we have , and for all we have
.

The continuous transitions are time-abstract transitions
in the sense that the time it takes to reach one state from
another is ignored.
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Having defined the transition system of a hybrid system
allows us to proceed with the conceptual framework pre-
sented in Section II, and determine language equivalence and
bisimulation quotients of hybrid systems. The next subsec-
tion presents some immediate barriers in obtaining such dis-
crete abstractions, which are finite.

C. Undecidability Barriers

A variable is atwo-slopevariable if there exist
such that for all locations , either

or . The rationals and are theslopes
of . The variable is a one-slopevariable if .
Note that a clock variable is a one slope variable with slope

. The following theorem presents an imme-
diate obstacle in obtaining finite discrete abstractions of hy-
brid systems.

Theorem 3.6 (Undecidability of Uninitialized Multirate
Automata [37]): Consider the class of multirate automata
with clock variables and one two slope variable with
slopes . The reachability problem (Problem 2.2) is
undecidable for this class.

In other words, there is no computational procedure that
takes as input any multirate automaton from the given
class, and a proposition, and determines if any trajectory
visits a state that satisfies. The proof of the undecidability
result proceeds by a reduction from the halting problem for
two counter machines, and can be found in [37]. Theorem 3.6
shows that initialization is a necessary condition for decid-
ability. An additional necessary condition is provided by the
following theorem, which shows that any violation of rect-
angularity, namely, the coupling variables, also leads to un-
decidability.

Theorem 3.7 (Undecidability of Coupling Variables in
Multirate Automata [37]): Suppose we generalize the defi-
nition of multirate automata so to permit 1) the intersection
of rectangular guard sets with inequalities of the
form , 2) the intersection of rectangular invariant
sets with inequalities of the form , or 3) reset
maps of the form , for . Consider
a class of multirate automata that are generalized in one of
these three ways and that have clock variables and
a one-slope variable with slope . The reachability
problem (Problem 2.2) is undecidable for this class.

Since the reachability problem is a special case of LTL and
CTL model checking, it is clear from Theorems 3.6 and 3.7
that Problems 2.5 and 2.9 are also undecidable for very re-
strictive classes of hybrid systems. Consequently, it must be
impossible to construct finite language equivalence or bisim-
ulation quotients for transition systems , where is a
hybrid system of Theorem 3.6 or 3.7 and .

The above negative results force us to consider hybrid sys-
tems with either simpler discrete dynamics or simpler contin-
uous dynamics, in order for the framework of Section II to be
successful. In the next two sections, we survey such results,
which, in conjunction with Theorems 3.6 and 3.7, define a
tight boundary between decidability and undecidability for
model checking of hybrid systems.

IV. RESTRICTING THEFLOWS

In this section, we obtain discrete abstraction of hybrid
systems with restricted continuous dynamics. We first con-
sider timed automata, which have finite bisimulation quo-
tients of a very intuitive structure.

A. Timed and Multirate Automata

A timed automaton is defined by a finite graph ,
a dimension , and linear inequalities of the form ,
where , which define initial, invariant, and guard sets,
as well as reset maps. Even though the timed automata de-
fined in Section III-A allow rational constants in their defi-
nition, in this section we consider timed automata with only
integer constants. There is no loss of generality in this as-
sumption, because a finite number of rationals can always be
rescaled to integers. Furthermore, we restrict the clock vari-
ables to range over the nonnegative reals. There is also no loss
of generality in this assumption, because every clock variable
of a timed automaton is bounded from below by initial sets
and reset maps. Let be the largest integer that is com-
pared to in the definition of . For example, in Fig. 1, the
largest integer that is compared to is ten (in the reset map
of ), which is also the largest integer to whichis com-
pared (in the invariant set of ).

Given a nonnegative real , let stand for the
floor function, let stand for the ceiling function, and let

stand for the fractional part of; that is .
We define the following equivalence relations on and on

, the state space of .
Definition 4.1 (Region Equivalence [5]):Two vectors

and in are region
equivalent, written , if the following two conditions
are satisfied.

• For all , we have either both and
, or both and .

• For all , if and ,
then iff .

Two states and in are region equivalent,
, if both and .

Therefore, two states of are region equivalent if they
agree on the discrete parts, on the integral parts of all clock
values, and on the ordering of the fractional parts of all clock
values. The integral parts of the clock values determine
whether or not a particular clock constraint is met, whereas
the ordering of the fractional parts determines which clock
will change its integral part first. For example, if two clocks

and are between 0 and 1 in a state, then an edge whose
guard set is defined by the clock constraint can be
followed by an edge that is guarded by the clock constraint

, depending on whether or not the current clock values
satisfy . Furthermore, since each clock variable
is never compared with constants greater than, then the
actual value of , once it exceeds , is of no consequence
in determining the validity of any clock constraints.

Example 4.2:The nature of the equivalence classes de-
fined by can be best understood using a planar example.
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Fig. 3. Equivalence classes of planar region equivalence.

Consider with and . The
equivalence classes are shown in Fig. 3. Note that there are
only a finite number of classes, at most ,
where is the number of clock variables. Thus, the number
of classes is exponential in the dimension and in the size of
clock constraints (each constant requires bits for
representation in a clock constraint).

If we are given a finite set of rectangular sets, then we
define the region equivalence relation on the states of
the timed automaton just like , except that the con-
stants are taken to be maximal also with respect to the
constants that define the sets in. The following is the main
theorem about timed automata.

Theorem 4.3 (Bisimulations of Timed Automata [5]):Let
be a timed automaton, and letbe a finite set of rectan-

gular sets. Then the region equivalence relation is a
bisimulation of the transition system .

Since the region equivalence relation has a finite
number of equivalence classes and the corresponding quo-
tient transition system can be constructed effectively, we ob-
tain the following corollary.

Corollary 4.4: The LTL and CTL model checking
problems (Problems 2.5 and 2.9) can be decided for timed
automata, provided every proposition occurring in temporal
formulas is either an automaton location or a rectangular set.

The above result was the first successful extraction of a
finite discrete abstraction from a hybrid system and has in-
spired much research in this direction along with the devel-
opment of verification tools. This result can be generalized
as follows to multirate automata.

Theorem 4.5 (Bisimulations of Initialized Multirate Au-
tomata [3]): Let be an initialized multirate automaton,
and let be a finite set of rectangular sets. Then the transi-
tion system has a finite bisimulation quotient, which
can be constructed effectively.

The proof of Theorem 4.5 is based on rescaling the slope
of each variable to 1, by appropriately adjusting all initial,
invariant, and guard sets, as well as reset maps. From the re-
gion equivalence of the resulting timed automaton, we obtain
a bisimulation of the initialized multirate automaton.

Corollary 4.6: The LTL and CTL model checking prob-
lems (Problems 2.5 and 2.9) can be decided for initialized
multirate automata, provided every proposition occurring in
temporal formulas is either an automaton location or a rect-
angular set.

Notice that restricting ourselves toinitializedmultirate au-
tomata in Theorem 4.5 does not violate the conditions of The-
orem 3.6, by which multirate automata that are not initialized
cannot, in general, have a finite bisimulation quotient. Simi-
larly, restricting ourselves to propositions that are rectangular

sets in Corollary 4.6 does not violate the spirit of Theorem
3.7.

B. Rectangular Automata

Up to this point, the restricted classes of hybrid systems
that we have presented admit finite bisimulation quotients. In
this section, we show that more general hybrid automata do
not admit finite bisimulation quotients but may admit finite
language-equivalence quotients, which are coarser quotients.

Theorem 4.7 (Language Equivalences of Initialized Rect-
angular Automata [37], [38]): Let be an initialized rect-
angular automaton, and let be a finite set of rectangular
sets. Then the transition system has a finite language-
equivalence quotient, which can be constructed effectively.

The main idea of the proof is to convert an initialized rect-
angular automaton to an initialized multirate automaton by
replacing each variable , which satisfies a differential in-
clusion of the form by two variables named
and , which satisfy and , respectively. The
variables and keep track of the lower and upper bounds
of . The initial, invariant, and guard sets, as well as the reset
maps must be adjusted accordingly. For example, if the guard
set is defined by , then it is replaced by , and
if , then is reset to 3. This conversion from the
rectangular to a multirate automaton is language preserving.
Hence, from the finite bisimulation of the initialized multi-
rate automaton (Theorem 4.5), we can construct a finite lan-
guage equivalence of the original initialized rectangular au-
tomaton.

Corollary 4.8: The LTL model checking problem
(Problem 2.5) can be decided for initialized rectangular
automata, provided every proposition occurring in temporal
formulas is either an automaton location or a rectangular set.

The conversion from initialized rectangular automata to
initialized multirate automata may not preserve branching
properties, such as those expressible in CTL. In general, ini-
tialized rectangular automata do not admit finite bisimulation
quotients.

Theorem 4.9 (Lack of Finite Bisimulation Quotients for
Initialized Rectangular Automata [32]):There exist an ini-
tialized rectangular automaton and a finite set of rect-
angular sets such that every bisimulation of the transition
system has infinitely many equivalence classes.

In order to simplify the proof of the above theorem, we
consider a slight extension of Definition 3.3 and allow more
than one edge between a pair of locations.

Example 4.10:Consider the simple rectangular au-
tomaton shown in Fig. 4. The automaton has only one
location , is trivially initialized, and has two variables
and , which are allowed to live on the unit square; that
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is, and .
Furthermore, . Both and
satisfy the differential inclusion and

. There are two edges from to itself,
and , with .
Furthermore, and

; that is, and reset
or to 0, respectively. Let consist of the two rectangular

sets defined by and . Then the bisimulation al-
gorithm (Algorithm 2.2) does not terminate on the transition
system .

The classes of hybrid systems presented in this section
are expressive enough to model many systems arising in
real-time communication networks, real-time circuits, as
well as real-time software. Timed automata allow us to
model accurate clocks, and rectangular automata allow us to
model clocks with bounded drift. However, the continuous
dynamics (flows) that can captured directly by rectangular
automata is rather limited for control applications, and
generally involves approximations [36], [67]. In order to
capture more complicated continuous dynamics directly
without violating the undecidability results of Section III-C,
one needs to restrict the discrete dynamics (jumps) of a
hybrid system.

V. RESTRICTING THEJUMPS

Our goal in this section is to apply the framework of Sec-
tion II to hybrid systems with more complicated continuous
behavior. However, the following example shows that, even
in the absence of discrete dynamics, the bisimulation algo-
rithm does not terminate.

Example 5.1:Consider the trivial hybrid system with only
one discrete location and no discrete jumps, and let be
the linear vector field on

Assume the partition of consists of the following three
sets (see Fig. 5):

The trajectories of are spirals moving away from the
origin. The first iteration of the algorithm partitions into

and
, where is the -coordinate of the first

intersection point of the spiral through with . The
second iteration subdivides into

and , where is the
-coordinate of the next point of intersection of the spiral

with . This process continues indefinitely since the spiral
intersects in infinitely many points, and therefore the al-
gorithm does not terminate. In fact, the bisimilarity quotient
is not finite.

From the above example, it is clear that the critical
problem one must investigate is how the trajectories of

interact with the sets inside a single location. This

Fig. 4. Initialized rectangular automaton without finite
bisimulation quotient.

Fig. 5. Bisimulation algorithm does not terminate.

requires that the trajectories of the vector field have
nice intersection properties with such sets. Since the goal
is to obtain finite partitions, it will become important that
we restrict the study to classes of sets withglobal finiteness
properties, for example, sets with finitely many connected
components. Even though these desirable properties are
geometric in nature, they are captured by the notion of
order-minimality (o-minimality) from model theory.

A. O-Minimal Structures

In this section, we provide a brief introduction to o-min-
imal structures [77] and then use it to construct finite bisimu-
lations of certain classes of hybrid systems. A brief introduc-
tion to first-order logic can be found in the Appendix. More
introductory material on first-order logic can be found in [27]
and [76], and the use of various logics for hybrid systems is
detailed in [23].

Definition 5.2 (O-Minimal Structure):A (model-the-
oretic) structure over the reals is called o-minimal (order
minimal) if every definable subset (with parameters) of

is a finite union of points and open intervals (possibly
unbounded).
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Table 1
O-Minimal Structures

For structures that extend , this is
equivalent to checking the above property for sets definable
without parameters [56]. For example, consider the subset
of the reals defined by , where is
some polynomial. Then, since every polynomial has a finite
number of roots, the set where it is not negative is a finite
union of points and intervals. This finiteness property must
hold for any definable set in the structure, ,
even if the formula contains quantifiers.

The class of o-minimal structures over the reals is
quite rich. In [72], it was shown that the structure

admits elimination of quanti-
fiers, by proposing an algorithm that given any formula in

converts it to an equivalent formula
without quantifiers. This, together with an analysis of the
sets definable by quantifier-free formulas shows that the
structure is o-minimal. Tarski was also interested in ex-
tending this result to , where there
is an additional symbol in the language for the exponential
function. While this structure does not admit elimination of
quantifiers, it was shown in [80] that this structure is o-min-
imal. Another important extension is obtained as follows.
Assume is a real-analytic function in a neighborhood of
the cube . Let be the function
defined by

if

otherwise.
We call such functionsrestricted analytic functions.
These functions are useful to describe the behavior of
some periodic trajectories. For example, the functions

and restricted to a period are sufficient to define
closed orbits of some linear systems. In [78], the structure

, which is an extension of
, was shown to be o-minimal.

Table I summarizes o-minimal structures over the reals along
with someexamplesof sets and vector field trajectories that
are definable in these theories.

Based on the notion of o-minimality, the following class
of hybrid systems is defined.

Definition 5.3 (O-Minimal Hybrid Systems):A hybrid
system is called o-minimal if:

• for each , is a differential equation whose
flow is complete (defined for all time);

• for each , the reset map is a piece-
wise constant (with finite number of pieces) but set
valued map;

• for each and all edges , the sets ,
, and , and the flow of are de-

finable in the same o-minimal structure over the reals.

Note that o-minimal hybrid systems place a restriction on
the discrete jumps, namely, that every time a discrete jump is
taken, all states must be reinitialized, possibly nondetermin-
istically. Notice, however, that we do allow piecewise con-
stant set valued maps, which can be used to overapproximate,
arbitrarily closely, useful reset maps like the identity map.
A more detailed analysis of set-valued maps can be found
in [22]. This restriction on the discrete dynamics along with
the powerful structure of o-minimal structures, allows us to
prove the following theorem without violating the results of
Section III-C. Even though the following theorem is proved
in [44] for constant, set-valued reset maps, the proof can be
easily adapted to handle piecewise constant, set-valued re-
sets.

Theorem 5.4 (Bisimulations of O-Minimal Hybrid Systems
[44]): Let be an o-minimal hybrid system, and letbe
a finite collection of sets definable in the same o-minimal
structure. Then the transition system has a finite bisim-
ulation quotient.

Theorem 5.4 is appealing since it can capture hybrid sys-
tems with more complicated continuous dynamics. To illus-
trate the continuous behavior that can be captured, we apply
Theorem 5.4 for each o-minimal structure of Table 1, and we
provide examples of definable, o-minimal hybrid systems.

: The definable sets in this structure
capture polyhedral sets whereas the definable flows capture
linear flows. In particular, it captures timed and multirate au-
tomata in the special case where all reset maps are constant.
Timed and multirate automata, in general, allow more com-
plicated reset maps, like the identity map, in their discrete
jumps.

: In [72], it was shown that
is decidable. In fact, the decision procedure

consisted of two parts: first, an algorithm for eliminating
quantifiers, and second, an algorithm for deciding quanti-
fier free formulas. Because of these results, the definable sets
with parameters in this structure are thesemialgebraic sets,
which are defined as Boolean combinations of sets of the
form and , where is a
polynomial. The definable flows in this structure are semi-
algebraic. Therefore, the o-minimal hybrid systems corre-
sponding to this structure are hybrid systemswhere all
sets and flows are semialgebraic.
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: In order to describe the de-
finable sets in this structure, we need the notions ofsemian-
alytic andsubanalytic sets. We provide below an informal
definition of these notions. For precise definitions and prop-
erties, the reader is referred to [13]. We say that a subsetof

is semianalytic in if for every there exists a
neighborhood of such that is a Boolean combina-
tion of sets of the form and ,
where is an analytic function on . Roughly speaking, a
local description of a semianalytic set is analogous to that of
a semialgebraic set with analytic functions replacing polyno-
mials. A subset of is subanalytic in if it is locally
the image of a relatively compact semianalytic setunder
an analytic map (defined on). A subset of is finitely
subanalytic if its image under the map
given by

is subanalytic. The finitely subanalytic sets in are defin-
able in this structure.

Even though polynomial flows are definable in this struc-
ture, since the functions are zero outside a compact set,
these functions cannot be used to define complete flows.
However, the operator corresponding to some periodic
flows may still be definable. Consider for example, a hy-
brid system whose vector fields are diagonalizable linear
vector fields with purely imaginary eigenvalues and all rel-
evant sets are definable in this structure. Since the restric-
tion of on is definable, the operator corre-
sponding to is definable. This leads to the following corol-
lary of Theorem 5.4, which generalizes to the planar re-
sults in [17], [43], and [47].

Corollary 5.5: Let be a hybrid system for which all rel-
evant sets (guards, invariants, initial conditions) are finitely
subanalytic and all vector fields are diagonalizable linear
vector fields with purely imaginary eigenvalues. Letbe a
finite collection of finitely subanalytic sets. Then the transi-
tion system has a finite bisimulation quotient.

: This structure, which
extends by the exponential func-
tion, besides enriching the class of definable sets, allows
us to capture new classes of definable flows. In particular,
the flows of linear vector fields with real eigenvalues are
definable. The following corollary is then an immediate
consequence of Theorem 5.4.

Corollary 5.6: Let be a hybrid system for which all
relevant sets are finitely subanalytic and all vector fields are
of one of the following two forms:

• linear vector fields with real eigenvalues;
• diagonalizable linear vector fields with purely imagi-

nary eigenvalues.

Let be a finite collection of finitely subanalytic sets. Then
the transition system has a finite bisimulation quotient.

The above theorem extends the planar results in [43] to.
Note that relaxations of Corollary 5.6 would allow spiraling,
linear vector fields, which are not definable in this structure.

As was shown by Example 5.1, such systems, in general, do
not admit finite bisimulations. This shows that even though
the conditions of Theorem 5.4 are sufficient, they are very
tight sufficient conditions.

The above results are existential and show that a finite
bisimulationsexist for the above classes of o-minimal hy-
brid systems. That means that the bisimulation algorithm
will terminate. To show decidability, we must also show that
the bisimulation algorithm is computable, which means that
there is an effective procedure to compute the oper-
ator. This can be achieved for various classes of o-minimal
hybrid systems by posing each step of the bisimulation al-
gorithm as a quantifier elimination problem in the structure

. The proof then consists of showing
that for semialgebraic sets , the task of computing
the preimage under the flow of such linear systems
reduces to quantifier elimination in by
a sequence of definable variable substitutions, which elimi-
nate the exponential terms.

Theorem 5.7 (Hybrid Systems with Linear Differential
Equations [45]): Consider the class of o-minimal hybrid
system where:

• for each and edges , the sets ,
, and are semialgebraic with rational

coefficients;
• for all , , where , and
– is nilpotent; or
– is diagonalizable and has real, rational eigenvalues;

or
– has purely imaginary eigenvalues, with ra-

tional, and its real Jordan form is block diagonal with
blocks;

then CTL and LTL model checking for this class of hybrid
systems is decidable.

As an immediate consequence, the reachability problem is
also decidable for the above classes of hybrid systems. The-
orem 5.7 can be extended to include linear hybrid systems
where in each discrete state the dynamics are of the form

for various types of inputs.
Theorem 5.8 (Hybrid Systems with Linear Control Sys-

tems [46]): Consider the class of o-minimal hybrid system
where:

• for each and edges , the sets ,
, and are semialgebraic with rational

coefficients;
• for all , , where

, , and
– is nilpotent, and each entry ofis a polynomial in

; or
– is diagonalizable, has real rational eigenvalues, and

each entry of is of the form with rational, and
not an eigenvalue of ; or

– has purely imaginary eigenvalues of the form
with rational, and the entries in the inputare of the
form or with rational, and ;

then CTL and LTL model checking for this class of hybrid
systems is decidable.

ALUR et al.: DISCRETE ABSTRACTIONS OF HYBRID SYSTEMS 981



The above results remain valid if the inputs are allowed to
be rational, linear combinations of the functions of the corre-
sponding type: exponentials in case of real eigenvalues and
sinusoidal in the case of imaginary eigenvalues. In all cases,
the sameresonancerestrictions apply on the parameters
and .

VI. CONCLUSIONS

In this paper, we have considered the algorithmic
analysis of hybrid systems by the process of abstraction.
We have presented a unified collection of results where
finite, property-preserving abstractions of hybrid systems
are possible. Given the known undecidability barriers,
we showed that discrete abstractions of hybrid systems
are possible when either the continuous or the discrete
dynamics are restricted.

In cases where discrete abstractions withequivalent
properties cannot be constructed, abstractions whose prop-
erties aresufficient to check can be useful. This approach
is taken in [18], [21], [30] [34], [60], [61], [63], [67],
and [70], where reachable sets of differential equations
are over- or underapproximated. This line of work often
allows us to verify instances of hybrid systems even if
they belong to undecidable classes. The construction of
tight approximations along with the tradeoff between
complexity and precision is of great importance and
should be pursued further. Research along this direction
will expand the scope and applicability of computational
tools, like KRONOS and HYTECH. This is needed before
they can be applied on large scale, hybrid systems with
complicated discrete and continuous dynamics.

APPENDIX A
FIRST-ORDER LOGIC

A language is a set of symbols separated into three
groups: relations, functions, and constants. The sets

, , and
are examples of languages

where (less than) is the relation, (plus), (minus),
(product) and (exponentiation) are the functions, and 0
(zero) and 1 (one) are the constants.

Consider a countable collection of variables
. The set ofterms of a language is

inductively defined as follows. A term is a variable, a
constant, or , where is an -ary function
and , are terms. For instance,
and are terms of and , respectively. In
other words, terms of are linear expressions and terms
of are polynomials with integer coefficients. Notice that
integers are the only numbers allowed in expressions (they
can be obtained by repeatedly adding the constant 1).

Theatomic formulasof a language are of the form
, or , where , are terms and
is an -ary relation. For example, and

are atomic formulas of . The set of(first-order) formulas
is recursively defined as follows. An atomic formulais a

formula, and if and are formulas and is a variable,
then , , or are formulas. Exam-
ples of -formulas are ,
and . The occurrence of a variable
in a formula isfree if it is not inside the scope of a quan-
tifier; otherwise, it isbound. For example, in the formula

. , , and are free and is bound.
We often write to indicate that
are the free variables of the formula. A sentenceof is a
formula with no free variables. The formula
is a sentence whereas is not.

A (model-theoretic)structure over a set of a lan-
guage consists of a nonempty setand an interpretation
of the relations, functions, and constants. For example,

and arestruc-
tures of over and , respectively, with the usual
interpretation of all the symbols. A set is de-
finable if there exists a formula such that

. For example,
over , the formula defines the set .
A set is definable with parameters in if each
is a constant. For example, defines the set

over , using as a parameter. If a language
is interpreted over and , we simply say that a set

is definable with parameters (without mentioning).
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