
〈 S t a t W t h 1 7 〉

Introduction to R and RStudio

Werner Gurker

Institut für Stochastik und Wirtschaftsmathematik

Technische Universität Wien

TU – Wien 〈StatWth17 〉 1 / 85

References

[1] E. L. Cano, J. M. Moguerza, and M. P. Corcoba: Quality Control
with R – An ISO Standards Approach, Springer, 2015

[2] G. Grolemund: Hands-On Programming with R, O’Reilly, 2014

[3] N. J. Horton and K. Kleinman: Using R and RStudio for Data Mana-
gement, Statistical Analysis, and Graphics, 2nd Ed., CRC Press, 2015

[4] J. Verzani: Using R for Introductory Statistics, 2nd Ed., CRC, 2014

[5] H. Wickham and G. Grolemund: R for Data Science – Import, Tidy,
Transform, Visualize, and Model Data, O’Reilly, 2017

System: Windows 7 Pro (64bit)

R: Version R-3.4.1 (64bit)

RStudio: Version 1.0.153 (64bit)

TU – Wien 〈StatWth17 〉 2 / 85

Introduction to R and RStudio Software for Statistics

Software for Statistics

There exist a wide range of software packages for Statistics in general.

Most of the available software packages are proprietary and commercial.

There are more and more Free and Open Source Software (FOSS)
options for any purpose, in particular R.

Meanwhile, the R software and programming language is widely spread;
it has become the de facto standard for data analysis (universities,
companies (small and large), . . .).

More and more job positions include R skills as a requirement.

TU – Wien 〈StatWth17 〉 3 / 85

Introduction to R and RStudio What is R ?

What is R ? (1)

R is an open-source statistical environment modeled after S /S–Plus
(www.insightful.com) created at the Bell Labs in the 1970s by John
Chambers, Rick Becker, and Allan Wilks.

The R Project was started by Robert Gentleman and Ross Ihaka of the
Statistics Department of the University of Aukland in 1995, and quickly
gained a widespread audience.

The R Project for Statistical Computing (cran.r-project.org) is
maintained by the R Development–Core Team, and supported by a
number of people, institutions, and organizations from all over the world.
(See The R Foundation for further details.)

In addition, R can be considered a community. Users organize themselves
in R User’s Groups (RUGs). An updated list can be found on the blog
of Revolution Analytics (www.revolutionanalytics.com).

TU – Wien 〈StatWth17 〉 4 / 85

Introduction to R and RStudio What is R ?

What is R ? (2)

R is platform-independent, it is available for Linux, Mac, and Windows.
A general definition of R is as follows:

R is a system for statistical computation and graphics. It consists of

a language plus a runtime environment with graphics, a debugger,

access to certain system functions, and the ability to run programs

stored in script files.

It is a system for statistical computation and graphics, i. e., it is more
than just a statistical package.

It is also a programming language, i. e., it can be extended with new
functionality. Advanced programming features as debugging or system
interaction are available.

The run-time environment allows to use R in an interactive manner.

Writing and running script files is the natural way to use R.

TU – Wien 〈StatWth17 〉 5 / 85

Introduction to R and RStudio Some Features of R

Some Features of R

◮ It is Free and Open Source.

◮ It runs in almost any system and configuration.

◮ There is a base functionality for a wide range of statistical
computations and graphics: descriptive statistics, statistical inference,
time series, data mining, multivariate plotting, advanced graphics,
optimization, etc.

◮ The base installation can be extended by installing contributed
packages (at the time of writing, more than 11000 !) devoted to
special topics.

◮ It has Reproducible Research and Literate Programming capabilities.

◮ Interfacing with other languages such as Python, C, or Fortran is
possible as well as wrapping other programs within scripts.

◮ There is a wide range of options to get help and support: extensive
documentation, communities, etc.

TU – Wien 〈StatWth17 〉 6 / 85

Introduction to R and RStudio How to Obtain R ?

How to Obtain R ?

The R Project web side (www.r-project.org) is the main source of
information to start with R.

Apart from two sections in the central part (Getting Started, News)
you find the following sections on the left hand side menu:

Download (with a link to the CRAN repository), R Project, R Foun-
dation, Help With R, Documentation (FAQs, Manuals, etc.); Links
(links to related projects such as Bioconductor)

The CRAN web page has links to download and install the software for
Linux, Mac, and Windows.

Another resource at CRAN are the Task Views. These are collections of
resources related to special topics that bring together functions, packages,
links, etc., classified and commented by the maintainer of the Task View.

TU – Wien 〈StatWth17 〉 7 / 85

Introduction to R and RStudio CRAN Tasks Views

CRAN Tasks Views (1)

Name Topic

Bayesian Bayesian Inference

ChemPhys Chemometrics, Computational Physics

ClinicalTrials Clinical Trial Design, Monitoring, Analysis

Cluster Cluster Analysis, Finite Mixture Models

DifferentialEquations Differential Equations

Distributions Probability Distributions

Econometrics Econometrics

Environmetrics Analysis of Ecological, Environmental Data

ExperimentalDesign Design of Experiments, Analysis of Experimental Data

ExtremeValue Extreme Value Analysis

Finance Empirical Finance

FunctionalData Functional Data Analysis

Genetics Statistical Genetics

Graphics Graphic Displays, Dynamic Graphics, Graphic Devices

HighPerformanceComputing High-Performance and Parallel Computing with R

MachineLearning Machine Learning, Statistical Learning

MedicalImaging Medical Image Analysis

MetaAnalysis Meta-Analysis

TU – Wien 〈StatWth17 〉 8 / 85

Introduction to R and RStudio CRAN Tasks Views

CRAN Tasks Views (2)

Name Topic

Multivariate Multivariate Statistics

NaturalLanguageProcessing Natural Language Processing

NumericalMathematics Numerical Mathematics

OfficialStatistics Official Statistics, Survey Methodology

Optimization Optimization, Mathematical Programming

Pharmacokinetics Analysis of Pharmacokinetic Data

Phylogenetics Phylogenetics, Especially Comparative Methods

Psychometrics Psychometric Models and Methods

ReproducibleResearch Reproducible Research

Robust Robust Statistical Methods

SocialSciences Statistics for the Social Sciences

Spatial Analysis of Spatial Data

SpatioTemporal Handling and Analyzing Spatio-Temporal Data

Survival Survival Analysis

TimeSeries Time Series Analysis

WebTechnologies Web Technologies and Services

gR gRaphical Models in R

TU – Wien 〈StatWth17 〉 9 / 85

Introduction to R and RStudio R Interfaces

R Interfaces

The base installation of R comes with a CLI (Command Line Interface)
which allows interacting with R by means of expressions (i. e., commands)
and scripts. Also included in the base installation of R is a (simple) GUI
(Graphical User Interface). There are a number of projects with regard
to more refined R interfaces. We can find two types of interfaces:

◮ MDB GUIs: Interfaces with Menus and Dialog Boxes to perform
(usually only limited) statistical analysis. The most popular GUIs
of this kind are R Commander (package: Rcmdr) and Deducer
(package: Deducer).

◮ IDE: Interfaces with an Integrated Development Environment which
allow (the experienced user) to exploit all the capabilities of R. The
most popular environments include RStudio, Emacs + ESS, and
Eclipse + StatET.

TU – Wien 〈StatWth17 〉 10 / 85

Introduction to R and RStudio R Expressions

R Expressions

The way to interact with R is through R expressions (or R commands).
R is interactive in that it responds to inputs which can be expressions of
several types:

arithmetic expressions; logical expressions; functions; assignments

Although R works with in-memory data, there is obviously a need to
work with expressions containing files in several ways:

read data files (of various formats); write data (in various formats);

save plots (in various formats); create script files (containing, for

example, a complete statistical analysis); create reports (including

text, code, results, data, graphics)

TU – Wien 〈StatWth17 〉 11 / 85

Introduction to R and RStudio R Infrastructure

R Infrastructure

The R infrastructure comprises the following elements:

console; editor; graphical output; history; workspace; working directory

The first three of these elements can be accessed using the base R GUI;
the other elements are hidden (and can be accessed via R commands).

In the following we will use RStudio which allows to access all of these
elements (and many more) in a simple and intuitive way.

RStudio is a Java-based application; the basic desktop version can be
downloaded for free for various platforms at www.rstudio.com. (First
install R and then RStudio; in both cases accept the default options.)

TU – Wien 〈StatWth17 〉 12 / 85

Introduction to R and RStudio RStudio: Default Layout

RStudio: Default Layout (1)

TU – Wien 〈StatWth17 〉 13 / 85

Introduction to R and RStudio RStudio: Default Layout

RStudio: Default Layout (2)

[LL] R Console: prompt, output from expressions (or system related)

[UL] R Source: scripts, text files, data files, etc.

[UR] ◮ R Environment: workspace (lists available objects)

◮ R History: commands history (can be searched and used again)

[LR] ◮ Files: file explorer (can be linked to the working directory)

◮ Plots: graphics device (the plots generated are shown here)

◮ Packages: packages available in the system (there packages are
installed, uninstalled, or updated)

◮ Help: R documentation (including installed contributed packages)

◮ Viewer: for web applications

TU – Wien 〈StatWth17 〉 14 / 85

Introduction to R and RStudio The Command Line

The Command Line (1)

Note: Rather than showing screenshots of the R Console, we typeset the
command line and show the output.

> 2 + 2

[1] 4

Average of five numbers:

> (1 + 3 + 2 + 12 + 8)/5

[1] 5.2

R uses standard conventions for mathematical operations. Here we find the
distance between two points (1, 3) and (2, 1):

> ((2 - 1)^2 + (1 - 3)^2)^(1/2)

[1] 2.236068

TU – Wien 〈StatWth17 〉 15 / 85

Introduction to R and RStudio The Command Line

The Command Line (2)

Multiple Commands: We can place more than one command on the
command line at once. Separate them by a semicolon (;).

> 2^3; 1 + 2 + 3

[1] 8

[1] 6

The Prompt: The command line has two states, one being ready for input
(>), the other expecting a continuation of the current input (+). Complete
the command line or leave it by pushing the ESC-button.

> (1 + 3 + 2 + 12 +

+

+ 8)/5

[1] 5.2

TU – Wien 〈StatWth17 〉 16 / 85

Introduction to R and RStudio The Command Line

The Command Line (3)

Errors: Sometimes we type in a command that does not make sense to
R’s interpreter. Most of the time the error messages are quite informative
(for the newbie some may appear a little bit cryptic). Sometimes R gives
only a warning (but does not stop).

> 2^^3

Error: unexpected ’^’ in "2^^"

> log(-1)

[1] NaN

Warning message:

In log(-1) : NaNs produced

Command History: After one issues a command, it is recorded in R’s
history (see also the UR-pane of RStudio). We may scroll through the
previous commands (by using the arrow keys), edit and re-execute them.

TU – Wien 〈StatWth17 〉 17 / 85

Introduction to R and RStudio The Command Line

The Command Line (4)

Variables: The power of R goes well beyond that of a calculator. In
particular, names can be to assigned to values with an assignment
operator (<- is preferred, but = can also be used).

> x <- 2

> y <- x^2 - 2*x + 1

> y

[1] 1

Variable names may be long or short, we may use letters and numbers
(start with a letter), and use . or _ . Note that case is important. All
the following assignments (and many more) are valid (and different):

> myData <- 5

> Data_ <- 5

> my.Data <- 5

> my_Data <- data. <- 5

TU – Wien 〈StatWth17 〉 18 / 85

Introduction to R and RStudio The Command Line

The Command Line (5)

Tab completion: When a command is partially entered and the tab key
is pressed, a list of possible completions is shown. Use the mouse (or the
arrow/enter keys) to choose from this list.

Built-in variables: R has a few built-in variables, for example pi or T/F
(for the logical TRUE/FALSE, respectively). These names may have new
values bound to them (for example, pi <- 1000), but it is not
recommended to do so.

Functions: The R language is comprised of numerous built-in functions,
several are for the familiar mathematical operations. For example:

> x <- pi

> sin(x)

[1] 1.224606e-16

> sqrt(x)

[1] 1.772454

TU – Wien 〈StatWth17 〉 19 / 85

Introduction to R and RStudio The Command Line

The Command Line (6)

Functions are called by their name followed by a pair of parentheses. If
there is more than one argument (which is usually the case), these are
separated by commas. For example:

> log(x) # base e = exp(1)

[1] 1.14473

> log(x, 10) # base 10

[1] 0.4971499

Combine values: One of the most commonly used functions has the
short name c. This function combines values together (giving a vector;
see below). For example:

> x <- c(74, 122, 235, 111, 292)

> mean(x) # take the average (or mean) value

[1] 166.8

TU – Wien 〈StatWth17 〉 20 / 85

Introduction to R and RStudio The Command Line

The Command Line (7)

Vectorized functions: R has several functions which perform their task
not only for a single number but rather do the same thing for a vector of
numbers. The standard mathematical functions are of this kind:

> x + x

[1] 148 244 470 222 584

> sqrt(x)

[1] 8.602325 11.045361 15.329710 10.535654 17.088007

> x - mean(x)

[1] -92.8 -44.8 68.2 -55.8 125.2

In this last example the sizes of x and mean(x) did not match. First, R
recycles values from the smaller object to create new matching objects,
and then performs the vectorized subtraction. This is an important feature
of R (which may be confusing sometimes).

TU – Wien 〈StatWth17 〉 21 / 85

Introduction to R and RStudio The Command Line

The Command Line (8)

Default/Named arguments: To make it easier to use functions with
many arguments, some of them have default values. For example, the
mean function has two additional arguments, trim (default: trim = 0),
and na.rm (default: na.rm = FALSE). Suppose we have a new data
object, where one value is missing:

> x1 <- c(74, 122, NA, 235, 111, 292)

> mean(x1)

[1] NA

> mean(x1, na.rm = TRUE) # first remove missing values

[1] 166.8

> mean(x1, trim = 0.5, na.rm = TRUE)

[1] 122

In this example we used two named arguments. Additional arguments can
be matched by position or by keyword. In the last command, either could
have been used. (For ease of use, the second method is preferred.)

TU – Wien 〈StatWth17 〉 22 / 85

Introduction to R and RStudio The Command Line

The Command Line (9)

Generic functions: The same function name may refer to very different
function definitions, depending on the type (more precisely, on the class ;
see below) of its first argument. Functions of this kind are called generic.
We illustrate with the summary function:

> x1 <- c(74, 122, NA, 235, 111, 292)

> y <- c(FALSE, FALSE, TRUE, TRUE)

> summary(x1)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

74.0 111.0 122.0 166.8 235.0 292.0 1

> summary(y)

Mode FALSE TRUE

logical 2 2

Depending on the argument (x is a vector of numbers, y a vector of logical
values) the function behaves quite different. In the first case it provides us
with some numerical summaries, in the second case it is merely a count.

TU – Wien 〈StatWth17 〉 23 / 85

Introduction to R and RStudio The Command Line

The Command Line (10)

Help system: The base installation of R comprises a fairly small set of
base functionality and can be extended by numerous additional packages.
For the most part, the data sets, functions or packages (base or add-ons)
are accompanied by (more or less elaborated) documentations. R’s help
system allows one to access these help pages in many different ways.

The most basic access is via ?, for example, ?mean. Note that the mean

function is generic and the Usage section (of the R documentation) shows
what is available by default. (See the accompanying R-file for some more
examples.)

Using RStudio, a simple way of getting help is to put the mouse pointer
on the function name and pressing the F1 button.

Another way of getting help is using a web browser, in this example, by
typing (something similar to) R: mean in the search field of the browser.

TU – Wien 〈StatWth17 〉 24 / 85

Introduction to R and RStudio The Workspace

The Workspace (1)

Working with R one typically creates many objects and functions. R will
maintain these objects in a global Workspace. When R searches for an
object at the command line, this is the first place on its path that it will
look for.

RStudio lists most items in the global workspace along with a short
summary in the Workspace pane. Alternatively, the ls function my be
used at the command line to list the objects and functions the user has
defined. To get a short summary of an object the summary or the str

function may be used:

> ls()

[1] "x" "x1" "y"

> str(x)

num [1:5] 74 122 235 111 292 2

TU – Wien 〈StatWth17 〉 25 / 85

Introduction to R and RStudio The Workspace

The Workspace (2)

Sometimes we may wish to remove some objects from the workspace. This
can be done through the rm function.

> rm(x) # remove a single object (x)

> rm(list=ls()) # remove all objects (first check ls()!)

Alternatively you may use the ’broom’ icon on the Workspace pane.

Sessions: The global workspace and history file contain the currently
defined objects and the commands that were used to create them. Both
may be useful to keep and R can do so from session to session. When one
quits R, a prompt to ’Save workspace image’ is given. Depending on your
settings, R will write the contents of the workspace to a file (.RData) to be
read back when R is started again. (Some authors recommend not to do so
and always start with an empty session. They argue that this forces the R
user to concentrate on code and scripts and not on objects in the global
environment.)

TU – Wien 〈StatWth17 〉 26 / 85

Introduction to R and RStudio RStudio Projects

RStudio Projects (1)

We may keep all the files associated with a particular project (data files,
R scripts, analytical results, figures, etc.) in an RStudio project. This
procedure may be useful, for example, when we run several (different)
projects in parallel, but we do not want to mix them up.

Although we will not use this framework in the lecture, let’s consider a
small Example: Click File –> New Project, create an Empty Project,
call it RIntro, and choose a place where you want to put it in (in this
example, the Desktop). Once this process is complete, you’ll get a new
RStudio project. Check that the ’home’ directory of the project is the
current directory:

> getwd()

[1] "C:/Users/wgurker/Desktop/RIntro"

TU – Wien 〈StatWth17 〉 27 / 85

Introduction to R and RStudio RStudio Projects

RStudio Projects (2)

Open a new R script, enter the following commands, and save the file,
calling it, for example, mpg.R. (Don’t worry about the details, we will
discuss them below.)

mpg <- ggplot2::mpg

plot(hwy ~ displ,

type = "p",

pch = 19,

cex = 1.3,

col = "red",

data = mpg)

Run the script, and save the plot, calling it mpg.pdf (use Export –> Save
as PDF). Quit RStudio and check the folder associated with your project.
Double click the .Rproj file, and notice that you get where you left off.

TU – Wien 〈StatWth17 〉 28 / 85

Introduction to R and RStudio External Packages

External Packages (1)

Base R can be extended through numerous external packages. Check how
many are available at the moment:

> Sys.Date()

[1] "2017-09-14"

> nrow(available.packages())

[1] 11377

Packages are primarily available through CRAN, the worldwide repository
of packages and related sources. (There is a mirror at the WU–Wien; this
is the main CRAN repository)

RStudio provides a pane for interacting with packages. From here one can
load or unload currently installed packages, by selecting or deselecting the
appropriate box. Once loaded, the functions and data sets of this package
are available for use.

TU – Wien 〈StatWth17 〉 29 / 85

Introduction to R and RStudio External Packages

External Packages (2)

To install packages not listed in the pane, the following information pieces
are required:

◮ The package name. (The autocompletion function is helpful in case
you don’t know exactly the name of the package.)

◮ The repository where to install from. (Use a repository next to you.)

◮ The library to install the package into. (Usually this can be left to
the default.)

Note that packages usually have (possibly many!) dependencies on other
packages. (The default settings are to automatically install any dependent
packages.)

Like R, packages are versioned. (Using the Update button from time to
time may be wise; but be aware that some of your commands may cause
an error in updated package versions.)

TU – Wien 〈StatWth17 〉 30 / 85

Introduction to R and RStudio External Packages

External Packages (3)

The following functions perform the core functionality to install and load
add-on packages from the command line. For example, let’s install, load,
and unload the qcc package:

install the package on the system

> install.packages("qcc")

attach (load) the package to the workspace

> library("qcc")

alternatively, we can use

> require("qcc")

detach (unload) the package from the search path

> detach("package:qcc", unload=TRUE)

Note: Each time R is closed and restarted the required packages have to
be reloaded. This may be done using the check boxes in the Package pane.
Alternatively, it may be more convenient to load the packages in the R
scripts as they are needed in the code.

TU – Wien 〈StatWth17 〉 31 / 85

Introduction to R and RStudio Data Sets

Data Sets (1)

Many packages include accompanying data sets. In addition, base R has
a datasets package which is loaded automatically at start.

Usually the data sets in a package are available in the user’s search path,
though they don’t appear in the Workspace pane by default. For example,
let’s look at the first 50 values of the rivers data set (in the datasets

package):

> head(rivers, n = 50)

[1] 735 320 325 392 524 450 1459 135 465 600

[11] 330 336 280 315 870 906 202 329 290 1000

[21] 600 505 1450 840 1243 890 350 407 286 280

[31] 525 720 390 250 327 230 265 850 210 630

[41] 260 230 360 730 600 306 390 420 291 710

TU – Wien 〈StatWth17 〉 32 / 85

Introduction to R and RStudio Data Sets

Data Sets (2)

The data function: The rivers object of the previous example cannot
be edited directly, any edits will produce a copy in the user’s workspace
(shown in the Workspace pane). A copy will also be made if one brings
the data set into the workspace using the data function. Here are some
examples:

not shown in Workspace pane (RStudio)

> rivers # [output not shown]

> rivers[1:5]

[1] 735 320 325 392 524

editing produces a copy in workspace

> rivers[1] <- NA

remove edited data set

> rm(rivers)

load a copy into workspace

> data(rivers)

TU – Wien 〈StatWth17 〉 33 / 85

Introduction to R and RStudio Data Sets

Data Sets (3)

The data function may also be used to search a package for available data
sets; for example, data(package = "UsingR") (look what’s shown in the
upper left pane). Next, without actually loading the UsingR package, let’s
load the alltime.movies data set in this package into the workspace:

> data(alltime.movies, package = "UsingR")

> head(alltime.movies)

Gross Release.Year

Titanic 601 1997

Star Wars 461 1977

E.T. 435 1982

Star Wars: The Phantom Menace 431 1999

Spider-Man 404 2002

Jurassic Park 357 1993

Note: The data set is stored as what is called a data frame. More will be
said about this kind of R objects below.

TU – Wien 〈StatWth17 〉 34 / 85

Introduction to R and RStudio Data Classes and Types

Data Classes and Types (1)
Data objects in R can be thought of in two different senses, with regard
to their class and their type (or mode). Some basic data types are:

◮ logical: TRUE/FALSE

◮ integer: integer number

◮ double: real number

◮ character: string character

There are other data types (for example, complex); use the documentation
of the typeof function to learn more about them.

> c(typeof(pi), mode(pi))

[1] "double" "numeric"

> c(typeof("today"), mode("today"))

[1] "character" "character"

> c(typeof(rivers), mode(rivers))

[1] "double" "numeric"

TU – Wien 〈StatWth17 〉 35 / 85

Introduction to R and RStudio Data Classes and Types

Data Classes and Types (2)

On the other hand, these basic data can be organized in various data
structures. The most important classes available in R are:

◮ vector: one dimensional entity of ordered values (of the same type)

◮ matrix: vector organized in rows and columns (more generally, as a
multi-dimensional array)

◮ list: list of objects that can be of different types and lengths; results
of statistical computations are usually returned as lists

◮ data frame: data set organized in columns (of the same length but
possibly of different types) and rows

◮ factor: useful to handle categorical data (also contains information
about levels and labels)

◮ function: functions are themselves objects in R which can be stored
in the project’s workspace

TU – Wien 〈StatWth17 〉 36 / 85

Introduction to R and RStudio Data Classes and Types

Data Classes and Types (3)

There are many more classes in R (and new classes can be created by
the programming capabilities of R). For example, objects of class ’ts’
are useful for working with time series.

The class of an object is used to allow for an object-oriented style of
programming in R. For example, if an object has class ’data.frame’ it
will be printed and plotted in a certain way, etc.

> class(rivers)

[1] "numeric"

> summary(rivers)

Min. 1st Qu. Median Mean 3rd Qu. Max.

135.0 310.0 425.0 591.2 680.0 3710.0

> class(mean)

[1] "function"

TU – Wien 〈StatWth17 〉 37 / 85

Introduction to R and RStudio Data Classes and Types

Data Classes and Types (4)

> class(alltime.movies)

[1] "data.frame"

> summary(alltime.movies)

Gross Release.Year

Min. :172.0 Min. :1937

1st Qu.:184.0 1st Qu.:1990

Median :216.0 Median :1997

Mean :240.2 Mean :1993

3rd Qu.:260.0 3rd Qu.:2001

Max. :601.0 Max. :2003

> (myFactor1 <- factor(rep(1:5, 2), labels = letters[1:5]))

[1] a b c d e a b c d e

Levels: a b c d e

> class(myFactor1)

[1] "factor"

TU – Wien 〈StatWth17 〉 38 / 85

Introduction to R and RStudio Vectors

Vectors (1)

The most basic classes in R are vectors. In particular, more complex data
structures are composed of vectors (for example, the columns of a data
frame are vectors).

Creating vectors: There are several ways of creating vectors. One uses
interactively the scan function:

> x1 <- scan()

1: 10

2: 20

3: 30

4:

Read 3 items

Now we have created a vector whose name is x1. Using RStudio, the
object is shown under the Environment tab (UR pane). Additionally, we get
some information about this object. (Alternatively, use str(x1).)

TU – Wien 〈StatWth17 〉 39 / 85

Introduction to R and RStudio Vectors

Vectors (2)
Clearly, creating vectors interactively is not always practical. Here are some
other possibilities:

> x1 <- c(10, 20, 30, 40, 50); x1

[1] 10 20 30 40 50

> x1 <- seq(from = 10, to = 50, by = 10); x1

[1] 10 20 30 40 50

> x2 <- 1:10; x2

[1] 1 2 3 4 5 6 7 8 9 10

> x3 <- c(rep("pinetree", 3), rep("oaktree", 2)); x3

[1] "pinetree" "pinetree" "pinetree" "oaktree" "oaktree"

> x4 <- c(seq(from = 0, to = 1, by = 0.2), 5:9); x4

[1] 0.0 0.2 0.4 0.6 0.8 1.0 5.0 6.0 7.0 8.0 9.0

> x5 <- seq_along(x4); x5

[1] 1 2 3 4 5 6 7 8 9 10 11

Check that all these new vectors are in the workspace.

TU – Wien 〈StatWth17 〉 40 / 85

Introduction to R and RStudio Vectors

Vectors (3)

In the examples above we used the rep function. This function can be
used to repeat some values of a vector a specified number of times:

> rep(c(1,2,3), times = c(3,2,1))

[1] 1 1 1 2 2 3

Logical vectors can also be created:

> logicalVector <- 1:6 > 3

> logicalVector

[1] FALSE FALSE FALSE TRUE TRUE TRUE

> sum(logicalVector)

[1] 3

Note that TRUE and FALSE are treated as 1 and 0, respectively, when
operating with them. This is useful, for example, to get the number of
elements that are true in a logical vector.

TU – Wien 〈StatWth17 〉 41 / 85

Introduction to R and RStudio Vectors

Vectors (4)

Length and names: To find the length (= number of elements) of a
vector, we can use the length function:

> length(x1)

[1] 5

To label the elements of a vector we can use the names function. In the
following example we also use the paste function which is useful if some
characters are common to all labels:

> names(x1) <- paste("week", 1:5, sep=""); x1

week1 week2 week3 week4 week5

10 20 30 40 50

> names(x1)

[1] "week1" "week2" "week3" "week4" "week5"

TU – Wien 〈StatWth17 〉 42 / 85

Introduction to R and RStudio Vectors

Vectors (5)

Below we will use the precip dataset (package: datasets). This is a
named vector of length 70 (use ?precip for further details):

> precip

Mobile Juneau Phoenix

67.0 54.7 7.0

Little Rock Los Angeles Sacramento

48.5 14.0 17.2

.

> length(precip)

[1] 70

> names(precip)

[1] "Mobile" "Juneau"

[3] "Phoenix" "Little Rock"

[5] "Los Angeles" "Sacramento"

.

TU – Wien 〈StatWth17 〉 43 / 85

Introduction to R and RStudio Vectors

Vectors (6)

Indexing: Data object in R are indexed, and we can access each element of
a vector (or any other data object; see below) through its index or its name
(if it exists). Here are some examples (first guess what you will get):

x1[3]

x1[3] <- 50; x1

x1[c(1,3)]

x1[c(-2)]

x1["week3"]

extend a vector

x1 <- c(x1, 60)

x1[10] <- 100; x1

reduce a vector

x1 <- x1[-c(6:10)]; x1

use a logical expression

x1[x1 > 20]

TU – Wien 〈StatWth17 〉 44 / 85

Introduction to R and RStudio Vectors

Vectors (7)

Additional examples using the precip dataset:

> precip[c("Seattle Tacoma", "New York")]

Seattle Tacoma New York

38.8 40.2

find all cities with an average precipitation of

more than 50 inches

> precip[precip > 50]

Mobile Juneau Jacksonville Miami

67.0 54.7 54.5 59.8

New Orleans San Juan

56.8 59.2

TU – Wien 〈StatWth17 〉 45 / 85

Introduction to R and RStudio Vectors

Vectors (8)

Suppose monthly sales (in 10,000s) of CDs in a certain year were: 79, 74,
161, 127, 133, 210, 99, 143, 249, 249, 368, 302. We enter the data as a
named vector (the scan function may be useful in this case), and form
two vectors containing the months with 31 days, and the remaining ones.

> cd <- c(79,74,161,127,133,210,99,143,249,249,368,302)

> names(cd) <- month.abb; cd

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

79 74 161 127 133 210 99 143 249 249 368 302

> m31 <- c(1,3,5,7,8,10,12)

> cd31 <- cd[m31]; cd31

Jan Mar May Jul Aug Oct Dec

79 161 133 99 143 249 302

> cd30 <- cd[-m31]; cd30

Feb Apr Jun Sep Nov

74 127 210 249 368

TU – Wien 〈StatWth17 〉 46 / 85

Introduction to R and RStudio Vectors

Vectors (9)

Ordering: Two functions are related to the ordering of vectors, sort and
order. First we use the sample function to create a random vector.

> set.seed(1234)

> x6 <- sample(1:1000, 10, replace = TRUE); x6

[1] 114 623 610 624 861 641 10 233 667 515

> sort(x6)

[1] 10 114 233 515 610 623 624 641 667 861

> sort(x6, decreasing = TRUE)

[1] 861 667 641 624 623 610 515 233 114 10

> ii <- order(x6); ii

[1] 7 1 8 10 3 2 4 6 9 5

> x6[ii]

[1] 10 114 233 515 610 623 624 641 667 861

TU – Wien 〈StatWth17 〉 47 / 85

Introduction to R and RStudio Vectors

Vectors (10)

Operations: There are two types of operations over a vector:

◮ Operations over all elements of a vector as a whole (can be a
computation, a plot, etc.)

◮ Operations over each element of a vector (resulting in a vector
of the same length)

> mean(x6) # first type

[1] 489.8

> x6 + 100 # second type (using recycling)

[1] 214 723 710 724 961 741 110 333 767 615

> sqrt(x6) # second type

[1] 10.677078 24.959968 24.698178 24.979992 29.342802

[6] 25.317978 3.162278 15.264338 25.826343 22.693611

TU – Wien 〈StatWth17 〉 48 / 85

Introduction to R and RStudio Matrices

Matrices (1)

A rectangular collection of values of the same type can be stored in a
matrix. (Hence, a matrix is a vector organized in rows and columns.)
There are several ways to create a matrix. The most common way is
through the matrix function:

> myMatrix1 <- matrix(c(1:15), nrow=3, ncol=5); myMatrix1

[,1] [,2] [,3] [,4] [,5]

[1,] 1 4 7 10 13

[2,] 2 5 8 11 14

[3,] 3 6 9 12 15

> myMatrix2 <- matrix(c(1:15), nrow=3, byrow=T); myMatrix2

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 6 7 8 9 10

[3,] 11 12 13 14 15

TU – Wien 〈StatWth17 〉 49 / 85

Introduction to R and RStudio Matrices

Matrices (2)

We can extract (and replace) parts of the matrix in the same way as we
did in vectors. Here are some examples:

> myMatrix1[3, 2]

[1] 6

> myMatrix1[1,]

[1] 1 4 7 10 13

> myMatrix1[2:3,]

[,1] [,2] [,3] [,4] [,5]

[1,] 2 5 8 11 14

[2,] 3 6 9 12 15

> myMatrix1[, 5] <- myMatrix2[, 5]; myMatrix1

[,1] [,2] [,3] [,4] [,5]

[1,] 1 4 7 10 5

[2,] 2 5 8 11 10

[3,] 3 6 9 12 15

TU – Wien 〈StatWth17 〉 50 / 85

Introduction to R and RStudio Matrices

Matrices (3)

We can assign names to rows and columns:

> colnames(myMatrix2) <- paste("var", 1:5, sep="")

> rownames(myMatrix2) <- paste("case", 1:3, sep="")

> myMatrix2

var1 var2 var3 var4 var5

case1 1 2 3 4 5

case2 6 7 8 9 10

case3 11 12 13 14 15

Now elements, rows or columns can be accessed using names:

> myMatrix2["case3",]

var1 var2 var3 var4 var5

11 12 13 14 15

TU – Wien 〈StatWth17 〉 51 / 85

Introduction to R and RStudio Matrices

Matrices (4)

Many operations and functions can be applied to matrices. Here is a
small selection of examples:

> rowSums(myMatrix2) # row sums

[1] 15 40 65

> rowMeans(myMatrix2) # row means

[1] 3 8 13

> colMeans(myMatrix2) # column means

[1] 6 7 8 9 10

> t(myMatrix2) # transposition

[,1] [,2] [,3]

[1,] 1 6 11

[2,] 2 7 12

[3,] 3 8 13

[4,] 4 9 14

[5,] 5 10 15

TU – Wien 〈StatWth17 〉 52 / 85

Introduction to R and RStudio Matrices

Matrices (5)

> myMatrix2 * myMatrix2 # element-wise multiplication

[,1] [,2] [,3] [,4] [,5]

[1,] 1 4 9 16 25

[2,] 36 49 64 81 100

[3,] 121 144 169 196 225

> myMatrix2 %*% t(myMatrix2) # true matrix multiplication

[,1] [,2] [,3]

[1,] 55 130 205

[2,] 130 330 530

[3,] 205 530 855

> solve(h3) # inverse of 3x3 Hilbert

[,1] [,2] [,3] # matrix (see R script)

[1,] 9 -36 30

[2,] -36 192 -180

[3,] 30 -180 180

TU – Wien 〈StatWth17 〉 53 / 85

Introduction to R and RStudio Lists

Lists (1)

Lists are data structures that can contain any other R objects of different
types and lengths. The elements of a list can be named.

> (myList <- list(mat = myMatrix2, vec1 = x1, vec2 = 1:10))

$mat

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 6 7 8 9 10

[3,] 11 12 13 14 15

$vec1

week1 week2 week3 week4 week5

10 20 30 40 50

$vec2

[1] 1 2 3 4 5 6 7 8 9 10

TU – Wien 〈StatWth17 〉 54 / 85

Introduction to R and RStudio Lists

Lists (2)

Similar to vectors, the components of a list can be accessed by index or
by name. In the latter case the $ – operator is used.

> myList$vec1

week1 week2 week3 week4 week5

10 20 30 40 50

> myList[3]

$vec2

[1] 1 2 3 4 5 6 7 8 9 10

> myList[[3]]

[1] 1 2 3 4 5 6 7 8 9 10

The difference between [3] and [[3]] is that when using double brackets,
we get the original object within the list (a vector in this case), whereas
using single brackets, we get an object of class list. Let’s consider some
more examples.

TU – Wien 〈StatWth17 〉 55 / 85

Introduction to R and RStudio Lists

Lists (3)

> myList[[3]][1] # extract vec2[1]

[1] 1

> myList[c(1, 2)] # extract more than one

$mat # component of myList

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 6 7 8 9 10

[3,] 11 12 13 14 15

$vec1

week1 week2 week3 week4 week5

10 20 30 40 50

> myList$mat[, 2] # extract elements of

[1] 2 7 12 # inner components

TU – Wien 〈StatWth17 〉 56 / 85

Introduction to R and RStudio Data Frames

Data Frames (1)

The usual way of working with data is to organize them in a rectangular
scheme of rows and columns, where columns represent variables which
are measured or observed for a set of items, represented by rows.

Objects of this kind are called data frames and are of class ’data.frame’.
Note that in contrast to matrices (which share a similar structure) where
all elements have to be of the same type, the columns of data frames
can be of different types.

Usually, data are imported to data frames from files of various kinds, such
as text files, spreadsheets, databases, etc. (In R there are various functions
to perform this.) Sometimes, data frames are created from other R objects
or ’from scratch’ using the data.frame function. Let’s consider a small
example.

TU – Wien 〈StatWth17 〉 57 / 85

Introduction to R and RStudio Data Frames

Data Frames (2)

> myData <- data.frame(

+ type = c("A", "A", "B", "C", "C", "C"),

+ weight = c(10.1, 20.3, 15.2, 13.4, 23.2, 8.1))

> myData

type weight

1 A 10.1

2 A 20.3

3 B 15.2

4 C 13.4

5 C 23.2

6 C 8.1

> str(myData)

’data.frame’: 6 obs. of 2 variables:

$ type : Factor w/ 3 levels "A","B","C": 1 1 2 3 3 3

$ weight: num 10.1 20.3 15.2 13.4 23.2 8.1

TU – Wien 〈StatWth17 〉 58 / 85

Introduction to R and RStudio Data Frames

Data Frames (3)
As can be seen from the previous slide, using str(myData) shows how to
access the different parts of the data frame. Note that accessing by $name

is equivalent to using [[]]. For example:

> myData$type # results in a vector

[1] A A B C C C

Levels: A B C

> myData[2] # results in a data frame

weight

1 10.1

2 20.3

3 15.2

4 13.4

5 23.2

6 8.1

TU – Wien 〈StatWth17 〉 59 / 85

Introduction to R and RStudio Data Frames

Data Frames (4)
Some more examples:

> myData[3,]

type weight

3 B 15.2

> myData[myData$weight < 15,]

type weight

1 A 10.1

4 C 13.4

6 C 8.1

Note that columns and rows of a data frame always have names, even in
case we don’t use names when creating a data frame. (The default is that
columns are named as V1, V2, etc., and rows are named as 1, 2, etc.) Row
and column names may be assigned or changed in the same way as we did
for matrices.

TU – Wien 〈StatWth17 〉 60 / 85

Introduction to R and RStudio Data Frames

Data Frames (5)

Let’s consider an example (first we make a copy of our data frame):

> myEditedData <- myData

> colnames(myEditedData)[2] <- "itemWeight"

> rownames(myEditedData) <- paste("case",

+ rownames(myEditedData),

+ sep = "_")

> myEditedData

type itemWeight

case_1 A 10.1

case_2 A 20.3

case_3 B 15.2

case_4 C 13.4

case_5 C 23.2

case_6 C 8.1

TU – Wien 〈StatWth17 〉 61 / 85

Introduction to R and RStudio Data Frames

Data Frames (6)

Data frames can be ordered, filtered (i. e., subsetted), aggregated (i. e.,
building subtotals of numerical by categorical variables), and edited (i. e.,
changing values, adding new columns, etc.). Using our illustrative data
frame myData, we consider some examples.

> myData[order(myData$weight),]

type weight

6 C 8.1

1 A 10.1

4 C 13.4

3 B 15.2

2 A 20.3

5 C 23.2

TU – Wien 〈StatWth17 〉 62 / 85

Introduction to R and RStudio Data Frames

Data Frames (7)

> subset(myData, weight > 15)

type weight

2 A 20.3

3 B 15.2

5 C 23.2

> aggregate(weight ~ type, data = myData, sum)

type weight

1 A 30.4

2 B 15.2

3 C 44.7

In the last example we used a special type of expression, a formula. A
formula is an expression with two sides, separated by the symbol ~. It is
mainly used to specify models in the form of y ~ model. In the example
the ’model’ is formed by the criteria by which we want to sum the data.

TU – Wien 〈StatWth17 〉 63 / 85

Introduction to R and RStudio Data Frames

Data Frames (8)

add a new column

> myData$randomorder <- sample(1:6)

> myData

type weight randomorder

1 A 10.1 2

2 A 20.3 6

3 B 15.2 3

4 C 13.4 4

5 C 23.2 1

6 C 8.1 5

remove the new column

> myData$randomorder <- NULL

TU – Wien 〈StatWth17 〉 64 / 85

Introduction to R and RStudio Data Frames

Data Frames (9)

Above we added (and removed) a new column. Suppose we want to add
a computed column. (Note that the procedure is similar to what we do
in spreadsheets with formulas.)

> myData$proportion <- myData$weight/sum(myData$weight)

> myData

type weight proportion

1 A 10.1 0.1118494

2 A 20.3 0.2248062

3 B 15.2 0.1683278

4 C 13.4 0.1483942

5 C 23.2 0.2569214

6 C 8.1 0.0897010

Note that these few examples only give a first impression of what can be
done with data frames.

TU – Wien 〈StatWth17 〉 65 / 85

Introduction to R and RStudio Tibbles

Tibbles (1)
In more recent texts on data analysis with R you may find that so-called
’tibbles’ are used instead of data frames. In fact, tibbles are data frames,
but they tweak some of the unfavorable features of the older concept. At
first sight, the main difference of tibbles versus data frames is how they
are printed. Let’s consider two examples:

> library("tibble")

> as.tibble(myData)

A tibble: 6 x 2

type weight

<fctr> <dbl> # <<-- types of variables are shown here

1 A 10.1

2 A 20.3

3 B 15.2

4 C 13.4

5 C 23.2

6 C 8.1

TU – Wien 〈StatWth17 〉 66 / 85

Introduction to R and RStudio Tibbles

Tibbles (2)

> ggplot2::mpg

A tibble: 234 x 11

manufacturer model displ year cyl trans drv

<chr> <chr> <dbl> <int> <int> <chr> <chr>

1 audi a4 1.8 1999 4 auto(l5) f

2 audi a4 1.8 1999 4 manual(m5) f

3 audi a4 2.0 2008 4 manual(m6) f

4 audi a4 2.0 2008 4 auto(av) f

5 audi a4 2.8 1999 6 auto(l5) f

6 audi a4 2.8 1999 6 manual(m5) f

7 audi a4 3.1 2008 6 auto(av) f

8 audi a4 quattro 1.8 1999 4 manual(m5) 4

9 audi a4 quattro 1.8 1999 4 auto(l5) 4

10 audi a4 quattro 2.0 2008 4 manual(m6) 4

... with 224 more rows, and 4 more variables: cty <int>,

hwy <int>, fl <chr>, class <chr>

TU – Wien 〈StatWth17 〉 67 / 85

Introduction to R and RStudio Data Import

Data Import (1)

In this section we briefly discuss how to import external data sets, that is,
data sets that are not part of R packages or have been created by the user.
Of course, we are faced with a wide range of possibilities. (Check the “R
Data Import/Export” manual for a more full discussion.)

Spreadsheet data: Perhaps the most common source of data are spread-
sheets, such as Excel. R has some add-on packages for interacting directly
with Excel (for example, the xlsx package).

For a simple data exchange from a spreadsheet into R, we can use a text-
file exchange. The basic idea being that the spreadsheet program writes
out the data to a file which is read into R. Common formats for such
exchange files are csv (comma-separated values), tsv (tab-separated
values), or fwf (fixed-width format).

Note that also the ’Import Dataset’ tab of RStudio (UR) can be used to
perform this task. We consider two illustrative examples (from [2] and [3]).

TU – Wien 〈StatWth17 〉 68 / 85

Introduction to R and RStudio Data Import

Data Import (2)

download the data file

download.file(

url = "http://emilio.lcano.com/qcrbook/lab.csv",

destfile = "lab.csv")

read in the file

you may also use the ’Import Dataset’ tab (RStudio)

lab <- read.csv("lab.csv")

cf. the R script for the second example

Be prepared that raw data like these probably contain errors! Since our
data sets are rather large, it may not be an easy task to find out where
(and of what kind) these errors are (missing values, wrong date formats,
etc.). Tidying up a messy data set is an important task of its own! (Note
that there are some packages, for example tidyr, which may be helpful.)

TU – Wien 〈StatWth17 〉 69 / 85

Introduction to R and RStudio Data Import

Data Import (3)

Web-based data sets: Data sets of all kinds are to be found on the
Internet. Many sites provide data in some regular format (though these
formats can be very different), other sites have data embedded in tables
in a web page. Some of the functionality needed to access these data is
provided through base R, but much is based on add-on packages. Here
we briefly consider two add-ons, the quandl and the XML package.

The quandl package: Quandl.com is a web site that indexes time-series
data from numerous sources. It has millions of data sets, and even better,
an open interface for downloading (and uploading) data. To download a
file is as easy as browsing the site to the data of interest, and noticing the
assigned code.

In the following example we refer to data on demographics of the Austrian
population from the nineteen-sixties till 2016 by broad age groups (0–14,
15–64, 65–). We download three data sets and merge them into a single
file. Then we use the barplot function to visualize the data.

TU – Wien 〈StatWth17 〉 70 / 85

Introduction to R and RStudio Data Import

Data Import (4)

require(Quandl)

download the data sets

Note: WWDI = World Bank World Development Indicators

at_0014 <- Quandl("WWDI/AUT_SP_POP_0014_TO_ZS")

at_1564 <- Quandl("WWDI/AUT_SP_POP_1564_TO_ZS")

at_65up <- Quandl("WWDI/AUT_SP_POP_65UP_TO_ZS")

at_all <- Reduce(function(x, y) merge(x, y, by="Date"),

list(at_0014, at_1564, at_65up))

prepare for visualization

names(at_all) <- c("Date", "[0,14]","[15,64]","[65,)")

heights <- t(at_all[,-1])

colnames(heights) <- format(at_all[,"Date"], format="%Y")

barplot(heights, main="AUT-Proportion of 0-14, 15-64, 65-",

col=rainbow(3))

TU – Wien 〈StatWth17 〉 71 / 85

Introduction to R and RStudio Data Import

Data Import (5)

1960 1967 1974 1981 1988 1995 2002 2009 2016

AUT: Proportion of 0−14, 15−64, 65−

0
20

60
10

0

TU – Wien 〈StatWth17 〉 72 / 85

Introduction to R and RStudio Data Import

Data Import (6)

Parsing HTML files: Frequently the data of interest is a table within an
HTML page. For such data there are a variety of web-scraping techniques
available in R. Using functions from the XML (and the xml2) package, the
structure of a web page can be broken into pieces. Working directly with
these pieces may not be practical, but the readHTMLTable function does
the work for us.

For example, suppose that we want to import a table (seen on Wikipedia)
of highest-grossing films (in Canada and the United States) into R. Using
the readHTMLTable function directly results in an error. Thus we first use
some parsing functions from the xml2 package.

Note: Note that the apparently ’numerical’ columns are all imported as
characters (with special symbols “$”, “,”) and not numbers. Thus, before
we can proceed with our statistical analysis, we have to convert the data
into an usable format.

TU – Wien 〈StatWth17 〉 73 / 85

Introduction to R and RStudio Data Import

Data Import (7)

require(XML)

require(xml2)

url_base = "https://en.wikipedia.org/wiki/"

url_add1 <- "List_of_highest-grossing_films_in_"

url_add2 <- "Canada_and_the_United_States"

url_all <- paste(url_base, url_add1, url_add2, sep="")

u <- read_html(url_all)

doc <- htmlParse(u)

tableNodes <- getNodeSet(doc, "//table")

first table

tb1 <- readHTMLTable(tableNodes[[1]])

View(tb1)

second table

tb2 <- readHTMLTable(tableNodes[[2]])

View(tb2)

TU – Wien 〈StatWth17 〉 74 / 85

Introduction to R and RStudio Graphics

Graphics (1)

Standard plots (e. g., histograms, barplots, scatterplots, etc.) can easily be
made with the graphics package. It comes with base R and we will use it
throughout the lecture. The procedure is to start with a simple plot and
then add more details.

Over the years there have been various extensions to the base graphics
interface that enhance its abilities to make more complex plots (e. g., for
representing multivariate data) with a few commands. We briefly discuss
two of these add-ons, the lattice package (comes with base R) and the
ggplot2 package (an add-on of relatively recent origin).

graphics : In the following example we use the iris data set, consisting of
measurements of sepal length and width and petal length and width for 50
flowers from each of 3 species of iris. Suppose we want to give a graphical
representation of sepal length and width, thereby differentiating between
the species. We use only standard graphics commands.

TU – Wien 〈StatWth17 〉 75 / 85

Introduction to R and RStudio Graphics

Graphics (2)

first plot (left)

with(iris, plot(Sepal.Length, Sepal.Width,

pch=as.numeric(Species),

col=as.numeric(Species), cex=1.2))

legend(6.1, 4.4, c("setosa","versicolor","virginica"),

cex=1, pch=1:3, col=1:3)

second plot (right)

fm <- Sepal.Width ~ Sepal.Length

plot(fm, iris, pch=as.numeric(Species),

col=as.numeric(Species))

out <- mapply(function(i, x) abline(lm(fm, data=x),

lty=i, lwd=2, col=i), i=1:3,

x=split(iris, iris$Species))

legend(6.4, 4.4, levels(iris$Species), cex=1,

lty=1:3, col=1:3)

TU – Wien 〈StatWth17 〉 76 / 85

Introduction to R and RStudio Graphics

Graphics (3)

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal.Length

S
ep

al
.W

id
th

setosa

versicolor

virginica

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal.Length

S
ep

al
.W

id
th

setosa

versicolor

virginica

TU – Wien 〈StatWth17 〉 77 / 85

Introduction to R and RStudio Graphics

Graphics (4)

lattice : The lattice package is inspired by the concept of trellis plots
and can create a number of elegant plots with an emphasis on multivariate
data with various dependencies. However, working with the lattice

package is not as easy as working with the graphics package.

Lattice has a different though similar naming scheme for various standard
graphics, including histogram, barchart, etc. In place of plot we use
xyplot. Referring to our previous example, using the following command
produces a scatterplot of sepal width and length for each species:

xyplot(Sepal.Width ~ Sepal.Length | Species, data=iris)

This basic plot can be modified in various ways. For example, the panels
can be arranged in a row, regression lines can be added, etc. For this latter
task so-called panel functions can be used (or defined). A panel function
is what is called to draw each panel.

TU – Wien 〈StatWth17 〉 78 / 85

Introduction to R and RStudio Graphics

Graphics (5)

A specification such as the following plots the points (panel.xyplot) and
the regression line (panel.lmline):

panel = function(x, y) {

panel.xyplot(x, y)

panel.lmline(x, y)

}

As this is a common task, there is a more convenient way using the type

argument ("p" = points, "r" = regression line). The following command
produces a somewhat nicer graphic shown on the next slide.

xyplot(Sepal.Width ~ Sepal.Length | Species,

data=iris, pch=19, cex=1.1, lwd=2,

layout=c(3,1), type=c("p", "r"))

TU – Wien 〈StatWth17 〉 79 / 85

Introduction to R and RStudio Graphics

Graphics (6)

Sepal.Length

S
ep

al
.W

id
th

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8

setosa

5 6 7 8

versicolor

5 6 7 8

virginica

TU – Wien 〈StatWth17 〉 80 / 85

Introduction to R and RStudio Graphics

Graphics (7)

ggplot2 : This is more than an add-on package, it implements a coherent
system for describing and building graphs, called grammar of graphics.
(The site ggplot2.org hosts the documentation in an easy to access
format.) There are many benefits to making graphs with ggplot2, but
perhaps the biggest is the visual appeal of the graphs produced.

Two terms are important in working with ggplot2:

Aesthetics: Aesthetics map variables in a data set into properties that can
be perceived on a graph. For example, size, shape, and color are aesthetics.
Moreover, values for x and y are aesthetics. Aesthetics are declared
through the aes function.

Geoms: This is short for geometrical objects and refers to the functions
that do the actual rendering of the data. These declare what should be
drawn in the figure. For example, placing points on a graph is requested
by geom_ponts, drawing lines by geom_line, etc.

TU – Wien 〈StatWth17 〉 81 / 85

Introduction to R and RStudio Graphics

Graphics (8)

For our first example we use the ggplot2::mpg data frame (in fact, a
tibble), containing observations on 38 models of cars. Amongst others,
the variables displ (engine size, in liters), hwy (fuel efficiency on the
highway, in miles per gallon), and class (type of car, midsize, suv, etc.)
are observed.

Suppose we want to plot hwy against displ, differentiating between the
types of the cars. We have several possibilities; below we map the colors
of the points to the class variable to reveal the type of each car (clearly,
we could also use different symbols or the like).

ggplot(data = mpg) +

geom_point(mapping = aes(x = displ, y = hwy,

color = class), size = 2.7))

TU – Wien 〈StatWth17 〉 82 / 85

Introduction to R and RStudio Graphics

Graphics (9)

20

30

40

2 3 4 5 6 7

displ

hw
y

class

2seater

compact

midsize

minivan

pickup

subcompact

suv

TU – Wien 〈StatWth17 〉 83 / 85

Introduction to R and RStudio Graphics

Graphics (10)

Let’s consider again the iris data set. Suppose we want to produce a
similar plot as on the right side of pane Graphics (3), this time using a
’smoother’ instead of regression lines.

Several geoms may be added (with "+"). This, however, introduces some
duplication in the code. We can avoid this by passing global mappings to
ggplot that apply to each geom in the graph.

ggplot(data = iris,

mapping = aes(x = Sepal.Length, y = Sepal.Width)) +

geom_point(mapping = aes(color = Species), size = 2.7) +

geom_smooth(mapping = aes(group = Species, color = Species))

The following slide shows the result, illustrating the versatile possibilities
we have with the ggplot2 package.

TU – Wien 〈StatWth17 〉 84 / 85

Introduction to R and RStudio Graphics

Graphics (11)

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8

Sepal.Length

S
ep

al
.W

id
th Species

setosa

versicolor

virginica

TU – Wien 〈StatWth17 〉 85 / 85

	Introduction to R and RStudio
	Software for Statistics
	What is R ?
	Some Features of R
	How to Obtain R ?
	CRAN Tasks Views
	R Interfaces
	R Expressions
	R Infrastructure
	RStudio: Default Layout
	The Command Line
	The Workspace
	RStudio Projects
	External Packages
	Data Sets
	Data Classes and Types
	Vectors
	Matrices
	Lists
	Data Frames
	Tibbles
	Data Import
	Graphics

