
Memory Models

E3. Advanced Computer Architecture

Daniel Mueller-Gritschneder (First version slides: Johann Blieberger)

Content

• Interleaving Threads & Interleaving Graph

• Program & Execution Order

• Atomics

• Synchronization and Communication

• Release/Acquire Memory Model

• Blocking Wait

• Non-Blocking Wait

• Performance Comparison

• Summary

V1-0 ACA 2

V1-0

E3.1. Sequential Consistency (SC) &
Synchronization Problem

ACA 3

SC & Synchronization

Already discussed: Cache Coherency

• Cache Coherency Controller establishes a coherent view across the private caches.

Next: Sequential Consistency (SC*) & Synchronization Problem

• Memory Model: Need mechanisms to ensure that accesses of one processor appear to execute in
program order to all other, at least partly.

• Atomic Operations: HW-support for synchronization

V1-0 ACA 4

*Attention: The abbreviation SC stands here for Sequentially Consistent
Later in the slides the abbreviation SC will be reused for store conditional

V1-0

E3. 2Abstract View on Interleaving Threads

ACA 5

Interleavings

Interleavings are all possible intertwinings of sequences of statements from threads.
Example: T1: (a, c), T2: (b, d)
All possible interleavings are:

(a, c, b, d), (a, b, c, d), (a, b, d, c), (b, a, c, d), (b, a, d, c), (b, d, a, c).
The “local” orders a < c and b < d are preserved.

Interleavings graph is a representation of interleavings in form of a graph.

• Each path from the start node to the end node of the graph corresponds to an interleaving.

• The set of all such paths corresponds to the set of all possible interleavings. (Examples follow . . .)

Due to different runtimes, different scheduling strategies, different hardware architectures, the actual
execution sequence can match any arbitrary interleaving.

For general considerations (correctness of a program, . . .) one must therefore assume all interleavings as
possible.

V1-0 ACA 6

Introductory Example (with Interleavings Graph)

V1-0 ACA 7

Introductory Example

A Race Condition is a situation in which the result of an operation depends on the
temporally intertwined execution of certain other operations.

Implicit Assumption:

• Assignments occur atomically

• Only then are the interleavings correct

Question: Why is the result (1, 2, 0, 0) not possible?

Answer:

• Instructions are executed in each thread in “program order”, i.e. from front to back.

• So, if (1, 2, 0, .) occurs, only instruction d is missing.

• Instruction d can only deliver D=A=1, since a was executed before c.

V1-0 ACA 8

Sequential Consistency from the Programmer’s Perspective

• A single global memory

• Each core generates memory operations in program order

• At an indeterminate point in time, a switch randomly selects a core and executes a memory
operation (→ “memory order”)

• The switch serializes the memory operations

Note: This is not what the hardware does! But it can serve as a model for how we want to
think about hardware.

V1-0 ACA 9

V1-0

E3.3 Atomic Instructions and
Variables

ACA 10

Atomics

⚫ Assumption: The assignment of a 16-bit word occurs non-atomically, by copying the two 8-bit
halves separately.

⚫ Given are two threads T1 and T2 and a variable S with the content S=0.

⚫ T1 shall write the value -1 in two’s complement to S

⚫ S := (1111 1111 1111 1111)2.

⚫ T2 reads the value of S at a different time.

⚫ One should expect that T2 can only read 0 or -1.

⚫ But the following can happen:

⚫ First, the 1st half is copied to S.

⚫ In the second half of S, there are still all 0s.

⚫ We get: S = (1111 1111 0000 0000)2.

⚫ Before the second half is copied to S, T2 reads both halves and gets S=-128.

⚫ Question: If T1 first copies the second half, and then T2 reads both halves: What value does T2 get?

V1-0 ACA 11

Atomics

• We have seen: When multiple threads access common memory cells (variables), it may be
necessary to guarantee that operations on variables are executed atomically, i.e.,
indivisibly.

• This can only be guaranteed by the hardware (CPU).

• All common CPUs offer such atomic operations as instructions.
e.g. RISC-V: A- Extension

• Programming languages also know atomic types and operations on atomic variables
e.g. Java: AtomicInteger

• When multiple threads access the same memory area (variable) simultaneously, this is
called a Data Race.

. . . we will come back to this later. . .

V1-0 ACA 12

Example Java Atomic Types

Java offers atomic types, e.g. AtomicInteger

This is feature of the programming language

• Java engine ensures that all operations on the variables declared with an atomic
type are executed atomically (easy use for the programmer)

• May use atomic instructions from the processor ISA to implement this in a target
platform.

Difference between volatile and atomic

• Volatile: all other threads see all accesses to variables (not optimized by
compiler)

• Atomic: Additionally, the operations on these variables are atomic.

V1-0 ACA 13

RISC-V A-Extension

Load-Reserved/Store-Conditional (LR/SC**) Instructions

• LR.W: LR loads a word from the address in rs1, places the sign-extended value in rd, and

registers a reservation on the memory address..

• SC.W: SC writes a word in rs2 to the address in rs1, provided a valid reservation still exists on

that address. SC writes zero to rd on success or a nonzero code on failure.

Reservation makes sure no other thread accessed the memory location between LR.W and SC.W.

We will see later how to use this for synchronization – it is also known as Load-Link/Store
Conditional (LL/SC**)

Atomic Memory operation (AMO) instructions (Atomic Read-Modify-Write)

• AMO instructions load data value from an address in rs1, put that value into register rd, apply a
binary operator to the loaded value and the original value in rs2, and then store the result back to
the original address in rs1 atomically.

• Example Logic Or Operation: AMOOR.W

V1-0 ACA 14

**Attention: The abbreviation SC stands
here for store conditional

V1-0

E3.4 Synchronization with Atomic Variable

ACA 15

Producer - Consumer

• Task: A piece of data should be safely transferred from one thread to another thread.

• More detailed: Thread T1 writes to variable D, Thread T2 shall read the value of variable D.

• Question: When may T2 read?

• We introduce a flag F, which initially has the value F=0.

• T1 writes D.

• T1 sets flag F=1.

• T2 reads F. If F=0, it continues to read F.

• When T2 reads F=1, it can read D “safely”.
• asd

V1-0 ACA 16

Producer - Consumer

As source code:

F … atomic!

D … atomic?

X … atomic?

V1-0 ACA 17

Producer - Consumer

V1-0

(0, 0, 0)
d f

[F != 0]: x

d f

[F != 0]: x [F != 0]: x

[F = 0] [F = 0] [F = 0]

start

ACA 18

Producer - Consumer

V1-0

(0, 0, 0) (42, 0, 0)
d f

[F != 0]: x

d f

[F != 0]: x [F != 0]: x

[F = 0] [F = 0] [F = 0]

start

ACA 19

Producer - Consumer

V1-0

(0, 0, 0) (42, 0, 0) (42, 1, 0)
d f

[F != 0]: x

d f

[F != 0]: x [F != 0]: x

[F = 0] [F = 0] [F = 0]

start

ACA 20

Producer - Consumer

V1-0

(0, 0, 0) (42, 0, 0) (42, 1, 0)
d f

f

[F != 0]: x [F != 0]: x

[F = 0][F = 0] [F = 0]

start

ACA 21

Producer - Consumer

V1-0

(0, 0, 0) (42, 0, 0) (42, 1, 0)
d f

[F != 0]: x

[F = 0][F = 0] [F = 0]

start

ACA 22

Producer - Consumer

V1-0

(0, 0, 0)

(42, 1, 42)

(42, 0, 0) (42, 1, 0)
d f

[F != 0]: x

[F = 0] [F = 0]

start

ACA 23

Producer - Consumer

• With the help of an atomic variable (flag F), data can be transferred “ safely” from one
thread to another thread.

• Synchronization, communication between threads

• Disadvantage: Thread T2 is in a loop until the flag is set. T2 unnecessarily consumes
computing time and energy.

. . . we will come back to this later. . .

V1-0 ACA 24

V1-0

E3.5 Program vs. Execution Order in the
Relaxed Memory Model

ACA 25

Program & Execution Order

• In addition to the atomic variables, executing the instructions in program order was
recognized as a prerequisite for the Sequentially Consistent (SC*) memory model.

• Modern computer architectures do not guarantee executing the instructions in program
order!

V1-0 ACA 26

*Attention: The abbreviation SC stands here for Sequentially Consistent
Later in the slides the abbreviation SC will be reused for store conditional

Program Execution Hierarchy

Relaxed Memory Model: Compiler and OoO processor applies optimizations with
reordering of instructions as for single-threaded execution

V1-0 ACA 27

Program Execution Hierarchy

Hierarchy in program

execution:

• The result of the computation must be the same before and after reordering for single-core computers, but
not for multi-core computers.

• Programmers (Computer Scientists) must know and consider that
• Program Order !=Execution Order (PO != EO)

• Attention: Instructions from the calling and called subroutine can be “mixed”.

V1-0

Level (Re-)Ordering

Source Code Program Order

Compiler Optimization of the code (Moving and

removing instructions)

CPU Instruction Scheduling, Out-of-Order

Execution

Memory Write Buffer, Caches, ...

Execution Execution Order

ACA 28

SC Violation – Architecture without Caches

• CPU-Cores have a Write-Buffer

• Write operations go into the Write-Buffer

• At an appropriate time, the Write-Buffer is transferred to memory

• Advantage: no waiting time until the written data actually arrives in memory

• Attention: Read operations can overtake write operations in the Write-Buffer

V1-0

T1 T2

Memory

Write BufferWrite Buffer

Initial: Flag1 = Flag2 = 0

T1:
Flag1 := 1;

if Flag2 = 0 then

-- critical

T2:
Flag2 := 1;

if Flag1 = 0 then

-- criticalFlag1 0

Flag2 0

ACA 29

SC Violation – Architecture without Caches

• T1 write operation Flag1 := 1 goes into the Write-Buffer

• There it cannot be seen by T2

• In memory, Flag1 still has value 0

V1-0

T1 T2

Memory

Write BufferFlag1=1

Initial: Flag1 = Flag2 = 0

T1:
Flag1 := 1;

if Flag2 = 0 then

-- critical

T2:
Flag2 := 1;

if Flag1 = 0 then

-- criticalFlag1 0

Flag2 0

ACA 30

SC Violation – Architecture without Caches

• T1 read operation of Flag2 overtakes the write operation in Write-Buffer

• Read operation arrives in memory before write operation

• This is the 1st operation in memory order

V1-0

T1 T2

Memory

Write BufferFlag1=1

Initial: Flag1 = Flag2 = 0

T1:
Flag1 := 1;

if Flag2 = 0 then

-- critical

T2:
Flag2 := 1;

if Flag1 = 0 then

-- criticalFlag1 0

Flag2 0

ACA 31

SC Violation – Architecture without Caches

• T2 write operation of Flag2 goes into Write-Buffer

V1-0

T1 T2

Memory

Flag2=1Flag1=1

Initial: Flag1 = Flag2 = 0

T1:
Flag1 := 1;

if Flag2 = 0 then

-- critical

T2:
Flag2 := 1;

if Flag1 = 0 then

-- criticalFlag1 0

Flag2 0

ACA 32

SC Violation – Architecture without Caches

• T2 read operation of Flag1 overtakes the Write-Buffer

• This is the 2nd operation in memory order

V1-0

T1 T2

Memory

Flag2=1Flag1=1

Initial: Flag1 = Flag2 = 0

T1:
Flag1 := 1;

if Flag2 = 0 then

-- critical

T2:
Flag2 := 1;

if Flag1 = 0 then

-- criticalFlag1 0

Flag2 0

ACA 33

SC Violation – Architecture without Caches

• Due to the Write-Buffer, the SC order (Write(Flag1), Read(Flag2), Write(Flag2) and

Read(Flag1)) is different from the memory order (Read(Flag2), Read(Flag1),

Write(Flag1) and Write(Flag2))

• SC is violated

• Is there another possible memory order in this example?

V1-0

T1 T2

Memory

Write BufferWrite Buffer

Initial: Flag1 = Flag2 = 0

T1:
Flag1 := 1;

if Flag2 = 0 then

-- critical

T2:
Flag2 := 1;

if Flag1 = 0 then

-- criticalFlag1 0

Flag2 0

ACA 34

SC Violation – Architecture with Private Caches

• SC requires that memory operations are executed

atomically or instantaneously propagating changes to

multiple cache copies is inevitably a non-atomic

operation (cache coherency protocol may have delays)

Write-Atomicity:

• Write operations must happen immediately; if one
core can observe the result of a write operation, then
all cores can

• Read operations are delayed until all cache copies
have confirmed the receipt of the last write operation.

V1-0 ACA 35

Interconnect

Cache

P1

Processor Chip

Memory
Controller (MC)

Main Memory

Memory Chip

Cache

P0

Cache

P2

Cache

P3

L2 Cache

PO != EO

• What are the implications of PO != EO?

• Back to our introductory example:

(A, B, C, D) = (0, 0, 0, 0)

• Considering each thread by itself (what compilers & CPUs do), the instructions a and c or b
and d can be swapped, because the result remains the same.

(A, B, C, D) = (0, 0, 0, 0)

• Now the result (A, B, C, D) = (1, 2, 0, 0) is possible
V1-0

Thread 1 Thread 2

a: A := 1;

c: C := B;

b: B := 2;

d: D := A;

Thread 1 Thread 2

a: A := 1;

c: C := B;

b: B := 2;

d: D := A;

ACA 36

Template

• Why is the result (A, B, C, D) = (1,2,0,0) bad?

• It contradicts common sense!

• It may be that two events X and Y are seen by one thread in the order X < Y (X before Y),
but by another thread in the order Y < X (Y before X).

⚫ (Example follows shortly)

• Violation of temporal relativity!

• Violation of causality!

• → Relaxed Memory Model . . .

• . . . has problems. We will see what those are shortly . . .

V1-0 ACA 37

Violation of Temporal Relativity - Example

• Initially A=B=C=D=E=F=0.

• Relaxed (no RAW,WAW,WAR in threads): a, b, c, d, e, f can be executed in any order.

• Order (A, B, C, D, E, F) = (0, 0, 0, 0, 0, 0) → (0, 0, 0, 0, 0, 0) → (0, 1, 0, 0, 0, 0) →

(0, 1, 0, 0, 0, 1) → (0, 1, 0, 0, 0, 1) → (1, 1, 0, 0, 0, 1) → (1, 1, 1, 0, 0, 1).

• T3 sees C=1 and D=0, therefore he concludes that a < b.

• T4 sees E=0 and F=1, therefore he concludes that b < a.

• Main cause: f is executed before e and d before c.
V1-0

T1 T2 T3 T4

a: A := 1; b: B := 1; c: C := A;

d: D := B;

e: E := A;

f: F:= B;

d b f

e a c

ACA 38

Producer – Consumer (Relaxed Version)

• Does our approach work in the Relaxed Memory Model?

(D, F, X) = (0, 0, 0)

• No!

• Counterexample: f is executed before d.

• Order: (D, F, X) = (0, 0, 0) → (0, 1, 0), → (0, 1, 0) → (0, 1, 0) → (42, 1, 0).

• Data was not correctly transferred (X= 0 != 42 = D).

• The simplest form of communication and synchronization does not work in the Relaxed
Memory Model!

V1-0

T1 T2

d: D := 42;

f: F := 1;

if: if F=0 then goto if;

x: X := D;

f if x d

ACA 39

V1-0

E3.6 Release/Acquire Memory Model

ACA 40

Release/Acquire Memory Model

• How can we integrate the new memory models so that sensible work is possible? We need

additional hardware tools.

• Modern computer architectures offer so-called
• Memory-Fences (Memory Barriers).

• Moving instructions across Memory-Fences is prohibited.

V1-0 ACA 41

Release/Acquire Memory Model

• Programming languages must offer adequate language features so that Memory-Fences can
be utilized.

• Release and Acquire operations for atomic variables.

• Temporal relativity can be ensured for atomic variables, but not for conventional variables.

• Responsible for this: Programmer / Computer Scientist.

Note: Automatic placement of Memory-Fences is not possible (undecidable problem)!
Equivalent to the Halting Problem
(There is no program that can automatically detect infinite loops in programs.)

V1-0 ACA 42

Sequential Consistency on Modern Computers

Hardware tools can also ensure SC.

Advantages:

• Programmers do not have to worry.

• Programs are easier to write and debug.

• The correctness of such programs is easier to prove.

Disadvantages:

• The HW instructions for SC are very expensive (slow).

• The performance advantages of modern architectures are not utilized.

V1-0 ACA 43

Memory Models

• The hardware must define memory models (how exactly does instruction scheduling,
caching, etc., happen)

• Programming languages must specify which instruction reorderings the hardware is allowed
to perform (interface to HW).

• Programming languages must describe the interactions between threads that take place
over memory, and how shared data can be defined and used (interface to the programmer).

V1-0 ACA 44

Memory Model Operations

Store: atomic_store(atomic_var, value, memory_order):

Stores value into the atomic variable atomic_var, where the
Memory Order is specified as: SC, Release, or Relaxed.

Load: atomic_load(atomic_var, memory_order):

Returns the value of the atomic variable atomic_var, where the
Memory Order is specified as: SC, Acquire, or Relaxed.

Exchange: atomic_exchange(atomic_var1, atomic_var2, memory_order):

Exchanges the values of the two atomic variables atomic_var1 and
atomic_var1, where the Memory Order is specified as: SC, Release_Acquire, or Relaxed

V1-0 ACA 45

Release/Acquire Memory Model

We still need to clarify what effects Release and Acquire have.

Release-Operation: Sets a Memory Fence so that no Load and Store operations that stand in
program order before the Release operation can be moved behind the Release
operation.

Acquire-Operation: Sets a Memory Fence so that no Load and Store operations that stand in
program order after the Acquire operation can be moved before the Acquire
operation.

Relaxed-Operation: Sets no Memory Fences.

The programmer must know what s/he is doing!

V1-0 ACA 46

Producer – Consumer (Release-Acquire Version)

(D, F, X) = (0, 0, 0)

• Because of the Fence in f, d cannot be moved behind f.

• Because of the Fence in if, x cannot be moved before if.

• Therefore, communication and synchronization work in the RA memory model!

• Responsible for the correct use of SC, RA, Relaxed: Programmer/Computer Scientist.

V1-0

T1 T2

d: D := 42;

f: atomic_store(F, 1, Release);

if: if atomic_load(F, Acquire)=0 then goto if;

x: X := D;

ACA 47

Programming Languages & Weak Memory Models

Java: first attempt at a memory model was incorrect;

from 5.0: SC.

C++: weak memory model

(SC, Release-Acquire, Relaxed, …); from C++11 on.

C: weak memory model

(SC, Release-Acquire, Relaxed, …); from C11 on.

V1-0 ACA 48

Processors & Weak Memory Models

Intel x86/64: SC

ARM: weak memory model

RISC-V: weak memory model

V1-0 ACA 49

Release/Acquire Memory Model

• Can the RA memory model guarantee SC?

• No!

• RA orders the instructions only (thread-)locally, SC is a global property.

• That’s why SC is slower than RA.

• Why do we need Relaxed Memory Order?

• Sometimes nothing bad can happen; then one can use Relaxed instead of Release or instead
of Acquire or even instead of SC.

• Relaxed brings performance gains over RA.

(… more on the topic of performance later ...)

V1-0 ACA 50

Relaxed Examples

• The following examples are intended to show which RA operations can possibly be relaxed.

• For simplicity, let’s assume all variables starting with A, such as A, A1, A2, . . . , are atomic
and all other variables are non-atomic.

• There should be no further instructions before and after the given instructions that can be
reordered.

V1-0 ACA 51

Relaxed Examples

• Initially A = 0

• Can one of the RA be relaxed?

• No!

• Reason: Z is read in y2 (T2) but written in z (T1).

• z therefore cannot be moved behind a, y2 not before if.

• y1 also cannot be moved behind a, otherwise the value that Y received in y2 could be
overwritten.

V1-0

T1 T2

z: Z := 15;

y1: Y := 11;

a: atomic_store(A, 1, Release);

if: if atomic_load(A, Acquire)!=1 then goto if;

y2: Y := Z;

ACA 52

Relaxed Examples

• Initially A1 = 1, A2 = 0

• The if loop is only exited if A1 = 0 and A2 = 1.

• a1 can be relaxed because the order in which the two stores occur is irrelevant.

• a2 cannot be relaxed because the last store in program order needs a Release.

• Alternatively: relax a2, not a1?

V1-0

T1 T2

y: Y := 42;

a1: atomic_store(A1, 0, Release);

a2: atomic_store(A2, 1, Release);

if: if (atomic_load(A1, Acquire)!=0 or

atomic_load(A2, Acquire)!=1) then goto if;

x: X := Y;

ACA 53

Relaxed Examples

• The second Load can be relaxed; the first cannot …

• … provided that the semantics of the programming language guarantee that the condition
of an If statement is evaluated from left to right.

• Otherwise, a compiler could arbitrarily reorder subexpressions of the Boolean expression.

V1-0

T1 T2

y: Y := 42;

a1: atomic_store(A1, 0, Relaxed);

a2: atomic_store(A2, 1, Release);

if: if (atomic_load(A1, Acquire)!=0 or

atomic_load(A2, Relaxed)!=1) then goto if;

x: X := Y;

ACA 54

Relaxed Examples

• Initial A=0

• a can be relaxed because Y is not read in T2.

V1-0

T1 T2

y: Y := 42;

a: atomic_store(A, 1, Release);

x: X := atomic_load(A, Acquire);

if: if X != 1 then goto x;

z: Z := X+1;

ACA 55

Relaxed Examples

• x can be relaxed because if is data-dependent on x and z is data-dependent on x.

• Because of these data dependencies, if and z cannot be moved before x.

• (z may be moved before if.)

V1-0

T1 T2

y: Y := 42;

a: atomic_store(A, 1, Relaxed);

x: X := atomic_load(A, Acquire);

if: if X != 1 then goto x;

z: Z := X+1;

ACA 56

Relaxed Examples

• x can be relaxed because if is data-dependent on x and z is data-dependent on x.

• Because of these data dependencies, if and z cannot be moved before x.

• (z may be moved before if.)

• If there are no other reasons against it, A may also be non-atomic

V1-0

T1 T2

y: Y := 42;

a: atomic_store(A, 1, Relaxed);

x: X := atomic_load(A, Relaxed);

if: if X != 1 then goto x;

z: Z := X+1;

ACA 57

Memory Models – Spectrum of Common Architectures

V1-0

adapted from https://preshing.com/20120930/weak-vs-strong-memory-models/

ACA 58

https://preshing.com/20120930/weak-vs-strong-memory-models/
https://preshing.com/20120930/weak-vs-strong-memory-models/
https://preshing.com/20120930/weak-vs-strong-memory-models/
https://preshing.com/20120930/weak-vs-strong-memory-models/
https://preshing.com/20120930/weak-vs-strong-memory-models/
https://preshing.com/20120930/weak-vs-strong-memory-models/
https://preshing.com/20120930/weak-vs-strong-memory-models/
https://preshing.com/20120930/weak-vs-strong-memory-models/
https://preshing.com/20120930/weak-vs-strong-memory-models/

V1-0

E3.7 Blocking Wait

ACA 59

Blocking Wait

• Disadvantage of the previous type of communication/synchronization: a thread is in a
loop until data can be read.

• Wastes unnecessary computing time and energy. Alternative:

• Blocking Wait.

V1-0 ACA 60

Semaphore

Counter, initialized to 1
Two operations:
Lock: Decrease counter by 1.

If counter >= 0, thread may continue execution.
If counter < 0, enqueue thread in a waiting queue & stop execution.

Unlock: Increase counter by 1.
If counter > 0, thread may continue execution.
If counter <= 0, release 1st thread from waiting queue & start execution.

Race condition!
Everything that is blue must be executed atomically.
Cf. lecture on the topic of “Operating Systems”
Memory Fences may be required to prevent code from the Critical Section (between Lock and
Unlock) from “wandering out”.

V1-0 ACA 61

Von Global Fish - Eigenes Werk, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php
?curid=4637960

Semaphore

• Atomicity via HW instructions.

• E.g.: Read-Modify-Write operations.

• Different instructions for different processors.

V1-0 ACA 62

Higher Mechanisms

• Disadvantage of Lock/Unlock: Correctness difficult to verify.

• Is there an Unlock for every Lock?

• Higher mechanisms in programming languages:

• Monitors

• Synchronized Objects (Java)

• Protected Objects (Ada)

• . . .

V1-0 ACA 63

Example

• A central (global) Integer variable Z is to be increased by threads by a value.

• The “simultaneous” access should be prevented by a semaphore S.

V1-0 ACA 64

Example

Advantages:

• Easy to understand.

• No waste of computing time and energy.

• Sequentially consistent.

Disadvantages:

• If a thread crashes between Lock and Unlock, no other thread that calls Semaphore-Lock can make
progress.

• Thread dispatching (starting and stopping of threads) takes a lot of time.

• Read-Modify-Write operations are slow.

V1-0

T

1: Lock(S);

2: Z_local := Z;

3: Z_local := Z_local + …;

4: Z := Z_local;

5: Unlock(S);

ACA 65

V1-0

E3.8 Non-Blocking Wait

ACA 66

Non-Blocking Wait

• Instead of synchronization via semaphore or similar, direct use of Read-Modify-Write
operations.

• Optimistic approach.

• → Non-Blocking Wait

V1-0 ACA 67

Read-Modify-Write Operation

• Function RMW(V, old_value, new_value)

• Returns true, if the atomic variable V still has the old value; V receives the new value
simultaneously.

• Returns false, otherwise. Implicitly old_value is set to new_value.

V1-0 ACA 68

Example

Advantages:
• If few threads access the central variable simultaneously, very efficient.

• If a thread crashes, other threads can still make progress.

• Sequentially consistent and Release/Acquire memory model possible.

Disadvantages:
• Difficult to understand for more complex algorithms.

• Even more difficult to understand for more complex algorithms together with Release/Acquire memory order.

• Suffers from ABA problem (to be explained on the next slides)

V1-0

T (Z atomic)

1: Z_local := Z;

2: if not RMW(Z, Z_local, Z_local + …) then goto 1;

ACA 69

The ABA problem

The ABA problem occurs when multiple threads (or processes) accessing shared data
interleave. Here is a sequence of events that illustrates the ABA problem:

1. Process P1 reads value A from some shared memory location,

2. P1 is preempted, allowing process P2 to run,

3. P2 writes value B to the shared memory location,

4. P2 writes value A to the shared memory location,

5. P2 is preempted, allowing process P1 to run,

6. P1 reads value A from the shared memory location,

7. P1 determines that the shared memory value has not changed and continues.
-> Thus an RWM operation may succeed, although it actually should not.

Although P1 can continue executing, it is possible that the behavior will not be correct due to the “hidden”
modification in shared memory.

V1-0 ACA 70

Solving the ABA Problem with CAS

The ABA problem can be solved via CAS operation by counting the number of accesses to
shared data.

Disadvantages:
• Counter has to be integrated into shared data word (which complicates accessing the actual data or may

require modifying pointer values) or

• Use additional word for the counter (which requires double word or multi word CAS that are not provided by
all CPUs)

V1-0 ACA 71

Load-Link/Store-Conditional (LL/SC) Operation

• Alternative to CAS operation

• Equivalent to CAS

• LL/SC is sometimes called load-reserved/store-conditional (LR/SC)

V1-0 ACA 72

Implementing LL/SC

• Function LL(address) loads value stored at address

• Function SC(address, value) stores value at address provided that there was no
interfering store to address. Returns true if successful, false otherwise.

• LL: store address at cache line

• Any modification to any portion of the cache line (via conditional or ordinary store) cause
the store-conditional (SC) to fail

• LL/SC operations are supported by DEC Alpha, PowerPC, MIPS, ARM, RISC-V, . . .

V1-0 ACA 73

Load-Link/Store-Conditional (LL/SC) Operation

Advantages:

• Insensitive to ABA problem

• Instruction set: needs two words instead of three needed by CAS

Disadvantages:

• Sometimes fails if context switch occurs between LL and SC operation

• Sometimes fails if a second LL/SC occurs

• No nesting of LL/SC operations

V1-0 ACA 74

V1-0

E3.9 Performance Comparison

ACA 75

Performance Comparison

Blocking vs. Non-Blocking (SC):

• Intel x86

• 1 thread writes to a queue, 1 thread reads from a queue

• Non-Blocking more than 100 times faster than Blocking

V1-0 ACA 76

Performance Gain Intel X86 through SC-AR-Relaxation

Experiment:

• N Threads

• 10M Lock/Unlock operations in a loop, no operation between Lock and Unlock

• 28 Cores, 2-socket system (Intel Xeon E5-2697 v3 @ 2.60 GHz)

V1-0

from: S. Yang, S. Jeong, B. Min, Y. Kim, B. Burgstaller, J. Blieberger, Design-space evaluation for non-blocking synchronization in Ada: lock elision of
protected objects, concurrent objects, and low-level atomics, Journal of System Architecture, Volume 110, 2020, 101764, ISSN 1383-7621,
https://doi.org/10.1016/j.sysarc.2020.101764 .

ACA 77

https://doi.org/10.1016/j.sysarc.2020.101764

Performance Gain ARM v8 through SC-AR-Relaxation

Experiment:

• N Threads

• 10M Lock/Unlock operations in a loop, no operation between Lock and Unlock

• 16 Cores, 4-socket system (AWS Graviton ARM v8)

V1-0

from: S. Yang, S. Jeong, B. Min, Y. Kim, B. Burgstaller, J. Blieberger, Design-space evaluation for non-blocking synchronization in Ada: lock elision of
protected objects, concurrent objects, and low-level atomics, Journal of System Architecture, Volume 110, 2020, 101764, ISSN 1383-7621,
https://doi.org/10.1016/j.sysarc.2020.101764 .

ACA 78

https://doi.org/10.1016/j.sysarc.2020.101764

V1-0

E3.10 Summary

ACA 79

Summary (1/2)

Memory Models:
• Sequentially Consistent Memory Model: corresponds to common sense.

• Due to various hardware and software optimizations for performance improvement, SC is no longer given.

• → weak memory model: Relaxed Memory Model.

• Practical compromise between programmers’ intuition and performance:

Release/Acquire Memory Model

V1-0 ACA 80

Summary (2/2)

Programming Multi-Threaded Applications:
• If performance is not a major concern, prefer Blocking.

• If Blocking, prefer higher language features (no semaphores!)

• If performance is important, initially prefer SC (easier to understand!)

• If SC is too slow, switch to RA (Relaxing very important, but difficult!)

• SC → RA-Relaxation can also bring performance gains for SC-HW!

• Prefer to use pre-made libraries with data structures or algorithms (already well tested!)

• Freely accessible, open-source libraries are better!

V1-0 ACA 81

Thank you for your attention!

	Folie 1
	Folie 2: Content
	Folie 3
	Folie 4: SC & Synchronization
	Folie 5
	Folie 6: Interleavings
	Folie 7: Introductory Example (with Interleavings Graph)
	Folie 8: Introductory Example
	Folie 9: Sequential Consistency from the Programmer’s Perspective
	Folie 10
	Folie 11: Atomics
	Folie 12: Atomics
	Folie 13: Example Java Atomic Types
	Folie 14: RISC-V A-Extension
	Folie 15
	Folie 16: Producer - Consumer
	Folie 17: Producer - Consumer
	Folie 18: Producer - Consumer
	Folie 19: Producer - Consumer
	Folie 20: Producer - Consumer
	Folie 21: Producer - Consumer
	Folie 22: Producer - Consumer
	Folie 23: Producer - Consumer
	Folie 24: Producer - Consumer
	Folie 25
	Folie 26: Program & Execution Order
	Folie 27: Program Execution Hierarchy
	Folie 28: Program Execution Hierarchy
	Folie 29: SC Violation – Architecture without Caches
	Folie 30: SC Violation – Architecture without Caches
	Folie 31: SC Violation – Architecture without Caches
	Folie 32: SC Violation – Architecture without Caches
	Folie 33: SC Violation – Architecture without Caches
	Folie 34: SC Violation – Architecture without Caches
	Folie 35: SC Violation – Architecture with Private Caches
	Folie 36: PO != EO
	Folie 37: Template
	Folie 38: Violation of Temporal Relativity - Example
	Folie 39: Producer – Consumer (Relaxed Version)
	Folie 40
	Folie 41: Release/Acquire Memory Model
	Folie 42: Release/Acquire Memory Model
	Folie 43: Sequential Consistency on Modern Computers
	Folie 44: Memory Models
	Folie 45: Memory Model Operations
	Folie 46: Release/Acquire Memory Model
	Folie 47: Producer – Consumer (Release-Acquire Version)
	Folie 48: Programming Languages & Weak Memory Models
	Folie 49: Processors & Weak Memory Models
	Folie 50: Release/Acquire Memory Model
	Folie 51: Relaxed Examples
	Folie 52: Relaxed Examples
	Folie 53: Relaxed Examples
	Folie 54: Relaxed Examples
	Folie 55: Relaxed Examples
	Folie 56: Relaxed Examples
	Folie 57: Relaxed Examples
	Folie 58: Memory Models – Spectrum of Common Architectures
	Folie 59
	Folie 60: Blocking Wait
	Folie 61: Semaphore
	Folie 62: Semaphore
	Folie 63: Higher Mechanisms
	Folie 64: Example
	Folie 65: Example
	Folie 66
	Folie 67: Non-Blocking Wait
	Folie 68: Read-Modify-Write Operation
	Folie 69: Example
	Folie 70: The ABA problem
	Folie 71: Solving the ABA Problem with CAS
	Folie 72: Load-Link/Store-Conditional (LL/SC) Operation
	Folie 73: Implementing LL/SC
	Folie 74: Load-Link/Store-Conditional (LL/SC) Operation
	Folie 75
	Folie 76: Performance Comparison
	Folie 77: Performance Gain Intel X86 through SC-AR-Relaxation
	Folie 78: Performance Gain ARM v8 through SC-AR-Relaxation
	Folie 79
	Folie 80: Summary (1/2)
	Folie 81: Summary (2/2)
	Folie 82: Thank you for your attention!

