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E3.1. Sequential Consistency (SC) &
Synchronization Problem
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SC & Synchronization

Already discussed: Cache Coherency

* Cache Coherency Controller establishes a coherent view across the private caches.

Next: Sequential Consistency (SC*) & Synchronization Problem

* Memory Model: Need mechanisms to ensure that accesses of one processor appear to execute in
program order to all other, at least partly.

e Atomic Operations: HW-support for synchronization

*Attention: The abbreviation SC stands here for Sequentially Consistent
Later in the slides the abbreviation SC will be reused for store conditional
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E3. 2Abstract View on Interleaving Threads
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Interleavings

Interleavings are all possible intertwinings of sequences of statements from threads.
Example: T1: (a, c), T2: (b, d)
All possible interleavings are:
(3, c, b,d), (a, b,c,d),(a,b,d,c)(b,acd),(badc),(bd a,c).
The “local” orders a < cand b < d are preserved.

Interleavings graph is a representation of interleavings in form of a graph.
* Each path from the start node to the end node of the graph corresponds to an interleaving.

 The set of all such paths corresponds to the set of all possible interleavings. (Examples follow . . .)

Due to different runtimes, different scheduling strategies, different hardware architectures, the actual
execution sequence can match any arbitrary interleaving.

For general considerations (correctness of a program, ... ) one must therefore assume all interleavings as
possible.
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Introductory Example (with Interleavings Graph)

Thread1 (A B, C, D)= Thread 2
(0,0,0,0)

a: A :=1; b: B := 2;

c: C := B; d: D := A;
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Introductory Example

A Race Condition is a situation in which the result of an operation depends on the
temporally intertwined execution of certain other operations.

Implicit Assumption:
* Assignments occur atomically

* Only then are the interleavings correct
Question: Why is the result (1, 2, 0, 0) not possible?

Answer:
* |nstructions are executed in each thread in “program order”, i.e. from front to back.
 So,if(1,2,0,.)occurs, only instruction d is missing.

* Instruction d can only deliver D=A=1, since a was executed before c.
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Sequential Consistency from the Programmer’s Perspective

Gy G Cy

Memory

* Asingle global memory
* Each core generates memory operations in program order

e At an indeterminate point in time, a switch randomly selects a core and executes a memory
operation ( - “memory order”)

* The switch serializes the memory operations

Note: This is not what the hardware does! But it can serve as a model for how we want to
think about hardware.
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E3.3 Atomic Instructions and
Variables
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Atomics

o Assumption: The assignment of a 16-bit word occurs non-atomically, by copying the two 8-bit
halves separately.

o Given are two threads T; and T, and a variable S with the content S=0.

e T1 shall write the value -1 in two’s complement to S
e S:=(1111 1111 1111 1111),.

e T, reads the value of S at a different time.
o One should expect that T, can only read O or -1.

o But the following can happen:

o First, the 1st half is copied to S.

e Inthe second half of S, there are still all Os.

e Weget:S=(1111 1111 0000 0000)s.

o Before the second half is copied to S, T, reads both halves and gets S=-128.

o Question: If T; first copies the second half, and then T, reads both halves: What value does T, get?
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* We have seen: When multiple threads access common memory cells (variables), it may be
necessary to guarantee that operations on variables are executed atomically, i.e.,
indivisibly.

e This can only be guaranteed by the hardware (CPU).

* All common CPUs offer such atomic operations as instructions.
e.g. RISC-V: A- Extension

* Programming languages also know atomic types and operations on atomic variables
e.g.Java: AtomicInteger

 When multiple threads access the same memory area (variable) simultaneously, this is
called a Data Race.

... we will come back to this later. ..
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Example Java Atomic Types

Java offers atomic types, e.g. AtomicInteger
This is feature of the programming language

« Java engine ensures that all operations on the variables declared with an atomic
type are executed atomically (easy use for the programmer)

« May use atomic instructions from the processor ISA to implement this in a target
platform.

Difference between volatile and atomic

« Volatile: all other threads see all accesses to variables (not optimized by
compiler)

« Atomic: Additionally, the operations on these variables are atomic.
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RISC-V A-Extension

Load-Reserved/Store-Conditional (LR/SC**) Instructions

* LR.W: LR loads a word from the address in rs1, places the sign-extended value in rd, and
registers a reservation on the memory address..

e SC.W: SC writes a word in rs2 to the address in rs1, provided a valid reservation still exists on
that address. SC writes zero to rd on success or a nonzero code on failure.

Reservation makes sure no other thread accessed the memory location between LR.W and SC.W.

We will see later how to use this for synchronization — it is also known as Load-Link/Store
Conditional (LL/SC**)

Atomic Memory operation (AMO) instructions (Atomic Read-Modify-Write)

« AMO instructions load data value from an address in rs1, put that value into register rd, apply a
binary operator to the loaded value and the original value in rs2, and then store the result back to
the original address in rs1 atomically.

» Example Logic Or Operation: AMOOR . W ** Attention: The abbreviation SC stands

here for store conditional
V1-0 ACA 14
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E3.4 Synchronization with Atomic Variable
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Producer - Consumer

* Task: A piece of data should be safely transferred from one thread to another thread.

* More detailed: Thread T, writes to variable D, Thread T> shall read the value of variable D.
* Question: When may T, read?

* We introduce a flag F, which initially has the value F=0.

* Ty writes D.

e T sets flag F=1.

e T, readsF. If F=0, it continues to read F.

* When T, reads F=1, it can read D “safely”.
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Producer - Consumer

As source code:

T (D, F, X) = To
(0,0,0)
d: D := 42; If: if F=0 then goto if;
f: F :=1; x: X :=D;
F ... atomic!
D ... atomic?
X ... atomic?
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Producer - Consumer

Tq (D, F,X) = To
(0,0,0)
d: D := 42; If: if F=0 then goto if;
f: F :=1; x: X := D;
[F=0] [F=0] [F = 0]
Co o, ) Q)
o oo w +
[F!1=0]: x [F!1=0]: x [F!1=0]: x
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Producer - Consumer

T (D, F,X) = To
(0,0,0)
d: D := 42; If: if F=0 then goto if;
f. F :=1; X: X := D;
[F=0] [F=0] [F=0]
o, o )
start { (0, 0, 0) { (42,0,0) |
[F 1= 0]: x [F 1=0]: x [F !=0]:
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Producer - Consumer

Tq (D, F,X) = To
(0,0,0)
d: D := 42; If: if F=0 then goto if;
f: F :=1; x: X := D;
[F=0] [F=0] [F=0]
o, o )
start { (0,0, 0) { (42, 0, 0) | (42, 1, 0)
[F!1=0]: x [F!1=0]: x [F!1=0]: x

d ( f (
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Producer - Consumer

d: D := 42; If: if F=0 then goto if;
f: F :=1; x: X := D;
[F = 0] [F = 0] [F=0]
C) o ()
start { (0, 0, 0) { (42,0, 0) | (42,1,0)
[F!1=0]: x [F!1=0]: x
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Producer - Consumer

d: D := 42; If: if F=0 then goto if;
f: F :=1; x: X := D;
[F = 0] [F = 0] [F=0]
o, o O
start { (0,0, 0) { (42,0, 0) | (42, 1, 0)
[F!1=0]: x
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Producer - Consumer

d: D := 42; If: if F=0 then goto if;
f: F :=1; x: X := D;
[F=0] [F=0]
OGN
start { (0,0, 0) { (42,0,0) | (42,1,0)
[F!1=0]: x
(42, 1, 42)
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Producer - Consumer

* With the help of an atomic variable (flag F), data can be transferred “safely” from one
thread to another thread.

* Synchronization, communication between threads

* Disadvantage: Thread T; is in a loop until the flag is set. T, unnecessarily consumes
computing time and energy.

... we will come back to this later. ..
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V1-0

E3.5 Program vs. Execution Order in the
Relaxed Memory Model
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Program & Execution Order

* |n addition to the atomic variables, executing the instructions in program order was
recognized as a prerequisite for the Sequentially Consistent (SC*) memory model.

 Modern computer architectures do not guarantee executing the instructions in program
order!

*Attention: The abbreviation SC stands here for Sequentially Consistent
Later in the slides the abbreviation SC will be reused for store conditional
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Program Execution Hierarchy

Relaxed Memory Model: Compiler and OoO processor applies optimizations with
reordering of instructions as for single-threaded execution

| give you a
program that is
faster than what

your compiler
generated

Source ' Machine ' N
Code 5 Code Oo:OE > Hardware
? Memory Model 1 Memory Model 2
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Program Execution Hierarchy

Hierarchy in program

Level (Re-)Ordering
execution: Source Code Program Order

Compiler Optimization of the code (Moving and
removing instructions)

CPU Instruction Scheduling, Out-of-Order
Execution

Memory Write Buffer, Caches, ...

Execution Execution Order

* The result of the computation must be the same before and after reordering for single-core computers, but
not for multi-core computers.

* Programmers (Computer Scientists) must know and consider that
 Program Order !=Execution Order (PO != EO)

* Attention: Instructions from the calling and called subroutine can be “mixed”.
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SC Violation — Architecture without Caches

= L Initial: F1lagl = Flag2 = 0
Write Buff Write Buff
rite Buffer \ \ rite Buffer T1: T2:
Flagl := 1; Flag?2 := 1;
Memory | if Flag2 = 0 then  if Flagl = 0 then
Flagl |0 —-— critical -— critical
Flag2 |0

* CPU-Cores have a Write-Buffer

* Write operations go into the Write-Buffer

At an appropriate time, the Write-Buffer is transferred to memory

e Advantage: no waiting time until the written data actually arrives in memory
e Attention: Read operations can overtake write operations in the Write-Buffer

V1-0 ACA 29



SC Violation — Architecture without Caches

= L Initial: F1lagl = Flag2 = 0
Flagl=1 \ \ Write Buffer T1: T2:
Flagl := 1; Flag?2 := 1;
Memory | if Flag2 = 0 then  if Flagl = 0 then
Flagl |0 —-— critical -— critical
Flag2 |0
 T1write operation F1agl := 1 goesintothe Write-Buffer

* There it cannot be seen by T2
* Inmemory, Flagl still has value O
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SC Violation — Architecture without Caches

- 12 Initial: F1lagl = Flag2 = 0
Flagl=1 \ \ Write Buffer T1: T2:
Flagl := 1; Flag?2 := 1;
Memory if Flag?2 = 0 then if Flagl = 0 then
Flagl |0 -— critical -— critical
Flag2 |0

T1 read operation of I'1 ag2 overtakes the write operation in Write-Buffer
Read operation arrives in memory before write operation
* This is the 1%t operation in memory order
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SC Violation — Architecture without Caches

- 12 Initial: F1lagl = Flag2 = 0
lagl=1 Flag2=1
— ‘ ‘ - T1: T2:
Flagl := 1; Flag2 := 1;
Memory | if Flag2 = 0 then  if Flagl = 0 then
Flagl |0 -— critical -— critical
Flag2 |0

T2 write operation of I'1 ag2 goes into Write-Buffer
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SC Violation — Architecture without Caches

- 12 Initial: F1lagl = Flag2 = 0
lagl=1 Flag2=1
— ‘ ‘ - T1: T2:
Flagl := 1; Flag?2 := 1;
Memory | if Flag2 = 0 then if Flagl = 0 then
Flagl |0 -— critical -— critical
Flag2 |0

T2 read operation of I'1ag1 overtakes the Write-Buffer
* This is the 2"d operation in memory order
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SC Violation — Architecture without Caches

- 12 Initial: F1lagl = Flag2 = 0
Write Buff Write Buff
rite Buffer \ \ rite Buffer T1: T2:
Flagl := 1; Flag?2 := 1;
Memory | if Flag2 = 0 then  if Flagl = 0 then
Flagl |0 -— critical -— critical
Flag2 |0

* Due to the Write-Buffer, the SCorder (Write (Flagl), Read(Flag2), Write(Flag2) and
Read (Flagl)) is different from the memory order (Read (Flag2), Read (Flagl),
Write (Flagl) andWrite (Flag2))

* SCisviolated

* Isthere another possible memory order in this example?

V1-0 ACA 34



SC Violation — Architecture with Private Caches

» SCrequires that memory operations are executed
atomically or instantaneously propagating changes to
multiple cache copies is inevitably a non-atomic

operation (cache coherency protocol may have delays)

Write-Atomicity:
* Write operations must happen immediately; if one
core can observe the result of a write operation, then
all cores can

* Read operations are delayed until all cache copies

have confirmed the receipt of the last write operation.

V1-0 ACA
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Memory
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PO I=EO

 What are the implications of PO I= EO?
* Back to our introductory example:

(A, B,C D)=(0,0,0,0)

Thread 1 Thread 2
a: A :=1; b: B := 2;
c: C := B; d: D := A;

* Considering each thread by itself (what compilers & CPUs do), the instructionsa andcor b
and d can be swapped, because the result remains the same.

(A, B,C D)=(0,0,0,0)

Thread 1 Thread 2
a: A := 1; b: B := 2;
c: C := B; d: D := A;

 Now theresult (A, B, C, D) =(1, 2, 0, 0) is possible
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« Whyistheresult(A B, C D)=(1,2,0,0)bad?
* |t contradicts common sense!

* It may be that two events X and Y are seen by one thread in the order X <Y (X before Y),
but by another thread in the order Y < X (Y before X).

o (Example follows shortly)

* Violation of temporal relativity!

* Violation of causality!

* — Relaxed Memory Model ...

* ... has problems. We will see what those are shortly ...
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Violation of Temporal Relativity - Example

T: T> T

w
S

o 0
1

(OFNQ!
o >

* Initially A=B=C=D=E=F=0.
* Relaxed (no RAW,WAW,WAR in threads): a, b, c, d, e, f can be executed in any order.

d b f
* Order (A, B, C, D, E, F)=(0,0,0, 0'59' 0)—>(0,0,0,0, (9, 0)—->(0,10,00,0) >
(0,1,0,0,0,1)->(0,10,0,0,1)>(1,1,0,0,0,1)>(1,1,1,0,0, 1).

e T5sees C=1 and D=0, therefore he concludes that a <b.

* T, sees E=0 and F=1, therefore he concludes that b <a.

 Main cause: f is executed before e and d before c.
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Producer — Consumer (Relaxed Version)

Does our approach work in the Relaxed Memory Model?

(D, F, X)=(0, 0, 0)

T1 T2

42 ; 1if: 1f F=0 then goto 1f;
1; x: X = Dy

H Q.
B )

* No!
Counterexample: fis executed before d
Order: (D, F, X) = (0, O, 0)9(0 , 0), 9(0 1, O)%(O 1, 0)9(42 1, 0).

Data was not correctly transferred (X=0 !=42 = D).

The simplest form of communication and synchronization does not work in the Relaxed
Memory Model!
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V1-0

E3.6 Release/Acquire Memory Model
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Release/Acquire Memory Model

How can we integrate the new memory models so that sensible work is possible? We need

additional hardware tools.

Modern computer architectures offer so-called
Memory-Fences (Memory Barriers).

Moving instructions across Memory-Fences is prohibited.

may be - opl
reordered | 0p2 none of those ...
—| fence
maybe | ©OP3 - can be reordered
reordered op4 with any of those
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Release/Acquire Memory Model

Programming languages must offer adequate language features so that Memory-Fences can
be utilized.

Release and Acquire operations for atomic variables.

Temporal relativity can be ensured for atomic variables, but not for conventional variables.

Responsible for this: Programmer / Computer Scientist.

Note: Automatic placement of Memory-Fences is not possible (undecidable problem)!
Equivalent to the Halting Problem
(There is no program that can automatically detect infinite loops in programs.)
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Sequential Consistency on Modern Computers

Hardware tools can also ensure SC.
Advantages:

* Programmers do not have to worry.
* Programs are easier to write and debug.

* The correctness of such programs is easier to prove.
Disadvantages:

 The HW instructions for SC are very expensive (slow).

* The performance advantages of modern architectures are not utilized.
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Memory Models

* The hardware must define memory models (how exactly does instruction scheduling,
caching, etc., happen)

* Programming languages must specify which instruction reorderings the hardware is allowed
to perform (interface to HW).

* Programming languages must describe the interactions between threads that take place
over memory, and how shared data can be defined and used (interface to the programmer).
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Memory Model Operations

Store: atomic store(atomic var, value, memory order):

Stores value into the atomic variable atomic var, where the
Memory Order is specified as: SC, Release, or Relaxed.

Load: atomic load(atomic var, memory order):

Returns the value of the atomic variable atomic var, where the
Memory Order is specified as: SC, Acquire, or Relaxed.

Exchange: atomic exchange (atomic varl, atomic var2, memory order):

Exchanges the values of the two atomic variables atomic varl and
atomic varl, where the Memory Order is specified as: SC, Release_Acquire, or Relaxed
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Release/Acquire Memory Model

We still need to clarify what effects Release and Acquire have.

Release-Operation: Sets a Memory Fence so that no Load and Store operations that stand in
program order before the Release operation can be moved behind the Release
operation.

Acquire-Operation: Sets a Memory Fence so that no Load and Store operations that stand in
program order after the Acquire operation can be moved before the Acquire
operation.

Relaxed-Operation: Sets no Memory Fences.

The programmer must know what s/he is doing!
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Producer — Consumer (Release-Acquire Version)

(D, £, X)=(0, 0, 0)

T1 T

d: D := 42; if: if atomic load(F, Acquire)=0 then goto if;
f: atomic store(F, 1, Release); X: X := D;

Because of the Fence in f, d cannot be moved behind f.

Because of the Fence in if, x cannot be moved before if.

Therefore, communication and synchronization work in the RA memory model!

Responsible for the correct use of SC, RA, Relaxed: Programmer/Computer Scientist.
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Programming Languages & Weak Memory Models

Java: first attempt at a memory model was incorrect;
from 5.0: SC.

C++: weak memory model

(SC, Release-Acquire, Relaxed, ...); from C++11 on.

C: weak memory model

(SC, Release-Acquire, Relaxed, ...); from C11 on.
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Processors & Weak Memory Models

Intel x86/64: SC
ARM: weak memory model

RISC-V: weak memory model
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Release/Acquire Memory Model

Can the RA memory model guarantee SC?

* No!

RA orders the instructions only (thread-)locally, SCis a global property.
That’s why SC is slower than RA.

Why do we need Relaxed Memory Order?
Sometimes nothing bad can happen; then one can use Relaxed instead of Release or instead
of Acquire or even instead of SC.

Relaxed brings performance gains over RA.

(... more on the topic of performance later ...)
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Relaxed Examples

* The following examples are intended to show which RA operations can possibly be relaxed.

* For simplicity, let’s assume all variables starting with A, such as A, A1, A2, ..., are atomic
and all other variables are non-atomic.

* There should be no further instructions before and after the given instructions that can be
reordered.
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Relaxed Examples

T1 T>

z: Z := 15; if: 1f atomic load(A, Acquire)!=1 then goto if;
yl: Y : 11; y2: Y := Z;
a: atomic store (A, 1, Release);

* |nitiallyA=0
e Can one of the RA be relaxed?
* No!

Reason: Zis read in y2 (T2) but written in z (T1).
z therefore cannot be moved behind a, y2 not before i f.

y1 also cannot be moved behind a, otherwise the value that Y received in yv2 could be
overwritten.

V1-0 ACA 52



Relaxed Examples

T1 T>
yv: Y = 42; if: if (atomic load(Al, Acquire) !=0 or
al: atomic store(Al, 0, Release); atomic load (A2, Acquire) !=1) then goto if;
az2: atomic store (A2, 1, Release); Xx: X :=Y;

Initially A1 =1, A2=0
The i £ loop is only exited if A1=0and A2 =1.
al can be relaxed because the order in which the two stores occur is irrelevant.

a2 cannot be relaxed because the last store in program order needs a Release.

Alternatively: relax a2, not al?
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Relaxed Examples

T1

T>

yv: Y = 42;
al: atomic store (Al,
az2: atomic store (AZ,

0,
1,

Relaxed) ;
Release) ;

if:

if

(atomic load(Al, Acquire) !=0 or

atomic load (A2, Relaxed) !=1)

=Y,

then goto if;

* The second Load can be relaxed; the first cannot ...

* ... provided that the semantics of the programming language guarantee that the condition
of an If statement is evaluated from left to right.

e Otherwise, a compiler could arbitrarily reorder subexpressions of the Boolean expression.

V1-0
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Relaxed Examples

T1 T>
y: Y 1= 42; x: X := atomic load(A, Acquire);
a: atomic store (A, 1, Release); if: if X !'= 1 then goto x;
z: Z := X+1;
* |nitial A=0

* a5 cah be relaxed because Yis notread in T>.
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Relaxed Examples

T1 T
y: Y 1= 42; x: X := atomic load(A, Acquire);
a: atomic store (A, 1, Relaxed); if: if X !'= 1 then goto x;
z: Z := X+1;

* x can be relaxed because if is data-dependent on x and z is data-dependent on x.
* Because of these data dependencies, i £ and z cannot be moved before x.

* (z may be moved before if.)
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Relaxed Examples

T1 T>
yv: Y = 42; x: X := atomic load(A, Relaxed);
a: atomic store (A, 1, Relaxed); if: if X !'= 1 then goto x;
z: Z := X+1;

x can be relaxed because if is data-dependent on x and z is data-dependent on x.

Because of these data dependencies, i £ and z cannot be moved before x.

(z may be moved before i f.)

If there are no other reasons against it, A may also be non-atomic
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Memory Models — Spectrum of Common Architectures

V1-0

WEAK STRONG
Really weak Weak with Usually strong Sequentially
data dependency consistent
ordering
DEC Alpha ARM xaei dual 386 (circa 1989)
i ,= = a - t
C/C++11 ) ‘ POWER ‘ SPARC TSO Java volatile
relaxed atomics e \i4 C/C++11
% default atomics
Or, run on
a single core

without optimization

b RISC

adapted from https://preshing.com/20120930/weak-vs-strong-memory-models/

ACA
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E3.7 Blocking Wait
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Blocking Wait

* Disadvantage of the previous type of communication/synchronization: a thread is in a
loop until data can be read.

* Wastes unnecessary computing time and energy. Alternative:
* Blocking Wait.
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Semaphore

Counter, initialized to 1
Two operations:
Decrease counter by 1.

If counter >=0, thread may continue execution.

If counter <0, enqueue thread in a waiting queue & stop execution.

_ies , S .,
https://commons.wikimedia.org/w/index.php

Increase counter by 1. Peurid-4637960

If counter >0, thread may continue execution.

If counter <=0, release 1st thread from waiting queue & start execution.
Race condition!
Everything that is blue must be executed atomically.
Cf. lecture on the topic of “Operating Systems”
Memory Fences may be required to prevent code from the Critical Section (between Lock and
Unlock) from “wandering out”.

Von
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* Atomicity via HW instructions.
* E.g.: Read-Modify-Write operations.

» Different instructions for different processors.
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Higher Mechanisms

* Disadvantage of Lock/Unlock: Correctness difficult to verify.

* |sthere an Unlock for every Lock?

e Higher mechanisms in programming languages:
* Monitors

» Synchronized Obijects (Java)

* Protected Objects (Ada)

V1-0 ACA 63



« A central (global) Integer variable Z is to be increased by threads by a value.
* The “simultaneous” access should be prevented by a semaphore S.
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Example

1: Lock(S);

2: 7Z local := Z;

3: 2 local := Z local + ..;
4 1

5

: Z := 7 local;

: Unlock (S);

Advantages:

* Easy to understand.

 No waste of computing time and energy.
* Sequentially consistent.

Disadvantages:

* |f athread crashes between Lock and Unlock, no other thread that calls Semaphore-Lock can make
progress.

 Thread dispatching (starting and stopping of threads) takes a lot of time.

 Read-Modify-Write operations are slow.
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Non-Blocking Wait

* |nstead of synchronization via semaphore or similar, direct use of Read-Modify-Write
operations.

* Optimistic approach.
- Non-Blocking Wait
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Read-Modify-Write Operation

* Function RMW (V, old value, new value)

e Returns true, if the atomic variable V still has the old value; V receives the new value
simultaneously.

* Returns false, otherwise. Implicitly o1d value issettonew value.
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Example

T (Z atomic)

1: 2 local := Z;
2: 1f not RMW(Z, Z local, Z local + ..) then goto 1;

Advantages:

* |f few threads access the central variable simultaneously, very efficient.

* |f a thread crashes, other threads can still make progress.

» Sequentially consistent and Release/Acquire memory model possible.

Disadvantages:

e Difficult to understand for more complex algorithms.

* Even more difficult to understand for more complex algorithms together with Release/Acquire memory order.
» Suffers from ABA problem (to be explained on the next slides)
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The ABA problem

The ABA problem occurs when multiple threads (or processes) accessing shared data
interleave. Here is a sequence of events that illustrates the ABA problem:

1. Process P1 reads value A from some shared memory location,
P1 is preempted, allowing process P2 to run,

P2 writes value B to the shared memory location,

P2 writes value A to the shared memory location,

P2 is preempted, allowing process P1 to run,

P1 reads value A from the shared memory location,

N o kR W N

P1 determines that the shared memory value has not changed and continues.
-> Thus an RWM operation may succeed, although it actually should not.

Although P1 can continue executing, it is possible that the behavior will not be correct due to the “hidden”
modification in shared memory.
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Solving the ABA Problem with CAS

The ABA problem can be solved via CAS operation by counting the number of accesses to
shared data.

Disadvantages:

Counter has to be integrated into shared data word (which complicates accessing the actual data or may
require modifying pointer values) or

Use additional word for the counter (which requires double word or multi word CAS that are not provided by
all CPUs)
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Load-Link/Store-Conditional (LL/SC) Operation

* Alternative to CAS operation
* Equivalent to CAS

e LL/SC is sometimes called load-reserved/store-conditional (LR/SC)
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Implementing LL/SC

V1-0

Function LL (address) loads value stored at address
Function SC (address, wvalue) storesvalue at address provided that there was no
interfering store to address. Returns t rue if successful, false otherwise.

LL: store address at cache line
Any modification to any portion of the cache line (via conditional or ordinary store) cause
the store-conditional (SC) to fail

LL/SC operations are supported by DEC Alpha, PowerPC, MIPS, ARM, RISC-V, ...
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Load-Link/Store-Conditional (LL/SC) Operation

Advantages:

* [nsensitive to ABA problem

* Instruction set: needs two words instead of three needed by CAS
Disadvantages:

* Sometimes fails if context switch occurs between LL and SC operation
 Sometimes fails if a second LL/SC occurs

* No nesting of LL/SC operations
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Performance Comparison

Blocking vs. Non-Blocking (SC):
* Intel x86
e 1 thread writes to a queue, 1 thread reads from a queue

* Non-Blocking more than 100 times faster than Blocking
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Performance Gain Intel X86 through SC-AR-Relaxation
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Lock benchmarks for 1, 2, 8, 16, 28 threads

* 10M Lock/Unlock operations in a loop, no operation between Lock and Unlock
e 28 Cores, 2-socket system (Intel Xeon E5-2697 v3 @ 2.60 GHz)

from: S. Yang, S. Jeong, B. Min, Y. Kim, B. Burgstaller, J. Blieberger, Design-space evaluation for non-blocking synchronization in Ada: lock elision of
protected objects, concurrent objects, and low-level atomics, Journal of System Architecture, Volume 110, 2020, 101764, ISSN 1383-7621,
https://doi.org/10.1016/].sysarc.2020.101764 .
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Performance Gain ARM v8 through SC-AR-Relaxation
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* 10M Lock/Unlock operations in a loop, no operation between Lock and Unlock

e 16 Cores, 4-socket system (AWS Graviton ARM v8)

from: S. Yang, S. Jeong, B. Min, Y. Kim, B. Burgstaller, J. Blieberger, Design-space evaluation for non-blocking synchronization in Ada: lock elision of
protected objects, concurrent objects, and low-level atomics, Journal of System Architecture, Volume 110, 2020, 101764, ISSN 1383-7621,
https://doi.org/10.1016/].sysarc.2020.101764 .
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Summary (1/2)

Memory Models:

* Sequentially Consistent Memory Model: corresponds to common sense.

* Due to various hardware and software optimizations for performance improvement, SC is no longer given.
« — weak memory model: Relaxed Memory Model.

* Practical compromise between programmers’ intuition and performance:
Release/Acquire Memory Model
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Summary (2/2)

Programming Multi-Threaded Applications:

e |f performance is not a major concern, prefer Blocking.

* |f Blocking, prefer higher language features (no semaphores!)

e |f performance is important, initially prefer SC (easier to understand!)

e |f SCis too slow, switch to RA (Relaxing very important, but difficult!)
* SC - RA-Relaxation can also bring performance gains for SC-HW!
* Prefer to use pre-made libraries with data structures or algorithms (already well tested!)

* Freely accessible, open-source libraries are better!
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Thank you for your attention!
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