
Advanced Software Engineering

Example Project:

Vienna International Airport

AODB Core System

DI Dr. techn. Mario Bernhart

INSO – Advanced Software Engineering

About myself

 Researcher at Vienna University of Technology

 In 2012 researcher at MIT Aero/Astro

 Eclipse project lead and committer (Mylyn Reviews)

 6 years in software engineering for air traffic

 2000-2005 Electronic Flight Strips (EFS) at Frequentis

AG

 3 years in software engineering for airport operations

 2010-2012 AODB for Vienna International Airport

 Contact: mario.bernhart@inso.tuwien.ac.at

2

mailto:mario.bernhart@inso.tuwien.ac.at

INSO – Advanced Software Engineering

Advanced Software Engineering (next 5 lectures)

 Example Project: Vienna
International Airport AODB Core
System

 Release your stuff 3 times a day
 Dependency Management

 Build Management and -Automation

 Continuous Integration, Continuous
Delivery

 Five challenges you solve for every
project

 Error Management

 Transaction Management

 Logging

 Auditing

 Declarative Authentication and
Authorization

 Build for ten years and more
 Layered Software Design / API

Design

 Modularization / Service Design

 Decoupling / Event Driven Design

 Interfacing / Integration

 From prototype to product (make it
work 24/7)

 Clustering

 Performance

 Monitoring

 Automating Operational Tasks

3

INSO – Advanced Software Engineering

What is advanced in Software Engineering?

 Dependable Software

 Large, Complex, Integrated Software

 Extended Software Lifecycle

4

INSO – Advanced Software Engineering

Dependable Software Basic Concepts [1]

 Definition from [1] (Fundamental Concepts of

Dependability)

 Dependability is an integrative concept that

encompasses the following attributes:

 availability: readiness for correct service;

 reliability: continuity of correct service;

 safety: absence of catastrophic consequences on the

user(s) and the environment;

 confidentiality: absence of unauthorized disclosure of

information;

 integrity: absence of improper system state alterations;

 maintainability; ability to undergo repairs and

modifications.
5

INSO – Advanced Software Engineering

Dependable Software Basic Concepts [1]

 Dependability tree from [1]

6

INSO – Advanced Software Engineering

Dependable Software Basic Concepts [1]

 Fault prevention

 Quality control

 Software design i.e.

- structured programming

- information hiding

- modularization

 Fault tolerance

 Error detection and subsequent system recovery

 Error handling: roll-back (checkpoint) vs. roll-forward

 Redundancy: fault masking, voting algorithms, ...

 Fault isolation

7

INSO – Advanced Software Engineering

Dependable Software Basic Concepts [1]

 Fault removal

 Verification (static, dynamic), diagnosis, correction

 Fault injection (e.g. to test the error handling)

 Corrective and preventive maintenance

 Fault forecasting

 Qualitative

- identify, classify, rank

 Quantitative

- probability model (stochastic)

8

INSO – Advanced Software Engineering

Dependable Software Basic Concepts [1]

 ERROR: Discrepancy between a computed, observed

or measured value or condition, and the true, specified,

or theoretically correct value or condition.

 Example: null value when not valid

 FAULT: Abnormal condition that can cause an element

or an item to fail.

 Example: Uncaught NullPointerException (NPE)

 FAILURE: Termination of the ability of an element, to

perform a function as required.

 Example: Malfunction, nonfunction or crash of a service

(i.e. due to unhandled NPE)

9

INSO – Advanced Software Engineering

Dependable Software Safety culture;
exemplary analysis from [2] N. Leveson

 Ariane 501

 Wrong reuse (Ariane 4 software for Ariane 5)  exploded

 Mars Climate Orbiter (MCO)

 Metric vs. English units  navigation failure, lost

 Mars Polar Lander

 False sensor signal  landing aborted, destroyed

 Titan / Milstar satellite

 False constant  incorrect orbit

10

INSO – Advanced Software Engineering

Dependable Software Safety culture;
Flaws in safety culture [2]

 Management

 Diffusion of Responsibility and Authority

 Limited Communication Channels and Poor Information
Flow

 Technical

 Inadequate System and Software Engineering
- Poor or Missing Specifications
- Unnecessary Complexity and Software Functionality
- Software Reuse or Changes without Appropriate Safety

Analysis
- Violation of Basic Safety Engineering Practices

 Inadequate Review Activities

 Ineffective System Safety Engineering

 Flaws in the Test and Simulation Environments

 Inadequate Human Factors Design for Software
11

INSO – Advanced Software Engineering

Software Aging [3]

 Reasons for Software Aging from [3] D. N. Parnas
 Lack of movement: Failure to modify the product to meet changing

needs

 Ignorant surgery: Result of the changes that are made

 Problems during lifecycle
 Inability to keep up (growth)

 Reduced performance (poor design)

 Decreasing reliability (error injection)

 Preventive measures
 Design and plan for change

 Documentation and Reviews

 Restructuring including partial replacement (amputation)

 Plan for retirement and replacement

12

INSO – Advanced Software Engineering

Error Injection

13

INSO – Advanced Software Engineering

Vienna Airport facts (from 2010)

 19,7 mio. Passengers

 246.000 Movements

 ~230 Companies

 70 Airlines

 172 Destinations

 4.266 Employees

(FWAG)

 ~19.000 Employees at

Vienna Airport

 16,8 mio. Baggage

Pieces

 116 Check-In Desks

 96 Parking Positions

 20 Pier Positions

14

INSO – Advanced Software Engineering

Mach2info project key facts

 Core system (AODB – Airport
Operational Database) for all flight
operations at VIE (20 Mio.
passengers / year)

 Replacement of the legacy system
MACH

 40+ years-old BULL-GSOC8 host (about
250 KLOC Cobol source)

 No documentation at all

 126 Transactions per second

 Criticality
 1h downtime  Delays

 4h downtime  Severe operational
limitations

 Migration of the legacy system without
significant downtime

 Incremental strategy with a strict 1:1
re-engineering policy

16

INSO – Advanced Software Engineering

Baggage office

INSO – Advanced Software Engineering

Movement Control

INSO – Advanced Software Engineering

Operations center

INSO – Advanced Software Engineering

Ground handling

INSO – Advanced Software Engineering

Operations

INSO – Advanced Software Engineering

Project in numbers

 31 team members

 106 Features (e.g. core flight process, turnaround
management, messaging, gate and stand planning,
notifications, deicing...)

 About 1000 users and 16 individual user groups on

 Standard PCs

 IATA Cute Terminals (no mouse)

 Ruggedized touchscreen laptops

 5 releases with incremental operations of mach2info
and incremental shutdown of legacy system

 2 years duration; now successfully in full operations

22

INSO – Advanced Software Engineering

Mach2info features

 Inbound / Outbound flight processing

 Turnaround management

 Gate and stand allocation

 Deicing management

 Notification system
 Application integrated (with drag and drop support)
 Email
 System2system

 Flight planning services (message-based and manual)

 IATA message processing (receiving and sending)

 Accounting data export

 Interfaces for e.g. public displays (FIDS), load planning,
billing, ground radar, resource planning tools …

23

INSO – Advanced Software Engineering

AODB example archticture

AODB Core System

F
lig

h
t

D
a
ta

 I
n
te

rf
a
c
e
s

Flight Inform.

Display

System (FIDS)

Accounting

AODB User Interface

Master

Data

Services

...

Planning tools

Other User

Interfaces

E
x
te

rn
a
l
M

e
s
s
a
g
in

g
 (

IA
T
A

,
IC

A
O

,
A

T
C

,
…

)

Flights and

Data
Messages

Planning Services

Operations Services

Accounting Services

Notification Engine

Message Processing

Security

Services

24

INSO – Advanced Software Engineering

Technical strategy

 1:1 migration (feature-wise, not technical)

 Minimize the changes in the legacy system (high risk!)

 Incremental transfer of user groups to the new system

 Try to evenly distribute user size through a number

releases

 Technical „little big bangs“

 Migrate smallest possible size, but coherent parts

 Parallel operations of both, the legacy and the new

system

 Parallel input: Interfaces and messages

 Serial input: User input

25

INSO – Advanced Software Engineering

Step 1 of the incremental migration strategy. The main element is the Flight Data Component that listens on
the legacy interface for flight data updates and transforms that to a new model before forwarding it to the
primary systems.

Legacy AODB

[Business Logic]

Passive Flight
Data Component

[Transformation]

Primary System 1

This communication is ether direct or with a simple protocol transformation component

Legacy Database New Database

External
Messages

26

INSO – Advanced Software Engineering

Step 2 of the incremental migration strategy. The main element is the Service Component that provides
service interfaces with all relevant validations, but not the business logic.

Legacy AODB

[Business Logic]

Passive Flight
Data Component

[Transformation]

Primary System 1

Legacy Database New Database

Validating Service
Component

[Validations]

External
Messages

27

INSO – Advanced Software Engineering

Step 3 of the incremental migration strategy. The two components of Step 2 are now merged together and
provide a fully functional AODB. The legacy system is updated asynchronously to keep in sync.

Legacy AODB

[Business Logic]

New AODB

[Business Logic]

Primary System 1

External
Messages

Legacy Database New Database

External
Messages

28

INSO – Advanced Software Engineering

Integration architecture (at release 3)

29

INSO – Advanced Software Engineering

Project planning for 5 mach2info releases

30

INSO – Advanced Software Engineering

„Anatomy“ of a core system (dependency graph)

31

INSO – Advanced Software Engineering

Integrating a core system

32

INSO – Advanced Software Engineering

Requirements Engineering

 Integration and intensive cooperation with 3 core business

units

 Coordination with 3 business units representatives

 Identification of user groups

 About 1000 users and 16 user profiles

 Tailoring the user interface engineering process to meet the

demands of the respective business units

 Reading legacy code to extract requirements in human

readable language

 Separation of functional and technical aspects of the legacy

source

33

INSO – Advanced Software Engineering

Cobol code analysis

 114 Transaction

Programs (TPRs) with

124k LOC

 (665k LOC total in

MACH)

 819

Functions/procedures

(called by TPRs)

with116k LOC

 109 DB-

Configurations, with

3.5k LOC

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SPECIAL-NAMES.

DECIMAL-POINT IS COMMA.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 DATUM.

05 JAHR PIC 9(4).

05 MONAT PIC 9(2).

05 TAG PIC 9(2).

05 REST PIC X(13).

01 GESEHEN PIC X.

PROCEDURE DIVISION.

MOVE FUNCTION CURRENT-DATE TO DATUM.

DISPLAY SPACES UPON CRT.

DISPLAY TAG AT 0101.

DISPLAY MONAT AT 0103.

DISPLAY JAHR AT 0105.

ACCEPT GESEHEN.

STOP RUN.

34

INSO – Advanced Software Engineering

Usability Engineering

 Contextual enquiry of the working environment

 „How is the operative environment for each user set up?“

 Individual design of user interface for each user group

 „1:1 functional replacement, but optimized user interfaces“

 design for the technical user environment (PC, mobile etc.)

 Analysis of usage statistics of legacy system

 „How frequently is a function used by a user and what is the
workflow?“

 Mockups of user interfaces before implementation

35

INSO – Advanced Software Engineering

Baggage management example

36

INSO – Advanced Software Engineering

Contextual inquiry of work environment

37

INSO – Advanced Software Engineering

Early design draft for baggage system

38

INSO – Advanced Software Engineering

Legacy system for baggage system

39

INSO – Advanced Software Engineering

Legacy system for notifcation system

40

INSO – Advanced Software Engineering

Mock-up for baggage (right) and notfications (left)

41

INSO - Industrial Software

Institut für Rechnergestützte Automation | Fakultät für Informatik | Technische Universität Wien

Implementation for baggage and notification
system

INSO – Advanced Software Engineering

Tracking software development

43

INSO – Advanced Software Engineering

Most important: motivation

44

INSO – Advanced Software Engineering

References

1. A. Avizienis, J.-C. Laprie and B. Randell: Fundamental
Concepts of Dependability. Research Report No 1145,
LAAS-CNRS, April 2001

2. The Role of Software in Spacecraft Accidents by Nancy
Leveson. AIAA Journal of Spacecraft and Rockets, Vol. 41,
No. 4, July 2004

3. David Lorge Parnas: Software Aging. In: International
Conference on Software Engineering. IEEE Computer
Society Press, Sorrento, Italy 1994

4. Bernhart, M.; Mauczka, A.; Fiedler, M.; Strobl, S.;
Grechenig, T., Incremental reengineering and migration of
a 40 year old airport operations system, 28th IEEE
International Conference on Software Maintenance (ICSM),
pp.503,510, Sept. 2012

45

