
Advanced Software Engineering

23.11.2017

Five challenges you solve for every project

DI Stefan Strobl

stefan.strobl [at] inso.tuwien.ac.at

INSO – Advanced Software Engineering

Introduction

 Frameworks offer a lot of guidance to solve common

problems (patterns)

 Crucial areas need qualified decisions to tailor the

framework to your needs

 Good frameworks provide you with a series of alternatives,

bad ones try to force “the right” solution on you

 Choosing suitable framework(s) and tailoring it to the

scenario at hand is an integral part of any IT project

INSO – Advanced Software Engineering

public void doSomething(Equipment instance, String user, String role) {

if (role.equalsIgnoreCase(UserRoles.ADMINISTRATOR) || role.equalsIgnoreCase(UserRoles.SUPERUSER)) {

log.debug(„do Something Equipment");

Session session = null;

try {

String setVar = "{call SET_CTXVAR('username','" + user + "')}";

session = HibernateSessionFactory.getSessionFactory().openSession();

session.beginTransaction();

session.createSQLQuery(setVar).executeUpdate();

session.delete(instance);

session.getTransaction().commit();

log.debug("Equipment do Something successful");

} catch (RuntimeException re) {

log.error("Equipment do Something failed", re);

throw re;

} finally {

session.close();

}

} else {

log.warn("User: " + user

+ ", role: " + role

+ ", Tried to do Something with a record when the role does not allow this function");

}

}

public void deleteEquipment(Equipment instance, String user, String role) {

if (role.equalsIgnoreCase(UserRoles.ADMINISTRATOR) || role.equalsIgnoreCase(UserRoles.SUPERUSER)) {

log.debug("deleting Equipment");

Session session = null;

try {

String setVar = "{call SET_CTXVAR('username','" + user + "')}";

session = HibernateSessionFactory.getSessionFactory().openSession();

session.beginTransaction();

session.createSQLQuery(setVar).executeUpdate();

session.delete(instance);

session.getTransaction().commit();

log.debug("Equipment delete successful");

} catch (RuntimeException re) {

log.error("Equipment delete failed", re);

throw re;

} finally {

session.close();

}

} else {

log.warn("User: " + user

+ ", role: " + role

+ ", Tried to delete a record when the role does not allow this function");

}

}

How not to…

3

INSO – Advanced Software Engineering

Agenda

 While using (modern) application frameworks, cross cutting

concerns usually need tailoring

 Handling these concerns separately from your business logic

is a major factor for retaining clean, readable code

 The following five areas will be addressed today

 Transaction Management

 Logging & Auditing

 Security

 Error Handling

 Internationalization & Localization

 Some common pitfalls will be highlighted along the way

4

INSO – Advanced Software Engineering

Let us start with a regular business service

class MyServiceImpl implements MyService {

public ResultDTO executeBusinessMethod(InputDTO input)

throws MyBusinessException {

validateInput(input);

Result result = performCalculation(input);

if(result.failed()) {

throw new MyBusinessException(„error.key“);

}

updateDatabase(result);

return transform(result);

}

// private methods

}

5

INSO – Advanced Software Engineering

Transaction Management - Models

 Models describe the expected transactional behaviour

 Essentially: who is responsible for a transaction?

 Local Transaction Model

- Underlying database (auto commit)

- Connection based

 Programmatic Transaction Model

- The developer (no auto commit)

- Transaction manager / User Transaction

 Declarative Transaction Model aka Container Managed

Transactions (CMT)

- The developer specifies the behaviour

- The container handles the transaction

6

INSO – Advanced Software Engineering

Transaction Management - Strategies

 The following strategies can be used or customized to

handle transactions

 Essentially: what is considered a unit of work?

 Client Orchestration: for fine grained APIs

- Web framework

- Portal application

- Workflow or BPM component

 API Layer: for coarse grained methods

- Web services

- Message handlers

 High Concurrency / High Speed Processing: optimizations

- Shortest possible transaction scope

7

INSO – Advanced Software Engineering

A word on distributed transactions

 Distributed or global transactions allow atomic behavior over more than

one resource (database, message queue, …)

 Specified in the XA (eXtended Architecture) standard by “The Open

Group”

 XA uses the 2-phase-commit (2PC) protocol to ensure atomic commits

 Java Transaction API (JTA, JSR-907) is based on the XA standard

 Should only be used when absolutely necessary

 Distributed transactions can NOT cover all cases of (physical) failure

 Many problems can be solved by fine grained, manual control of commit

sequence

 Use established Enterprise Integration Patterns (EIP) – e.g. for message queuing:

Idempotent Consumer

8

INSO – Advanced Software Engineering

Declarative Transactions – Spring example

 Spring @Transactional

annotation

 Transactional Interceptor

 Begin/commit transaction

 Join existing transaction

 Rollback in case of

(unchecked) exception

 Correct configuration of

transactions is crucial

9

<<Transaction Interceptor>>

tx = getOrCreateTx().begin()

tx.commit()

// handle possible errors

<<Bean>>

@Transactional

void doSomething()

// execute code

INSO – Advanced Software Engineering

Pitfall – declarative transactions & interceptors

public class Bean {

void a() {

b();

}

@Transactional

void b() {

doSomething();

}

}

 Calling b() works as

expected

 Calling a() does not

work

 WHY?

 Solution:

Self reference to

obtain proxy

10

public class Bean {

@Inject Bean bean;

void a() {

bean.b();

}

@Transactional

void b() {

doSomething();

}

}

INSO – Advanced Software Engineering

Transaction Management - Summary

 Problem:

How to choose the right transaction management strategy for

your project?

 Steps:

 If running inside a suitable container, declarative transactions are usually

the safest bet

 Make sure you understand the implications a managed persistence

context entails

 Completely managing transactions manually results in a lot of boiler-

plate code and is error prone

 CMT makes automating tests hard(er) – an embedded container is

necessary to provide a suitable environment

 XA Transactions only when absolutely necessary

11

INSO – Advanced Software Engineering

Apply to our business service

class MyServiceImpl implements MyService {

@Transactional

public ResultDTO executeBusinessMethod(InputDTO input)

throws MyBusinessException {

validateInput(input);

Result result = performCalculation(input);

if(result.failed()) {

throw new MyBusinessException(„error.key“);

}

updateDatabase(result);

return transform(result);

}

// private methods

}

12

INSO – Advanced Software Engineering

Logging & Auditing - Definition(s)

 Logging:

 Technical, text based output

primarily used for detecting

and debugging problems

 Level of detail can usually be

configured at runtime

 Output is not (easily)

understandable for regular

users of the system

 Output is not suitable for

automated processing

 Short term retention (months)

 Auditing

 Domain specific, fine grained

and structured output for

tracing user activity

 Requirements are specified by

legal and/or company specific

policies

 Used by (limited) end user

group (e.g. internal revision)

 Frequently coupled with long

term retention requirements

(10+ years for regular

businesses, 30+ for medical

and similar)

13

INSO – Advanced Software Engineering

Logging Technical

 Plenty of frameworks and meta-frameworks available

 Examples: Log4j, Logback, JUL - or meta: slf4j

 Some performance implications to consider

 Avoid expensive operations to generate log statements (e.g. only print

id instead of loading a data set from the database)

 Avoid unnecessary string concatenations

 Too much log output negatively affects performance

 Absolutely avoid writing directly to stdout or stderr

 Logging also has to be configured correctly in the frameworks

and libraries you use (can be quite tricky)

 Scenario: Framework A uses log4j, Framework B uses JUL

INSO – Advanced Software Engineering

Reading log files

 Clustering/load balancing/distribution can make it infinitely

harder to trace an error

 Provide contextual information (userId, sessionId, transaction-

or requestId, threadId) for correlation

 Make use of tooling for easy reading of large amounts of

generated log files

 Syslogd

 Logstash

 Splunk

(commercial)

15

INSO – Advanced Software Engineering

Good Log output

 Frameworks cannot ensure "good" log output, only enable it

 Limit the amount of log levels used (usually DEBUG, INFO, WARN
and ERROR are sufficient)

 Establish and enforce clear rules when to use which log category

 Make sure you know how to adjust the log level at runtime

 The possibility to activate extensive/verbose debug output can save
your day in critical situations

 Automatically adjusting the log level according to the current
situations can help to make problems visible earlier

 Contextual information helps you to trace the flow of execution

 Always provide a reference (“user created” vs. “user (id=1234)
created”)

 Make sure to tailor the log output after gathering experience in
practice

16

INSO – Advanced Software Engineering

Auditing - Technical

 No or little framework support available

 Requirements are usually too diverse/specific for "generic"

solutions

 Auditing is a "domain specific" feature - requiring regular

specification, quality assurance, etc

 Frequently depends on already existing (in house) product

 If using interface to external product make sure to have proper

SLAs in place

 Often quite expensive to generate and deliver auditing

information

 Try to work asynchronously as often as possible to reduce

effect on execution time

17

INSO – Advanced Software Engineering

Logging & Auditing - Summary

 Problem:

How to correctly configure logging (and auditing)?

 Steps:

 Select a good logging framework with a clear and concise API

and good performance

 Configure the logging framework to give you just enough

information

 Define clear and simple rules for all developers to follow

 Review the quality of your log output on a regular basis

 Ensure the logs are easily and quickly accessible

 Auditing, if necessary, is a regular functional requirement

 Make sure auditing does not affect your performance

18

INSO – Advanced Software Engineering

Apply to our business service

class MyServiceImpl implements MyService {

@Transactional

@TraceMethodCall(level=INFO)

@AuditResult

public ResultDTO executeBusinessMethod(InputDTO input)

throws MyBusinessException {

validateInput(input);

Result result = performCalculation(input);

if(result.failed()) {

throw new MyBusinessException(„error.key“);

}

updateDatabase(result);

return transform(result);

}

// private methods

}

19

INSO – Advanced Software Engineering

Security

 Two main “tasks”

 Authentication

 Authorization

 For each many solutions depending on your requirements

 Identity Management

 How to handle user related data?

 Database, Custom application

 LDAP/Active Directory

 Managing users and granted authorizations can become very

complex with a growing number of users and actions

20

INSO – Advanced Software Engineering

Identity Management

21

INSO – Advanced Software Engineering

Authentication

 Username/Password

 Easiest, both to implement and use

 Still most wide-spread, though increasingly insecure

 Certificate based (client authentication)

 Complex to roll out & manage

 Used in high security environments

 Token based / Single Sign On (SSO)

 e.g. SAML, OpenID, Kerberos or proprietary (LTPA)

 Upcoming: smart card, biometric

 “Bürgerkarte”, Fingerprint-Sensor

 Usually needs client side support (driver, ...)

22

INSO – Advanced Software Engineering

Authorization

 Role based access control (RBAC)

 Frequently used for resource based systems (e.g.

Windows/*nix file systems)

 Permission based

 Simple action based

 Complex expressions

 Access control lists (ACL)

 Delivers fine grained control on an (object) instance level

 Rule based

 Suitable for complicated and frequently changing business

requirements

23

INSO – Advanced Software Engineering

Authorizations - what to choose

 Permission or role based: simple security requirements

 Usually easy to govern

 Well supported by standard technologies

 Performance implications are minimal

 ACLs or rules: complex, data set centric requirements

 e.g. patient data, individual accounts with user managed grants

 complex system for (automatically) granting access

 can have significant performance implications

24

INSO – Advanced Software Engineering

Declarative Security

 Provided by containers out of the box

 Forces usage of provided authentication mechanisms and

APIs (JAAS for Java)

 @RolesAllowed specified by JSR-250

 Spring and Deltaspike extend the mechanisms to provide

more flexibility (e.g. Expression based security checks)

 Decide on a scope for your security, e.g.

 API level

 Client/User Interface level

25

INSO – Advanced Software Engineering

Summary - Security

 Problem

How to choose an appropriate access control mechanism?

 Steps:

 Identify available resources, especially data

 Reuse existing infrastructure or frameworks over building your own

 Decouple authentication, authorization and identity management

 Keep your business code clean of provider specific dependencies

 Make sure to adhere to organizational requirements

 Consider performance implications when using more complex

authorization methods

26

INSO – Advanced Software Engineering

Apply to our business service

class MyServiceImpl implements MyService {

@Transactional

@TraceMethodCall(level=INFO)

@AuditResult

@RolesAllowed(SUPER_POWER_USER)

public ResultDTO executeBusinessMethod(InputDTO input)

throws MyBusinessException {

validateInput(input);

Result result = performCalculation(input);

if(result.failed()) {

throw new MyBusinessException(„error.key“);

}

updateDatabase(result);

return transform(result);

}

// private methods

}

27

INSO – Advanced Software Engineering

Error Management

 User error vs. program error

 Program flow vs. exception

 Connected with logging and UI

 How and what to communicate to the end user

 Also connected with (client side) validation

 Three types of Exceptions

 Checked Exceptions

 Unchecked Exceptions

 Errors

28

INSO – Advanced Software Engineering

Handling Lower Level Exceptions

 Ask yourself the following questions:

 Does this method have enough information to properly handle

this exception? If yes, handle it.

Otherwise...

 Does the caller have enough information to properly handle

this exception? If yes, re-throw.

Otherwise...

 Does the caller need to specifically handle failures in the

operations from this component? If yes, re-throw as nested

within a component exception subclass. Otherwise...

 Re-throw as unchecked.

Source: http://stackoverflow.com/questions/5865547/java-error-handling

29

http://stackoverflow.com/questions/5865547/java-error-handling

INSO – Advanced Software Engineering

Exception Translation Pattern

 Do not expose “lower level” exceptions to upper layers of

code to avoid “API bleeding”

 If exception cannot be handled at the current stage, wrap it in a

module specific exception

 Easily done as (custom) Interceptor/Aspect + Annotation

try {

doSomething();

} catch (LowerLevelException e) {

throw new MyBusinessException(“message”, e);

}

30

INSO – Advanced Software Engineering

Exception Handling – Anti-Patterns

 Log and Throw

 Do either one or the other!

 Catching or Throwing “Exception”

 It’s like a fishers net – you do not know what you will catch

 Destructive Wrapping

 Always pass the causing exception

 Catch and Ignore

 This one will come back to bite YOU

 Throw from within finally

 Will swallow any other exception

31

INSO – Advanced Software Engineering

Pitfall: Checked Exceptions and Transactions

 One of the most common data integrity problems

 EJB and Spring do not rollback on checked exceptions

@Transactional

public void blockIn(Flight flight, Time time)

throws MyCheckedException {

try {

updateFlight(flight, time);

// throws MyCheckedException

updatePosition(flight);

} catch (MyException e) {

//do some error handling

throw e;

}

}

32

(rollbackFor=MyCheckedException.class)

ctxt.setRollbackOnly(true);

Spring

EJB

INSO – Advanced Software Engineering

Summary – Error Management

 Problem

How to consistently manage user and program errors in your

system?

 Steps:

 Do not use exceptions to direct regular program flow

 A good exception (handling) strategy will make your code usable and

maintainable

 Consistency is key for maintainability and readability

 Do not overpower your end user with incomprehensible information

 At the same time make it easy for the user to report a problem

 Watch for common pitfalls

33

INSO – Advanced Software Engineering

Apply to our business service

class MyServiceImpl implements MyService {

@Transactional

@TraceMethodCall(level=INFO)

@AuditResult

@RolesAllowed(SUPER_POWER_USER)

@ExceptionBarrier

public ResultDTO executeBusinessMethod(InputDTO input)

throws MyBusinessException {

validateInput(input);

Result result = performCalculation(input);

if(result.failed()) {

throw new MyBusinessException(„error.key“);

}

updateDatabase(result);

return transform(result);

}

// private methods

}

34

INSO – Advanced Software Engineering

Localization & Internationalization

 Internationalization (I18n)

The preparation of a (software) product for use in the global

market, usually done only once.

 Localization (L10n)

Performing specific adaptations necessary to launch a product

in a specific locale.

35

INSO – Advanced Software Engineering

Typical Focus Points

 Language & Text

 Character encoding (UTF-8 is should be de facto standard)

 Orientation: Left to right vs. right to left vs. vertical

 Images, Sorting

 Pluralisation

 Culture

 Names and titles

 Weights and measurements, paper sizes

 Telephone, Addresses, Postal codes

 Conventions

 Currency format

 Date, Time, Time zones and Calendars

 Number format

36

INSO – Advanced Software Engineering

Java Technologies

▪ Java built in (Resource Bundles)

▪ Foundation for most other frameworks

▪ ResourceBundle consisting of several property files (one per supported language

+ one for fallback)

▪ String.format() or MessageFormat.format() to properly handle parameterized

messages

▪ Cal10n

▪ Builds on built in Java mechanisms

▪ Provides (some) type safety by using Enumerations as key

▪ Configuration via annotations

▪ Built in support for formatting messages

▪ JavaEE/CDI/Deltaspike

▪ Builds on built in Java mechanisms

▪ Provides (some) type safety by using interfaces (as keys)

▪ Support for injection of message bundles

37

INSO – Advanced Software Engineering

Java Resource Bundles – Key Issues

▪ Property files (by Java specification) are ISO-8859-1 (Latin-1) encoded

▪ Hell, if more than one platform is involved (e.g Win, Linux, Mac OS)

▪ Only way to use characters not available in Latin-1 is to use Unicode escaped

characters (ü -> \u00FC)

▪ Type Safety

▪ Properties are referenced as strings

▪ Missing properties can only be discovered at runtime

▪ Unused properties usually remain

▪ Adding new and editing properties is a manual process

▪ Define property in multiple property files (maybe dozens of languages)

▪ Reference the property by the key

▪ Finding non-translated Strings inside the code is even harder

▪ No-compiler checks etc

38

INSO – Advanced Software Engineering

Java I18N – Hidden Issues 1

Pluralization

▪ “0 Personen” vs. “1 Person” vs. “5 Personen”

pCount={0}{0,choice,0#Personen|1#Person|1<Personen}

▪ Supported for “easy” languages (e.g. English, German) in Java

MessageFormat

▪ Third party library needed for complex languages (e.g. Polish, Russian) –

ICU4J

▪ Example: Different derivations of a word for single, a few and many (e.g.

1 auto; 2, 23, 54 auta; 5, 17 aut)

car={0} {0, plural, one{auto}few{auta}many{aut}other{aut}}

39

INSO – Advanced Software Engineering

Java I18N – Hidden Issues 2

Collation

▪ Some languages do not have the expected 1:1 mapping of lower-case to

upper-case letters

▪ E.g. Turkish has two lower case “i” and “ı” as well as two different

uppercase: “İ” and “I”

▪ This results in

“portrait”.toUpperCase().equals(“PORTRAIT”) == false

Attention: This also happens on non localized Strings if the locale of the

JVM is switched (e.g. because a Java program runs on a Windows instance

with Turkish localization)

40

INSO – Advanced Software Engineering

Summary Internationalization & Localization

 Problem

How to prepare you product for a global audience?

 Steps

 Consider Internationalization right from the beginning, especially

- Character encoding

- Locale & Timezone settings

 Know your target market to avoid unnecessary overhead

 I18n is not only translatable text

 Even if initially only one language is the target, investing in

Internationalization can pre-empt changing requirements

 Make use of tools & frameworks

 Make sure you are in control of locale and timezone settings

41

INSO – Advanced Software Engineering

Apply to our business service

class MyServiceImpl implements MyService {

@Transactional

@TraceMethodCall(level=INFO)

@AuditResult

@RolesAllowed(SUPER_POWER_USER)

@TransactionBarrier

@InterpolateMessages

public ResultDTO executeBusinessMethod(InputDTO input)

throws MyBusinessException {

validateInput(input);

Result result = performCalculation(input);

if(result.failed()) {

throw new MyBusinessException(„error.key“);

}

updateDatabase(result);

return transform(result);

}

// private methods

}

42

INSO – Advanced Software Engineering

Our final business service

class MyServiceImpl implements MyService {

@Transactional

@TraceMethodCall(level=INFO)

@AuditResult

@RolesAllowed(SUPER_POWER_USER)

@TransactionBarrier

@InterpolateMessages

public ResultDTO executeBusinessMethod(InputDTO input)

throws MyBusinessException {

validateInput(input);

Result result = performCalculation(input);

if(result.failed()) {

throw new MyBusinessException(„error.key“);

}

updateDatabase(result);

return transform(result);

}

// private methods

}

43

Business Logic

Cross Cutting

Concerns

INSO – Advanced Software Engineering

Back to our „How not to…“

44

public void deleteEquipment(Equipment instance, String user, String role) {

if (role.equalsIgnoreCase(UserRoles.ADMINISTRATOR) || role.equalsIgnoreCase(UserRoles.SUPERUSER)) {

log.debug("deleting Equipment");

Session session = null;

try {

String setVar = "{call SET_CTXVAR('username','" + user + "')}";

session = HibernateSessionFactory.getSessionFactory().openSession();

session.beginTransaction();

session.createSQLQuery(setVar).executeUpdate();

session.delete(instance);

session.getTransaction().commit();

log.debug("Equipment delete successful");

} catch (RuntimeException re) {

log.error("Equipment delete failed", re);

throw re;

} finally {

session.close();

}

} else {

log.warn("User: " + user

+ ", role: " + role

+ ", Tried to delete a record when the role does not allow this function");

}

}

INSO – Advanced Software Engineering

Declarative Security

45

@RolesAllowed({UserRoles.ADMINISTRATOR, UserRoles.SUPERUSER})

public void deleteEquipment(Equipment instance, String user, String role) {

log.debug("deleting Equipment");

Session session = null;

try {

String setVar = "{call SET_CTXVAR('username','" + user + "')}";

session = HibernateSessionFactory.getSessionFactory().openSession();

session.beginTransaction();

session.createSQLQuery(setVar).executeUpdate();

session.delete(instance);

session.getTransaction().commit();

log.debug("Equipment delete successful");

} catch (RuntimeException re) {

log.error("Equipment delete failed", re);

throw re;

} finally {

session.close();

}

}

INSO – Advanced Software Engineering

Transaction Handling

46

@Transactional

@RolesAllowed({UserRoles.ADMINISTRATOR, UserRoles.SUPERUSER})

public void deleteEquipment(Equipment instance, String user, String role) {

log.debug("deleting Equipment");

try {

String setVar = "{call SET_CTXVAR('username','" + user + "')}";

session.createSQLQuery(setVar).executeUpdate();

session.delete(instance);

log.debug("Equipment delete successful");

} catch (RuntimeException re) {

log.error("Equipment delete failed", re);

throw re;

}

}

INSO – Advanced Software Engineering

Logging / Tracing

47

@TraceMethodCall(level=DEBUG)

@Transactional

@RolesAllowed({UserRoles.ADMINISTRATOR, UserRoles.SUPERUSER})

public void deleteEquipment(Equipment instance, String user, String role) {

try {

String setVar = "{call SET_CTXVAR('username','" + user + "')}";

session.createSQLQuery(setVar).executeUpdate();

session.delete(instance);

} catch (RuntimeException re) {

log.error("Equipment delete failed", re);

throw re;

}

}

INSO – Advanced Software Engineering

Error Handling

48

@ExceptionBarrier

@TraceMethodCall(level=DEBUG)

@Transactional

@RolesAllowed({UserRoles.ADMINISTRATOR, UserRoles.SUPERUSER})

public void deleteEquipment(Equipment instance, String user, String role) {

String setVar = "{call SET_CTXVAR('username','" + user + "')}";

session.createSQLQuery(setVar).executeUpdate();

session.delete(instance);

}

INSO – Advanced Software Engineering

Resources

 Gregor Hohpe and Bobby Woolf. 2003. Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

 Joshua Bloch. 2008. Effective Java (2nd Edition) (The Java Series) (2 ed.). Prentice Hall PTR, Upper

Saddle River, NJ, USA.

 http://activemq.apache.org/should-i-use-xa.html

 https://today.java.net/article/2006/04/04/exception-handling-antipatterns

 http://lostechies.com/derickbailey/2011/05/24/dont-do-role-based-authorization-checks-do-

activity-based-checks/

 http://site.icu-project.org/

 http://stuartgunter.wordpress.com/2011/08/14/even-better-java-i18n-pluralisation-using-icu4j/

 http://weblog.tetradian.com/2012/11/03/on-metaframeworks-in-ea/

 http://www.chrisonea.com/2012/10/24/frankenframeworks/

 http://blog.opengroup.org/2011/03/10/enterprise-architecture%E2%80%99s-quest-for-its-

identity/

 http://pp.info.uni-karlsruhe.de/uploads/publikationen/constantinides04eiwas.pdf

49

http://activemq.apache.org/should-i-use-xa.html
https://today.java.net/article/2006/04/04/exception-handling-antipatterns
http://lostechies.com/derickbailey/2011/05/24/dont-do-role-based-authorization-checks-do-activity-based-checks/
http://site.icu-project.org/
http://stuartgunter.wordpress.com/2011/08/14/even-better-java-i18n-pluralisation-using-icu4j/
http://weblog.tetradian.com/2012/11/03/on-metaframeworks-in-ea/
http://www.chrisonea.com/2012/10/24/frankenframeworks/
http://blog.opengroup.org/2011/03/10/enterprise-architecture%E2%80%99s-quest-for-its-identity/
http://pp.info.uni-karlsruhe.de/uploads/publikationen/constantinides04eiwas.pdf

