
Advanced Software Engineering

30.11.2017

From prototype to product

(make it work 24/7)

DI Stefan Strobl



INSO – Advanced Software Engineering

Introduction – Operating your Software

 Classic waterfall from an operations perspective

 Plan, specify, design, build, test, deploy

 No/little incentive to think about operations before testing, 

and even there, only limited

 In an agile environment

 Potentially shippable code every day

 How do we find out? 

 Ship to a near production environment as often as possible

2



INSO – Advanced Software Engineering

A short story on how not to

 Dev team has been developing and shipping test builds to test env for 

months

 Environments are self managed by dev/test team

 All functional tests are passing

 Even some load tests are performed

 In short: everything looks well and everybody is feeling positive about the 

upcoming release

 Some savy developers have even written a deployment handbook detailing 

all (?) the steps necessary to set up a new environment

 Two weeks before production, first release candidate is handed over to 

operations for deployment on pre-production

 but... 

3



INSO – Advanced Software Engineering

... from here it is going downhill, and fast!

 In the ensuing ping pong game between development and operations the 

following issues have to be addressed

 missing database configuration, application does not startup

 -> configuration management

 first time running in clustered environment, every second request fails with 

"session not found"

 -> clustering

 database much bigger than test datasets, performance is seriously affected on 

certain queries

 -> performance

 after running for two days with only minor usage from the user tests, the 

servers run out of memory

 -> well... also performance, or load testing, or monitoring (last of which 

does not actually solve the problem)

 In the end: a functional software left a bad first impression disgruntling both 

operators and users

4



INSO – Advanced Software Engineering

Short Recap

 Continuous Integration, Continuous Delivery (previous 

lecture)

 Create an automated pipeline to build, test, assemble and 

run your code

 For today's lecture considered as precondition (although all 

of the given points are equally relevant in non-agile/CI 

environments)

 By having your build pipeline in place, your deploy pipeline 

gets a lot faster

5



INSO – Advanced Software Engineering

DevOps - Buzzword or Future?

 Difficult to draw clear line between development and operations

 Still in many cases two different departments/silos

 DevOps is more about breaking down walls then classic "who does 

what"

 It is not about who does it, 

but when and how it is done

 It is about considering

operations from the beginning

 It is about knowing how 

"the other side" works

 It is about facilitating 

communication!

6



INSO – Advanced Software Engineering

Configuration Management (CM)

 Definition:

Configuration Management ... is a management process for 
establishing and maintaining consistency of a product's 
performance, its functional and physical attributes, with its 
requirements, design and operational information, throughout its 
life. (ANSI/EIA-649-B)

 Which configuration to manage?

 Build configuration

 Product configuration

 Application server/database configuration

 OS configuration

 System configuration

7



INSO – Advanced Software Engineering

CM – Build Configuration

 The state of your source code is configuration

 The information how you build your project is configuration

 The (internal and external) dependencies of your build are 

configuration

 The (implementation) state of your requirements is 

configuration

 The state of your defects (at build time) is configuration

 The documentation of executed tests (test plans) is 

configuration

8



INSO – Advanced Software Engineering

CM – Application Level

 Often done in database and / or alongside source code

 Application should recognize and warn about or even fail on 

"wrong" configuration

 Keep configuration in as few places as possible

 Make it easy to view/change configuration

 Make clear distinction between user data and configuration 

in database - ideally, store in different "namespaces"

 Make clear distinction between environment specific and 

product specific configuration

9



INSO – Advanced Software Engineering

CM – System Level

 Where to draw the line between application and system
 e.g. Java options/memory configuration, especially settings like 

user.timezone, user.language or -Xmx/-Xms

 Remember previous lecture, what happens if the locale is set to a 
different language (e.g. Turkish)

 Tools like Puppet or Chef help a lot

 Avoid manual "tinkering" for correctly setting up an environment

 Enforce a consolidated view of the characteristics of your system

 “Infrastructure as Code” paradigm helps you treat configuration like 
code

 Server virtualization and "ready to go template images" make 
replicating environments a lot easier

 Have room for extra environments

 Have room for experiments

10



INSO – Advanced Software Engineering

Clustering vs. Load Balancing

 Different clustering modes, different implications

 Application level clustering: full/delta session replication

 Database level clustering (Oracle RAC)

 Load balancing 

 Sticky session

 Round robin (also DNS round robin)

 Active/passive

 Hardware vs. software

 Tradeoff between load distribution and fault tolerance

 Always perform fail-over tests on your setup (under load!)

11



INSO – Advanced Software Engineering

Clustering & Caching

 A clustered setup has strong implications on your caching 
strategies

 In-Process Caching

 One cache per-process (higher overall memory usage)

 Possibilities for inconsistencies between individual caches

 Be extra careful with cache size in on-heap scenarios

 Distributed Caching

 Slower due to additional overhead in form of network latency 
and object serialization 

 More complex to operate

 Scales much better 

 No risk of taking down the main application with OutOfMem

12



INSO – Advanced Software Engineering

Clustering & Session Serialization

 Activated session replication (full or delta) means each 
change to your session is replicated to all other nodes!

 Everything in your session has to be serializable

 Implement java.lang.Serializable

 Correctly handle transient fields

 Might generate a lot of network traffic

 Be careful with UI frameworks that do/support server-side 
state saving (JSF, Vaadin, …)

 Keep session size as small as possible

 Keep session as stable as possible

 Know what is in your session

13



INSO – Advanced Software Engineering

Focus: Master Node Election

 Used/needed for

 Ensuring something is executed only once (e.g. scheduled job)

 Ensuring messages are handled in correct order

 Have one node to mediate or delegate

 Automatic master node election is difficult to get right 

(unless you have a single resource to sync on)

 ... and has some ugly constraints (split brain for example)

 Manual master node election

 Might result in down time

 Possibility of human error

14



INSO – Advanced Software Engineering

Performance (testing)

 Test vs. Development Team

 Frequently internal (white box) know how/specific 
configuration required

 QS-departments often do not have the necessary skills

 Best done in collaboration

 Testing is only the "last" step to verify

 Considering performance implications during design & 
development

 Do your homework – know your numbers

 Target potential bottlenecks first

 Limited thread/connection pools

 Frequently used pages (e.g. welcome page/dash board)

15



INSO – Advanced Software Engineering

Performance - from a database perspective

 Use a clone (anonymized) of the production database

 Think about the resulting database queries (especially when 

using ORM tools)

 Be careful when operating on lists / result sets

 What will you do with them?

 Lazy loading of child entities

 n+1 queries problem

 Think about indices that fit your query patterns

 Use explain plans

 Make sure statistics are up to date

 Optimize based on data/facts and not on assumptions

16



INSO – Advanced Software Engineering

Performance - from a system integration perspective

 Be aware of all calls that are "leaving" your system

 Are there SLAs?

 Make sure you can make clear statements about actual performance

 Minimize the amount of round trips required

 Make sure you know about timeouts and how the system reacts

 Timeouts tend to bubble up. Increasing the timeout on a lower level might 
result in timeouts on a different (higher) level

 Example: web service timeout vs. transaction timeout vs. session timeout 
vs. browser request timeout

 Some timeouts are not easy to influence (e.g. browser timeout)

 Consider automatic retries if you can correctly detect specific errors

 However be aware of worst case scenario

 e.g. timeout of 5 minutes * 3 retries means your user request might run and 
block resources for 15 minutes

17



INSO – Advanced Software Engineering

Performance - profiling

 Tracing

 Usually done through byte code instrumentation

 Delivers invocation counts

 Can significantly influence runtime performance

 Not suitable for production environments

 Sampling

▪ Periodically queries stacks of running threads to estimate 

the slowest parts of the code.

▪ No invocation counts

▪ Negligible performance impact

18



INSO – Advanced Software Engineering

Performance – Profiling Tools

 JVisualVM 

(included in JVM)

 YourKit (commercial)

19



INSO – Advanced Software Engineering

Performance - measuring

 “Manual” measuring

 Good to see call durations at specific points

 Good for runtime behavior (hardly affects performance) 

 Good for adaptive measuring/reporting

 Bad if really done "manually" -> too much boiler plate code

 Bad for measuring "everything" (e.g. finding the needle in 
the hay stack)

 Pitfall

 Always use System.currentNanos() for measurement

 System.currentTimeMillis() resolution based on timer 
interrupt (e.g. 10 ms)

20



INSO – Advanced Software Engineering

Performance - measuring with AOP/Interceptor

 @Measured Annotation, Performance Interceptor

 StopWatch API (commons-lang, Perf4J, Spring)
protected Object invokeUnderTrace(MethodInvocation invocation, 

Log logger) throws Throwable {

String name = createInvocationTraceName(invocation);

StopWatch stopWatch = new StopWatch(name);

stopWatch.start(name);

try {

return invocation.proceed();

} finally {

stopWatch.stop();

logger.trace(stopWatch.shortSummary());

}

}

21



INSO – Advanced Software Engineering

Monitoring

 Frequently seen as a pure operations task

 Difficult to detect and (even more) pinpoint application level 
problems

 Basic monitoring is “easy”

 System states (e.g. database server down)

 System resources (e.g. available cpu, memory)

 Java behavior (e.g. GC intervals, heap state, ... )

 Infrastructure state (e.g. queue sizes, thread pool size)

 All of the above only indicate "disaster" cases - and not if 
anything goes wrong/weary in my application

 No way for operations to define application level points for 
monitoring

22



INSO – Advanced Software Engineering

Application level monitoring

 Goal - bring domain specific 

knowledge into operations

 First step: vertical "health 

check“ / Heartbeat

 Is the UI reachable?

 Does the UI reach the 

backend?

 Does the backend reach and 

write to the database?

 Can the backend reach other 

required systems?

 Later: application specific 

monitoring e.g.
 ThreadPoolTaskExecutorJmx

 ReminderInboxJmx

 PersistenceCacheJmx

 MovementTelexProcessingJmx

 Highly specific to the 

monitored application

 A lot of application specific 

monitoring tasks can also be 

handled by database queries

 E.g. amount of open tasks

23



INSO – Advanced Software Engineering

Application level by log analysis 

24



INSO – Advanced Software Engineering

Application Monitoring – Example with JMX

@ManagedResource(

objectName = "at.vie.m2i.bean:name=reminderInboxJmx", 

description = "Monitor the state of reminder inboxes")

public class ReminderInboxJmx {

@Inject

private MessageDao messageDao;

@ManagedOperation(description = "retrieve the number of unread 

reminders for the given inbox")

@ManagedOperationParameter(name = "inboxName", description = 

"The unique inbox name to identify the inbox")

public Long getUnreadReminderCountForInbox(String inboxName) {

return messageDao.getUnreadMessageCount(inboxName);

}

25



INSO – Advanced Software Engineering

Summary

 Configuration Management – Think about what your 

application (and operations) needs to correctly setup your 

software including its environment

 Clustering & Load Balancing – Think about what has to be 

done to make your software run reliable and fast

 Performance – Always think about the performance 

implications of your day to day design decisions

 Monitoring – Know how your application is doing

Deployment is just a part of dev/ops cooperation, not the whole 

thing

- John Allspaw

26



INSO – Advanced Software Engineering

Resources

 Bob Aiello and Leslie Sachs. Configuration Management Best Practices. Pearson 
Education, 2011. 

 ISO. Quality management systems – Guidelines for configuration management (ISO 
10007:2003). Tech. rep. ISO, 2003. URL: 
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=36644.

 Larry Klosterboer. Implementing ITIL Configuration Management. IBM Press, 2008.

 Puppet: http://puppetlabs.com/

 Chef: https://www.chef.io/chef/

 http://dev2ops.org/2010/02/what-is-devops/

 http://www.rajiv.com/blog/2009/03/17/technology-department/

 http://www.yourkit.com/

 https://visualvm.java.net/

 http://www.kitchensoap.com/2009/12/12/devops-cooperation-doesnt-just-happen-with-
deployment/

 https://blogs.oracle.com/dholmes/entry/inside_the_hotspot_vm_clocks

27

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=36644
http://puppetlabs.com/
https://www.chef.io/chef/
http://dev2ops.org/2010/02/what-is-devops/
http://www.rajiv.com/blog/2009/03/17/technology-department/
http://www.yourkit.com/
https://visualvm.java.net/
http://www.kitchensoap.com/2009/12/12/devops-cooperation-doesnt-just-happen-with-deployment/
https://blogs.oracle.com/dholmes/entry/inside_the_hotspot_vm_clocks

