
Software Architectures 
for Collective Intelligence II

Advanced Software Engineering VO
(180.456)

Jürgen Musil
Juergen.Musil@tuwien.ac.at

Software Architectures for Collective Intelligence (CI)

1. Introduction (11.01.2018)
– Overview on Collective Intelligence, Crowdsourcing & Human

Computation.
– What are Collective Intelligence Systems and what not.
– Relevance of CIS today.
– Getting started with architecting CIS.

2. System & Technology Architectures (18.01.2018)
– Architecting CIS
– System and Technology Architecture Trade-Offs
– Technology Stacks
– Formats, Standards, APIs

2

Collective Intelligence & Computer Science

• Definition: “Groups of individuals doing things collectively
that seem intelligent” (Malone et al.,2009).
- Connect people and computers to act collectively more

intelligently -> socio-technical (eco-)system.
• also: thrive on network effects.

• Harnessing collective intelligence requires to: 
stimulate, aggregate, leverage, and distribute user
contributions through an ICT system as mediator.

3(C
C)
	S
to
ck
M
on

ke
ys
.c
om

Collective Intelligence – Our Take

1. Achieved by hybrid systems in which humans and
computers interoperate and complement each others
capabilities.

2. Potential for highly effective collection and distribution of
hard-to-access knowledge.

3. Used for Crowdsourcing, Social Web/Media,  
Social/Cognitive/Human Computing.

4
(C
C)
	S
to
ck
M
on

ke
ys
.c
om

Examples of CIS

• Social network services
- Facebook, Twitter, LinkedIn,

Foursquare, SinaWeibo

• Media / Content Sharing
- YouTube, Flickr, Soundcloud,

Slideshare, Thingiverse

• Knowledge Creation
- Wikipedia, Crunchbase, Wikia, Yelp,

Stack Overflow, Zooiverse

5

Recap: Challenges

1. Designing the “right” system.
- Requirement elicitation of user needs and optimization potential.
- Getting the basic workflows right.

2. Perpetual beta due to constant evolution of capabilities.
- Continuous delivery

3. Fostering an active community of contributors.
- Users are scarce resource: Competition with existing platforms.
- Engagement (incentives, motivation)

4. Scaling up to (ultra) large-scale proportions.
- Big data and Machine learning
- Cloud computing
- Global software development

6

ISO/IEC WD 42020 - Architecture Processes

• Purpose: Provide a defined set of processes in the life cycle of an
architecture or the life cycle of systems related to that architecture.  

• Architecture activity considered as strategic on project and
enterprise level. 

• Complements the architecture-related processes of ISO/IEC/IEEE
15288, ISO/IEC/IEEE 12207 and ISO 15704 with a set of
requirements enabling architects to more effectively implement
architecture practices. 

• Does not prescribe a specific architecture or system life cycle
model, development methodology, method, model or technique.  

7

ISO/IEC WD 42020 - Architecture Processes

8

ISO/IEC WD 42020 - Architecture Processes

• Architecture Governance
- Establish standards and policies related to one or more

architectures of interest and their development, and to monitor
and facilitate the alignment of the architecture(s) to stakeholder
concerns, policies and standards, including organizational and
environmental constraints.  

• Architecture Management
- Ensure execution of directives for development of the

architectures, to ensure that the development runs according to
these directives, to the expected timetables, to the assigned
budgets, and that the architecture satisfies its objectives.

9

ISO/IEC WD 42020 - Architecture Processes

• Architecture Conceputalization
- Generate architecture alternatives, to select one or more

alternatives that address stakeholder concerns and meet
relevant requirements, and to express them in a set of
consistent views.

• Architecture Evaluation
- Determine the degree to which the architecture meets

architecture objectives and addresses stakeholder concerns. 

• Architecture Elaboration
- Create one or more architecture descriptions in a form that

uses established notations and languages and captures this in
a set of consistent views and models.

10

ISO/IEC WD 42020 - Information Flows

11

Software Architecture - Definition 1 (Bass et al., 2012)

12

The software architecture of a system is the set of
structures needed to reason about the system,
which comprise software elements, relations

among them, and properties of both.

Software Architecture - Concepts

• Environment
- Every system is situated in the context of a defined

environment: setting and technological, business, operational,
organizational, political, social, regulatory influences.

• Stakeholder
- Individuals, groups or organizations defining a system’s

purpose and having interests in a system.
- Examples: system users, owners, operators, maintainers,

architect, developers, suppliers, regulators, client, designer.
• System/Stakeholder Concern

- Specific interest of stakeholders in a system.
- Examples: business goals, cost, data access, data integrity,

flexibility, maintainability, performance, privacy, usability, system
properties, system features, resource utilization, reliability.

13

Software Architecture - Concepts (cntd.)

14
(ISO/IEC/IEEE	42010,	2011)

Software Architecture - Definition 2 (Jansen & Bosch, 2005)

15

Software architecture as a set of architectural
design decisions: An architectural design

decision is a description of the set of
architectural additions, subtractions and

modifications to the software architecture, the
rationale, and the design rules, design

constraints and additional requirements that
(partially) realize one or more requirements on a

given architecture.

Software Architecture - Definition 2 (Jansen & Bosch, 2005)

1. Rationale: The reasons behind an
architectural design decision are the
rationale of an architectural design decision.
It describes why a change is made to the
software architecture.  

2. Design rules and design constraints are
prescriptions for further design decisions.
Rules are mandatory guidelines, whereas
constraints limit the design to remain sound.  

3. Design constraints describe the opposite
side of design rules. They describe what is
not allowed in the future of the design, i.e.
they prohibit certain behaviors.  

4. Additional requirements A design decision
may result in additional requirements to be
satisfied by the architecture. These new
requirements need to be addressed by
additional design decisions.

16

ISO/IEC/IEEE 42010:2011 Standard

• International standard: Systems and software engineering -
Architecture description

• Specification of definitions and requirements on the contents of
- Architecture Descriptions of Systems
- Architecture Frameworks
- Architecture Description Languages (ADLs)

• Supports the architecture of a system of interest to describe what
is considered fundamental about that system in the context of its
environment.
- Important to understand how the systems relates to and is

situated in its environment in the context of its stakeholders.

17

ISO/IEC/IEEE 42010:2011 Standard (cntd.)

Key Concepts:
• Architecture Description

- Documents one possible architecture for a system of interest
and rationales for key design decisions.

- Identifies stakeholders of the system of interest and their
concerns.

- Describes how an architecture meets the needs of the system’s
diverse stakeholders.

- Illustrates with multiple chosen architecture views how the
concerns of the stakeholders can be addressed.

• Architecture View
- Describes a system of interest from a chosen viewpoint.
- Comprises several architecture models expressing various

aspects of a system architecture to address specific concerns.
18

ISO/IEC/IEEE 42010:2011 Standard (cntd.)

• Architecture Viewpoint
- Promotes reuse of best practices.
- Includes set of model kinds to frame stakeholders and a specific

set of concerns.
- Documents conventions (notations, models, techniques, rules,

completeness) for constructing, analyzing, using and interpreting a
particular kind of architecture view.

• Correspondences
- Express architecture relations of interest between elements

within an architecture description.
- Examples of AD elements: stakeholder,

concern, viewpoint, view, model kind.
• Correspondence Rules

- Governs correspondences and enforce
relations within an architecture description.

19

ISO/IEC/IEEE 42010:2011 Standard (cntd.)

20

ISO/IEC/IEEE 42010:2011 Standard (cntd.)

• Architecture Framework
- Defines conventions, principles and common practices for

creating, interpreting, analyzing and using architecture
descriptions intended for a certain stakeholder community and/
or specific domain of application.

- Specifies
‣ addressed concerns.
‣ stakeholders having those concerns.
‣ integrated set of architecture viewpoints that frame those

concerns.
‣ correspondence rules integrating those viewpoints.

- Examples: TOGAF, DoDAF, Kruchten’s 4+1 View Model

21

ISO/IEC/IEEE 42010:2011 Standard (cntd.)

22

ISO/IEC/IEEE 42010:2011 Standard (cntd.)

• Architecture Description Language (ADL)
- Form of expression for use in architecture descriptions.
- Specifies

‣ addressed concerns.
‣ stakeholders having those concerns.
‣ model kinds implemented by the ADL which frame those

concerns.
‣ any architecture viewpoints and correspondence rules.

- Examples: SysML, ArchiMate, xADL

23

ISO/IEC/IEEE 42010:2011 Standard (cntd.)

24

Multi-Agent System (MAS) - Definition
(Wooldridge & Ciancarini, 2002)

25

A multi-agent system is a system composed of a
number of such agents, which typically interact
with one-another in order to satisfy their goals.

Architecting CIS

• Investigation of architectural foundations and principles of
self-organizational CIS.

• Influences & Approaches
- Multi-Agent Systems (MAS)

‣ Socio-technical systems where agents interact with each
other and with the surrounding environment.

‣ Environment architectures for MAS.

‣ Agent-Oriented Software Engineering (AOSE).
- CI-adapted Coordination Models

‣ Feedback loops, self-organization and self-adaption
approaches.

- Software Architecture
‣ Standard-based software architecture frameworks and

reference architectures.
26

CIS Concerns

• Information Aggregation
- Bottom-up sharing of content through actors.

• Knowledge Dissemination
- Distributing content among actors.

• Perpetual Feedback Loop
- Continuous flow of user contributions.

27

Architecture Framework for CIS

28

Architecture Framework for CIS (cntd.)

29

I. CI Context Viewpoint
• Designs CI-specific system capabilities and defines models for new CIS

construction and capture of design decisions.
• Stakeholders

- Architect(s), Owner(s), Actors
• Concerns

- Usefulness - Process limitations addressable with CIS?
- Perpetuality - Identify coordination-supporting process for the

application scenario?
• Model Kinds

- MK1 - As-Is Workflow: Current workflow of interest in the organization.
- MK2 - Stigmergic Coordination: Describes domain items of interest in

organization, the rules to interact with the domain items, and the
feedback loop that provides stimuli to users.

- MK3 - To-Be Workflow: Describes activities performed by users and
CIS, and its feedback mechanisms.

Architecture Framework for CIS (cntd.)

30

MK1 / 3

Activity

Workflow

1

1..*

composed of

User

0..1

1..*

performs

Role

1

0..*

has

Objective

1..*

1

has

CIS

1

1..*

sends feedback

Systemis applied
on

1..*

0..*

is applied
on

1..*

1

Common Elements
MK1 specific
MK3 specific

Interaction
Rule

Domain ItemItem Link

Actor

10..*
has

1
0..*

refers to

1

1..*
affects

1..*

0..*
performs

0..*

1..*

motivates

Stimulus

1

1..*

generates

Dissemination
Rule

Owner

1

1..*
defines

0..*

1..*

uses

0..*

1..*

owns

MK2

Architecture Framework for CIS (cntd.)

31

II. CI Technical Realization Viewpoint
• CIS realization and defines models to model collective knowledge, the

aggregation of data and stigmergy-based dissemination of
knowledge.

• Stakeholders

- Architect(s), Owner(s), Builder(s), Actors
• Concerns

- Data Aggregation, Knowledge Dissemination, Interactivity

• Model Kinds

- MK1 - Artifact Definition: Details CI artifact structure, linking, and the
operations to interact with artifact content.

- MK2 - Aggregation: Describes actor activities, what kind of data is
aggregated from actors, and activity logging.

- MK3 - Dissemination: Details dissemination content and rules.

Architecture Framework for CIS (cntd.)

32

CI Artifact

Artifact Link

1

0..*

refers to

1

0..* has

1

1..*

offers

0..*

1..*

uses

Operation 1..*

1

operates upon

Dissemination
Rule

Artifact Content

1..*

0..*

uses

1 1

maintains

MK1

CI Artifact

Actor

Client

0..*

1
performed by

1..*

0..*

interacts with

Role0..*1
has

Read ActivityWrite Activity

Artifact Input Artifact Output

1..*

1

contributes

1..*

1

retrieves

1..*

1

adds

1..*

1

returns

Actor Record
0..* 1

captures

1..*

0..*

owns

MK2

1

1

has

Activity

Artifact Content

Actor

Trigger
Generator

1

1

invokes

1

1..*

sends trigger

Filtered
ContentAnalyzerDissemination

Rule
1 1..*

produces

Actor Record

1..*

1

uses

0..* 1
invokes

Dissemination
Scheduler

1

0..*

fires

0..*

1..*
uses

1..*

1

uses

MK3

Architecture Framework for CIS (cntd.)

33

III. CI Operation Viewpoint
• CIS operation startup and defines models to identify initial content,

actor groups, and measures for CIS aggregation and dissemination
performance.

• Stakeholders

- Manager(s), Analyst(s)
• Concerns

- Kickstart - How to derive initial content from existing data?

- Monitoring - Detail metrics and probes for monitoring?

• Model Kinds

- MK1 - Initial Content Acquisition: Describes sources of initial content
for artifacts and initial actor groups for community building.

- MK2 - CI Analytics: Describes metrics and probes to capture
necessary data for measure calculation.

Architecture Framework for CIS (cntd.)

34

Initial Actor

1

1..*

generates

0..* n
manipulates

Transformation

Content
1 1..*

filled with

Initial Data Source

0..*

1..*
uses

0..* 1..*
stored in

n > 2

MK1

CI Artifact

Analysis Results

System
Component

Analyst

Metric

0..* 1

located in

1

0..*
measures

0..*

1

stores in

Property

Probe

1..*1
relates

1..* 1..*

accesses

1 0..*

has
Measurement

Profile

MK2

Overview of Web Application Frameworks

35

Rails Django Java EE

Category Web Application
Framework

Web Application
Framework Platform

OS Cross-platform Cross-platform Cross-platform
Programming Language Ruby Python Java

Model-View-Controller X X X

Object-relational
mapping Active Record Django ORM Java Persistence

API
Extension/Plug-in RubyGems Django Packages jar

Focus Fast & Agile Fast & Agile
Scalability &
Enterprise IT
Integration

Ruby on Rails

• Rails is a web application framework which runs on the Ruby
programming language.

• Encourages to use RESTful routes (e.g. index, show, create).
• Uses MVC pattern to organize application:

- Default setup: “app” folder containing
‣ “controllers”: component that responds to external

requests from the web server to the application by
determining which view file to render and also has to query
model(s) directly for data.

‣ “models”: a model maps to a database table.
‣ “views”: user interface, which is converted to HTML at run-

time.
• Bundler: maintains consistent environment.

- Tracks applications code and dependencies (gems) it needs for
execution.

36

Model-View-Controller (MVC) Pattern

37

• Software pattern for implementing applications with UI.
• Separation of presentation (view), control logic (controller) and

domain model (model).

• Model
- Consists of application data and

domain logic.
• View

- Generates visual representation of
the model in the UI.

• Controller
- Gets requests/input by the user.
- Manipulates the model.
- Responses by updating the

view’s presentation.

Java EE

• Oracle’s enterprise Java platform providing APIs and runtime
environment for developing and running enterprise applications

• Model
- Java Persistence API (JPA)
- Heavily influenced by major ORM frameworks, e.g. Hibernate

or EclipseLink (former Oracle TopLink)
• View

- JavaServer Faces API
- Building component-based user interfaces for web applications
- JSF frameworks: ICEfaces, PrimeFaces, Apache MyFaces, …

• Controller
- Enterprise JavaBeans

38

Ruby on Rails vs. Java EE

Ruby on Rails

Pros:
+ Easy & quick project setup from scratch and configuration.
+ Rails scripts facilitate fast development.
+ Enables short trial & error cycles.
+ Less boilerplate code thus smaller, more maintainable codebase.

Cons:
- Harder customization due to obscurity, since feature

implementations are hidden in Rails libraries.
- Scaling: RoR is often slower to run and requires more memory,

thus it becomes increasingly inefficient (e.g. ActiveRecord ORM).
- Slower execution of Ruby prog. language.

39

Ruby on Rails vs. Java EE (ctnd.)

Java EE

Pros:
+ Tools/APIs support performance, stability and maintainability.
+ Scaling: Optimized, robust infrastructure.
+ Long-term support due to standardization.
+ Java EE libraries (e.g. Hibernate) are often more flexible and

powerful than Rails libraries (e.g. ActiveRecord).

Cons:
- Complex setup/configuration.
- Due its standardization, slow response to industry changes.
- Libraries can also lead to coding and maintenance overhead.

40

Facebook’s Technology Stack

41

“F
ac
eb

oo
k	
Ar
ch
ite

ct
ur
e	
-	B

re
ak
in
g	
it	
O
pe

n“
,	A

di
ti	
Te
ch
no

lo
gi
es
	

[h
tt
p:
//
w
w
w
.s
lid
es
ha
re
.n
et
/A
di
tiT
ec
hn

ol
og
ie
s/
fa
ce
bo

ok
-a
rc
hi
te
ct
ur
e-
br
ea
ki
ng
-it
-o
pe

n]

Facebook – Front End

• PHP
- Server-side scripting language.

• HipHop
- Virtual Machine for PHP developed by Facebook.
- Converts PHP code to C++.
- Reduces CPU usage significantly.

• BigPipe
- Dynamic web page serving system developed by Facebook.
- Decomposes web pages into multiple small chunks called

“pagelets” and pipelines them through several execution stages
inside web servers and browsers.

- Implemented entirely in PHP and JavaScript.

42

Facebook – Business Logic

• Apache Thrift
- Software framework for scalable, cross-language services

development.
- Combines a software stack with a code generation engine to

build services between e.g. C++, PHP, Python, Java, Ruby.

• Scribe
- Logging server for aggregating real-time client data.
- Designed to be scalable to a very large number of nodes,

extensible, and robust to failure of the network or any
specific machine.

- Logging a wide array of data.
- Built on top of Thrift.
- Developed by Facebook.

43

Facebook – Parallel Data Processing

• Apache Hive
- Data warehouse software built on top of Apache Hadoop.
- Facilitates reading, writing, and managing of large data

sets residing in distributed storage using SQL-like
language named HiveQL.

- Provides command line tool and JDBC driver to connect
users to Hive.

• Peregrine
- Distributed query engine for ad hoc analysis built on top

of Apache HDFS and the Hive-Metastore.
- Provides support for low-latency interactivity queries.
- Designed to be lean and simple with high performance.

• Scuba
- Fast, scalable, distributed in-memory database.
- Provides real-time, ad hoc analysis of arbitrary data.

44

Facebook – Parallel Data Processing (cntd.)

• Apache Hadoop
- Software framework for distributed storage and

processing of large data sets across clusters of
computers.

- Designed to be reliable and scalable (support from single
server to thousands of machines).

- Core consists of:
‣ distributed file-system: Hadoop Distributed File

System (HDFS)
‣ large scale parallel data processing: MapReduce

• Unicorn
- In-memory social graph-aware indexing system.
- Quickly and scalably searches structured information on

the social graph and performs complex set operations on
the results.

- Supports social graph retrieval and social ranking.
45

Facebook – Data Storage

• Haystack
- High-performance object storage system optimized for

efficient photo storage.

• HBase
- Non-relational, distributed, scalable big data store

(Hadoop database).
- Provides a fault-tolerant way of storing large quantities of

data (big data).

46

Facebook – Data Storage (cntd.)

• MySQL
- Open source relational database management system

(RDBMS).

• memcached
- Distributed in-memory caching system.
- Stores data from MySQL DB in cache to reduce number

of times an external data source must be read.

• TAO (The Associations and Objects)
- Distributed data store that provides efficient and timely

access to the social graph using a fixed set of queries.
- Serves thousands of data types and handles read and

write requests very fast.

47

Facebook – Data Storage (cntd.)

• Wormhole
- Publish-subscribe (pub-sub) system that identify updates

and transmit notifications to interested applications.
- Supports reliable replication of changes among several

other services including TAO, Graph Search and
Memcache.

• f4
- Efficient object storage system for photos, videos, and

other Binary Large OBjects (BLOBs).
- Designed to be simple, modular, scalable, and fault

tolerant.
- Request rate for its content is lower than that for content

in Haystack.

48

Software Ecosystems

• Definition: “A networked community of organizations or actors,
which base their relations to each other on a common interest in the
development and use of a central software technology”. [Hansen12] 

• Examples: iOS App Store, Android, Eclipse IDE, Django, Rails,
Facebook Apps. 

49

Software Ecosystem Elements

50
Musil,	J.,	Musil,	A.,	&	Biffl,	S.	(2013).	Elements	of	Software	Ecosystem	Early-Stage	Design	for	Collective	Intelligence	Systems.	In	Proc.	of	the	Int’l	Workshop	
on	Ecosystem	Architectures	(WEA	’13)	(pp.	21–25).	ACM.

Software Ecosystem Elements (cntd.)

a) Central Reference Organization
Main beneficiary of the SECO. Oversees and guides SECO
growth and evolution. Also, exerts control on SECO actors. i.e.
private companies (Apple), consortia (Apache Foundation). 

b) Networked Character
Network effect between SECO actors and organisations.
Organization internal and external links. Causes hard-to-
replicate “stickiness” of platform. 

c) ICT Platform
Technological core that is used beyond a single organization.
Foundation around the SECO evolves. i.e. app store, social
networking service, technical standards, programming
frameworks. 

51

Software Ecosystem Elements (cntd.)

d) Shared Values
Can be extrinsic (software product, complementary services,
business domain), or intrinsic (contribute to common good,
increase of reputation). 

e) Self-Regulation
Community-centric way of collaboration and coordination. Direct
and indirect interactions among SECO actors. SECO
governance and management bottom-up or top down.

52

Software Ecosystem - Granularity Levels

1. Code
• Libraries and components using a particular programming language or

framework. e.g. Swift, Ruby Gems, Docker files. 

2. Packaging
• Packaging technology compliant to a particular platform. e.g. iOS/Android App,

Ubuntu Snappy, Docker container. 

3. Application Extensibility
• Provide extension points within applications and platforms to extend functionality

or access data. e.g. iOS 10 iMessage extensions, Eclipse Plugins, Twitter
Streaming API. 

4.Platforms (Operating System, Hubs, Marketplaces, CIS)
• Platforms mediating the exchange of software technology, data and information

about it. e.g. iOS, Play Store, Facebook Apps, Wikipedia. 

5. Ecosystem System-of-Systems
• Multiple SECOs linked together creating a compound mega system. e.g.

Wikimedia, Facebook, Google, Apple.
53

Privacy by Design & GDPR1

• Motivation
- Threat privacy as first class concern throughout the whole engineering

process.
• Contrast to: Privacy by Default

• Stricktest privacy settings should be applied as default settings. 

• Privacy by Design and Privacy by Default are both codified in General Data
Protection Regulation (GDPR) with applies by May 2018.

• Privacy becomes major concern for software development and also the
organisational structure.

• Rigorous sanctions in case of non-compliance. 

• Known Limitations:
- Top-down policy making: Guidelines are vague and ignore SW dev processes.
- Privacy engineering approaches ignore current SW dev methods and lifecycle.

-> each architect has to figure out solution on their own.
- No agreed privacy/data auditing procedures.

541. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on
the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation). http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679

OAuth Authorization Framework

• Open standard for authorization (current protocol version: 2.0).
• Specifies process for users to authorize third-party websites or

applications to obtain limited access to their information on other
websites but without sharing their credentials. 

• OAuth defines 4 roles:
- Resource owner: Capable of granting access to a

protected resource (e.g., an end-user).
- Resource server: Server hosting the protected resources,

capable of accepting and responding to protected resource
requests using access tokens.

- Client: An application making protected resource requests
on behalf of the resource owner and with its authorization.

- Authorization server: Server issuing access tokens to the
client after successfully authenticating the resource owner
and obtaining authorization.

55

OAuth Process

56[h
tt
p:
//
s.y

im
g.
co
m
/p
w
/im

ag
es
/e
n-
us
/f
lic
kr
_o

au
th
_f
lo
w
.jp

g]

OpenID

• Open standard and decentralized authentication protocol.
• Specifies process for users to control an identifier that can be

used to verify their identity so that third-party websites or
applications don’t need access to a user’s credentials.

• User creates account by choosing OpenID identity provider and
use this account to sign into any other website which accepts
OpenID authentication - needs to remember just single login
credentials!

• Identifier: http" or "https" URI
• OpenID provider: OpenID authentication server on which a

third-party website relies for an assertion that the user controls
an identifier.

• Decentralized design: no central authority must approve or
register third-parties or OpenID providers.

• Uses only standard HTTP(S) requests and responses.

57

https://en.wikipedia.org/wiki/Decentralized
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Communications_protocol

OpenID vs. OAuth

58[h
tt
ps
:/
/u
pl
oa
d.
w
ik
im

ed
ia
.o
rg
/w

ik
ip
ed

ia
/c
om

m
on

s/
th
um

b/
3/
32
/O

pe
nI
Dv

s.
Ps
eu

do
-A
ut
he

nt
ic
at
io
nu

sin
gO

Au
th
.sv

g/
	

51
2p
x-
O
pe

nI
Dv

s.
Ps
eu

do
-A
ut
he

nt
ic
at
io
nu

sin
gO

Au
th
.sv

g.
pn

g]

XACML (eXtensible Access Control Markup Language)

• Standard consists of:
- An attribute-based access control policy language for

expressing policies for information access over the Internet. 

- An access control architecture and and a processing
model describing how to evaluate access requests
according to the rules defined in policies.  

• Formal definitions for the XACML language are provided in XML
Schema Definitions. 

• Provides common terminology and interoperability between
access control implementations by multiple vendors.

59

Centralized CIS

• CIS which acts as “one” platform and is operated by a
single provider.

• Central administration, development and content curation.
• Data concentrated in a single system.
• Most CIS are centralized: Facebook, Wikipedia, Yelp.

60

Decentralized/Federated CIS

• A CIS that is decentralized and distributed across multiple
providers.

• NOT the same as centralized CIS running on multiple servers.
• Overall system consists of independent CIS instances

(node/pod/…) which are able to communicate with each other.

61

Decentralized CIS Examples

GNU Social
• FOSS microblogging platform.
• Merged from StatusNet, Free Social and GNU social projects.
• Tech: PHP, OStatus, XMPP.

Diaspora
• Social networking service + personal web server (Unicorn)
• Diaspora network is build out of a network of individual

Diaspora system instances (pods).
• Tech: Ruby on Rails, Unicorn, backbone.js.

62

Formats and Protocols for Decentralized CIS

JavaScript Object Notation (JSON)
• Format to transmit data objects consisting of attribute-value

pairs in human readable text.
• Standardized (IETF RFC 4627).
• Used for data transmit between server and web application.

JSON Activity Streams
• Specification of how to serialize social activity streams in JSON

format.
• Version 2.0 introduced as IETF Draft (Nov. 2013).
• Used in: Facebook, MySpace, Windows Live, OStatus-based

Systems.

63

Formats and Protocols for Decentralized CIS (ctnd.)

PubSubHubbub
• Protocol for server-to-server, webhook-based publish/subscribe

for web resources.
• Used to provide real-time updates via pushed HTTP

notifications (= no more client-side polling of feeds).

• 3 Concepts: Publishers, Subscribes and Hubs.
• Hub:

1. Hubs can be run by publishers or 3rd parties (e.g. Google).
2. Publisher provides topic URL to hub server.
3. Subscribers subscribe to hub (instead to publisher).
4. Hub multicasts publisher updates to registered

subscribers.
• Used in: Tumblr, MySpace, Diaspora, Wordpress.com

64

Formats and Protocols for Decentralized CIS (cntd.)

Salomon
• Message exchange protocol.
• Enables decentralized commenting/annotating against feed

articles.
• Used in: StatusNet, Diaspora.

Webfinger
• Protocol used for discovery of addressable entities (people/

things) via URI (Link-Based Resource Descriptor – LRDD).
• Specified in IETF RFC 7033.
• REST-based web service.
• Returns JSON document as response to valid query.
• Used in: StatusNet, Diaspora (discover users on federated

nodes).

65

Communication in Decentralized CIS

OStatus
• Specification for distributed status updates or microblogging.
• Lets people on different social networks follow each other.
• Superseded OpenMicroBlogging protocol.
• Systems: GNU Social, Friendica.

Bringing it all together: Following a feed in a microblog
Bob wants to subscribe to Alice’s public feed and Alice should be
informed about it.

1. Bob discovers the LRDD of Alice using Webfinger.
2. Bob subscribes to Alice’s public feed using PubSubHubbub.
3. Bob sends an ActivityStream Atom Entry to Alice using the

Salomon protocol to notify her about the event.

66

Trade-Off Centralized/Distributed CIS

Going centralized or distributed comes with trade-offs –
favoring one style over the other depends on the individual
application context.

67

Trade-Off Centralized/Decentralized CIS

Centralized CIS
+ Constant quality of service for all participants.
+ Single point of access.
+ More resources for system maintenance, data security,

platform evolution.
+ Single organization to hold accountable (e.g. privacy issues).
+ Effective information exchange due to very-large scale user

base.

- Single point of failure.
- Prone to censorship and systematic infiltration by government

organizations.
- Often closed/proprietary system source code.
- Lots of influence concentrated in a single organization

68

Trade-Off Centralized/Decentralized CIS (cntd.)

Decentralized CIS
+ Multiple points of access.
+ Robust: Infiltration only of individual points; Easy hosting of new

nodes.
+ Often system source code is open source (= auditable).
+ Easier to operate on non-profit basis due to lower resource needs

of individual nodes.

- Quality of service dependent on individual node.
- Each node is responsible for its maintenance and data security.
- Less effective information exchange due to fragmentation of user

base.
- User contributions are stored on an individual node.

69

Example Tech Stack: Scientific Glossary

• Ruby v2.2.3
• Rails v4.2.4
• Database: PostgreSQL
• Git Repository
• Heroku as PaaS
• Useful Gems:

- pg:
 interface to PostgreSQL DB
- bootstrap-sass/jquery-rails:
 user interface design
- haml:
 well-indented, clear mark-up
- cancancan:
 authorization and role management
- public_activity/paper_trail:
 activity tracking

70

Example Tech Stack: Scientific Glossary (cntd.)

Notification concept to support
awareness in the collaboration process:
• Activity Feed
• Top Contributors
• Notification Messages:

1. Global Digest
2. Personal Digest
3. Ranking Mail

71

Example: ISERN Collabhub - Repurposed MediaWiki

• Goal: Collect profiles of ISERN
members and track their
collaborations.

• Approach: Repurpose MediaWiki
application to meet CI needs:

- Pages -> Membersheets
- Categories -> Collaborations
- Categories -> Collab Categories

• No programming needed, but
redefinition of semantics, design of
„house rules“, templates and
workflows to steer user contributions to
meet information aggregation goals.

• Limitations:
- Rework analytics.
- Poor dissemination mechanisms.

72

Getting Started with Ruby on Rails

1. Start with well-known example of a Blog application:
 http://http://guides.rubyonrails.org/getting_started.html

- Installing Ruby and Rails
- Creating Blog application example
- Configuring/creating a database
- Running application locally

2. Look also at this good tutorial to learn Ruby on Rails:
 http://https://www.railstutorial.org/book

3. Developing first CIS step by step:
 http://medium.com/rails-ember-beyond/how-to-build-a-social-

network-using-rails-eb31da569233

73

http://guides.rubyonrails.org/v3.2.14/getting_started.html
http://guides.rubyonrails.org/v3.2.14/getting_started.html
http://guides.rubyonrails.org/getting_started.html
http://ruby.railstutorial.org/book/ruby-on-rails-tutorial
http://ruby.railstutorial.org/book/ruby-on-rails-tutorial
https://www.railstutorial.org/book
http://medium.com/rails-ember-beyond/how-to-build-a-social-network-using-rails-eb31da569233
http://medium.com/rails-ember-beyond/how-to-build-a-social-network-using-rails-eb31da569233

Conclusion and Summary

• ISO/IEC WD 42020 draft
- Architecture Processes

• ISO/IEC/IEEE 42010:2011 standard
- Specification of key architecture concepts

• Architecture Framework for CIS
- Following ISO/IEC/IEEE 42010 standard
- Addressing CI system concerns: information

aggregation, knowledge dissemination, perpetual
feedback loop

- 3 Viewpoints: Context, Technical Realization,
Operation

74

Conclusion and Summary (cntd.)

• No definite technology architecture:
- But: start light and grow over time.

• Software Ecosystems

• Centralized and distributed architectures.

• Distributed architectures more complex to engineer.

• Using a Ruby on Rails stack:
- Relatively easy to start with.
- Lots of existing program and knowledge resources to

build upon.

75

SW Architectures for CI Systems I/II – Key Takeaways

• What are CI Systems?
- Main constructive directions, challenges, success/risk factors.
- How do CI Systems differ to Crowdsourcing Systems (process,

elements) ?
• CI design patterns.
• ISO/IEC WD 2020 draft on architecture processes
• ISO/IEC/IEEE 42010 standard specifying key architecture concepts.
• Architecture framework for CI systems.

- Concerns, stakeholders and viewpoints.
• Centralized/decentralized CI systems.

- Characteristics and trade-offs.
• Software Ecosystems

- OAuth
• Communication in decentralized CI systems.

- OStatus.
- Formats and protocols.

• Ruby on Rails VS Java EE.

76

(C
C)
	S
to
ck
M
on

ke
ys
.c
om

77

1. Bass, L., Clements, P.,Kazman, R. (2012). Software Architecture in Practice
(3rd ed.). Addison-Wesley Professional.

2. ISO/IEC/IEEE 42010 (2011). Systems and Software Engineering - Architecture
Description. Retrieved from http://www.iso-architecture.org/42010/.

3. Jansen, A., & Bosch, J. (2005). Software Architecture as a Set of Architectural
Design Decisions. In Proceedings of the 5th Working IEEE/IFIP Conference on
Software Architecture (WICSA ’05). IEEE.

4. Malone, T. W., Laubacher, R., & Dellarocas, C. (2009, February). Harnessing
Crowds : Mapping the Genome of Collective Intelligence.

5. Musil, J., Musil, A., Weyns, D., & Biffl, S. (2015). An Architecture Framework for
Collective Intelligence Systems. In Proceedings of the 12th Working IEEE/IFIP
Conference on Software Architecture (WICSA ’15). IEEE.

6. Musil, J., Musil, A., & Biffl S. (2015) Introduction and Challenges of Environment
Architectures for Collective Intelligence Systems. In Agent Environments for Multi-
Agent Systems IV. Springer.

References

78

7. Wooldridge, M. & Ciancarini, P. (2002). Agent-oriented software engineering. In
Handbook of Software Engineering and Knowledge Engineering: Fundamentals
(Volume 1). World Scientific.

8. ISO/IEC CD 42020. (2016). Systems and software engineering - Architecture
Processes. Retrieved from http://www.iso.org/iso/catalogue_detail.htm?
csnumber=68982

9. Manikas, K., & Hansen, K. M. (2013). Software Ecosystems - A Systematic
Literature Review. Journal of Systems and Software, 86(5), 1294–1306. http://
doi.org/10.1016/j.jss.2012.12.026

References (2)

http://www.iso.org/iso/catalogue_detail.htm?csnumber=68982
http://www.iso.org/iso/catalogue_detail.htm?csnumber=68982
http://doi.org/10.1016/j.jss.2012.12.026
http://doi.org/10.1016/j.jss.2012.12.026

Online Resources

• CI Tech Stacks
- LinkedIn: A Professional Social Network Built with Java Technologies and

Agile Practices. http://www.slideshare.net/linkedin/linkedins-communication-
architecture

- Facebook Architecture – Breaking it Open. 
http://www.slideshare.net/AditiTechnologies/facebook-architecture-breaking-
it-open

- Diaspora Architecture Overview 
https://wiki.diasporafoundation.org/Architecture_overview

- Twitter Engineering Blog 
https://engineering.twitter.com/

- Etsy Engineering Blog 
http://codeascraft.com/ 

- High Scalability Blog on Platform Architectures 
http://highscalability.com

79

http://www.slideshare.net/linkedin/linkedins-communication-architecture
http://www.slideshare.net/linkedin/linkedins-communication-architecture
http://www.slideshare.net/AditiTechnologies/facebook-architecture-breaking-it-open
http://www.slideshare.net/AditiTechnologies/facebook-architecture-breaking-it-open
https://wiki.diasporafoundation.org/Architecture_overview
https://engineering.twitter.com/
http://codeascraft.com/
http://highscalability.com

Online Resources

• Formats & Protocols
- JSON: http://json.org/
- Activity Streams: http://activitystrea.ms/
- PubSubHubbub: http://code.google.com/p/pubsubhubbub/
- Salomon Protocol: http://www.salmon-protocol.org/
- Webfinger: http://code.google.com/p/webfinger/
- OStatus: http://www.w3.org/community/ostatus/

- OAuth: https://oauth.net/2/
- OpenID: http://openid.net
- XACML: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

80

http://json.org/
http://activitystrea.ms/
http://code.google.com/p/pubsubhubbub/
http://www.salmon-protocol.org/
http://code.google.com/p/webfinger/
http://www.w3.org/community/ostatus/
https://oauth.net/2/
http://openid.net
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

Helpful Links: Ruby on Rails / Python & Django

• Ruby: http://www.ruby-lang.org/
• Ruby on Rails: http://rubyonrails.org/
• Documentation: http://guides.rubyonrails.org/
• Overview of categorized gems: http://www.ruby-toolbox.com/
• Gem hosting service: http://rubygems.org/
• Screencasts: http://railscasts.com/

• Python: http://www.python.org/
• Django: http://www.djangoproject.com/
• Documentation: http://docs.djangoproject.com/
• Overview of Django Packages: http://www.djangopackages.com/
• Tutorial: http://www.djangobook.com/

81

http://www.ruby-lang.org/
http://rubyonrails.org/
http://rubyonrails.org/
http://guides.rubyonrails.org/
http://guides.rubyonrails.org/
http://guides.rubyonrails.org/
http://www.ruby-toolbox.com/
http://www.ruby-toolbox.com/
http://www.ruby-toolbox.com/
http://rubygems.org/
http://rubygems.org/
http://rubygems.org/
http://railscasts.com/
http://railscasts.com/
http://www.python.org/
https://www.djangoproject.com/
http://docs.djangoproject.com/
https://www.djangopackages.com/
http://www.djangobook.com/

