Agile Software Development
In Corporate Environments

Dr. Alexander Schatten
alexander@schatten.info

http://www.schatten.info

Overview

20 years (70 years?) agile practices
Motivation
The Agile Manifesto

eXtreme Programming, SCRUM, (Software)
Kanban

Corporate challenges
Requirements and transparency

Balancing Measurement and Self-
Organisation

20 YEARS AGILE PRACTICES

Plan / Do / Study / Act (1940)

\ KPIs are used to cascade/quantify
\ corporate objectives to all hierarchy
\ levels

Mission / Vision / Corporate
strategy/objectives (quantified if
possible)

Performance

Coaching Measures are developed
and implemented to
achieve corporate
objectives and individual
targets

Depending on the degree of target
achievement measures are defined
and executed (e.g. corrective
actions, capability building,
bonuses)

e Tracking
and Reporting

-~ Continuous comparison of actual performance N\
d versus objectives/targets based on KPlIs in order to N
4 identify over-/underperformance N

Motivation

Organisational challenges
Technical challenges

The illusion of predictability and forecast
reliability

... and also: we are just doing what every
other industry does: approach the
product step by step before (mass)
production

Waterfall Iterative and Agile
Process Development Incremental Development
Measure Conformance Response to change,
of Success to plan working code
Management Command and Leadership/
Culture control collaborative
Requirements Big and Continuous/emergent/
and Design up front just-in-time
Coding and Code all features in Code and unit test,
Implementation parallel/test later deliver serially
Test and Quality | Big, planned/ Continuous/concurrent/
Assurance test late test early
Planning and PERT/detailed/fix scope, Two-level plan/fix date,

Scheduling

estimate time and resource

estimate scope

The First 20 Years...

/’ Erste SCRUM Teams (90er)

OOPS\.A 95 — /Crystal
nz)
(konfere
/ > SCRUM
FDD
\ DSDM

Agile Manifesto 2001

Software Kanban (~2007)

Agile Manifesto

. Individuals and Interaction
over Processes and Tools

. Working Software
over Comprehensive Documentation

. Customer Collaboration
over Contract Negotiation

. Responding to Change
over Following a Plan

Agile Practices Today

e Prozess-oriented
— SCRUM
— Software Kanban

 Methodical building blocks
— eXtreme Programming
* Geeksonly?

— Meanwhile ~15 years of experience of agile methods in
corporate environments

— Usage in small and large international companies, but
also in Austria (e.g. banks, insurance companies, ...)

— Usage in small projects (individual teams, 3—10 devs)

— Usage in large projects (multiple teams, hundreds of
devs)

EXTREME PROGRAMMING

XP-Praktiken

« Communication / Collaboration / Architecture
— Planning Game (WS)
— Metaphor (WS)
— Simple Design (WS)
* Process
— Small Releases
— Pair Programming
— Collective Code Ownership (WS)
— 40-hrs Week
— On-Site Customer (WS)

* Technical
— Coding Standards
— Testing
— Continuous Integration
— Refactoring

SCRUM

Customer Prioritisation

Product Backlog

SCRUM Prozess

Team selects

Daily: 15min Meeting | 1. Accomplished?
2. Obstacles?
3. Next
Wrap
\
Test N/ Review
Sprint \/

* (2-4 weeks)

.

Devel / Adjust
sveop '\\

>

Sprint Backlog

New Functionality:
demonstrated at
end of each sprint

SCRUM Prozess

Work in Iterations
Team size < 10 Personen
Customer is tightly integrated in the process

Realistic estimations hand in hand with
controlling

— User Stories

— Backlogs

— “Planning Poker”

Team-estimations and Performance (checked at
each iteration)

Undisturbed and focussed work for teams during
iterations

E%mu

(& \L_ VA

|

U

m .a% m g zﬁﬁ
B ol wi MK o =

S Trs -

SOFTWARE KAN BAN

“Stop Starting, Start Finishing...”

Kanban Card

Production \

-4
-8

Workflow Visualisation

Backlog Selected In Development Test Deploy
B14

A

1

9

> . : . %
w >
~

Software Kanban

* Focus on “flow”, avoiding bottlenecks

e Visualisation of current process flow
and activities

e Real-time metrics (KPls), e.g.
— Average Lead Time

— Cumulative Flow Diagrams: Cycle Time

AGILE PRACTICES IN CORPORATE

ENVIRONMENTS

Agile Practices? Startups Only?

Salesforce

Google

Yahoo

Intel

Siemens

McKinsey

Philips

JP Morgan

Bank Austria, BAWAG PSK, Raiffeisen

Fabasoft, Frequentis, Tricentis, Anecon, Accenture,
Kapsch, VIG

Usw.

Challenges in
Corporate Environments

Some challenges to expect 1/2

Multiple Teams
Many developers
Large projects versus perfective maintenance

Priorisation (very different goals among stakeholders: business teams,
management, IT)

Projects partly internal and partly external (fixed price, ...)

Sceptical customers/business experts (from failures in the past, “most IT
procjects fail...”; fear of new processes, efficiency measures, etc.)

Management levels & involvement
Budgeting and planning cycles
Long and complicated projects, e.g. replacement of legacy systems

Lack of know how (from domain side and technical side alike), partly due
to long runtime of legacy systems

Reporting and controlling (different expectations: financial, progress,
quality, ...)
Diffusion of responsibility in large organisations

Some challenges to expect 2/2

 What is the core of agile software
development?

— Flexible self-organisation of teams around
product owner

— Lean and efficient work in small teams and
short iteration cycles

* What is the core demand of programs and
managers of large interconnected systems?

— The opposite

Side Remark

* Knowing something does not work
seldom discourages people from still
doing it, e.qg.

— Bonus schemes
— Teamwork
— Long-term planning and budgeting

Scrum of Scrums

“Factory” Approach

Business

One Backlog

Dev Team 1

Dev Team 2

Dev Team 3

Dev Team ...

SAFE Framework

Agile Software
Dean Leffingwell: Scaled Agile Framework Requirements
http://scaledagileframework.com S I

Dean Leffingwell

Scaling
Software Agility

Best Practices for Large Enterprises

Dean Leffingwell

Foreward by Philippe Krutten

= =) e L

MR PORTFOLIO VISION

|)
| Business Epics o o
5 |- J ©
S |mm| 3
& N p -
:'oc:‘tgf'oal:: % E h l . @ 7 Architecture g
Management £ [Architectural Epics é w o Slotves
& = /5
Metrics
| 3 80 frch UK
Roadmap s DevOps Proarau Deliver on Demand
} I B0 PSI Ool)g)eﬂives
Vision E“_m- g = / . ’ ' ' & ' ' ' : & Features
& |mmmm| SystemTeam
".' : = o e hﬁ- E Feature ? telnetal:es
© 3"-
e Fle=| Mg BIR 2 1 mmm fE i
X DH R [L
hu& MFRs gle= ™ £ £ reature [Arhitectursl
unwa
\ Maﬁ:lgmnt NERs /\/\/\ .-\/-1

-y
(. oroduct o Develop orl Cadence
O Owner 2 Sprint
5|] 2 Goals n Stories
o :- - eam 51 | L ! B gti:f
. c erations
IS llll' 'g | E 5 — ng — E F
) o Scrum/Agile] | = F B - =
Agile o Master Q ~ NiRs EXEg
feams e _ 0 Cod B speint
: e oof N 0 Goal . Spikes,
o (V] Quality = _@ — § 1 Refactors,
0 3 |- s B3 H Other
1 = = A veam pS| |==| a|=S| D 7 = = |
on 3 -— | =] f — — |
Developers & Testers Illll 8= ' E = § = = = =
EXE .) Copyright © 2008-
v25 - Iterations Iterations Leffingwel,

Portfolio Approach

Team mit monatlicher lteration

Team mit monatlicher lteration

Team mit 2-wochentlicher lteration

Sprint
Start/Ende

I— Zeit

1 Monat

2 Monate

Roles in Agile Processes

Softwareentwicklung

Product Owner

\

Demand-
Management

<

v

ClIO/CEO

Portfolio-
Management

e - ——— - = = = = = = e e = = = =)

Geschéftsfuhrung,
Controlling,
CIO, ...

Functional Silos (traditional)

Projekt 1

—

Product Development Test and QA
Management

Projekt 2

Agile Teams

~

N

0\ N\ N\
\
2 @ Team 1
) ‘ ,
S
@ @ Team 2
: y
S
@ &
N J
4 h
9 é Team 4
N J
— — —

Product

Management

Development

Test and QA

Organisation Following Components
(traditional)

8

1 £

Presentation Layer

Backend Systems

Agile Team Organisation
Following Features / Processes / Services

o 3

Feature A Team Feature B Team

Presentation Layer

Business Logic

Backend Systems

Feature A Feature B

Remark

* Definition of a service is much more
complicated than often assumed

* One service / feature often invokes many
(complicated and complex) components

* Very difficult to cut agile teams,
particularly with legacy systems involved

Customer Responsibility

Product Owner

Roles and process responsibilities have to
oe clarified

| ack of clear roles and responsibilities is
often the main factor for failure in agile
projects!

Further Roles

SCRUM-Master
System Team
Product Manager
Operations

Remark: there is usually a “natural conflict” between software
development teams and operations team; as well as discussions on
the actual role of operations (see DevOps trend)

Contracts and Accounting

* Fixed price project

* Cooperation model
(“Time and Material”)

REQUIREMENTS, QS, TRANSPARENCY

Requirement Engineering

Epics

Features

Stories

Type of
Information

Investment
theme

Epic

Feature

Story

Description

Big,audacious,
game changing,
initiatives,
Differentiating,
and providing
competitive
advantage.

Bold, impactful,
marketable
differentiators.

Short, descriptive,
value delivery

and benefit-
oriented state-
ment. Customer
and marketing
understandable.

Small, atomic.
Fit for team and
detailed user
understanding.

Responsibility

Business execu-
tives, Portfolio
management.

Portfolio manage-
ment. Business
analysts, product
and solution
management,
system architects.

Product manager
and product
owner.

Product owner and
team.

Time Frame
and Sizing

Span stra-
tegic planning
horizon, 12 to
184 months.
Not sized,
controlled by
percentage
investment.

6 to 12 months.
Sized in points,

Fits in an internal
release (PSI),
divide into
incremental
subfeatures as
necessary.

Sized in points.

Fitsin a single
iteration.
Sized in story
points.

Expression
Format

Any: text, proto- No
type, PPT, video,
conversation.

Most any, No
including

prototype,

mock-up, short

phrase, or vision
statement.

Key phrase Yes
or user story

voice form.

May be

elaborated with

system use cases.

User story es
canonical form.

Testable

User Stories

As WHO | want WHAT so that WHY

Acceptance Criteria

Small, “one card”

Independent
Negotiable
Valuable
Estimable
Small
Testable

INVEST

Estimation

SAFE Framework

Vision and Roadmap
Release Management
Deployment

Resource Management
Cross-team tasks

Investment
Theme

(SAFE Framework)

System
Qualities
Test

*

Compliant when passes

realised by
P

optionally \ Constrained by Non-
Use Case |e—_—— % Backlog ltem funqtlonal
Requirement
Is one of T T T Is one of
Is one of
) realised by realised by
Epic » Feature > Story

Is one of i ‘ Is one of

Business
Epic

done when passes

'

Architecture
Epic

Feature
Acceptance
Test

implemented by

Full Enterprise Requirement Model

o

done when passes

'

Story
Acceptance
Test

Task

Roles and “Stories”

(Product / Portfolio-)

Manager

Investment
Theme

Epic

v

Feature

Story

Task

Product Owner ‘

SCRUM Team

Teststufen und -arten

Entwickler-/ Unit-/ API Test —

Prifung des Testobjekts (Source Code, programmbezogene Objekte und
Methoden, etc.) auf Erflillung der Vorgaben der geforderten Funktionalitat
Anwendung von White-Box-Testverfahren

Frihzeitige Anwendung von Progressionen sowie Regressionen

Systemintegrationstest

Uberpriifung des Zusammenspiels der Einzelkomponenten

Aufdeckung von Abweichungen und Fehlerzustanden zwischen integrierten
Systemteilen

Verifikation der progressiven sowie regressiven fachlich orientierten
Prozessablaufe

User Acceptance Test

Uberpriifung der IT Lieferungen auf Ubereinstimmung der vereinbarten
Vorgaben

Einnahme der Rolle Tester durch den Fachbereich

Einsatz von Black-Box-Testverfahren, welche progressiv als auch regressiv
ausgepragt sind

Zustandsverifikation zur Abnahmeentscheidung

Produktionsabsicherung / Betriebliche MaBnahmen
Absicherung des Produktiven Betriebes durch lesende bzw. schreibende
Smoketests
Uberpriifung der Zustandsanderung welche durch eine Release bzw.
Lieferung verursacht wurde

UAT

System-
integrations-
test (SIT)

Entwickler-/Unit-/
API Test

Transparency

Controlling: Burn Down Charts

* One option to visualise progress

* Y-axis: items/features (e.g. “Story Points”,
person days)

e X-axis: time
* Update after each sprint
* |Improves team self-assessment

e Realistic estimation of project duration and
assessment of changes in project scope

* Velocity (KPI): work per iteration: measured,
not estimated (!)

ltems, etc.

Start of Sprint

Example: Burndown Charts

Time

ltems, etc.

Start of Sprint

End of Sprint

Time

Start of Sprint

Too slow

*010 ‘swa)|

End of Sprint

Time

ltems, etc.

Start of Sprint

Too fast, but clever

Time

Example Burn-Down Char

SIP Sprint 2016.17 v Anzahl Vorgange v

Richtlinie
M Verbleibende Werte
Arbeitsfreie Tage

ge Arbeitsfreie Tage

ANZAHL VORGANGE

Dec15 Dec17 Dec19 Dec21 Dec23 Dec2b Dec27 Dec29 Dec31 Jan2

ZEIT

Example: Sprintrate Teams

ALL TASKS

| 0% 92% 8% 0% 100%
l 5% 70% 15% 10% 82%
| 0% 88% 0% 13% 88%
[7% 79% 14% 0% 92%
[17% 81% 2% 0% 83%
[0% 76% 22% 2% 97%
[0% 100% 0% 0% 100%
[0% 100% 0% 0% 100%
[0% 83% 0% 17% 83%
[0% 71% 0% 29% 71%
[13% 88% 0% 0% 88%
[14% 86% 0% 0% 86%
[0% 100% 0% 0% 100%
b 20% 80% 0% 0% 80%

41% 39% 10% 10% 43%

13% 75% 13% 0% 86%
\ 43% 57% 0% 0% 57%
[40% 0% 60% 0% 0%
\ 6% 94% 0% 0% 94%
[0% 100% 0% 0% 100%
I 100% 0% 0% 0% 0%

L., 100% 0 0% 0

o _ _ . . . % % 0%
UMME

o0 O

Example: Release CFD (UATdependent)

R 16/4 EPIC Status UATDependent

m 10_Estimation
40_aufgabe
50_In Arbeit
60_InTest
70_Acceptance Test

B80_aApproved

- m90_Fertig

2016 18_10 2016 25_10_2016 31_10_2016 08_11_2016 15_11_2016 22_11_2016 29_11_2016 06_12_2016 . _12_2016 21_12_2016 27_12_2016 03_01_2017 10_01_20. 17_01_2017 24_01_2017 31_01_2017

R 16/4 TEAMSTORY/BUG Status UAT Dependent

10_aufgaben
20_In Arbeit
u30_In Transport

m40_In Verification

m50_Fertig
) 2016 18_10_2016 25_10_2016 31_10_2016 08_11_2016 15_11_2016 22_11 2016 27_12_2016 03_m_2017 10 01 2I17 17_01_2017 24_01_2017 31_m_2017
10_sufgaben
20_in Arbeit

M 30_In Transport
M 40_In Verification

W50_Fertig

24_01_2017 31_01_2017

_ 2016 18_10_2016 25_10 2016 31_10 2016 08_11_2016 15_11_2016 22_11 2016 29_11_2016 06_12_2016 . 13_12_2016 21_12 2016 27_12_2016 03_01_2017 10_01 _‘

Progress / Costs / Budget

Reporting of progress often quite difficult

Progress according to defined scope is
(comparatively) easy but

Is development in budget?

— Time recording

— Different cost per day per employee

— Internal / external team members

— Other costs (development server, licenses, etc.)

— Organisation of IT: cost centre, commercial entity, etc.

Actuals versus planning (do | know who is going to do
what taks? Quite the opposite of agile)

Soon, administration tasks for (dev teams) becomes
all but lean and self-organised

Conclusion
Agile Metrics (KPIs)

Different options to visualise progress
— Burn-Down Charts
— Prozess-flow visualisation
— Cumulative Flow Diagrams

Various KPIs
— Velocity (aggregated): items per iteration
— Velocity per work type

— Cycle Time/Lead Time: Average completion time of one item

— ldentification of bottlenecks (queue length)

— Defect Rates
Usefulness of metrics/KPIs depending on

— Project environment

— Concrete process implementation

— Maturity of teams / process implementation
Aggregate Metrics

— Progress metrics over team boundaries

— Progress metrics including actuals vs. budget?
Cross team metrics / KPls, e.g. story points?

— Can be used but has risks

ADDITIONAL THOUGHTS

Challenges and Risks

Introduction / change management: CEO / board support
essential

Process not implemented properly / consequently

Role of product owner / customer

Team structure not clear enough

Team roles still focused on “silos”

Lack of trust

Lack of transparency or different understanding of transparency

KPls and reporting that is not benefiting teams and management
alike: introduction of KPIs often backfires as it steers people to fulfil
the KPI not the actual intention behind it

Cost/backlash of transparency: transparency is the evil brother of
self-organisation and trust

Complexity of architecture and systems

How does management
(and most of us) see IT?

Photo by David lliff. License: CC-BY-SA 3.0

Confidence Building

Change management as part of the process

Get external experts when needed and get forcefully
rid of legacy (this is the hardest part)

Frequent releases and demos
Customer relationship
Backlog transparency

Testing and QA

Agile metrics / KPls (that helps teams and
management alike — very difficult to establish)

But from the other side: confidence and trust can be
seen as the opposite of transparency

Audits

Messen

»Die messbare Seite der Welt ist nicht die Welt, es
ist die messbare Seite der Welt.«

Martin Seel

Vs. »Messen was messbar ist, messbar machen
was nicht messbar ist« — Effizienzsteigerung

(Galileo, ... oder Archimedes?)

Creativity?

»you don’t get creativity for free. You need people to be able
to sit back, put their feet up, and think.«

»An organisation that can accelerate but not change direction
is like a car that can speed up but not steer. In the short run, it
makes lots of progress in whatever direction it happened to
be going. In the long run, it’s just another road wreck.«

Tom De Marco

Conclusion: Cornerstones

Agile or plan-driven?
Agile is the opposite of sloppy!

Transparency over following a (long term,
improbable) plan

Agile — not only for small teams
Requirements and customers
Roles and processes

Balance Measurment and Self-Organisation

Agile Softwareentwicklung
im Konzernumfeld

Dr. Alexander Schatten
alexander@schatten.info

http://www.schatten.info

