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Content

Related Processes

▶ Create a process (fork)
▶ Load a new program into a process’s memory (exec)
▶ Wait on a process’s termination (wait)

IPC via Unnamed Pipes

▶ (Unnamed) pipe = unidirectional communication channel
▶ Communication between related processes
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Why should we create processes?

▶ Divide up a task
▶ Simpler application design
▶ Greater concurrency

Example
A server listens to client requests. The server process starts a
new process to handle each request and continues to listen for
further connections.
The server can handle several client requests simultaneously.
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Process vs. Thread
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Process Hierarchy

▶ Every process has a
parent process

▶ Exception: init
process (init,
systemd)

▶ Every process has a
unique ID (pid_t)

▶ Show process
hierarchy:
pstree(1)

systemd-+-ModemManager---2*[{ModemManager}]
|-NetworkManager-+-dhclient
| ‘-2*[{NetworkManager}]
|-abrt-dbus---{abrt-dbus}
|-2*[abrt-watch-log]
|-abrtd
|-acpid
|-agetty
|-alsactl
|-atd
|-auditd-+-audispd-+-sedispatch
| | ‘-{audispd}
| ‘-{auditd}
|-automount---7*[{automount}]
|-avahi-daemon---avahi-daemon
|-chronyd
|-colord---2*[{colord}]
|-crond
|-cupsd
|-dbus-daemon
|-dnsmasq---dnsmasq
|-firewalld---{firewalld}
.
.
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Memory Layout of a Process
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Properties of a Process in Linux

State Running, waiting, ...
Scheduling Priority, CPU time, ...

Identification PID, owner, group, ...
Memory Management Pointer to MMU information

Signals Mask, pending
Process Relations Parents, siblings
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Properties of a Process in Linux

Process Control Block Register, PC, status, page table info
Kernel Stack
File description table
Permissions, Accounting Information
Timer Management
Inter-Process communication

See struct task_struct in sched.h
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Interface
fork / exec / exit / wait

▶ fork(2) – creates a process
(copies the process image)

▶ exec(3) – loads a program
(replaces the process image of a
process with a new one)

▶ exit(3) – exits a process
▶ wait(2) – awaits the exit of

child processes
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Process Creation
fork

▶ Creates a new process
▶ New process is an identical copy

of the calling process – except
PID, pending signals, ...

▶ Calling process is the parent of
the created process, the child –
processes are related

▶ Both processes run parallel and
execute the same program (from
the fork call on)
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Process Creation
Before fork()

After fork()

14 / 54



Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Process Creation
fork

▶ Create the process

#include <unistd.h>

pid_t fork(void);

▶ Distinguish between parent and child
via return value of fork
-1 On error
0 In the child process

>0 In the parent process
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Process Creation
Example

pid_t pid = fork();

switch (pid) {
case -1:
fprintf(stderr, "Cannot fork!\n");
exit(EXIT_FAILURE);

case 0:
// child tasks
...
break;

default:
// parent tasks
...
break;

}
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Process Creation
Child

Child inherits from parent:

▶ Opened files (common access!)
▶ File buffers
▶ Signal handling
▶ Current values of variables

But:

▶ Variables are local to process (no influence)
▶ Signal handling can be re-configured
▶ Communication (IPC) via pipes, sockets, shared memory,

...
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Program Execution
exec

▶ Load a new program into a
process’s memory

▶ Executes another program
▶ In the same process

(PID remains the same)

18 / 54



Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Program Execution
exec Family1

int execl(const char *path, const char *arg, ...);
int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg, ...,
char *const envp[]);

int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);

int fexecve(int fd, char *const argv[],
char *const envp[]);

1Frontend of execve(2) 19 / 54
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Program Execution
exec Family

▶ exec⬚p – searching the environment variable $PATH for
the program specified

▶ exec⬚e – environment2 can be changed
▶ execl⬚ – variable number of arguments
▶ execv⬚ – arguments via array
▶ fexecve – accepts file descriptor (instead of path)

Note Argument Passing!
▶ 1st argument is the program’s name (argv[0])!
▶ Last argument must be a NULL pointer!

2FYI: environ(7) 20 / 54
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Program Execution
Example: execv(), execvp()

#include <unistd.h>

char *cmd[] = { "ls", "-l", (char *) 0 };

execv("/bin/ls", cmd);
// or:
// execvp("ls", cmd);

fprintf(stderr, "Cannot exec!\n");
exit(EXIT_FAILURE);
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Program Execution
Example: execl(), execlp()

#include <unistd.h>

execl("/bin/ls", "ls", "-l", NULL);
// or:
// execlp("ls", "ls", "-l", NULL);

fprintf(stderr, "Cannot exec!\n");
exit(EXIT_FAILURE);

Attention - this is not working:

execl("/bin/ls", "ls -l", NULL);

int a = 1;
execl("myprog", "myprog", "-a", a, NULL);

// e.g., use a char-buffer and snprintf(3)
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Process Termination
exit

▶ Terminates a process (normally)
▶ Termination status can be read

by parents
▶ Actions performed by exit()

▶ Flush and close stdio stream
buffers

▶ Close all open files
▶ Delete temporary files (created

by tmpfile(3))
▶ Call exit handlers

(atexit(3))
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Process Termination
exit

▶ Terminate a process normally

#include <stdlib.h>

void exit(int status);

▶ Status: 8 bit (0-255)
▶ By convention

▶ exit(EXIT_SUCCESS) – process completed successfully
▶ exit(EXIT_FAILURE) – error occurred

▶ More return values
▶ BSD: sysexits.h
▶ http://tldp.org/LDP/abs/html/exitcodes.html
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Waiting on a Child Process
wait

▶ Wait until a child process
terminates

▶ Returns the PID and status of
the terminated child
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Waiting on a Child Process
wait

▶ Wait for a child to terminate

#include <sys/wait.h>

pid_t wait(int *status);

▶ wait() blocks3 until a child terminates or on error
▶ Return value

▶ PID of the terminated child
▶ -1 on error (→ errno, e.g., ECHILD)

▶ Status includes exit value and signal information
▶ WIFEXITED(status), WEXITSTATUS(status)
▶ WIFSIGNALED(status), WTERMSIG(status)
▶ See wait(2)

3≠ busy waiting 26 / 54
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Waiting on a Child Process
Zombies and Orphans

▶ UNIX: Terminated processes remain in the process table
▶ No more space in process table → no new process can be

started!
▶ After wait() the child process is removed from the

process table

Zombie Child terminates, but parent didn’t call wait yet
▶ State of the child is set to "zombie"
▶ Child remains in process table until parent

calls wait
Orphan Parent terminates before child

▶ Child gets an orphan and is inherited to the
init process

▶ When an orphan terminates, the init process
removes the entry in the process table
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Waiting on a Child Process
Example

#include <sys/wait.h>

int status;
pid_t child_pid, pid;
...
while ((pid = wait(&status)) != child_pid)
{
if (pid != -1) continue;
// other child
if (errno == EINTR) continue;
// interrupted
fprintf(stderr, "Cannot wait!\n");
exit(EXIT_FAILURE);

}

if (WEXITSTATUS(status) == EXIT_SUCCESS) {
...

28 / 54



Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Waiting on a Child Process
waitpid

▶ Wait on a specific child process

#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *status, int options);

▶ Examples

waitpid(cid, &status, 0);
// waits on a child process with PID ’cid’

waitpid(-1, &status, 0);
// equivalent to wait

waitpid(-1, &status, WNOHANG);
// does not block

29 / 54
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Notification
on Termination of a Child

If parent should not block

▶ Synchronous
▶ waitpid(-1, &status, WNOHANG)
▶ Returns exit status when a child terminates
▶ Repeating calls → polling

▶ Asynchronous
▶ Signal SIGCHLD is sent to the parent process whenever

one of its child processes terminates
▶ Catch by installing a signal handler (sigaction)
▶ Call wait in the signal handler
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Pitfalls

int main(int argc, char **argv)
{

fprintf(stdout, "Hello");

(void) fork();
return 0;

}

Output: "HelloHello"

Why?
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Pitfalls

int main(int argc, char **argv)
{

fprintf(stdout, "Hello");
fflush(stdout);
(void) fork();
return 0;

}

Output: "Hello"

→ for all opened streams
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Debugging
gdb

▶ Before fork is executed:
set follow-fork-mode [child|parent]

Example

$ gdb -tui ./forktest
(gdb) break main
(gdb) set follow-fork-mode child
(gdb) run
(gdb) next
(gdb) :
(gdb) continue
(gdb) quit

33 / 54
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Inter-Process Communication
Recall

So far:

▶ Signals (e.g., to synchronise between parent and child)
→ see Development in C I

New:

▶ Pipes

Next lecture:

▶ Sockets
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Pipes
Overview
(Unnamed) Pipe
= unidirectional data channel
= enables communication between related processes

▶ Example

$ ls | wc -l

▶ Access to read and write end of the pipe via file descriptors
▶ Pipe is an unidirectional byte stream
▶ Buffered
▶ Implicit synchronisation
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Pipes
Create

▶ Create a pipe

#include <unistd.h>

int pipe(int pipefd[2]);

▶ File descriptors of read and write end are returned in
specified integer array pipefd

▶ pipefd[0] – read end
▶ pipefd[1] – write end

▶ Close unused ends
▶ Use read/write end via stream-IO (fdopen, etc.)
▶ A child process inherits the pipe → common access
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Unnamed Pipes
Illustration

pipe;
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Unnamed Pipes
Illustration

pipe; fork; close unused ends;
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Unnamed Pipes
Implicit Synchronisation

▶ read blocks on empty pipe
▶ write blocks on full pipe

▶ read indicates end-of-file if all write ends are closed
(return value 0)

▶ write creates signal SIGPIPE if all read ends are closed
(if signal ignored/handled: write fails with errno
EPIPE)

Therefore...
... close unused ends, to get this behaviour (end-of-file and
SIGPIPE/EPIPE).

Besides, the kernel removes pipes with all ends closed.
38 / 54
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Unnamed Pipes
What about named pipes?

▶ Unnamed pipes
▶ |
▶ pipe(2)

▶ Named pipes
▶ mkfifo(1), mknod(2)
▶ Usage similar to files.
▶ (Will not be dealt with any further throughout this course.)
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Redirection of stdin/stdout
Why?

▶ Main application: pipes
▶ Example: shell redirection of stdin and stdout

Scenario:

▶ A process may be forked or not
→ uses standard IO

▶ A parent process forks and executes another program
▶ Parent usually wants to use the child’s output

→ redirect stdin (file descriptor 0, STDIN_FILENO)
and/or stdout (file descriptor 1, STDOUT_FILENO) in
new process
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Redirection of stdin/stdout
Approach

▶ Close file descriptors for standard I/O (stdin, stdout)
▶ Duplicate opened file descriptor (e.g., a pipe’s end) to the

closed one

#include <unistd.h>

int dup(int oldfd);
int dup2(int oldfd, int newfd);

▶ Close duplicated file descriptor
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Redirection of stdin/stdout
dup / dup2

▶ dup(oldfd) duplicates file descriptor oldfd
▶ New file descriptor uses smallest unused ID

= entry in file descriptor table
▶ Duplicated file descriptor points to the same open file

description (equal file offset, status flags) → see open(2)

▶ dup2(oldfd, newfd) duplicates oldfd
▶ New file descriptor uses ID newfd
▶ (Implicitly) closes the file descriptor newfd (if necessary)
▶ newfd points to the same open file description like oldfd
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Redirection of stdin/stdout
Example: redirect stdout to opened file
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Redirection of stdin/stdout
Example: redirect stdout to opened file

open file;
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Redirection of stdin/stdout
Example: redirect stdout to opened file

open file; close stdout;
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Redirection of stdin/stdout
Example: redirect stdout to opened file

open file; close stdout; dup;
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Redirection of stdin/stdout
Example: redirect stdout to opened file

open file; close stdout; dup; close file;
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Redirection of stdin/stdout
Example: redirect stdout to log.txt

#include <fcntl.h>
#include <sys/types.h>
#include <unistd.h>

int fd;

// TODO error handling!

fd = open("log.txt", O_WRONLY | O_CREAT);

dup2(fd, // old descriptor
STDOUT_FILENO); // new descriptor

close(fd);

execlp("ls", "ls", NULL);
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Redirection of stdin/stdout
Example: redirect stdin to pipe

// TODO error handling!

int pipefd[2];
pipe(pipefd); // create pipe

pid_t pid = fork();
switch(pid) {
:
case 0: // child counting lines from parent
close(pipefd[1]); // close unused write end

dup2(pipefd[0], // old descriptor - read end
STDIN_FILENO); // new descriptor

close(pipefd[0]);

execlp("wc", "wc", "-l", NULL);
// should not reach this line

:
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Pitfalls

▶ Pipes are unidirectional
▶ Bidirectional: two pipes, but ...

▶ Erroneous synchronisation (deadlock, e.g., both processes
read from empty pipe)

▶ Synchronisation & Buffer
▶ Use fflush()
▶ Configure buffer (setbuf(3), setvbuf(3))
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Tips for the Exercise

▶ Try to parallel the functionality of your program (as much
as possible)

Example
DO NOT: The parent first reads all input from a file to an
array. It then sends the data within one burst to the child. The
child processes the data and outputs the result.
INSTEAD DO: The parent reads line-by-line from a file. Each
line is sent to the client immediately. Reading and processing
of the lines happens in parallel.
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Tips for the Exercise

▶ Communicate over pipes (do not exploit inherited memory
areas)

Example
DO NOT: The parent reads a file and saves its content into an
array and forks a child. The child processes the data from the
array.
INSTEAD DO: The parent communicates the data from the
file over a pipe.

▶ However, you may pass options/flags/settings to the child
(process). For example, use inherited variable argv to set
arguments when using exec.
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Summary

▶ fork/exec/wait
▶ Start further programs

▶ Unnamed Pipes
▶ Communication between related processes
▶ Redirection of stdin/stdout
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Material

▶ Michael Kerrisk: A Linux and UNIX System Programming
Handbook, No Starch Press, 2010.

▶ man pages: fork(2), exec(3), execve(2), exit(3), wait(3),
pipe(2), dup(2)

▶ gdb - Debugging Forks:
https://sourceware.org/gdb/onlinedocs/gdb/Forks.html
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