
Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Exercise 2: Related Processes
and Inter-Process Communication

via Unnamed Pipes
Operating Systems UE

2022W

David Lung, Florian Mihola, Andreas Brandstätter,
Axel Brunnbauer, Peter Puschner

Technische Universität Wien
Computer Engineering

Cyber-Physical Systems

2022-11-08

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Content

Related Processes

▶ Create a process (fork)
▶ Load a new program into a process’s memory (exec)
▶ Wait on a process’s termination (wait)

IPC via Unnamed Pipes

▶ (Unnamed) pipe = unidirectional communication channel
▶ Communication between related processes

2 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Why should we create processes?

▶ Divide up a task
▶ Simpler application design
▶ Greater concurrency

Example
A server listens to client requests. The server process starts a
new process to handle each request and continues to listen for
further connections.
The server can handle several client requests simultaneously.

3 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Process vs. Thread

fork(2) vs. pthreads(7)

4 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Process vs. Thread

fork(2) vs. pthreads(7)

5 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Process vs. Thread

fork(2) vs. pthreads(7)

6 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Process vs. Thread

fork(2) vs. pthreads(7)

7 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Process Hierarchy

▶ Every process has a
parent process

▶ Exception: init
process (init,
systemd)

▶ Every process has a
unique ID (pid_t)

▶ Show process
hierarchy:
pstree(1)

systemd-+-ModemManager---2*[{ModemManager}]
|-NetworkManager-+-dhclient
| ‘-2*[{NetworkManager}]
|-abrt-dbus---{abrt-dbus}
|-2*[abrt-watch-log]
|-abrtd
|-acpid
|-agetty
|-alsactl
|-atd
|-auditd-+-audispd-+-sedispatch
| | ‘-{audispd}
| ‘-{auditd}
|-automount---7*[{automount}]
|-avahi-daemon---avahi-daemon
|-chronyd
|-colord---2*[{colord}]
|-crond
|-cupsd
|-dbus-daemon
|-dnsmasq---dnsmasq
|-firewalld---{firewalld}
.
.

8 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Memory Layout of a Process

9 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Properties of a Process in Linux

State Running, waiting, ...
Scheduling Priority, CPU time, ...

Identification PID, owner, group, ...
Memory Management Pointer to MMU information

Signals Mask, pending
Process Relations Parents, siblings

10 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Properties of a Process in Linux

Process Control Block Register, PC, status, page table info
Kernel Stack
File description table
Permissions, Accounting Information
Timer Management
Inter-Process communication

See struct task_struct in sched.h

11 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Interface
fork / exec / exit / wait

▶ fork(2) – creates a process
(copies the process image)

▶ exec(3) – loads a program
(replaces the process image of a
process with a new one)

▶ exit(3) – exits a process
▶ wait(2) – awaits the exit of

child processes

12 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Process Creation
fork

▶ Creates a new process
▶ New process is an identical copy

of the calling process – except
PID, pending signals, ...

▶ Calling process is the parent of
the created process, the child –
processes are related

▶ Both processes run parallel and
execute the same program (from
the fork call on)

13 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Process Creation
Before fork()

After fork()

14 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Process Creation
fork

▶ Create the process

#include <unistd.h>

pid_t fork(void);

▶ Distinguish between parent and child
via return value of fork
-1 On error
0 In the child process

>0 In the parent process

15 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Process Creation
Example

pid_t pid = fork();

switch (pid) {
case -1:
fprintf(stderr, "Cannot fork!\n");
exit(EXIT_FAILURE);

case 0:
// child tasks
...
break;

default:
// parent tasks
...
break;

}

16 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Process Creation
Child

Child inherits from parent:

▶ Opened files (common access!)
▶ File buffers
▶ Signal handling
▶ Current values of variables

But:

▶ Variables are local to process (no influence)
▶ Signal handling can be re-configured
▶ Communication (IPC) via pipes, sockets, shared memory,

...

17 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Program Execution
exec

▶ Load a new program into a
process’s memory

▶ Executes another program
▶ In the same process

(PID remains the same)

18 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Program Execution
exec Family1

int execl(const char *path, const char *arg, ...);
int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg, ...,
char *const envp[]);

int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);

int fexecve(int fd, char *const argv[],
char *const envp[]);

1Frontend of execve(2) 19 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Program Execution
exec Family

▶ exec⬚p – searching the environment variable $PATH for
the program specified

▶ exec⬚e – environment2 can be changed
▶ execl⬚ – variable number of arguments
▶ execv⬚ – arguments via array
▶ fexecve – accepts file descriptor (instead of path)

Note Argument Passing!
▶ 1st argument is the program’s name (argv[0])!
▶ Last argument must be a NULL pointer!

2FYI: environ(7) 20 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Program Execution
Example: execv(), execvp()

#include <unistd.h>

char *cmd[] = { "ls", "-l", (char *) 0 };

execv("/bin/ls", cmd);
// or:
// execvp("ls", cmd);

fprintf(stderr, "Cannot exec!\n");
exit(EXIT_FAILURE);

21 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Program Execution
Example: execl(), execlp()

#include <unistd.h>

execl("/bin/ls", "ls", "-l", NULL);
// or:
// execlp("ls", "ls", "-l", NULL);

fprintf(stderr, "Cannot exec!\n");
exit(EXIT_FAILURE);

Attention - this is not working:

execl("/bin/ls", "ls -l", NULL);

int a = 1;
execl("myprog", "myprog", "-a", a, NULL);

// e.g., use a char-buffer and snprintf(3)

22 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Process Termination
exit

▶ Terminates a process (normally)
▶ Termination status can be read

by parents
▶ Actions performed by exit()

▶ Flush and close stdio stream
buffers

▶ Close all open files
▶ Delete temporary files (created

by tmpfile(3))
▶ Call exit handlers

(atexit(3))

23 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Process Termination
exit

▶ Terminate a process normally

#include <stdlib.h>

void exit(int status);

▶ Status: 8 bit (0-255)
▶ By convention

▶ exit(EXIT_SUCCESS) – process completed successfully
▶ exit(EXIT_FAILURE) – error occurred

▶ More return values
▶ BSD: sysexits.h
▶ http://tldp.org/LDP/abs/html/exitcodes.html

24 / 54

http://tldp.org/LDP/abs/html/exitcodes.html

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Waiting on a Child Process
wait

▶ Wait until a child process
terminates

▶ Returns the PID and status of
the terminated child

25 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Waiting on a Child Process
wait

▶ Wait for a child to terminate

#include <sys/wait.h>

pid_t wait(int *status);

▶ wait() blocks3 until a child terminates or on error
▶ Return value

▶ PID of the terminated child
▶ -1 on error (→ errno, e.g., ECHILD)

▶ Status includes exit value and signal information
▶ WIFEXITED(status), WEXITSTATUS(status)
▶ WIFSIGNALED(status), WTERMSIG(status)
▶ See wait(2)

3≠ busy waiting 26 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Waiting on a Child Process
Zombies and Orphans

▶ UNIX: Terminated processes remain in the process table
▶ No more space in process table → no new process can be

started!
▶ After wait() the child process is removed from the

process table

Zombie Child terminates, but parent didn’t call wait yet
▶ State of the child is set to "zombie"
▶ Child remains in process table until parent

calls wait
Orphan Parent terminates before child

▶ Child gets an orphan and is inherited to the
init process

▶ When an orphan terminates, the init process
removes the entry in the process table

27 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Waiting on a Child Process
Example

#include <sys/wait.h>

int status;
pid_t child_pid, pid;
...
while ((pid = wait(&status)) != child_pid)
{
if (pid != -1) continue;
// other child
if (errno == EINTR) continue;
// interrupted
fprintf(stderr, "Cannot wait!\n");
exit(EXIT_FAILURE);

}

if (WEXITSTATUS(status) == EXIT_SUCCESS) {
...

28 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Waiting on a Child Process
waitpid

▶ Wait on a specific child process

#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *status, int options);

▶ Examples

waitpid(cid, &status, 0);
// waits on a child process with PID ’cid’

waitpid(-1, &status, 0);
// equivalent to wait

waitpid(-1, &status, WNOHANG);
// does not block

29 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Notification
on Termination of a Child

If parent should not block

▶ Synchronous
▶ waitpid(-1, &status, WNOHANG)
▶ Returns exit status when a child terminates
▶ Repeating calls → polling

▶ Asynchronous
▶ Signal SIGCHLD is sent to the parent process whenever

one of its child processes terminates
▶ Catch by installing a signal handler (sigaction)
▶ Call wait in the signal handler

30 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Pitfalls

int main(int argc, char **argv)
{

fprintf(stdout, "Hello");

(void) fork();
return 0;

}

Output: "HelloHello"

Why?

31 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Pitfalls

int main(int argc, char **argv)
{

fprintf(stdout, "Hello");
fflush(stdout);
(void) fork();
return 0;

}

Output: "Hello"

→ for all opened streams

32 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Debugging
gdb

▶ Before fork is executed:
set follow-fork-mode [child|parent]

Example

$ gdb -tui ./forktest
(gdb) break main
(gdb) set follow-fork-mode child
(gdb) run
(gdb) next
(gdb) :
(gdb) continue
(gdb) quit

33 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Inter-Process Communication
Recall

So far:

▶ Signals (e.g., to synchronise between parent and child)
→ see Development in C I

New:

▶ Pipes

Next lecture:

▶ Sockets

34 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Pipes
Overview
(Unnamed) Pipe
= unidirectional data channel
= enables communication between related processes

▶ Example

$ ls | wc -l

▶ Access to read and write end of the pipe via file descriptors
▶ Pipe is an unidirectional byte stream
▶ Buffered
▶ Implicit synchronisation

35 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Pipes
Create

▶ Create a pipe

#include <unistd.h>

int pipe(int pipefd[2]);

▶ File descriptors of read and write end are returned in
specified integer array pipefd

▶ pipefd[0] – read end
▶ pipefd[1] – write end

▶ Close unused ends
▶ Use read/write end via stream-IO (fdopen, etc.)
▶ A child process inherits the pipe → common access

36 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Unnamed Pipes
Illustration

pipe;

37 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Unnamed Pipes
Illustration

pipe; fork;

37 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Unnamed Pipes
Illustration

pipe; fork; close unused ends;

37 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Unnamed Pipes
Implicit Synchronisation

▶ read blocks on empty pipe
▶ write blocks on full pipe

▶ read indicates end-of-file if all write ends are closed
(return value 0)

▶ write creates signal SIGPIPE if all read ends are closed
(if signal ignored/handled: write fails with errno
EPIPE)

Therefore...
... close unused ends, to get this behaviour (end-of-file and
SIGPIPE/EPIPE).

Besides, the kernel removes pipes with all ends closed.
38 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Unnamed Pipes
What about named pipes?

▶ Unnamed pipes
▶ |
▶ pipe(2)

▶ Named pipes
▶ mkfifo(1), mknod(2)
▶ Usage similar to files.
▶ (Will not be dealt with any further throughout this course.)

39 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Redirection of stdin/stdout
Why?

▶ Main application: pipes
▶ Example: shell redirection of stdin and stdout

Scenario:

▶ A process may be forked or not
→ uses standard IO

▶ A parent process forks and executes another program
▶ Parent usually wants to use the child’s output

→ redirect stdin (file descriptor 0, STDIN_FILENO)
and/or stdout (file descriptor 1, STDOUT_FILENO) in
new process

40 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Redirection of stdin/stdout
Approach

▶ Close file descriptors for standard I/O (stdin, stdout)
▶ Duplicate opened file descriptor (e.g., a pipe’s end) to the

closed one

#include <unistd.h>

int dup(int oldfd);
int dup2(int oldfd, int newfd);

▶ Close duplicated file descriptor

41 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Redirection of stdin/stdout
dup / dup2

▶ dup(oldfd) duplicates file descriptor oldfd
▶ New file descriptor uses smallest unused ID

= entry in file descriptor table
▶ Duplicated file descriptor points to the same open file

description (equal file offset, status flags) → see open(2)

▶ dup2(oldfd, newfd) duplicates oldfd
▶ New file descriptor uses ID newfd
▶ (Implicitly) closes the file descriptor newfd (if necessary)
▶ newfd points to the same open file description like oldfd

42 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Redirection of stdin/stdout
Example: redirect stdout to opened file

43 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Redirection of stdin/stdout
Example: redirect stdout to opened file

open file;

44 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Redirection of stdin/stdout
Example: redirect stdout to opened file

open file; close stdout;

45 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Redirection of stdin/stdout
Example: redirect stdout to opened file

open file; close stdout; dup;

46 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Redirection of stdin/stdout
Example: redirect stdout to opened file

open file; close stdout; dup; close file;

47 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Redirection of stdin/stdout
Example: redirect stdout to log.txt

#include <fcntl.h>
#include <sys/types.h>
#include <unistd.h>

int fd;

// TODO error handling!

fd = open("log.txt", O_WRONLY | O_CREAT);

dup2(fd, // old descriptor
STDOUT_FILENO); // new descriptor

close(fd);

execlp("ls", "ls", NULL);

48 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Redirection of stdin/stdout
Example: redirect stdin to pipe

// TODO error handling!

int pipefd[2];
pipe(pipefd); // create pipe

pid_t pid = fork();
switch(pid) {
:
case 0: // child counting lines from parent
close(pipefd[1]); // close unused write end

dup2(pipefd[0], // old descriptor - read end
STDIN_FILENO); // new descriptor

close(pipefd[0]);

execlp("wc", "wc", "-l", NULL);
// should not reach this line

:

49 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Pitfalls

▶ Pipes are unidirectional
▶ Bidirectional: two pipes, but ...

▶ Erroneous synchronisation (deadlock, e.g., both processes
read from empty pipe)

▶ Synchronisation & Buffer
▶ Use fflush()
▶ Configure buffer (setbuf(3), setvbuf(3))

50 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Tips for the Exercise

▶ Try to parallel the functionality of your program (as much
as possible)

Example
DO NOT: The parent first reads all input from a file to an
array. It then sends the data within one burst to the child. The
child processes the data and outputs the result.
INSTEAD DO: The parent reads line-by-line from a file. Each
line is sent to the client immediately. Reading and processing
of the lines happens in parallel.

51 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Tips for the Exercise

▶ Communicate over pipes (do not exploit inherited memory
areas)

Example
DO NOT: The parent reads a file and saves its content into an
array and forks a child. The child processes the data from the
array.
INSTEAD DO: The parent communicates the data from the
file over a pipe.

▶ However, you may pass options/flags/settings to the child
(process). For example, use inherited variable argv to set
arguments when using exec.

52 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Summary

▶ fork/exec/wait
▶ Start further programs

▶ Unnamed Pipes
▶ Communication between related processes
▶ Redirection of stdin/stdout

53 / 54

Exercise 2:
fork, exec,
wait, pipe

Related
Processes
Process
Properties
Interface
Process
Creation
Program
Execution
Process
Termination
Waiting on a
Child Process
Pitfalls
Debugging

IPC
Pipes
Redirection of
stdin/stdout
Pitfalls

Summary

Material

▶ Michael Kerrisk: A Linux and UNIX System Programming
Handbook, No Starch Press, 2010.

▶ man pages: fork(2), exec(3), execve(2), exit(3), wait(3),
pipe(2), dup(2)

▶ gdb - Debugging Forks:
https://sourceware.org/gdb/onlinedocs/gdb/Forks.html

54 / 54

https://sourceware.org/gdb/onlinedocs/gdb/Forks.html

	Related Processes
	Process Properties
	Interface
	Process Creation
	Program Execution
	Process Termination
	Waiting on a Child Process
	Pitfalls
	Debugging

	IPC
	Pipes
	Redirection of stdin/stdout
	Pitfalls

