
Group A

Please fill in your name and registration number (Matrikelnr.) immediately.

Exam 2 ON SOLUTION KEY 07.10.2019

Advanced Database Systems (184.780) GROUP A

Matrikelnr. Last Name First Name

Duration: 75 minutes. Provide the solutions on the designated pages. Good Luck!

Question 1: (4 credits)

For each of the statements below, decide if it is true or false and tick the corresponding circle. You get +1 credit
for each correct answer, −1 credit for each wrong answer and 0 credit if you leave the answer open. In total, you
always get ≥ 0 credits on the entire exam question 1.

1. In Spark, the filter operation may be applied to mutable variables but not to immutable variables.

true © false ©×

2. In Spark, the user should combine several small computation steps to a single step in order to avoid
performance loss. true © false ©×

3. In the MapReduce execution model, if a map worker fails, then all map tasks by this worker have to be
redone. true ©× false ©

4. In Hive, the user can choose between several execution engines. These choices include MapReduce and
Spark. true ©× false ©

A–1

Question 2: (4 credits)
A colleague of yours, who is writing her/his first MapReduce programme, is asking you for advice: She/he has
recently heard about combiners but did not understand what they are good for.

a) [2 credits] Briefly explain to her/him

• when is a combiner applicable,

• what is the goal of a combiner, and

• how is this goal achieved?

• Applicability: computation of an associative and commutative function;

combiner and reducer have the same type of input; moreover, the combiner must

produce output of the same type as its input.

• Goal: reduce the communication cost

• Method: shift part of the reducer functionality to the mapper nodes; thus,

only aggregated data has to be communicated from the mapper nodes to the

receiver nodes.

A–2

b) [2 credit] The application which your colleague had in mind involves the computation of the average function.
Can a combiner be used for this purpose?

• If your answer is yes, give a brief sketch of the combiner.

• If your answer is no, give a short argument, why not?

• mapper: for every number n from the input, produce a key value pair (k, v)
where k is always the same (e.g., simply left empty), i.e., we have a single

reducer, and v = (1, n).

The idea is that v is a pair consisting of count and sum.

• combiner/receiver: receives a list of pairs (c1, n1), . . . , (c`, n`) and produces a

single key-value pair with unchanged key.

The value is computed as value = N/C with N =
∑`

i=1 ni and C =
∑`

i=1 ci.

A–3

Question 3: (4 credits)
In this example you are asked to write a given type of join in MapReduce. The implementation details are left
open, and there are multiple possible ways to implement this join in MapReduce. You will get full points as long
as your solution sketches out a correct MapReduce program of the join type that is defined below.

• The Left Outer Join of R and S (R� S), is the result of the (natural) join between R and S, combined
with those tuples of R with no join partner, with the missing attributes from S replaced by NULLs:

R A B C

1 2 3

2 2 4

S B C D

2 3 5

R� S A B C D

1 2 3 5

2 2 4 NULL

Assume for your solution the given relational schema: R(A,B,C) and S(B,C,D).

In addition to sketching out a MapReduce program, also identify the communication cost of your algorithm, as a
function of the input size.

Your Answer:

(Solved using a partition join)

Mapper
For each input tuple (a,b,c) from R emit a tuple 〈(b,c), (a,’R’)〉,
and for each input (b,c,d) from S emit a tuple 〈(b,c), (d,’S’)〉, where ’R’ and

’S’ mark the origin of this tuple.

Reducer
The input is a key (b,c) and a list of pairs consisting of attribute and

origin flag.

Determine - using the origin flags - A, the list of values from R, and D,

the list of values from S.

If both are non-empty, then perform a cross-product and emit a tuple for every

possible combination.

If A is non-empty, but D is empty, then emit for every a ∈ A a tuple

(a,b,c,NULL).

Otherwise do nothing.

Communication Cost:
|R|+ |S|

A–4

Question 4: (4 credits)

a) Evaluation of Spark/Scala [2 credits]
For this part of the question, you are given some Spark/Scala code and are supposed to evaluate the results.
Don’t worry about the “syntax” of your output, it is only important that it is clear that you understood the
underlying semantics of Spark/Scala.

val fact5 = List(1, 2, 6, 24, 120)

val result = fact5.filter(x => x % 2 == 0 && x % 3 == 0).map(x => x/6)

result = List(1, 4, 20)

Note: ’%’ is the modulo operator (i.e., the rest after division).

val numbers = List(2, 4, 4, 5, 7, 7, 8, 10, 14)

def foo(num:Int) = List(num, num*2, num+3)

val otherNumbers = List(2, 4, 7).flatMap(foo)

val result = numbers.sum - otherNumbers.sum

result = 0

Note: ’.sum’ produces the sum of a list of integers

b) Writing Spark/Scala functions [2 credits]

You are given a list of random words as input, for instance:

val words = List("madam" , "letter" , "rotator" , "mammal")

A palindrome is defined as a word which is the same when read from left to right, or right to left. Examples:
”racecar”, ”radar” or ”level”. For each word in your input, check if it’s a palindrome, if not, add the warning
”: no palindrome!” to the string. You can change the order of the list of words, but each word from the
input must be present (as a prefix at least) in your output.

Many solutions:

val palindromes = for (w <- words) yield {if (w.reverse == w) {w} else {w + ": no palindrome!" }}

Alternatively:

val palindromes = words.filter(x => x.reverse == x) ::: words.filter(x => x.reverse != x).map(x

=> x + ": no palindrome!")

Note: You can use the ’.reverse’ method to reverse the letters of any string. You are expected to write a
programmatic solution, writing down a static list of strings will get 0 credits.

A–5

Question 5: (4 credits)
You are given a database for a retailer.
Note: underlines represent primary keys, italics represent foreign keys. We don’t state the type of attributes
here, just assume some reasonable defaults (string, int, float, . . .)

manufacturer (name, country. ceo, main product: product.id)

product (id,name, first produced, made by: manufacturer.name)

offers (id: product.id, brand: retailer.brand, price, created on)

retailer (brand,country, no of stores)

discount (by brand: retailer.brand, code, for product: product.id)

Assume the dataset is loaded and the corresponding views have already been created in Spark SQL. For the
dataframes, simply use the name of each table appended with “DF” (e.g.: productDF, discountDF, etc.). You
don’t need to generate these dataframes, just assume they are already loaded and usable.

You are now given a number of queries, either in Spark SQL or in the Dataframe API. Your task will be to state
an equivalent query of the other type, i.e. give a Spark SQL equivalent if the Dataframe API version is given, or
vice-versa.

val query1DF = manufacturerDF.join(retailerDF,manufacturerDF("country") === retailerDF("country"))

.groupBy(manufacturerDF("name"))

.agg(count(retailerDF("brand")))

val query1SQL = spark.sql("SELECT name, COUNT(brand) FROM manufacturer NATURAL JO c

IN retailer GROUP BY name"

val query2DF = retailerDF.join(offerDF,offerDF("brand") === retailerDF("brand"))

.groupBy(retailerDF("brand"))

.agg(max("price").as("maxPrice"))

.select(retailerDF("brand"), $"maxPrice" + 100)

val query2SQL = spark.sql("SELECT r.brand, MAX(price)+100 FROM retailer r NATURAL
JOIN offers o GROUP BY r.brand")

A–6

val query3SQL = spark.sql("SELECT name, id

FROM manufacturer m, product p

WHERE p.made_by = m.name

AND NOT EXISTS (SELECT *

FROM discount d

WHERE d.for_product = p.id) ")

val query3DF = manufacturerDF.join(productDF,productDF("made_by") === manufacture c

rDF("name")).select(manufacturerDF("name"),productDF("name")).except(manufacturer c

DF.join(productDF,productDF("made_by") === manufacturerDF("name")).join(discountD c

F,discountDF("for_product") === productDF("id")).select(manufacturerDF("name"),pr c

oductDF("name")))

Note: You can use ”.except” to form the difference of two dataframes of the same schema.

val query4SQL = spark.sql("SELECT p.name,r.brand, AVG(o.price)

FROM product p, retailer r, offers o

WHERE p.id = o.id AND r.brand = o.brand

AND r.no_of_stores > '4' AND o.price > '100.0'

GROUP BY p.name, r.brand")

val query4DF = productDF.join(offersDF,offersDF("id") === productDF("id")).joi c

n(retailerDF,retailerDF("brand") === offersDF("brand")).filter("no_of_stores >
'4'").filter("price > '100.0' ").groupBy(productDF("name"),retailerDF("brand")).a c

gg(avg(offersDF("price")))

Overall: 20 points

Good luck!

A–7

