
Introduction to Security // Access Control

Introduction to Security (192.019)

Security & Privacy Research Unit (192-06)
https://secpriv.wien

Access Control

Mauro Tempesta, Lorenzo Veronese

Introduction to Security // Access Control

Access Control

● Subjects: any entity capable of accessing resources (users, processes, …)
● Objects: resources that need to be protected (files, peripherals, …)
● Access rights: kind of access allowed to the object

○ Read / write information, execute (e.g., a program), create or delete

2

The decision to permit or deny a subject access to system objects
(network, data, application, service, etc.)

Introduction to Security // Access Control

Enforcement of Access Control

Reference Monitor

● Component that authorizes / denies access
requests to the system objects
○ Example: Component of the file system in an

operating system to regulate access to files

● Required properties: non-bypassable,
verifiable, tamper-proof

Security Policy

● Set of rules defining what which access rights
subjects have on objects

● Various operational / administrative aspects:
○ How and by whom rules can be added /

modified / deleted
○ Delegation: Can a subject with certain access

rights propagate them to other subjects?
○ Revocation: How can access rights be taken

away from a subject?

3

Subject Object

Reference monitor

access request if allowed

Security policy

Introduction to Security // Access Control

Properties of Reference Monitors

● Non-bypassable
○ All access requests to objects must pass through the reference monitor
○ Prevents unexpected violations of the enforced security policy

● Verifiable
○ Monitor should be amenable to analysis and tests
○ It should be verifiable that the monitor correctly enforces the security policy

● Tamper-proof
○ Correct functioning of the reference monitor cannot be compromised by an attacker

4

Introduction to Security // Access Control

Storing Access Rights - Access Control Matrix

● Proposed by Lampson in 1971
● Rows represent subjects, columns represent objects

○ Intersection contains the access rights of the subject for the object

5

Introduction to Security // Access Control

Storing Access Rights - ACLs and Capabilities

● Access Control Lists (ACL)
○ Object-centered: Associate each object with list
○ Reference monitor checks subject against list of accessed object
○ Relies on authentication: need to know user

● Capabilities
○ Subject-centered: Capability is unforgeable ticket (token) that

defines the privileges of its holder
■ Usually implemented via random strings (cryptographically protected,

e.g., via HMAC) or controlled by the operating system
■ Can be passed from one subject to another

○ Reference monitor checks only the validity of the token
■ No need to identify the subject

6

Introduction to Security // Access Control

Delegation and Revocation in ACLs and Capability-based Systems

7

ACL Capabilities

Delegation ● Ask the owner / administrator to grant
privileges to objects to the desired subject

● In operating systems: Let specific processes
run by one user to act with the privileges of
another user

The capability can be passed to the desired subject
at run time

Revocation Modify the access rights stored in the ACLs
associated to the resources to which access has
to be revoked

Only possible in systems with appropriate
bookkeeping

● Reference monitor needs to track all revoked
capabilities (until they expire)

● If capability is used for multiple resources, have
to revoke all or none

Introduction to Security // Access Control

Mandatory (MAC) and Discretionary Access Control (DAC)

● Mandatory Access Control (MAC)
○ Security policy set and modified centrally by trusted administrator
○ Subjects cannot override the policy(e.g., delegate rights if not allowed by policy)

● Discretionary Access Control (DAC)
○ Subjects can freely delegate / revoke / modify access rights to objects for which they have certain

access rights
■ Objects they own
■ Objects for which they have a capability

8

Introduction to Security // Access Control

Role-Based Access Control

● Writing policies for systems with a large number of users can be difficult
○ Define roles (also known as groups)

■ A role represent sets of subjects with similar access rights
○ Assign permissions to roles and roles to subjects

■ Users obtain the access rights of the roles assigned to them

● Roles might be organized in a hierarchy
○ Partial ordering is defined over roles
○ Each role gets all access rights of roles below
○ Only new access rights are assigned to a role

9

Introduction to Security // Access Control

Role-Based Access Control

10

Subjects Roles Objects

Engineering

Marketing

Human
resources

Introduction to Security // Access Control

Bell-LaPadula Model

● Model used in government and military applications
○ Developed to ensure data confidentiality

● Subjects and objects are assigned a security level and a set of categories
○ An order is defined over security levels
○ A subject can read an object if

■ the object has the same or lower security level compared to the user (“no read up”)
■ the object’s categories are a subset of the categories for which the subject is cleared

○ A subject can write an object if
■ the object has the same or higher security level compared to the user (“no write down”,

prevents downgrade of information)
■ the object’s categories are a superset of the categories for which the subject is cleared

11

Introduction to Security // Access Control

Bell-LaPadula Model - Example
● Security Levels: Unclassified < Restricted < Confidential < Secret < Top Secret
● Categories: Planes, Troops, Submarines
● Who can read which file(s)?

12

User Level Cleared for

Sven Secret Submarines

Oliver Top Secret Planes

File Level Categories

warplan Top Secret Troops, Submarines, Planes

runway Confidential Planes

sonar Top Secret Submarines

torpedo Secret Submarines

Introduction to Security // Access Control

Solution

13

Person Level Cleared for

Sven Secret Submarines

Person Level Cleared for

Oliver Top Secret Planes

File Level Categories

warplan Top Secret Troops, Submarines, Planes

runway Confidential Planes

sonar Top Secret Submarines

torpedo Secret Submarines

File Level Categories

warplan Top Secret Troops, Submarines, Planes

runway Confidential Planes

sonar Top Secret Submarines

torpedo Secret Submarines

Introduction to Security // Access Control

Other Types of Security Policies

● Conditional Policies
○ Temporal policies: Allow access between 10AM and 6PM
○ Context-aware policies: Allow access if current location is office

● Biba Model
○ Dual of Bell-LaPadula
○ Preservation of data integrity: “No read down, no write up”

■ Subject cannot read an object of lower security level
■ Subject cannot write an object of higher security level

14

Introduction to Security // Access Control

Other Types of Security Policies

● Separation of Duty
○ Requires the involvement of multiple people to perform some task
○ Example: If amount is over $10,000, check is only valid if signed by two authorized people

■ Two people must be different
■ Policy involves role membership and inequality

● Chinese Wall Policy
○ Mitigate conflicts of interest in an organization
○ Prevents information flow between subjects and objects that would create a conflict of interest
○ Example: Lawyers L1, L2 in the same company

■ If company C1 sues C2,
● L1 and L2 can each work for either C1 or C2
● No lawyer can work for opposite sides in any case

15

Introduction to Security // Access Control

Case study: Access Control
in the UNIX File System

16

Introduction to Security // Access Control

● Every file has an owner and a group

● File permissions represented using three triads
○ First triad applies to the file owner
○ Second triad applies to users belonging to the file group
○ Third triad applies to all the other users

● A triad specifies the access rights assigned to the corresponding subjects
○ Possible access rights: read (r), write (w), execute (x)

● Only the file owner and the superuser can change file permissions

Access Control for UNIX Files

17

Introduction to Security // Access Control

Superuser

● Special account with full privileges on the system
○ Typically called root (user identifier = 0)
○ Can perform any operation on the file system, irrespectively of permissions

● Many systems disallow direct login as root
○ Authorized users can use the command sudo to execute programs with root privileges
○ File /etc/sudoers contains the list of authorized users

■ Possible to restrict the list of command that a specific user can run

18

Introduction to Security // Access Control

Notation for Permissions

Symbolic Notation

rwx r-x ---

● Standard notation used by many programs
(e.g., command ls -l)

● Three characters for each permission triad
1. r if reading is permitted, - if not
2. w if writing is permitted, - if not
3. x if execution is permitted, - if not

Octal Notation

750

● Typically used with the chmod command to
set file permissions

● Each digit represents a permission triad
○ Sum of the numbers representing allowed

permissions
○ 4 = read, 2 = write, 1 = execute

19

Owner Group Others Owner Group Others

Introduction to Security // Access Control

Which Permissions Apply?

● Resolution order for permissions
○ If the user is the file owner, apply owner permissions
○ Otherwise, if the user belongs to the file group, apply group permissions
○ Otherwise, apply the permission for all the other users

● If the user is the owner and belongs to the file group, owner permissions are used
○ Even if they are more restrictive than the group permissions!
○ However, the owner can change the permissions at their will

20

Introduction to Security // Access Control

Example: Output of the ls Command

● Which access rights has the user mauro on the file foo?
○ Read, write, execute

● Which access rights has a user belonging to group sp (not mauro) on the file foo?
○ Read, execute

● Which access rights has a user who is neither mauro nor belongs to the group sp on
the file foo?
○ No access rights

21

-rwxr-x--- 1 mauro sp 43416 Sep 5 2019 foo

File type Permissions Owner Group File size Last modification Filename

Introduction to Security // Access Control

User Identifiers in UNIX

● Each process has three user identifiers (+ more under Linux)
○ Real user ID (RUID)

■ determines the user who started the process
■ initialized with the RUID of the parent process

○ Effective user ID (EUID)
■ determines the permissions of the process (used for access control checks)
■ initialized with the EUID of the parent, unless the setuid bit is set on the executed program

○ Saved user ID (SUID)
■ contains the previous EUID in case it is changed at runtime
■ initialized with the SUID of the parent process

● Each process has also three group IDs (real, effective, saved group ID) used in a
similar way

22

Introduction to Security // Access Control

setuid and setgid Bits

● setuid and setgid bits can be used to implement delegation
○ Bits are assigned to files containing binary programs

■ Cannot be set for scripts (cause of race conditions in old UNIX / Linux systems)
○ If setuid bit is set, the effective user id is set to the owner of the program file
○ If setgid bit is set, the effective group id is set to the group of the program file

● Representation in the symbolic notation
○ File has setuid bit if the third element of the owner triad is s or S
○ File has setgid bit if the third element of the group triad is s or S
○ s = bit is set + file is executable, S = bit is set, but file is not executable

23

Introduction to Security // Access Control

Usage of setuid Bit: The Tool passwd

● Password file /etc/shadow can only be read and modified by root

-rw------- 1 root root 651 Jul 8 14:20 /etc/shadow

● However, users need to be able to modify their own passwords
○ This can be done with the tool passwd, which is owned by root and has the setuid bit set!

-rwsr-xr-x 1 root root 45604 May 10 15:24 /usr/bin/passwd

● Everyone can execute the program with root privileges and read / modify the file
○ passwd is designed in such a way that users can change only their own password
○ Exception is root, who can change the passwords of all users

24

Introduction to Security // Access Control

Dynamically Changing User IDs via System Calls

● Processes can retrieve the current user IDs using various system calls
○ getuid (only RUID), geteuid (only EUID), getresuid (all three IDs)

● Processes can also change their user IDs
○ seteuid(newId) changes the effective user ID

■ For privileged processes (e.g., current EUID = 0), newId can have any value
■ For unprivileged processes, newId must be equal to current RUID, EUID or SUID

○ setuid(newId) similar to seteuid
■ For privileged processes, the RUID and SUID are also changed
■ Once root privileges are dropped, it is not possible to reacquire them

○ Other syscalls available: setresuid, setreuid
● Similar functions exist for group IDs (getgid, setgid, setegid, …)

25

Introduction to Security // Access Control

Example with setuid Bits and System Calls

26

Introduction to Security // Access Control

Summary of Permission Triads - Files vs. Directories

27

Symbol Effect on files Effect on directories

Read
(1st position)

r File can be read Directory’s content can be shown (ls <dir>
will print the contents)

Write
(2nd position)

w File can be modified If x is also set, the directory’s content can
be modified (create, delete, rename files
and directories)

Execute
(3rd position)

x File can be executed Directory can be traversed (cd <dir> will
work)

s / S Binary files can be executed with
the permissions of the user or
group owner (does not apply to
scripts)

When set on the group triad (setgid),
causes new directories and files to be
created using the group id of the owner
(instead of the group id of the current
user)

t Sticky bit. “On Linux files in that directory may only be deleted or renamed by
root or the directory owner or the file owner. The sticky bit is ignored on files”

https://en.wikipedia.org/wiki/Sticky_bit

Introduction to Security // Access Control

An Application of Access Control

Containers and Virtualization

28

Introduction to Security // Access Control

Hardware

Kernel
29

Process
A

Process
B

Process
C

Userspace

Drivers

FileSystem

Process Management …

…

Operating System

Sy
st

em
 C

al
l (

sy
sc

al
l)

Operating Systems tl;dr
The operating system manages hardware and software
resources providing services to programs.
● For IO and memory allocation the OS acts as an

intermediary between programs and hardware.
○ Programs can request OS operations using

system calls (syscalls)
● Multi-tasking OSs allow multiple programs to run

concurrently: the available processor time is divided
between multiple processes (identified by a process
ID or PID).

The OS is generally composed of:
● A kernel that manages memory access, performs

access control and mediates storage access.
● Userspace programs that provide the user interface to

access the OS functionality (e.g., the shell).

Introduction to Security // Access Control

Hardware

Drivers / FS / etc

Containerized
ProcessesRegular Processes

Kernel
Userspace

Docker
LXC

Systemd Nspawn
podman

…

Container Management Interface

Docker Engine
dockerdcontainerd

runc

Similar to regular processes, but:
- separate namespace
- separate root directory (chroot)
- resource constrained (cgroups)
- filtered syscalls (seccomp)
- potentially subject to additional restrictions (capabilities, user namespaces, SELinux, …)

Namespaces
(partitioning of kernel features)

cgroups
(isolation of

resource usage)

seccomp

(syscalls filtering)

Capabilities

(fine grained access
control)

OverlayFS

MNT PID NET IPC UTS cgroups user…

SELinux
Apparmor

GRSec

30

Linux Containers lightweight virtualization

Introduction to Security // Access Control

Namespaces

● Introduced in 2008 as an effort to reimplement OpenVZ in mainline kernel.
● The foundation of linux OS-level virtualization.
● The unshare command can be used to create new namespaces and execute a program in the newly created

namespace.

31

$ man 7 namespaces

A namespace wraps a global system resource in an abstraction that makes it appear to the
processes within the namespace that they have their own isolated instance of the global

resource. Changes to the global resource are visible to other processes that are members of the
namespace, but are invisible to other processes.

Introduction to Security // Access Control

Namespaces

32

MNT PID NET IPC UTS cgroups user

Isolate the set of file system
mount points seen by a group

of processes.

Example: each container can
have its own /tmp or /var

Allow processes in different
containers to have the same
PID. Each container has its
unique /proc directory.

Example: each container can
have its own init (PID1)

process

Isolate system resources
associated with

networking, firewall and
routing.

Example: each container
can have its own
loopback device

 Isolate certain interprocess
communication (IPC)

resources.
Example: two containers can

create shared memory
segments with the same

name.

Isolate system identifiers
(nodename and
domainname).

Example: each container
can have its own

hostname

Virtualize the view of a
process cgroups.

Example: prevents processes
in containers to see cgroups

directories outside of the
container

Isolate security-related
identifiers and attributes (e.g.,

uid/gid, capabilities).

Example: the root user (uid: 0)
in a container can be a

unprivileged user outside

Introduction to Security // Access Control

Chroot

● Creates what is called a “chroot jail”.
● The superuser can escape the chroot jail in various ways!
● This call does not close open file descriptors:

○ File descriptors opened before the chroot call may allow access to files outside the jail.

33

$ man 2 chroot

chroot changes the root directory of the calling process [...].
This directory will be used for pathnames beginning with /.

The root directory is inherited by all children of the calling process.

Introduction to Security // Access Control

Demo

34

$ wget https://dl-cdn.alpinelinux.org/alpine/v3.19/releases/x86_64/alpine-minirootfs-3.19.1-x86_64.tar.gz
$ mkdir alpine
$ tar -C alpine -xvf alpine-minirootfs-3.19.1-x86_64.tar.gz
$ unshare --map-root-user --fork --mount --pid --net --ipc --uts --user env - chroot alpine /bin/sh
whoami
root

mount -t proc none /proc
ps aux
PID USER TIME COMMAND
1 root 0:00 /bin/sh
5 root 0:00 ps aux

ip link set lo up
ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever
ping -c1 127.0.0.1
PING 127.0.0.1 (127.0.0.1): 56 data bytes
64 bytes from 127.0.0.1: seq=0 ttl=64 time=0.056 ms

Create new
mnt, pid, net,
ipc and user
namespace

Reset the
program

environment

Change the root of
the /bin/sh program

to the the alpine
folder

After mounting the /proc folder, we
can see that /bin/sh has PID 1

The new network namespace
contains only the loopback interface

Introduction to Security // Access Control

Cgroups

● Cgroups allocate CPU time, system memory, network bandwidth, or combinations of these among
user-defined groups of tasks.

● Cgroups can be created by accessing the cgroup virtual filesystem (cgroupfs).
○ Or by using the utilities provided by libcgroup (cgcreate, cgexec, …).

35

$ man 7 cgroups

Control cgroups, usually referred to as cgroups, are a Linux kernel feature which allow processes
to be organized into hierarchical groups whose usage of various types of resources can then be

limited and monitored.

Introduction to Security // Access Control

Seccomp
Seccomp (short for secure computing) allows a process to make a one-way transition into a secure state where it
cannot make any system call except those that are explicitly allowed.

36

Strict Mode

The only system calls that the process is permitted to make are read,
write, exit and sigreturn. Other system calls result in the termination

of the process.

Filter Mode

The allowed system calls are defined by a BPF (Berkeley Packet Filter)
program. The filter program returns an action to execute for each syscall.

Actions can be, e.g., SECCOMP_RET_KILL_PROCESS,
SECCOMP_RET_ERRNO, SECCOMP_RET_ALLOW.

Such mechanism can be abstracted by:
- The libseccomp library, which uses a more conventional

function-call based filtering interface.
- Docker/kubernetes allow to specify a JSON profile that defines

the allowed syscalls and the action to execute when other
syscalls are executed.

Introduction to Security // Access Control

Capabilities

- Allows to reduce the number of setuid binaries.
- Example: the ping utility was deployed as setuid (e.g., in the inetutils-ping package)

but is now a normal binary with only the CAP_NET_RAW capability in most distributions.
- Capabilities can be set and read with the setcap and getcap commands.

37

$ man 7 capabilities

For the purpose of performing permission checks, traditional UNIX implementations distinguish two
categories of processes: privileged processes, and unprivileged processes.

Privileged processes bypass all kernel permission checks, while unprivileged processes are subject to
full permission checking based on the process's credentials (effective UID, etc).

 Starting with kernel 2.2, Linux divides the privileges traditionally associated with superuser
into distinct units, known as capabilities, which can be independently enabled and disabled.

getcap `which ping`
/usr/bin/ping cap_net_raw=ep

Introduction to Security // Access Control

Capabilities

38

CAP_SYS_ADMIN

CAP_NET_ADMIN

CAP_NET_BIND_SERVICE

CAP_SYS_CHROOT

CAP_SYS_PTRACE

CAP_SYS_TIME

CAP_NET_RAW

Perform a range of system administration operations, e.g. mount, umount, sethostname, unshare, etc.

Perform various network-related operations, e.g., interface configuration, firewall configuration, modifying routing tables, etc.

Bind a socket to Internet domain privileged ports (port numbers less than 1024).

Use chroot.

Trace arbitrary programs using ptrace.

Set system and hardware clock.

Use RAW and PACKET sockets and bind to any address for transparent proxying.

Note:
● Docker by default uses capabilities to limit the root user

inside containers instead of using user namespaces.
● gdb does not work in Docker containers as by default

containers do not have the CAP_SYS_PTRACE capability.

… See capabilities(7) for information of additional capabilities.

That is why Docker privileged mode
is not recommended:

privileged containers run as root
with all capabilities!

Introduction to Security // Access Control 39

Hardware

Kernel

Process
/Container

A

Process
B

Process
C

Hardware

Hypervisor

Processes,
Containers

…

Kernel A Kernel B Kernel C

VM 1 VM 2 VM 3

Virtual Machines Virtualization

Virtualization allows to run multiple unmodified guest OSs in isolation.
● Virtual machine monitors (or hypervisors) simulate or mediate hardware access transparently.
● In hardware-assisted virtualization, the hardware (e.g., the CPU via custom instructions) provides facilities to

support the hypervisor (Example: Intel VT-X or AMD-V).

Introduction to Security // Access Control 40

Hypervisors and Privilege Rings

Least privileged

Most privileged

hypervisor

Ring -1

Ring 0

Ring 1

Ring 2

Ring 3

Applications

Drivers

Drivers

Kernel

Protection rings are hierarchical levels of privilege in the
architecture of a computer system.

● Enforced at hardware-level by some CPU (e.g., x86)

● Ring 3 is the least privileged mode, used for
userspace code.

● Ring 0 is the level with most privilege, allowing
access to the physical hardware, e.g., CPU control
registers and I/O controllers. This level is also called
supervisor mode.

● Recent CPUs offer virtualization instructions for a
hypervisor to control Ring 0 hardware access that
only work at the higher privilege level of Ring -1.

Introduction to Security // Access Control 41

Hardware

Hypervisor

Processes,
Containers

…

Kernel A Kernel B Kernel C

VM 1 VM 2 VM 3

Type 1
Hypervisor

Type 2
Hypervisors

can be kernel
modules

Type 2
Hypervisor

Hardware

Hypervisor

Processes,
Containers

…

Kernel A Kernel B

VM 1 VM 2

Processes,
Containers

…

Kernel

Hypervisor Types

Also called bare-metal hypervisor, runs directly on the hardware and
manages guest OS access.

Also called hosted hypervisor, runs as a regular process on the host

R .P. Goldberg “Architectural Principles for Virtual Computer Systems”, 1974

