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Program Analysis at Scale

● All large IT companies integrate program analysis in their development workflow
● Each line of code is verified: software developers must learn how these tools work!
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Program Analysis
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Program Analysis

● Security is typically undecidable: e.g., due to infinite possible inputs
● Hence any program analysis technique has to give up at least one of the following 

properties
○ Completeness: the analysis returns yes if the program is secure (no false positives)
○ Soundness: the analysis never returns yes if the program is insecure (no false negatives)
○ Termination: the analysis always terminates
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Goal: Analyse a program to check certain security properties



Introduction to Security // Program Analysis

Program Analysis

● We typically distinguish between two analysis techniques

● Dynamic Analysis: monitors certain program runs (i.e., for certain inputs). Typically,
○ Precise: can reason about concrete values and concrete program runs
○ Unsound: it cannot certify all program runs 
○ Terminating: it handles a finite number of program runs

● Static analysis: characterizes all program runs (i.e., for all possible inputs). Typically,
○ Overapproximating: values are overapproximated and the analysis might not terminate
○ Sound:  it can certify all program runs 
○ Terminating or not (normally, more termination, less precision)
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Good to find security 

vulnerabilities

Good to obtain 

security proofs
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Program Analysis

● We focus on two highly popular analysis techniques

● Both can be designed as static or dynamic analysis techniques, today we will reason 
about dynamic taint analysis and static forward symbolic execution 
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Taint Analysis
Which computations are affected by predefined sources (e.g., inputs) 

controlled by the attacker, also called tainted sources?

Forward Symbolic Execution 
Which inputs lead to a certain program point?
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Use Cases

● Unknown vulnerability detection (e.g., code injection): dynamic taint analysis
● Automatic input filter generation (e.g., remove exploits from input stream): forward 

symbolic execution
● Malware analysis (e.g., information flow in a malware binary, explore trigger-based 

behaviour, …): both techniques
● Test case generation (generate inputs for test programs, or generate inputs that 

can cause the program to behave differently): both techniques
● Web security (e.g., which inputs lead to XSS or SQL injection): symbolic forward 

execution
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A Bird’s Eye View on 
Taint Analysis
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Example
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x = get_input (    )

…

y = x + 42

…

goto y
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Example
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x = get_input (    )

…

y = x + 42

…

goto y

Input is 

tainted
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x = get_input (    )

…

y = x + 42

…

goto y

Taint Introduction

Tainted(T) Untainted(F)
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x

Input is 

tainted

For simplicity, we denote and 

operate on taint labels as 

logical labels (True and False)

Each variable/value 

is given a taint label
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Taint Introduction

Var Val Taint ( T | F)

x 7 T

12



Introduction to Security // Program Analysis

Taint Propagation
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x = get_input (    )

…

y = x + 42

…

goto y

x

Data derived 

from user input 

is tainted

xy 42

Tainted(T) Untainted(F)
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Taint Propagation

Var Val Taint (T | F)

x 7 T

y 49 T

14



Introduction to Security // Program Analysis

Taint Propagation
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x = get_input (    )

…

y = x + 42

…

goto y

x

Policy violation 

detected

xy 42

Tainted(T) Untainted(F)

y
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So what?
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x = get_input (    )

…

y = x + 42

…

goto y

x

Tainted return 

address

xy 42

Exploit Detection

y
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Taint Policy

Var Val Taint (T | F)

x 7 T

y 49 T
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A Bird’s Eye View on 
Forward Symbolic Execution
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Example

bad_abs(x is input)
if (x < 0)
return -x

if (x = 0x12345678) 
return -x

return x
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Example

232 possible 

inputs

0x12345678

bad_abs(x is input)
if (x < 0)
return -x

if (x = 0x12345678) 
return -x

return x

What input will execute this 

line of code?
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Working

bad_abs(x is input)

if (x < 0)

return -xif (x = 0x12345678)

return -xreturn x

F T

TF

x ≥ 0 x < 0

x ≥ 0 &&

x == 0x12345678

x ≥ 0 &&

x != 0x12345678
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First Step: 
A Simple Intermediate Language 

(SIMPIL)
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Syntax
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Semantics (Notations)
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Semantics (Evaluation Rules)

● Evaluation rules take the following form

● They are read as expression e evaluates to v under memory and variable mappings 
𝜇 and 𝛥, respectively
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Semantics (Reduction Rules)

● Semantic rules take the following form

● They are read bottom up, left to right
○ Pattern-match to find the applicable rule
○ Apply computations

■ If they succeed, transition to end state 
■ Otherwise, abort abnormally
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Semantics (Reduction Rules)
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Example

● The program 

evaluates as follows
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Dynamic Taint Analysis
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Dynamic Taint Analysis

● Goal: track information flow between sources and sinks
● Method: assign and propagate a label for each value:

○ those whose computation depend on data derived from a taint source are labeled tainted 
(denoted T)

○ any other value is considered untainted (denoted F)
● A taint policy P determines how taint flows as a program executes, what sorts of 

operations introduce new taint, and what checks are performed on tainted values
○ overtainting (false positives, i.e., secure executions are marked as insecure): values are 

considered tainted although they are not
○ undertainting (false negatives, i.e., attacks are not detected): values are considered 

untainted although they are not
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Notations

● We mark both values, variables, and addresses with a taint label
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Tainted Jump Policy

● This policy below is meant to prevent jumps to tainted addresses (control flow 
hijacking attacks)…

…let’s see how! 33
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Taint Rules
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Taint Rules (cont’d)
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Taint Rules (cont’d)
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Example
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Example
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Example of over- and under-tainting

● The following program is accepted, assuming the memory cell is untainted

● But the attacker can basically pick up any value and jump there, violating the 
intended control flow (undertainting)

● A stricter policy could stop the execution if address or memory cell are tainted

● Legitimate programs (e.g., tcpdump) could however be rejected since they work by 
legit look-up tables with user input (overtainting)
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Time of Detection vs Time of Attack

● Dynamic taint analysis raises an alert when tainted values are used in an unsafe 
way, which could however be too late!

● For instance, consider a typical return address overwrite exploit
○ The exploit overwrites the return address so that this points to attacker’s shellcode

● Here the dynamic taint analysis would raise an alarm at the time jumping, but not 
at the time of overwriting the address
○ The exploit will not be reported until the jump, so any calls done by the vulnerable 

function will be executed and if these calls have side-effects (file manipulation or 
networking operations),  these will persist after the program is aborted
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Forward Symbolic Execution
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Forward Symbolic Execution

● Goal: determine which inputs lead to a certain program point
● Method: build a logical formula that captures program executions

○ Values are symbolic, as opposed to concrete
● Advantage: can reason about multiple inputs at one time
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Example

43

Pass this 

formula to 

an SMT 

prover

Initially, we don’t know 

anything about the input, 

so we use a universally 

quantified variable
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Semantics for Symbolic Forward Execution
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Challenge 1: Symbolic Addresses

● How does the memory look like after the end of the program?

● Sound strategy: any memory address may contain v, similarly for loads
● Aliasing may also be a problem:

z may contain v or not, depending on whether or not addr1 and addr2 are aliased
● One can let an SMT solver reason about memory, naming each step update
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1. addr1 := get_input(∙)
2. store(addr1 , v)

1. store(addr1 , v)

2. z = load(addr2)

𝑚𝑒𝑚1 = 𝑚𝑒𝑚0 𝑎𝑑𝑑𝑟1 → 𝑣 ∧ 𝑧 = 𝑚𝑒𝑚1[𝑎𝑑𝑑𝑟2]
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Challenge 2: Symbolic Jumps

● Where does the following program jump to?

● One can let an SMT solver reason about jumpstoo, e.g., querying Π ∧ 𝑒 where Π is 
the path predicate. The SMT solver will give us a satisying answer 𝑛, which is a 
possible jump target

● If we want more jump targers, we can query for Π ∧ 𝑒 ∧ ¬𝑛 and so on 
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1. jump(e)



Introduction to Security // Program Analysis

Challenge 3: Loops

● What happens in case of loops?
● The symbolic execution might not terminate…
● Typically, an upper bound on the number of loop iterations is fixed 

○ enforces termination but it is unsound
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