
Introduction to Security // Program Analysis

Introduction to Security (192.019)

Security & Privacy Research Unit (192-06)
https://secpriv.wien

Program Analysis

Matteo Maffei

Introduction to Security // Program Analysis

Program Analysis at Scale

● All large IT companies integrate program analysis in their development workflow
● Each line of code is verified: software developers must learn how these tools work!

2

Introduction to Security // Program Analysis

Program Analysis

3

Introduction to Security // Program Analysis

Program Analysis

● Security is typically undecidable: e.g., due to infinite possible inputs
● Hence any program analysis technique has to give up at least one of the following

properties
○ Completeness: the analysis returns yes if the program is secure (no false positives)
○ Soundness: the analysis never returns yes if the program is insecure (no false negatives)
○ Termination: the analysis always terminates

4

Goal: Analyse a program to check certain security properties

Introduction to Security // Program Analysis

Program Analysis

● We typically distinguish between two analysis techniques

● Dynamic Analysis: monitors certain program runs (i.e., for certain inputs). Typically,
○ Precise: can reason about concrete values and concrete program runs
○ Unsound: it cannot certify all program runs
○ Terminating: it handles a finite number of program runs

● Static analysis: characterizes all program runs (i.e., for all possible inputs). Typically,
○ Overapproximating: values are overapproximated and the analysis might not terminate
○ Sound: it can certify all program runs
○ Terminating or not (normally, more termination, less precision)

5

Good to find security

vulnerabilities

Good to obtain

security proofs

Introduction to Security // Program Analysis

Program Analysis

● We focus on two highly popular analysis techniques

● Both can be designed as static or dynamic analysis techniques, today we will reason
about dynamic taint analysis and static forward symbolic execution

6

Taint Analysis
Which computations are affected by predefined sources (e.g., inputs)

controlled by the attacker, also called tainted sources?

Forward Symbolic Execution
Which inputs lead to a certain program point?

Introduction to Security // Program Analysis

Use Cases

● Unknown vulnerability detection (e.g., code injection): dynamic taint analysis
● Automatic input filter generation (e.g., remove exploits from input stream): forward

symbolic execution
● Malware analysis (e.g., information flow in a malware binary, explore trigger-based

behaviour, …): both techniques
● Test case generation (generate inputs for test programs, or generate inputs that

can cause the program to behave differently): both techniques
● Web security (e.g., which inputs lead to XSS or SQL injection): symbolic forward

execution

7

Introduction to Security // Program Analysis

A Bird’s Eye View on
Taint Analysis

8

Introduction to Security // Program Analysis

Example

9

x = get_input ()

…

y = x + 42

…

goto y

Introduction to Security // Program Analysis

Example

10

x = get_input ()

…

y = x + 42

…

goto y

Input is

tainted

Introduction to Security // Program Analysis

x = get_input ()

…

y = x + 42

…

goto y

Taint Introduction

Tainted(T) Untainted(F)

11

x

Input is

tainted

For simplicity, we denote and

operate on taint labels as

logical labels (True and False)

Each variable/value

is given a taint label

Introduction to Security // Program Analysis

Taint Introduction

Var Val Taint (T | F)

x 7 T

12

Introduction to Security // Program Analysis

Taint Propagation

13

x = get_input ()

…

y = x + 42

…

goto y

x

Data derived

from user input

is tainted

xy 42

Tainted(T) Untainted(F)

Introduction to Security // Program Analysis

Taint Propagation

Var Val Taint (T | F)

x 7 T

y 49 T

14

Introduction to Security // Program Analysis

Taint Propagation

15

x = get_input ()

…

y = x + 42

…

goto y

x

Policy violation

detected

xy 42

Tainted(T) Untainted(F)

y

Introduction to Security // Program Analysis

So what?

16

x = get_input ()

…

y = x + 42

…

goto y

x

Tainted return

address

xy 42

Exploit Detection

y

Introduction to Security // Program Analysis

Taint Policy

Var Val Taint (T | F)

x 7 T

y 49 T

17

Introduction to Security // Program Analysis

A Bird’s Eye View on
Forward Symbolic Execution

18

Introduction to Security // Program Analysis

Example

bad_abs(x is input)
if (x < 0)
return -x

if (x = 0x12345678)
return -x

return x

19

Introduction to Security // Program Analysis

Example

232 possible

inputs

0x12345678

bad_abs(x is input)
if (x < 0)
return -x

if (x = 0x12345678)
return -x

return x

What input will execute this

line of code?

20

Introduction to Security // Program Analysis

Working

bad_abs(x is input)

if (x < 0)

return -xif (x = 0x12345678)

return -xreturn x

F T

TF

x ≥ 0 x < 0

x ≥ 0 &&

x == 0x12345678

x ≥ 0 &&

x != 0x12345678
21

Introduction to Security // Program Analysis

First Step:
A Simple Intermediate Language

(SIMPIL)

23

Introduction to Security // Program Analysis

Syntax

24

Introduction to Security // Program Analysis

Semantics (Notations)

25

Introduction to Security // Program Analysis

Semantics (Evaluation Rules)

● Evaluation rules take the following form

● They are read as expression e evaluates to v under memory and variable mappings
𝜇 and 𝛥, respectively

26

Introduction to Security // Program Analysis

Semantics (Reduction Rules)

● Semantic rules take the following form

● They are read bottom up, left to right
○ Pattern-match to find the applicable rule
○ Apply computations

■ If they succeed, transition to end state
■ Otherwise, abort abnormally

27

Introduction to Security // Program Analysis

Semantics (Reduction Rules)

28

Introduction to Security // Program Analysis

Example

● The program

evaluates as follows

29

Introduction to Security // Program Analysis

Dynamic Taint Analysis

30

Introduction to Security // Program Analysis

Dynamic Taint Analysis

● Goal: track information flow between sources and sinks
● Method: assign and propagate a label for each value:

○ those whose computation depend on data derived from a taint source are labeled tainted
(denoted T)

○ any other value is considered untainted (denoted F)
● A taint policy P determines how taint flows as a program executes, what sorts of

operations introduce new taint, and what checks are performed on tainted values
○ overtainting (false positives, i.e., secure executions are marked as insecure): values are

considered tainted although they are not
○ undertainting (false negatives, i.e., attacks are not detected): values are considered

untainted although they are not

31

Introduction to Security // Program Analysis

Notations

● We mark both values, variables, and addresses with a taint label

32

Introduction to Security // Program Analysis

Tainted Jump Policy

● This policy below is meant to prevent jumps to tainted addresses (control flow
hijacking attacks)…

…let’s see how! 33

Introduction to Security // Program Analysis

Taint Rules

34

Introduction to Security // Program Analysis

Taint Rules (cont’d)

35

Introduction to Security // Program Analysis

Taint Rules (cont’d)

36

Introduction to Security // Program Analysis

Example

37

Introduction to Security // Program Analysis

Example

38

Introduction to Security // Program Analysis

Example of over- and under-tainting

● The following program is accepted, assuming the memory cell is untainted

● But the attacker can basically pick up any value and jump there, violating the
intended control flow (undertainting)

● A stricter policy could stop the execution if address or memory cell are tainted

● Legitimate programs (e.g., tcpdump) could however be rejected since they work by
legit look-up tables with user input (overtainting)

39

Introduction to Security // Program Analysis

Time of Detection vs Time of Attack

● Dynamic taint analysis raises an alert when tainted values are used in an unsafe
way, which could however be too late!

● For instance, consider a typical return address overwrite exploit
○ The exploit overwrites the return address so that this points to attacker’s shellcode

● Here the dynamic taint analysis would raise an alarm at the time jumping, but not
at the time of overwriting the address
○ The exploit will not be reported until the jump, so any calls done by the vulnerable

function will be executed and if these calls have side-effects (file manipulation or
networking operations), these will persist after the program is aborted

40

Introduction to Security // Program Analysis

Forward Symbolic Execution

41

Introduction to Security // Program Analysis

Forward Symbolic Execution

● Goal: determine which inputs lead to a certain program point
● Method: build a logical formula that captures program executions

○ Values are symbolic, as opposed to concrete
● Advantage: can reason about multiple inputs at one time

42

Introduction to Security // Program Analysis

Example

43

Pass this

formula to

an SMT

prover

Initially, we don’t know

anything about the input,

so we use a universally

quantified variable

Introduction to Security // Program Analysis

Semantics for Symbolic Forward Execution

44

Introduction to Security // Program Analysis

Challenge 1: Symbolic Addresses

● How does the memory look like after the end of the program?

● Sound strategy: any memory address may contain v, similarly for loads
● Aliasing may also be a problem:

z may contain v or not, depending on whether or not addr1 and addr2 are aliased
● One can let an SMT solver reason about memory, naming each step update

45

1. addr1 := get_input(∙)
2. store(addr1 , v)

1. store(addr1 , v)

2. z = load(addr2)

𝑚𝑒𝑚1 = 𝑚𝑒𝑚0 𝑎𝑑𝑑𝑟1 → 𝑣 ∧ 𝑧 = 𝑚𝑒𝑚1[𝑎𝑑𝑑𝑟2]

Introduction to Security // Program Analysis

Challenge 2: Symbolic Jumps

● Where does the following program jump to?

● One can let an SMT solver reason about jumpstoo, e.g., querying Π ∧ 𝑒 where Π is
the path predicate. The SMT solver will give us a satisying answer 𝑛, which is a
possible jump target

● If we want more jump targers, we can query for Π ∧ 𝑒 ∧ ¬𝑛 and so on

46

1. jump(e)

Introduction to Security // Program Analysis

Challenge 3: Loops

● What happens in case of loops?
● The symbolic execution might not terminate…
● Typically, an upper bound on the number of loop iterations is fixed

○ enforces termination but it is unsound

47

	Slide 1: Program Analysis
	Slide 2: Program Analysis at Scale
	Slide 3: Program Analysis
	Slide 4: Program Analysis
	Slide 5: Program Analysis
	Slide 6: Program Analysis
	Slide 7: Use Cases
	Slide 8: A Bird’s Eye View on Taint Analysis
	Slide 9: Example
	Slide 10: Example
	Slide 11: Taint Introduction
	Slide 12: Taint Introduction
	Slide 13: Taint Propagation
	Slide 14: Taint Propagation
	Slide 15: Taint Propagation
	Slide 16: So what?
	Slide 17: Taint Policy
	Slide 18: A Bird’s Eye View on Forward Symbolic Execution
	Slide 19: Example
	Slide 20: Example
	Slide 21: Working
	Slide 23: First Step: A Simple Intermediate Language (SIMPIL)
	Slide 24: Syntax
	Slide 25: Semantics (Notations)
	Slide 26: Semantics (Evaluation Rules)
	Slide 27: Semantics (Reduction Rules)
	Slide 28: Semantics (Reduction Rules)
	Slide 29: Example
	Slide 30: Dynamic Taint Analysis
	Slide 31: Dynamic Taint Analysis
	Slide 32: Notations
	Slide 33: Tainted Jump Policy
	Slide 34: Taint Rules
	Slide 35: Taint Rules (cont’d)
	Slide 36: Taint Rules (cont’d)
	Slide 37: Example
	Slide 38: Example
	Slide 39: Example of over- and under-tainting
	Slide 40: Time of Detection vs Time of Attack
	Slide 41: Forward Symbolic Execution
	Slide 42: Forward Symbolic Execution
	Slide 43: Example
	Slide 44: Semantics for Symbolic Forward Execution
	Slide 45: Challenge 1: Symbolic Addresses
	Slide 46: Challenge 2: Symbolic Jumps
	Slide 47: Challenge 3: Loops

