Security
EESl CYBERSECURITYCENTER

Program Analysis

Introduction to Security (192.019)

Security & Privacy Research Unit (192-06)
Matteo Maffei https://secpriv.wien

Program Analysis at Scale

Facebook open-sot

code-verification ta
squishes bugs befa
ship

Industry trends Built-in security - 4 min read

—' — - -—— o
o Bologth - Y 3.0 o |
(‘[d Evolving Microsoft Security
‘ - w ‘\ y Development Lifecycle (SDL): How
e P —ws= continuous SDL can help you build
” M ' ‘v;"a S more secure software
‘ ”— h y . By David Ornstein, Principal Software Engineering Manager

Tony.Rice, Principal Security PM Manager, Customer Security and Trust

e All large IT companies integrate program analysis in their development workflow
e FEach line of code is verified: software developers must learn how these tools work!

CYSEC Introduction to Security // Program Analysis

Securit
EE CYBERSECURITYCENTER

More v | Start free tral N AlMicrosoft v Search O Light (I Dark

2

Program Analysis

All You Ever Wanted to Know About
Dynamic Taint Analysis and Forward Symbolic Execution
(but might have been afraid to ask)

Edward J. Schwartz, Thanassis Avgerinos, David Brumley
Carnegie Mellon University
Pittsburgh, PA
{edmcman, thanassis, dbrumley}@cmu.edu

TU

WIENNG&

CYSEC Introduction to Security // Program Analysis

CYBERSECURITYCEMTER

Program Analysis

Goal: Analyse a program to check certain security properties

e Security is typically undecidable: e.qg., due to infinite possible inputs
e Hence any program analysis technique has to give up at least one of the following
properties
o Completeness: the analysis returns yes if the program is secure (no false positives)

o Soundness: the analysis never returns yes if the program is insecure (no false negatives)
o Termination: the analysis always terminates

ey CYSEC Introduction to Security // Program Analysis 4

0 B cvoersECURITYCENTER

Program Analysis

Good to find security

e We typically distinguish between two analysis techniques vulnerabilities

e Dynamic Analysis: monitors certain program runs (i.e,, for certain inputs). Typically,
o Precise: can reason about concrete values and concrete program runs
o Unsound: it cannot certify all program runs Good to obtain
o Terminating: it handles a finite number of program runs security proofs

e Static analysis: characterizes all program runs (i.e,, for all possible inputs). Typically,
o Overapproximating: values are overapproximated and the analysis might not terminate
o Sound: it can certify all program runs
o Terminating or not (normally, more termination, less precision)

CYSEC Introduction to Security // Program Analysis 5

G CYBERSECURITYCENTER

Program Analysis

e \We focus on two highly popular analysis techniques

Taint Analysis
Which computations are affected by predefined sources (e.g., Inputs)
controlled by the attacker, also called tainted sources?

Forward Symbolic Execution
Which inputs lead to a certain program point?

e Both can be designed as static or dynamic analysis techniques, today we will reason
about dynamictaint analysis and stat/c forward symbolic execution

ssv

CYSEC Introduction to Security // Program Analysis 6
CYBERSECURITYCEMTER

Use Cases

e Unknown vulnerability detection (e.g., code injection): dynamic taint analysis

e Automatic input filter generation (e.g., remove exploits from input stream): forward
symbolic execution

e Malware analysis (e.g., information flow in a malware binary, explore trigger-based
behaviour, ...): both techniques

e Test case generation (generate inputs for test programs, or generate inputs that
can cause the program to behave differently): both techniques

e \Web security (e.g., which inputs lead to XSS or SQL injection): symbolic forward
execution

TUPSSF CYSEC Introduction to Security // Program Analysis 7
) KRS CYEERSECURITYCEMTER

A Bird's Eye View on

Taint Analysis

CYSEC Introduction to Security // Program Analysis 8
CYBERSECURITYCEMTER

Example

X =get input()

y=X+42

goto y

CYSEC Introduction to Security // Program Analysis 9

GIEd CYBERSECURITYCENTER

Example

. £
X = get_input (-)

y=X+42

Input is
gotO y tainted

TUPSSF
EN B sPrivscy

CYSEC Introduction to Security // Program Analysis 10
CYBERSECURITYCEMTER

For simplicity, we denote and

TCI | nt IntrOdUCti on operate on taint labels as

logical labels (True and False)

' Tainted(T) ‘ Untainted(F)

] e
X =get_Input (-)

Each variable/value y=Xx+42 Input 1S

IS given a taint label T .

TUPSSF
EN B sPrivscy

CYSEC Introduction to Security // Program Analysis n
CYBERSECURITYCEMTER

Taint Introduction

t = IsUntrusted(src)

Input
P get_input(src)J t

Val Taint (T | F)

X ! T

Introduction to Security // Program Analysis 12

Taint Propagation

‘ Tainted(T) ‘ Untainted(F)

] e
X =get_Input (-)

y=x+ 42 Data derived
from user input
IS tainted

Introduction to Security // Program Analysis 13

Taint Propagation

BinOp t1 = t[x1], t2 = T[x2]

X1+X2d t1vt

Val Taint (T | F)

X 4 T
y 49 T

Introduction to Security // Program Analysis 14

Taint Propagation

‘ Tainted(T) ‘ Untainted(F)

] e
X =get_Input (-)

y=X+t 42

Policy violation
detected

Introduction to Security // Program Analysis 15

So what?

Exploit Detection

]]
X =get_Input (-)

strcpy(buffer, argv[1l]);

y=X+t 42
return;

goto y

Tainted return
address

CYSEC Introduction to Security // Program Analysis 16
CYBERSECURITYCEMTER

Taint Policy

Pgoto(ta) =-1a

(Must be true to execute)

Val

Taint (T | F)

T
T

Introduction to Security // Program Analysis

17

A Bird's Eye View on

Forward Symbolic Execution

TUPSSF CYSEC Introduction to Security // Program Analysis 18
W) ELGNEY CYEERSECURITYCEMTER

Example

bad_abs(x is input)
if (x < 9)
return -x

if (x = ©0x12345678)
return -X
return X

el CYSEC Introduction to Security // Program Analysis 18

0 B cvoersECURITYCENTER

Example

bad_abs(x is input)
if (x < 9)
return -x

232 possible
Inputs if (x = 0x12345678)
return -x

return X

0x12345678

What input will execute this
line of code?

CYSEC Introduction to Security // Program Analysis 20
CYBERSECURITYCEMTER

Working

bad _abs(x is input)

T

return -X
T
return -X

X 20 &&
- X 1= 0x12345678 X == 0x12345678

CYSEC TR T (U security // Program Analysis 21
LSS CYBERSECURITYCEMTER

if (x = 0x12345678)

|:
return X

X2 0 &&

First Step:

A Simple Intermediate Language
(SIMPIL)

TUPSSF CYSEC Introduction to Security // Program Analysis 23
W) ELGNEY CYEERSECURITYCEMTER

syntax

program = stmt*
stmt s = var = exp | store(exp, exp)
| goto exp | assert exp
| if exp then goto exp
else goto exp
exp e = load(exp) | exp Op exp | Ou exp
| var | get_input(src) | v
Qb ::= typical binary operators
Ou ::= typical unary operators
value v ::= 32-bit unsigned integer

f CYSEC Introduction to Security // Program Analysis 24

Securit
EE CYBERSECURITYCENTER

Semantics (Notations)

Context Meaning

by Maps a statement number to a statement

W Maps a memory address to the current value
at that address

A Maps a variable name to its value

pc The program counter

L The next instruction

TH Lt CYSEC Introduction to Security // Program Analysis 25

LLTES CYBERSECURITYCEMTER

Semantics (Evaluation Rules)
e Evaluation rules take the following form

wAF el v

e They are read as expression e evaluates to v under memory and variable mappings
u and 4, respectively

TUPSSF CYSEC Introduction to Security // Program Analysis 26
) KRS CYEERSECURITYCEMTER

Semantics (Reduction Rules)

e Semantic rules take the following form

computation

(current state), stmt ~ (end state), stmt’

e They are read bottom up, left to right
o Pattern-match to find the applicable rule

o Apply computations
m If they succeed, transition to end state
m Otherwise, abort abnormally

el CYSEC Introduction to Security // Program Analysis 27

0 B cvoersECURITYCENTER

Semantics (Reduction Rules)

TU

WIEN

JTAN

v is input from src . wAFelv, v=plv]
i, A F get_input(src) | v NPUT uw,Alload e || v

LoaD w, A+ var || Alvar] VAR

Felv v =0uv wAFe vy p,AlFey vy v =v10pv2

pAE Que dh ' 1, A FerQpez I o' mAFvlv

UNop

BINOP ———— CONST

wAFelv A= Alvar — v L=E[pc+1]A pAlFel vy =Xv]
¥, 1, A, pe,var i= e~ X, pu, Alype+ 1,1 SO 5 1, A pe, goto €~ 5, 1, A, vr, 0

GoTO

p,AFell Abe v ¢=Xw]
¥, 1, A, pe,if e then goto ey else goto ex ~» 3, i, A, vq,¢

TCoND

w,AFell0 AbFex vy =X
3, u, A, pe, if e then goto ey else goto ex ~» X, pu, A, va,t

FCoND

wAbFe yvy pAklkeve v=Xpe+1] p = pfvy « v
E,,U;, A,pC, StOI'C(B]_, 82) ~ Ea ﬂ’a A:pc+ L

STORE

wAFell o=Xpc+1]
3, wy, A, pe, assert(e) ~» X, u, A, pc+ 1,

ASSERT

CYSEC

CYBERSECURITYCEMTER

Introduction to Security // Program Analysis

28

Example

e The program

1 |x := 2 % get_input(-)

evaluates as follows

c 20 1is input
LAF2 2 CONST A setinput() U 20 VPUT o — 9490
w, A F 2%get_input(-) | 40 BINOP - A/ Alx < 40] = X[pc+ 1]

¥, p, A pe,x = 2*get_input(-) ~ X, pu, A’ pe+ 1,2

ASSIGN

TU

WIEN N sprivi

CYSEC Introduction to Security // Program Analysis 29

CYBERSECURITYCEMTER

Dynamic Taint Analysis

TU

WIEN

CYSEC Introduction to Security // Program Analysis 30

CYBERSECURITYCEMTER

Dynamic Taint Analysis

e Goal: track information flow between sources and sinks

e Method: assign and propagate a label for each value:
o those whose computation depend on data derived from a taint source are labeled tainted
(denoted T)
o any other value is considered untainted (denoted F)
e A taint policy P determines how taint flows as a program executes, what sorts of
operations introduce new taint, and what checks are performed on tainted values
o overtainting (false positives, i.e., secure executions are marked as insecure): values are
considered tainted although they are not
o undertainting (false negatives, i.e., attacks are not detected): values are considered
untainted although they are not

] CYSEC Introduction to Security // Program Analysis 31

GSd CvEERSECURITYCENTER

Notations

taintt == T|F
value = (v,t)
TA ::= Maps variables to taint status
Ty == Maps addresses to taint status

e \We mark both values, variables, and addresses with a taint label

et CYSEC Introduction to Security // Program Analysis 32

0 B cvoersECURITYCENTER

Tainted Jump Policy

e This policy below is meant to prevent jumps to tainted addresses (control flow
hijacking attacks)...

Component Policy Check
Pinput (), Poincheck (), Pmemcheck () | T

Peonst () F

P, unop (t), P, assign(t) i
Prinop(t1,t2) t1 Via
Pmem (ta; tv) t,
Peondcheck (te; ta) —itg
Pgotocheck(ta) —tq

Introduction to Security // Program Analysis 33

Taint Rules

v is input from src
Tus TA, 1, A = get_input(src) | (v, Pinput (SIc))

T-INPUT T-CONST

T/,l.aTA7l'l’aA Fo U‘ (’U, PCOHSt())

Tus Ta, A F e (v,t)
Tp,’ TA)#,A I_ load € ‘U’ ([J[’U],Pmem(t,Tu[U])>

Tu,TA’.uaA Fe ‘U‘ (Uat>
’T/’,',’TA, H, Al <>u€ ‘U’ <<>’U—v’ PUHOP(t»

Tus TAs A Fe1 4 (vi,t1) Tu,7a, A e2 § (v2,t2) Poincheck(t1,22,v1,v2,0) =T
T TAs 4y A F e10ve2 I (v104v2, Poinop(t1,t2))

T-VAR T-LOAD

Tus Ta, 1y A Fvar | (Alvar|, Ta[var])

T-UNOP

T-BINOP

TU

WIEN

CYSEC Introduction to Security // Program Analysis

CYBERSECURITYCEMTER

34

Taint Rules (cont'd)

TusTa, A el (v, t) A'= Alvar — v] TA = Ta[var < Passign(t)] ¢ = X[pc+1]
Tuy TA, Ea”: f_\,pc, var = € ~ TM:TAaE,Mw A”pc+ 1: L

T-ASSIGN

L= E[pc + 1] Pmemcheck(t1=t2) =T
Tus TA Ky A €1 ‘U’ (v15t1> Tus TA, .U'aA - €2 ’U’ <U25t2> J”’! = ,LL[’Ul — 7-}2] T:;, = Tu[Ul — Pmem(tlstZ)]
Tus TAS 5, i, A, pc, store(er, ez) ~ TL,TA,E,]LI, Apc+1,L

T-STORE

TusTas i, A el (1,t) = X[pe+1]
Tus TA Z: K A:pca assert(e) ~» Tuy TA, ¥, Hy A,pc +1,¢

T-ASSERT

TU

WIEN

CYSEC Introduction to Security // Program Analysis

CYBERSECURITYCEMTER

35

Taint Rules (cont'd)

T“,TA,,U,,A [& *U' (1,t1> TH,TA,,U.,A (o €1 -U« (’Ul,tz) Pcondcheck(tlat2) =T .= 2[1)1]

Tu, TA, 2, i1, A, pe, if e then goto ey else goto ez ~ 7y, TA, X, 1, A, v1, ¢ T-TConD
Tus o,y A e 4 (0,81) 7, 7a, i, A ez § (v2,82) Peondcheck(t1,t2) =T 1+ = Xvy]
: T-FCOND
Tuy TA, 2, 4y A, pe, if e then goto ey else goto ex ~ 7, Ta, X, 1, A, 2,
Tus TA, Hy Atel ('vla t) Pgotocheck(t) =T 1= 2['Ul] T-GoTo
Tus TA, 21 My A,pc, goto e ~» Ty TA E: My Aa U1,
TU CYSEC Introduction to Security // Program Analysis

DERIEIN CYBERSECURITYCENTER

36

Example

1 |x = 2«get_input(:)
2 |y =5+ «x
3 | goto y
Line # | Statement A TA Rule pc
start {} {} 1
x := 2*get_input(-) {z — 40} {z - T} T-ASSIGN 2
2|y=5+x {x — 40,y — 45} | {r — T,y — T} | T-ASSIGN 3
goto y {z — 40,y — 45} | {x = T,y — T} | T-GoTO error

CYSEC Introduction to Security // Program Analysis 37

CYBERSECURITYCEMTER

TUls&

WIEN

Example

1 |x = 2«get_input(:)
2 |y =5+ «x
3 | goto y
Line # | Statement A TA Rule pc
start {} {} 1
x := 2*get_input(-) {z — 40} {z - T} T-ASSIGN 2
2|y=5+x {x — 40,y — 45} | {r — T,y — T} | T-ASSIGN 3
goto y {z — 40,y — 45} | {x = T,y — T} | T-GoTO error

CYSEC Introduction to Security // Program Analysis 38

CYBERSECURITYCEMTER

TUls&

WIEN

Example of over- and under-tainting

e The following program is accepted, assuming the memory cell is untainted

1 |x := get_input(:)
2 |y := load(z + x)
3 |goto y

e But the attacker can basically pick up any value and jump there, violating the
intended control flow (undertainting)
e A stricter policy could stop the execution if address or memory cell are tainted

Tainted Addresses ‘ Pl b)) =1 Vb

e Legitimate programs (e.g., tcpdump) could however be rejected since they work by
legit look-up tables with user input (overtainting)

ol CYSEC Introduction to Security // Program Analysis 39
) KRS CYEERSECURITYCEMTER

Time of Detection vs Time of Attack

e Dynamic taint analysis raises an alert when tainted values are used in an unsafe
way, which could however be too late!
e For instance, consider a typical return address overwrite exploit
o The exploit overwrites the return address so that this points to attacker's shellcode
e Here the dynamic taint analysis would raise an alarm at the time jumping, but not
at the time of overwriting the address
o The exploit will not be reported until the jump, so any calls done by the vulnerable

function will be executed and if these calls have side-effects (file manipulation or
networking operations), these will persist after the program is aborted

TUPS CYSEC Introduction to Security // Program Analysis 40

FUES CYEERSECURITYCENTER

Forward Symbolic Execution

CYSEC Introduction to Security // Program Analysis N

& CYBERSECURITYCEMTER

Forward Symbolic Execution

e Goal: determine which inputs lead to a certain program point

e Method: build alogical formula that captures program executions
o Values are symbolic, as opposed to concrete

e Advantage: can reason about multiple inputs at one time

TH CYSEC Introduction to Security // Program Analysis 42

FUES CYEERSECURITYCENTER

Example

CYSEC

CYBERSECURITYCEMTER

Pass this
formula to
an SMT
prover

1 |x := 2xget_input(:)
2 |if x—5 == 14 then goto 3 else goto 4
3 |// catastrophic failure
4 | // normal behavior
Initially, we don’t know
anything about the input,
SO we use a universally
guantified variable
Statement II
start {} true
x := 2*get_input(-) {x — 2xs} true S-ASSIGN

ifx-5==14goto3 else goto4 | {r > 2x*s} | [(2xs)—5==
if x-5==14 goto 3 else goto 4 | {r — 2xs} | 7[(2*s) —5==14] | S-FCOND

1
2
14] | S-TConND | 3
4

Introduction to Security // Program Analysis 43

Semantics for Symbolic Forward Execution

TU

wi N J SR

CYSEC

CYBERSECURITYCEMTER

value v ::= 32-bit unsigned integer | exp
II

Contains the current constraints on
symbolic variables due to path choices

v is a fresh symbol
w, A F get_input(-) | v

S-INPUT

pAkFele II'=I1Ae 1=3%pc+1]
IL %, pu, A, pe, assert(e) ~ I, 3, p, A, pe + 1,4

S-ASSERT

wAlFele AbFe vy II'=IA(e=1) = X[vq]
IT, X, u, A, pe, if e then goto e; else goto es ~ II', X, u, A, v1,¢

S-TCOND

wAFele Abeslvy II'=IIA(e =0) = X[vs]
IT, X, u, A, pe,if e then goto e; else goto ex ~ II', X, u, A, va, ¢

S-FCOND

Introduction to Security // Program Analysis

44

Challenge 1: Symbolic Addresses

e How does the memory look like after the end of the program?

1. addrl:=get_input(-)
2. store(addrl,v)

e Sound strategy: any memory address may contain v, similarly for loads
e Aliasing may also be a problem:

1. store(addrl, v)
2. z=load(addr2)

Z may contain v or not, depending on whether or not addr1 and addr2 are aliased
e 0One can let an SMT solver reason about memory, naming each step update

mem, = memyladdr, = v] A z = mem,[addr,]

ey CYSEC Introduction to Security // Program Analysis 45

0 B cvoersECURITYCENTER

Challenge 2: Symbolic Jumps

e \Where does the following program jump to?

1. jump(e)

e 0ne can let an SMT solver reason about jumpstoo, e.g., querying IT A e where II is
the path predicate. The SMT solver will give us a satisying answer n, which is a
possible jump target

e |f we want more jump targers, we can query for II A e A =n and so on

TUPSSF CYSEC Introduction to Security // Program Analysis 46
) KRS CYEERSECURITYCEMTER

Challenge 3: Loops

e \What happens in case of loops?
e The symbolic execution might not terminate...

e Typically, an upper bound on the number of loop iterations is fixed
o enforces termination but it is unsound

TH CYSEC Introduction to Security // Program Analysis 47

FUES CYEERSECURITYCENTER

	Slide 1: Program Analysis
	Slide 2: Program Analysis at Scale
	Slide 3: Program Analysis
	Slide 4: Program Analysis
	Slide 5: Program Analysis
	Slide 6: Program Analysis
	Slide 7: Use Cases
	Slide 8: A Bird’s Eye View on Taint Analysis
	Slide 9: Example
	Slide 10: Example
	Slide 11: Taint Introduction
	Slide 12: Taint Introduction
	Slide 13: Taint Propagation
	Slide 14: Taint Propagation
	Slide 15: Taint Propagation
	Slide 16: So what?
	Slide 17: Taint Policy
	Slide 18: A Bird’s Eye View on Forward Symbolic Execution
	Slide 19: Example
	Slide 20: Example
	Slide 21: Working
	Slide 23: First Step: A Simple Intermediate Language (SIMPIL)
	Slide 24: Syntax
	Slide 25: Semantics (Notations)
	Slide 26: Semantics (Evaluation Rules)
	Slide 27: Semantics (Reduction Rules)
	Slide 28: Semantics (Reduction Rules)
	Slide 29: Example
	Slide 30: Dynamic Taint Analysis
	Slide 31: Dynamic Taint Analysis
	Slide 32: Notations
	Slide 33: Tainted Jump Policy
	Slide 34: Taint Rules
	Slide 35: Taint Rules (cont’d)
	Slide 36: Taint Rules (cont’d)
	Slide 37: Example
	Slide 38: Example
	Slide 39: Example of over- and under-tainting
	Slide 40: Time of Detection vs Time of Attack
	Slide 41: Forward Symbolic Execution
	Slide 42: Forward Symbolic Execution
	Slide 43: Example
	Slide 44: Semantics for Symbolic Forward Execution
	Slide 45: Challenge 1: Symbolic Addresses
	Slide 46: Challenge 2: Symbolic Jumps
	Slide 47: Challenge 3: Loops

