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e All large IT companies integrate program analysis in their development workflow
e FEach line of code is verified: software developers must learn how these tools work!
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Program Analysis

All You Ever Wanted to Know About
Dynamic Taint Analysis and Forward Symbolic Execution
(but might have been afraid to ask)

Edward J. Schwartz, Thanassis Avgerinos, David Brumley
Carnegie Mellon University
Pittsburgh, PA
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Program Analysis

Goal: Analyse a program to check certain security properties

e Security is typically undecidable: e.qg., due to infinite possible inputs
e Hence any program analysis technique has to give up at least one of the following
properties
o Completeness: the analysis returns yes if the program is secure (no false positives)

o Soundness: the analysis never returns yes if the program is insecure (no false negatives)
o Termination: the analysis always terminates

ey CYSEC Introduction to Security // Program Analysis 4
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Program Analysis

Good to find security

e We typically distinguish between two analysis techniques vulnerabilities

e Dynamic Analysis: monitors certain program runs (i.e,, for certain inputs). Typically,
o Precise: can reason about concrete values and concrete program runs
o Unsound: it cannot certify all program runs Good to obtain
o Terminating: it handles a finite number of program runs security proofs

e Static analysis: characterizes all program runs (i.e,, for all possible inputs). Typically,
o Overapproximating: values are overapproximated and the analysis might not terminate
o Sound: it can certify all program runs
o Terminating or not (normally, more termination, less precision)

CYSEC Introduction to Security // Program Analysis 5
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Program Analysis

e \We focus on two highly popular analysis techniques

Taint Analysis
Which computations are affected by predefined sources (e.g., Inputs)
controlled by the attacker, also called tainted sources?

Forward Symbolic Execution
Which inputs lead to a certain program point?

e Both can be designed as static or dynamic analysis techniques, today we will reason
about dynamictaint analysis and stat/c forward symbolic execution

ssv
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Use Cases

e Unknown vulnerability detection (e.g., code injection): dynamic taint analysis

e Automatic input filter generation (e.g., remove exploits from input stream): forward
symbolic execution

e Malware analysis (e.g., information flow in a malware binary, explore trigger-based
behaviour, ...): both techniques

e Test case generation (generate inputs for test programs, or generate inputs that
can cause the program to behave differently): both techniques

e \Web security (e.g., which inputs lead to XSS or SQL injection): symbolic forward
execution
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A Bird's Eye View on

Taint Analysis
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Example

X =get input( )

y=X+42

goto y
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Example

. £
X = get_input (- )

y=X+42

Input is
gotO y tainted

TUPSSF
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For simplicity, we denote and

TCI | nt IntrOdUCti on operate on taint labels as

logical labels (True and False)

' Tainted(T) ‘ Untainted(F)

] e
X =get_Input ( - )

Each variable/value y=Xx+42 Input 1S

IS given a taint label T .

TUPSSF
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Taint Introduction

t = IsUntrusted(src)

Input
P get_input(src)J t

Val Taint (T | F)

X ! T
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Taint Propagation

‘ Tainted(T) ‘ Untainted(F)

] e
X =get_Input ( - )

y=x+ 42 Data derived
from user input
IS tainted

Introduction to Security // Program Analysis 13



Taint Propagation

BinOp t1 = t[x1], t2 = T[x2]

X1+X2d t1vt

Val Taint (T | F)

X 4 T
y 49 T

Introduction to Security // Program Analysis 14



Taint Propagation

‘ Tainted(T) ‘ Untainted(F)

] e
X =get_Input ( - )

y=X+t 42

Policy violation
detected

Introduction to Security // Program Analysis 15



So what?

Exploit Detection

] ]
X =get_Input ( - )

strcpy(buffer, argv[1l]);

y=X+t 42
return;

goto y

Tainted return
address

CYSEC Introduction to Security // Program Analysis 16
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Taint Policy

Pgoto(ta) =-1a

(Must be true to execute)

Val

Taint (T | F)

T
T

Introduction to Security // Program Analysis
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A Bird's Eye View on

Forward Symbolic Execution

TUPSSF CYSEC Introduction to Security // Program Analysis 18
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Example

bad_abs(x is input)
if (x < 9)
return -x

if (x = ©0x12345678)
return -X
return X

el CYSEC Introduction to Security // Program Analysis 18
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Example

bad_abs(x is input)
if (x < 9)
return -x

232 possible
Inputs if (x = 0x12345678)
return -x

return X

0x12345678

What input will execute this
line of code?

CYSEC Introduction to Security // Program Analysis 20
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Working

bad _abs(x is input)

T

return -X
T
return -X

X 20 &&
- X 1= 0x12345678 X == 0x12345678

CYSEC TR T (U security // Program Analysis 21
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if (x = 0x12345678)

|:
return X

X2 0 &&




First Step:

A Simple Intermediate Language
(SIMPIL)

TUPSSF CYSEC Introduction to Security // Program Analysis 23
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syntax

program =  stmt*
stmt s = var = exp | store(exp, exp)
| goto exp | assert exp
| if exp then goto exp
else goto exp
exp e = load(exp) | exp Op exp | Ou exp
| var | get_input(src) | v
Qb ::= typical binary operators
Ou ::= typical unary operators
value v ::= 32-bit unsigned integer

f CYSEC Introduction to Security // Program Analysis 24
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Semantics (Notations)

Context Meaning

by Maps a statement number to a statement

W Maps a memory address to the current value
at that address

A Maps a variable name to its value

pc The program counter

L The next instruction

TH Lt CYSEC Introduction to Security // Program Analysis 25
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Semantics (Evaluation Rules)
e Evaluation rules take the following form

wAF el v

e They are read as expression e evaluates to v under memory and variable mappings
u and 4, respectively

TUPSSF CYSEC Introduction to Security // Program Analysis 26
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Semantics (Reduction Rules)

e Semantic rules take the following form

computation

(current state), stmt ~ (end state), stmt’

e They are read bottom up, left to right
o Pattern-match to find the applicable rule

o Apply computations
m If they succeed, transition to end state
m Otherwise, abort abnormally

el CYSEC Introduction to Security // Program Analysis 27
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Semantics (Reduction Rules)

TU

WIEN

JTAN

v is input from src . wAFelv, v=plv]
i, A F get_input(src) | v NPUT uw,Alload e || v

LoaD w, A+ var || Alvar] VAR

Felv v =0uv wAFe vy p,AlFey vy v =v10pv2

pAE Que dh ' 1, A FerQpez I o' mAFvlv

UNop

BINOP ———— CONST

wAFelv A= Alvar — v L=E[pc+1]A pAlFel vy =Xv]
¥, 1, A, pe,var i= e~ X, pu, Alype+ 1,1 SO 5 1, A pe, goto €~ 5, 1, A, vr, 0

GoTO

p,AFell Abe v ¢=Xw]
¥, 1, A, pe,if e then goto ey else goto ex ~» 3, i, A, vq,¢

TCoND

w,AFell0 AbFex vy =X
3, u, A, pe, if e then goto ey else goto ex ~» X, pu, A, va,t

FCoND

wAbFe yvy pAklkeve v=Xpe+1] p = pfvy « v
E,,U;, A,pC, StOI'C(B]_, 82) ~ Ea ﬂ’a A:pc+ L

STORE

wAFell o=Xpc+1]
3, wy, A, pe, assert(e) ~» X, u, A, pc+ 1,

ASSERT

CYSEC

CYBERSECURITYCEMTER
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Example

e The program

1 |x := 2 % get_input(-)

evaluates as follows

c 20 1is input
LAF2 2 CONST A setinput() U 20 VPUT o — 9490
w, A F 2%get_input(-) | 40 BINOP - A/ Alx < 40] = X[pc+ 1]

¥, p, A pe,x = 2*get_input(-) ~ X, pu, A’ pe+ 1,2

ASSIGN

TU

WIEN N sprivi
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Dynamic Taint Analysis

TU

WIEN
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Dynamic Taint Analysis

e Goal: track information flow between sources and sinks

e Method: assign and propagate a label for each value:
o those whose computation depend on data derived from a taint source are labeled tainted
(denoted T)
o any other value is considered untainted (denoted F)
e A taint policy P determines how taint flows as a program executes, what sorts of
operations introduce new taint, and what checks are performed on tainted values
o overtainting (false positives, i.e., secure executions are marked as insecure): values are
considered tainted although they are not
o undertainting (false negatives, i.e., attacks are not detected): values are considered
untainted although they are not

] CYSEC Introduction to Security // Program Analysis 31
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Notations

taintt == T|F
value = (v,t)
TA ::=  Maps variables to taint status
Ty == Maps addresses to taint status

e \We mark both values, variables, and addresses with a taint label

et CYSEC Introduction to Security // Program Analysis 32
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Tainted Jump Policy

e This policy below is meant to prevent jumps to tainted addresses (control flow
hijacking attacks)...

Component Policy Check
Pinput (), Poincheck (), Pmemcheck () | T

Peonst () F

P, unop (t), P, assign(t) i
Prinop(t1,t2) t1 Via
Pmem (ta; tv) t,
Peondcheck (te; ta) —itg
Pgotocheck(ta) —tq

Introduction to Security // Program Analysis 33



Taint Rules

v is input from src
Tus TA, 1, A = get_input(src) | (v, Pinput (SIc))

T-INPUT T-CONST

T/,l.aTA7l'l’aA Fo U‘ (’U, PCOHSt())

Tus Ta, A F e (v,t)
Tp,’ TA)#,A I_ load € ‘U’ ([J[’U],Pmem(t,Tu[U])>

Tu,TA’.uaA Fe ‘U‘ (Uat>
’T/’,',’TA, H, Al <>u€ ‘U’ <<>’U—v’ PUHOP(t»

Tus TAs A Fe1 4 (vi,t1) Tu,7a, A e2 § (v2,t2) Poincheck(t1,22,v1,v2,0) =T
T TAs 4y A F e10ve2 I (v104v2, Poinop(t1,t2))

T-VAR T-LOAD

Tus Ta, 1y A Fvar | (Alvar|, Ta[var])

T-UNOP

T-BINOP

TU

WIEN

CYSEC Introduction to Security // Program Analysis
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Taint Rules (cont'd)

TusTa, A el (v, t) A'= Alvar — v] TA = Ta[var < Passign(t)] ¢ = X[pc+1]
Tuy TA, Ea”: f_\,pc, var = € ~ TM:TAaE,Mw A”pc+ 1: L

T-ASSIGN

L= E[pc + 1] Pmemcheck(t1=t2) =T
Tus TA Ky A €1 ‘U’ (v15t1> Tus TA, .U'aA - €2 ’U’ <U25t2> J”’! = ,LL[’Ul — 7-}2] T:;, = Tu[Ul — Pmem(tlstZ)]
Tus TAS 5, i, A, pc, store(er, ez) ~ TL,TA,E,]LI, Apc+1,L

T-STORE

TusTas i, A el (1,t) = X[pe+1]
Tus TA Z: K A:pca assert(e) ~» Tuy TA, ¥, Hy A,pc +1,¢

T-ASSERT

TU

WIEN

CYSEC Introduction to Security // Program Analysis
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Taint Rules (cont'd)

T“,TA,,U,,A [ & *U' (1,t1> TH,TA,,U.,A (o €1 -U« (’Ul,tz) Pcondcheck(tlat2) =T .= 2[1)1]

Tu, TA, 2, i1, A, pe, if e then goto ey else goto ez ~ 7y, TA, X, 1, A, v1, ¢ T-TConD
Tus o,y A e 4 (0,81) 7, 7a, i, A ez § (v2,82)  Peondcheck(t1,t2) =T 1+ = Xvy]
: T-FCOND
Tuy TA, 2, 4y A, pe, if e then goto ey else goto ex ~ 7, Ta, X, 1, A, 2,
Tus TA, Hy Atel ('vla t) Pgotocheck(t) =T 1= 2['Ul] T-GoTo
Tus TA, 21 My A,pc, goto e ~» Ty TA E: My Aa U1,
TU CYSEC Introduction to Security // Program Analysis
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Example

1 |x = 2«get_input(:)
2 |y =5+ «x
3 | goto y
Line # | Statement A TA Rule pc
start {} {} 1
x := 2*get_input(-) {z — 40} {z - T} T-ASSIGN 2
2|y=5+x {x — 40,y — 45} | {r — T,y — T} | T-ASSIGN 3
goto y {z — 40,y — 45} | {x = T,y — T} | T-GoTO error

CYSEC Introduction to Security // Program Analysis 37
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Example

1 |x = 2«get_input(:)
2 |y =5+ «x
3 | goto y
Line # | Statement A TA Rule pc
start {} {} 1
x := 2*get_input(-) {z — 40} {z - T} T-ASSIGN 2
2|y=5+x {x — 40,y — 45} | {r — T,y — T} | T-ASSIGN 3
goto y {z — 40,y — 45} | {x = T,y — T} | T-GoTO error

CYSEC Introduction to Security // Program Analysis 38
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Example of over- and under-tainting

e The following program is accepted, assuming the memory cell is untainted

1 |x := get_input(:)
2 |y := load(z + x)
3 |goto y

e But the attacker can basically pick up any value and jump there, violating the
intended control flow (undertainting)
e A stricter policy could stop the execution if address or memory cell are tainted

Tainted Addresses ‘ Pl b)) =1 Vb

e Legitimate programs (e.g., tcpdump) could however be rejected since they work by
legit look-up tables with user input (overtainting)

ol CYSEC Introduction to Security // Program Analysis 39
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Time of Detection vs Time of Attack

e Dynamic taint analysis raises an alert when tainted values are used in an unsafe
way, which could however be too late!
e For instance, consider a typical return address overwrite exploit
o The exploit overwrites the return address so that this points to attacker's shellcode
e Here the dynamic taint analysis would raise an alarm at the time jumping, but not
at the time of overwriting the address
o The exploit will not be reported until the jump, so any calls done by the vulnerable

function will be executed and if these calls have side-effects (file manipulation or
networking operations), these will persist after the program is aborted

TUPS CYSEC Introduction to Security // Program Analysis 40
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Forward Symbolic Execution
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Forward Symbolic Execution

e Goal: determine which inputs lead to a certain program point

e Method: build alogical formula that captures program executions
o Values are symbolic, as opposed to concrete

e Advantage: can reason about multiple inputs at one time

TH CYSEC Introduction to Security // Program Analysis 42
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Example

CYSEC

CYBERSECURITYCEMTER

Pass this
formula to
an SMT
prover

1 |x := 2xget_input(:)
2 |if x—5 == 14 then goto 3 else goto 4
3 |// catastrophic failure
4 | // normal behavior
Initially, we don’t know
anything about the input,
SO we use a universally
guantified variable
Statement II
start {} true
x := 2*get_input(-) {x — 2xs} true S-ASSIGN

ifx-5==14goto3 else goto4 | {r > 2x*s} | [(2xs)—5==
if x-5==14 goto 3 else goto 4 | {r — 2xs} | 7[(2*s) —5==14] | S-FCOND

1
2
14] | S-TConND | 3
4

Introduction to Security // Program Analysis 43



Semantics for Symbolic Forward Execution

TU

wi N J SR

CYSEC

CYBERSECURITYCEMTER

value v ::= 32-bit unsigned integer | exp
II

Contains the current constraints on
symbolic variables due to path choices

v is a fresh symbol
w, A F get_input(-) | v

S-INPUT

pAkFele II'=I1Ae 1=3%pc+1]
IL %, pu, A, pe, assert(e) ~ I, 3, p, A, pe + 1,4

S-ASSERT

wAlFele AbFe vy II'=IA(e=1) = X[vq]
IT, X, u, A, pe, if e then goto e; else goto es ~ II', X, u, A, v1,¢

S-TCOND

wAFele Abeslvy II'=IIA(e =0) = X[vs]
IT, X, u, A, pe,if e then goto e; else goto ex ~ II', X, u, A, va, ¢

S-FCOND

Introduction to Security // Program Analysis
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Challenge 1: Symbolic Addresses

e How does the memory look like after the end of the program?

1. addrl:=get_input(-)
2. store(addrl,v)

e Sound strategy: any memory address may contain v, similarly for loads
e Aliasing may also be a problem:

1. store(addrl, v)
2. z=load(addr2)

Z may contain v or not, depending on whether or not addr1 and addr2 are aliased
e 0One can let an SMT solver reason about memory, naming each step update

mem, = memyladdr, = v] A z = mem,[addr,]

ey CYSEC Introduction to Security // Program Analysis 45

0 B cvoersECURITYCENTER




Challenge 2: Symbolic Jumps

e \Where does the following program jump to?

1. jump(e)

e 0ne can let an SMT solver reason about jumpstoo, e.g., querying IT A e where II is
the path predicate. The SMT solver will give us a satisying answer n, which is a
possible jump target

e |f we want more jump targers, we can query for II A e A =n and so on

TUPSSF CYSEC Introduction to Security // Program Analysis 46
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Challenge 3: Loops

e \What happens in case of loops?
e The symbolic execution might not terminate...

e Typically, an upper bound on the number of loop iterations is fixed
o enforces termination but it is unsound

TH CYSEC Introduction to Security // Program Analysis 47
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