
Introduction to Security // Binary Analysis

Introduction to Security (192.019)

Security & Privacy Research Unit (192-06)
https://secpriv.wien

Memory Corruption Attacks and Defenses:
Advanced Topics

Pedro Bernardo

Introduction to Security // Binary Analysis 2

GLIBC Heap

Introduction to Security // Binary Analysis

What is the heap?

The heap is a pool of memory used for
dynamic allocation at runtime
● malloc - allocates a memory chunk of the

requested size
● free - deallocates a given chunk
● calloc - allocates memory and returns a

pointer to it
● realloc - attempts to resize a memory

chunk

3

int main() {
 char * buffer = NULL;
 buffer = (char*) malloc(

sizeof(char)*0x100);

 fgets(stdin, buffer, 0x100);
 printf("%s", buffer);

 /* release the allocated memory */
 free(buffer);

 return 0;
}

Allocates a chunk of size
0x100 chars and stores a
pointer to it in the local
variable buffer

Deallocates the chunk
pointed to by buffer

A program can’t always know how much memory it will need at
runtime. Dynamic memory allows the program to request and free

memory on demand, according to its needs

Introduction to Security // Binary Analysis

Where is the heap?

4

Between the ELF binary
and the libraries

Introduction to Security // Binary Analysis

GLIBC Heap

● There are several heap implementations, depending on the platform (windows, linux,
etc.) and the library used (GNU LibC, FreeBSD, etc.)

● GLIBC implements ptmalloc2, based on dlmalloc
○ ptmalloc2 supports multi-threading, improving performance
○ two different threads can manage their own heap (aka, per-thread arena)

● You can write your own heap implementation according to the needs of your
application!

5

Introduction to Security // Binary Analysis

GLIBC Heap - Terminology

● Arenas are structures used to managed “the heap”
○ each thread gets its own arena (the main thread’s arena is called the main arena)
○ contain pointers to different types of chunks and different heaps

● Heaps are contiguous regions of memory, subdivided into chunks
○ each heap belongs to one arena

● Chunks are small pieces of memory that can be allocated, freed, or combined
with adjacent chunks (coalesced)
○ chunks are wrappers around a block of memory given to the application (via malloc)

6

Introduction to Security // Binary Analysis

GLIBC Heap - Chunks

7

prev_size
size

Usable Memory

AMP

size AMP

prev_size
size

…

size

AMP

AMP

fwd
bck

fd_nextsize
bk_nextsize

prev_size = size

chunk chunk

A = Allocated Arena
M = mmap’d
P = prev in use

1 if the previous
chunk is allocated;
0 if it is a free chunk

Allocated Chunk Free Chunk

returned by
malloc

fd_nextsize and
bk_nextsize are only
used by large chunks

Since the last 3 bits
are reserved for the
AMP flags, chunks are
always 8-byte aligned

Introduction to Security // Binary Analysis

GLIBC Heap - Arenas and Heaps

8

heap_info prev
size

arena

chunks

ar_ptr

…

size

chunks

ar_ptr

…

chunks

top chunk

ar_ptr

…

Heap #1

Heap #2 Heap #3

Each arena obtains
memory from one or
more heaps.

More heaps are added to
a linked list of heaps as
current ones are used up

Each arena keeps track
of a “top” chunk, i.e.,
the biggest available
chunk.

size
prevprev

Main arena is stored in the
.data segment of the libc!

Introduction to Security // Binary Analysis

GLIBC Heap - Chunks

● Allocated Chunk - A chunk that is in use, i.e., owned by the application

● Free Chunk - A chunk that has been deallocated, i.e., owned by glibc

● Top Chunk - The largest available chunk, used to service new allocation requests

○ if top_chunk->size > requested->size, split in two
■ User chunk (requested size)
■ Remainder chunk (of remaining size)

○ else top chunk is extended using sbrk or mmap

● Last Remainder Chunk - The chunk of the remaining size when the top chunk is split

9

Introduction to Security // Binary Analysis

GLIBC Heap - Arena Bins

● Within each arena, chunks are either in use, or they are free.

● In-use chunks are not tracked by the arena

● Free chunks are stored in “free lists” called bins

● Bins are categorized based on the chunk sizes they hold

10

Used Used Free Used Free Top/WildernessHeap

low address high address

Free

Introduction to Security // Binary Analysis

Main Arena - Bins

● Fast bins - 10 buckets (7 used by default)
that store chunks from 32-128 bytes by
size, 16 bytes apart.

● Small bins - 62 buckets, with chunks of up
to 1024 bytes in size.

● Large bins - 63 buckets that store chunks
of 1024+ bytes.

● Unsorted bins - Only 1 bucket. Small and
large chunks go to this bin when freed.
○ Acts as a cache layer to speed up

allocation and deallocation requests.
○ Unsorted bin is sorted when it is iterated

over in the next call to malloc

11

0x551020
main_arena
.fastbinsY

0x10

size=0x10

bk
fd = NULL

0x50501060 …

0x20

0x50501020 size=0x20

bk
fd = 0x50501190

0x50501060

unused (16 bytes)

size=0x20

bk
fd = NULL

unused (16 bytes)

0x50501190Fastbins are a
singly-linked list,
while all other bins
are doubly-linked

Introduction to Security // Binary Analysis

Coalescence

● Two free chunks cannot be adjacent
○ If so, they should be combined into a single free chunk

● This merging of adjacent free chunks is called coalescence

● Coalescence reduces fragmentation, but makes free slower

● However, not all chunks can be coalesced:

○ Fastbin-sized chunks are not coalesced

12

Introduction to Security // Binary Analysis

Large Bin

Large bins are extra special:

● They use the size field of chunks to keep an ordered doubly-linked list of chunks
● malloc can quickly search through the Large bins to find the first big-enough chunk

13

bins[]

size=132

bk
fd_nextsize

fd

bk_nextsize

size=132

bk
fd

size=120

bk
fd_nextsize

fd

bk_nextsize

Introduction to Security // Binary Analysis

Bins Summary

14

Bin Linked-list Type Chunk Size Range Coalescing

Fast Singly-linked 0x10-0x80 ❌
Small Doubly-linked 0x80-0x400 ✅
Large Doubly-linked 0x400+ ✅

Unsorted Doubly-linked Small and Large
chunks

❌

Introduction to Security // Binary Analysis

Thread-Local Cache (tcache)
● Introduced in libc 2.26 to improve heap performance
● Similar to fastbins, but with less restrictions/security checks

○ 64 buckets, 0x10-0x400 sizes, up to 7 chunks per bucket
● It is allocated with malloc, so it resides on the heap, instead of the libc

15

entries[]

Heap
size=0x30

next
size=0x30

next

counts[]

…
…
2
…

Tcache
0x10
0x20
0x30

…

X

Introduction to Security // Binary Analysis

Thread-Local Cache (tcache)

16

static void tcache_put
(mchunkptr chunk, size_t tc_idx) {
tcache_entry *e = (tcache_entry *)

chunk2mem (chunk);

e->next = tcache->entries[tc_idx];
tcache->entries[tc_idx] = e;
++(tcache->counts[tc_idx]);

}

void *tcache_get (size_t tc_idx){
tcache_entry *e =

tcache->entries[tc_idx];

tcache->entries[tc_idx] = e->next;
--(tcache->counts[tc_idx]);
return (void *) e;

}

Tcache Put Tcache Get

glibc-2.27

Introduction to Security // Binary Analysis 17

Heap Vulnerabilities:
Use After Free

Introduction to Security // Binary Analysis

Use After Free (UAF)

18

char *x = malloc(0x40);
printf("%p\n", x); // 0x505020
free(x);
fgets(x, 0x40, stdin); // UAF

● UAFs are a kind of vulnerability where a given
chunk is used (read or written to) after it was
deallocated (returned back to the libc)

● UAFs can be achieved by using dangling
pointers
○ dangling pointers are references to data that

has been free’d
○ There are no guarantees on data referenced by

a dangling pointer.
○ In fact, they likely contain heap or libc addresses

(fd and bk pointers)

Introduction to Security // Binary Analysis

Use After Free - Security Concerns

● Memory dereferenced through UAF is usually valid memory, so there are no
mechanisms that prevent this from happening (like segmentation faults)

● Free chunks contain heap and libc pointers, which can be leaked through I/O
functions

● It is possible to corrupt these structures by overwriting metadata (pointers),
leading to arbitrary write primitives
○ Arbitrary write is a very strong primitive that can be escalated to full control-flow

hijacking attacks
● Hard to avoid, since memory management in C is manual

19

Introduction to Security // Binary Analysis

Use After Free - Double-Free

● A subclass of UAF, where the same chunk is free’d twice

● Simple to exploit a few libc versions ago when the security checks on the tcache and
the fastbin were lackluster

● Idea:
a. Free a chunk of a given size twice. It will be inserted in a bin (or tcache) twice, so the fd

pointer will point to itself
b. Allocate a chunk of the same size. The chunk that was just free’d twice will be returned
c. The chunk will now be allocated, but still present in a free list
d. Overwrite the fd pointer to the desired location
e. Allocate two more chunks of the same size. The second chunk will be located in an

attacker-specified location

20

Introduction to Security // Binary Analysis

Tcache Dup Attack

21

0x20[]

Tcache

0x30[]

0x40[]

…

Heap
0x20

…

a = malloc(0x20)

0x504020

Variables:
a = 0x504028

Introduction to Security // Binary Analysis

Tcache Dup Attack

22

0x20[]
size=0x20

next=0

Tcache

0x30[]

0x40[]

free(a)

…

Heap
0x20

0
0x504020

Variables:
a = 0x504028

0x504020

Introduction to Security // Binary Analysis

Tcache Dup Attack

23

0x20[]

Tcache

0x30[]

0x40[]

free(a)

…

Heap
0x20

0x504020

size=0x20
next=0x504020

size=0x20
next=0x504020 0x504020

Variables:
a = 0x504028

0x504020 0x504020

Introduction to Security // Binary Analysis

Tcache Dup Attack

24

0x20[]

Tcache

0x30[]

0x40[]

b = malloc(0x20)

…

Heap
0x20

0x504020

Variables:
a = 0x504028
b = 0x504028

0x504020

0x504020

size=0x20
next=0x504020

Introduction to Security // Binary Analysis

Tcache Dup Attack

25

0x20[]
size=0x20

next=&free@got

Tcache

0x30[]

0x40[]

write(b) -> &free@got

…

Heap
0x20

&free@got

Variables:
a = 0x504028
b = 0x504028

0x504020
size=???
free@libc ❌

0x504020

Introduction to Security // Binary Analysis

Tcache Dup Attack

26

0x20[]

Tcache

0x30[]

0x40[]

c = malloc(0x20)

…

Heap
0x20

&free@got

Variables:
a = 0x504028
b = 0x504028
c = 0x504028

0x504020
size=???
free@libc ❌

free@got

Introduction to Security // Binary Analysis

Tcache Dup Attack

27

0x20[]

Tcache

0x30[]

0x40[]

d = malloc(0x20)

…

Heap
0x20

&free@got

Variables:
a = 0x504028 d = free@got
b = 0x504028
c = 0x504028

0x504020❌

malloc returns a
pointer to free@got
from the tcache

Introduction to Security // Binary Analysis

Tcache Dup Attack

28

0x20[]

Tcache

0x30[]

0x40[]
write(d) = &system …

Heap
0x20

&free@got

Variables:
a = 0x504028 d = free@got
b = 0x504028
c = 0x504028

0x504020❌

GOT entry of free is
now overwritten with
&system. Next time
free is called, system
will execute instead

Introduction to Security // Binary Analysis

Tcache Dup Attack

29

0x20[]

Tcache

0x30[]

0x40[]

write(c) = “/bin/sh”

…

Heap
0x20

“/bin/sh”

Variables:
a = 0x504028 d = free@got
b = 0x504028
c = 0x504028

0x504020❌

Introduction to Security // Binary Analysis

Tcache Dup Attack

30

0x20[]

Tcache

0x30[]

0x40[]

free(c)

…

Heap
0x20

“/bin/sh”

Variables:
a = 0x504028 d = free@got
b = 0x504028
c = 0x504028

0x504020❌

system(0x504028 -> ”/bin/sh”)

Introduction to Security // Binary Analysis

Tcache Dup Attack

● The tcache dup attack is no longer possible in recent versions of libc due to the
mitigations introduced:

○ tcache_entry->key flag specifies whether a chunk is present in the tcache. It prevents
double-free attacks

○ tcache->next pointers are now protected.

■ xor’ed with the address of the chunk itself,

■ if it is possible to poison the next pointer, a heap leak is required

○ There is also a check on the number of entries in a given tcache bin. If the counter is at 0,
the tcache bin will be ignored

31

Introduction to Security // Binary Analysis 32

Heap Vulnerabilities:
Heap Overflow

Introduction to Security // Binary Analysis

Heap Overflow

● Just like stack-based buffer overflows, except
on the heap

● Buffer over-reads can allow attackers to leak
libc and heap pointers

● Exploitation is more nuanced than stack-based
buffer overflows,
○ There is no clear exploitation target (saved rip)
○ Depends heavily on the application

33

size=0x20

AAAAAAAAAA

AAAAAAAAAA

bk
AAAAAAAAAA

unused (16 bytes)

size
fd

size=0x40

data

Allocated
Chunk

Free
Chunk

Allocated
Chunk

Overflow

Introduction to Security // Binary Analysis

Heap Overflow - What can they achieve?

● Overwrite data, changing the behavior of an application
○ I.e., changing control variables, pointers stored on the heap, etc.

● Manipulating chunk metadata
○ In some applications, a single null-byte overflow can be escalated to a full exploit that

spawns a shell

34

Introduction to Security // Binary Analysis 35

Heap Exploitation Techniques
and Targets

Introduction to Security // Binary Analysis

Heap Attack Techniques - Glossary

● Unsafe Unlink (historical) - Abuse the UNLINK macro, called when moving chunks
from the smallbin list, to achieve an arbitrary write primitive (requires UAF/BOF/etc.)

● Tcache/Fastbin Poisoning - Overwriting the next/fd pointer of a chunk in a fastbin or
a tcache list to hijack the return value of malloc

● Chunk Forging - Create a “fake chunk” at an attacker-controlled memory location

● Overlapping Chunks - Corrupt chunk metadata to achieve a heap layout where a
free chunk is located inside an allocated chunk

● Heap Spraying - In the absence of heap leaks, payloads can be placed repeatedly
(sprayed) across the heap, increasing the odds of a correct guess, like in a NOP slide

36

Introduction to Security // Binary Analysis

Heap Attack Techniques - Overlapping Chunks

37

size=0x20

…

0x21size
fd

size=0x41

data

Allocated
Chunk

Allocated
Chunk

Allocated
Chunk

data

● A single null-byte overflow can be used to
overwrite the prev in use bit of an allocated
chunk

● When free’d, if possible, it will be coalesced
with the previous chunk, which is still
allocated

● An attacker can then request a new chunk
(malloc) and obtain a reference to an
already allocated chunk

● After freeing it, the attacker just obtained a
dangling pointer to a free chunk

Introduction to Security // Binary Analysis

Heap Attack Techniques - Overlapping Chunks

● A single null-byte overflow can be used to
overwrite the prev in use bit of an allocated
chunk

● When free’d, if possible, it will be coalesced
with the previous chunk, which is still
allocated

● An attacker can then request a new chunk
(malloc) and obtain a reference to an
already allocated chunk

● After freeing it, the attacker just obtained a
dangling pointer to a free chunk

38

size=0x20

AAAAAAAAAA

0x20size
fd

size=0x41

data

Allocated
Chunk

Allocated
Chunk

Allocated
Chunk

Overflow

data

Introduction to Security // Binary Analysis

Attack Targets

● Common goal: Hijack Control-flow and achieve arbitrary code execution

● Arbitrary reads/writes are the most valuable primitives
○ Can be achieved through the attack techniques we’ve seen, and many more!

● There are several possible targets that allow hijacking control-flow:
○ malloc/free hooks
○ exit handlers
○ GOT overwrite
○ application specific points of failure (C++ vtables, global function pointers, etc.)

39

Introduction to Security // Binary Analysis

Attack Targets - Hooks

● Older versions of glibc allow registering hooks, i.e., functions that are called before
certain functions, with the same arguments as the original

● __malloc_hook, __free_hook, __realloc_hook are examples of hooks that
make for excellent exploitation targets
○ An attacker can overwrite thee __free_hook with system, and make the program free

a chunk that contains the string “/bin/sh” to obtain a shell, since the hook (now system)
is called with the argument of free (“/bin/sh”)

● Hooks have been removed in recent versions of libc, since they were mostly used for
exploitation instead of debugging…

40

Introduction to Security // Binary Analysis

Attack Targets - Exit Handlers

● When calling the libc exit function, all handlers registered through atexit() and
on_exit() are called, before the call to the _exit() syscall

● An attacker can populate these lists with an arbitrary write primitive to hijack the
instruction pointer

● Current versions of libc “mangle” (xor) these pointers with a global key

41

If an attacker can leak this key, they can forge “mangled” pointers.

Depending on the libc compilation, this global key could be writable. An
attacker can overwrite it with 0 to effectively disable this mitigation.

Introduction to Security // Binary Analysis

Attack Targets - GOT Overwrite

● The Global Offset Table contains the addresses of libc functions used in the program

● It is referenced by the Procedure Linkage Table – a jump table present in the .plt
section of the ELF binary that resolves library addresses at runtime

● By overwriting GOT entries, an attacker can hijack the instruction pointer when a
given function is called
○ i.e., replacing printf@got with system

● Programs can be compiled with the FULL RELRO protection to make the GOT
read-only
○ this is not a default compiler option since it greatly slows startup time, since all library

symbols must be resolved before the program starts, every time it is executed.

42

Introduction to Security // Binary Analysis 43

Securing your Software

Introduction to Security // Binary Analysis

Safe Dynamic Memory

● Do not access freed memory

● Free memory when no longer needed

● Guarantee that enough memory is
allocated for the given object

● Remove dangling pointers by setting
them to NULL after freeing

44

struct node {
 int value;
 struct node *next;
};

void insecure_free_list(struct node *head) {
 for (struct node *p = head; p != NULL;

p = p->next) {
 free(p);

 }
}

void secure_free_list(struct node *head) {
 struct node *q;
 for (struct node *p = head; p != NULL;

p = q) {
 q = p->next;
 free(p);

 }
}

p->next is accessed
after p is freed

Introduction to Security // Binary Analysis

Safe String and I/O operations

● Make sure all strings are null terminated

● Guarantee that storage for strings has
enough space for data and the null
terminator

● Use the n version of string functions
(strncpy, strncmp, strncat, etc.)
○ Ensure that the function you are using

writes the string terminator character

45

void copy(size_t n, char src[n],
char dest[n]) {

 size_t i;

 for (i=0; src[i] && (i<n-1); ++i) {
 dest[i] = src[i];
 }

 dest[i] = '\0';
}

Introduction to Security // Binary Analysis

Safe String and I/O operations

● Define maximum size macros and use
them when declaring arrays, and as
arguments to string functions

● Use “safe” I/O functions like fgets

● Check the result of I/O operations
○ return value informs if there was an

error

46

#define MAX_LEN 0x20

int main(){
 char buffer[MAX_LEN];
 if (fgets(buffer, MAX_LEN, stdin)) {
 p = strchr(buf, '\n');
 if (p) {
 *p = '\0';

 } else { /* Handle error */ }

 printf("%s\n", buffer);
 return 0;
}

Follow a security-focused coding standard!
https://resources.sei.cmu.edu/downloads/secure-coding/assets/sei-cert-c-coding-standard-2016-v01.pdf

https://resources.sei.cmu.edu/downloads/secure-coding/assets/sei-cert-c-coding-standard-2016-v01.pdf

Introduction to Security // Binary Analysis

Resources

● Malloc security checks -
https://heap-exploitation.dhavalkapil.com/diving_into_glibc_heap/security_checks

● Malloc internals - https://www.sourceware.org/glibc/wiki/MallocInternals

● How2heap - https://github.com/shellphish/how2heap

● Glibc source code - https://elixir.bootlin.com/glibc/latest/source

● Temple of PWN -
https://www.youtube.com/playlist?list=PLiCcguURxSpbD9M0ha-Mvs-vLYt-VKlWt

● LiveOverflow - https://www.youtube.com/playlist?list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN

● GEF gdb extension - https://github.com/hugsy/gef

47

https://heap-exploitation.dhavalkapil.com/diving_into_glibc_heap/security_checks
https://www.sourceware.org/glibc/wiki/MallocInternals
https://github.com/shellphish/how2heap
https://elixir.bootlin.com/glibc/latest/source
https://www.youtube.com/playlist?list=PLiCcguURxSpbD9M0ha-Mvs-vLYt-VKlWt
https://www.youtube.com/playlist?list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN
https://github.com/hugsy/gef

