
Introduction to Security // Symbolic Execution

Introduction to Security (192.019)

Security & Privacy Research Unit (192-06)
https://secpriv.wien

Symbolic Execution

Lorenzo Veronese

Introduction to Security // Symbolic Execution

Outline

● Introduction to SMT Solvers and the Z3 theorem prover
○ Goal: understand one of the main building blocks of symbolic execution

● Symbolic execution using angr
○ Goal: apply the theory of symbolic execution using a practical binary analysis framework

2

Introduction to Security // Symbolic Execution

Satisfiability Modulo Theories (SMT)

3

Introduction to Security // Symbolic Execution

Satisfiability Modulo Theories (SMT) Problem Statement

● Boolean Satisfiability Problem (SAT)
Is there an interpretation of variables that makes a given formula true?

 is sat is unsat
○ SAT is NP-complete!

● Satisfiability Modulo Theories (SMT)
Formulas in which some symbols have a specific interpretation:
○ e.g, linear arithmetic constraints, arrays, uninterpreted functions, bit-vectors

4

Introduction to Security // Symbolic Execution

Z3 Theorem Prover Efficient SMT Solver

● Z3 is a theorem prover from Microsoft Research that can
efficiently solve SMT problems (and more!)

● It can be used as a standalone executable or as a library
○ We will use the python bindings:

5

Released February 2007

Size 500K+ loc

License MIT

Bindings python, c/c++, ocaml, java, …

pip install --user z3-solver

Introduction to Security // Symbolic Execution

Z3 Theorem Prover Example

6

● A formula is satisfiable if it has an interpretation that makes it logically true
● A formula is valid if it is logically true in any interpretation

Satisfiability

Is this formula satisfiable?

from z3 import *

p = Bool('p')

q = Bool('q')

r = Bool('r')

s = Solver()

s.add(Or(p, Not(q)), Or(Not(p), q, r), Not(p))

print(s.check())

print(s.model())

sat

[p = False, q = False, r = False]

Introduction to Security // Symbolic Execution

Z3 Theorem Prover Example

7

● A formula is satisfiable if it has an interpretation that makes it logically true
● A formula is valid if it is logically true in any interpretation

Validity

Is this formula valid?

 (De Morgan)

It is equivalent to show that:
 is unsatisfiable

from z3 import *

p = Bool('p')

q = Bool('q')

s = Solver()

s.add(Not(Not(Or(p, q)) == And(Not(p), Not(q))))

print(s.check()) unsat

Introduction to Security // Symbolic Execution

Z3 Theorem Prover Example

8

● A formula is satisfiable if it has an interpretation that makes it logically true
● A formula is valid if it is logically true in any interpretation

Theories

 (Mathematical) Integers BitVectors (Machine Integers)
from z3 import *

x = BitVec('x', 32)

y = BitVec('y', 32)

s = Solver()

s.add(Extract(31,24, x) == 10)

s.add(x + y == 23)

s.check()

print s.model()

from z3 import *

x = Int('x')

y = Int('y')

s = Solver()

s.add(2*x + y == 12)

s.add(x == 14)

s.check()

print s.model() [x = 14, y = -16] [y = 4127195159, x = 167772160]

Introduction to Security // Symbolic Execution

CTF Challenge

9

RE3: Catalyst System AlexCTF 2017 Reversing 150 points

● Simple crackme challenge: find the password to get the flag
● Our running example for today

Introduction to Security // Symbolic Execution

CTF Challenge

10

// these are unsigned int

We want to reach this program point

We can use Z3 to solve the if condition for us

Introduction to Security // Symbolic Execution

CTF Challenge

11

// these are unsigned int

from z3 import *

s = Solver()

username0 = BitVec('username0', 32)

username1 = BitVec('username1', 32)

username2 = BitVec('username2', 32)

uVar1 = BitVec('uVar1', 32)

uVar2 = BitVec('uVar2', 32)

s.add(uVar1 == username1)

s.add(uVar2 == username2)

s.add((uVar2 + (username0 - uVar1) == 0x5c664b56))

s.add((username0 + uVar2) * 3 + uVar1 == 0x2e700c7b2)

s.add((uVar1 * uVar2 == 0x32ac30689a6ad314))

We declare our symbols to be 32 bit integers
The username is split into 3 4-byte symbols

We add all constraints to the solver
Note that we split the && into separate add calls

username = (username0, username1, username2)

for var in username:

 for hi,lo in [(31,24), (23, 16), (15, 8), (7, 0)]:

 byte = Extract(hi, lo, var)

 s.add(Or(And(byte >= ord('a'), byte <= ord('z')), byte == ord('_')))

The solver gives us one of the possible solutions in
no particular order.

Normally we are interested in a specific solution:
All username chars are lowercase letters or `_`

Introduction to Security // Symbolic Execution

CTF Challenge

12

// these are unsigned int

if s.check() == sat:

m = s.model()

print(m)

print(b''.join(

struct.pack('I', m[x].as_long())

for x in username))

[username1 = 1953724780, username2 = 1868915551, username0 =
1635017059, uVar1 = 1953724780, uVar2 = 1868915551]

b'catalyst_ceo'

��

Introduction to Security // Symbolic Execution

Symbolic Execution with angr

13

Introduction to Security // Symbolic Execution

Symbolic Execution Brief Recap

● Symbolic execution is a technique for reachability analysis that tries to explore all
possible execution paths of a program
○ Originally introduced by James C. King in a 1976 paper as a static analysis technique for

software testing

Key Ideas:
● Each input variable is associated with a symbol int i; → α
● Each symbol represents a set of input variables α ∈ [0, 232−1]
● Program statements generate formulas over symbols i * 2 + 5 → 2α + 5

14

Introduction to Security // Symbolic Execution

Symbolic Execution Conditional Branching

Fork the execution and consider each possible branch
● Every path accumulates path conditions

○ We can check these formulas automatically with Z3!

15

Introduction to Security // Symbolic Execution

Symbolic Execution Limitations

Not everything can be solved symbolically

● Loops and Path Selection
If there are too many branches or loops the number of program paths may be too
large to handle efficiently
○ Solution: We can put a bound in the number of loop iterations or change the search

strategy. For instance, DFS may not terminate for infinite loops, but BFS can!

● Complex functions
Some code may be too complex to analyze with a theorem prover
○ Solution: We can replace that code with a formula that summarizes its behavior without

symbolically evaluating it. This technique is known as symbolic summaries.

16

Introduction to Security // Symbolic Execution

The angr binary analysis platform

17

Binary Loader Intermediate
Representation

Data Model
Abstraction

x86 AMD64

ARM ARM64

MIPS MIPS64

PyVEX
Valgrind VEX IRCLE claripy

Z3 Theorem Prover

α ∈ [0, 232−1]

angr is an open-source binary analysis platform for Python. It combines both static
and dynamic symbolic ("concolic") analysis, providing tools to solve a variety of tasks.

https://angr.io

A symbolic execution engine

A collection of static analysis procedures
for binary programs

Includes a disassembler and decompiler

Introduction to Security // Symbolic Execution

The angr binary analysis platform

18

SimState
Represents a simulated program state

Execution state at a specific program point

Project
Loads the binary into memory

Entrypoint to all analyses

SimulationManager
The primary interface for performing symbolic execution

Manages a set of SimStates
Analyses
AnalysesAnalyses

e.g., CFG, Backward Slicing, Disassembly,
Decompilation

Introduction to Security // Symbolic Execution

The angr binary analysis platform Project

19

Challenge

Let’s use angr to open the catalyst challenge!

We can, for instance, create a CFG (control flow graph)
and decompile the main function:

import angr

p = angr.Project("./catalyst", auto_load_libs=False)

cfg = p.analyses.CFGFast(normalize=True)

print(

 p.analyses.Decompiler(cfg.functions['main'])

 .codegen.text

)

Project
Loads the binary into memory

Entrypoint to all analyses

arch Program architecture

entry Program Entrypoint

filename Loaded file name

analyses List of analyses

factory Factory methods for this
project

Introduction to Security // Symbolic Execution

The angr binary analysis platform SimState

20

Challenge

We can use the project factory to create SimStates:

creates a mostly-uninitialized state;

creates a stete in the entry point of the program;

Is the state at the start of a the function at addr
with … arguments

p.factory.blank_state()

SimState
Represents a simulated program state

including its memory, registers, and so forth at a specific execution point

regs Register values

mem Memory of the state

solver A reference to the solver
for this state (including all
constraints)

step() Perform one step of
symbolic execution

p.factory.entry_state()

p.factory.call_state(addr, …)

The solver object allows us to add additional
constraints to the state:

state.solver.add(…)

Introduction to Security // Symbolic Execution

The angr binary analysis platform SimulationManager

21

SimulationManager
The primary interface for performing symbolic execution

Manages a set of SimStates

step() Step a stash (set) of states
forward and categorize the
successors appropriately

explore(find,
 avoid)

Perform multiple symbolic
execution steps looking for
condition find and avoiding
avoid. Both values can be
addresses or functions
returning a boolean.

Challenge

We can create a Simulation manager by calling the
simgr factory, passing an initial state:

Active states (which will be executed) are stored in
the active attribute:

st = p.factory.entry_state()

simgr = p.factory.simgr(st)

simgr.step()

simgr.active

Introduction to Security // Symbolic Execution

Catalyst Challenge Revisited Finding the username

22

We want to reach this program point

and avoid this

We can setup a call_state at the start of the function passing a
symbolic username and use a SimulationManager to explore

until the return!

Introduction to Security // Symbolic Execution

Catalyst Challenge Revisited Finding the username

23

We want to reach this program point

and avoid this

We can setup a call_state at the start of the function passing a
symbolic username and use a SimulationManager to explore

until the return!

import claripy

def username(p):

name = claripy.BVS("name", 12 *8)

st = p.factory.call_state(

 0x00400cdd,

 angr.PointerWrapper(name, buffer=True))

simgr = p.factory.simgr(st)

simgr.explore(find=0x400d90, avoid=0x400d8b)

return simgr.found[0].solver.eval(name,

 cast_to=bytes)

name = username(p)
name
>>> b'catalyst_ceo'

create a “name” bit
vector (symbol) of 12

bytes

create a call_state passing
the name as a pointer

explore with the simgr

The claripy library wraps the z3
theorem prover and it is used to
create angr-compatible symbols

We could use the name
symbol to add constraints to

the state:

st.solver.add(
 name.get_byte(0) >= b’a’)

Introduction to Security // Symbolic Execution

The angr binary analysis platform Hooks and SimProcedures

24

SimProcedure
Represents a simulated procedure or function summary

run() Execute the procedure

state The SimState where
the procedure is
running

We can replace any arbitrary sequence of bytes in the
binary with a SimProcedure:

Or Replace entire functions:

p.hook(ADDR, hook=SIMPROCEDURE, length=N)

p.hook_symbol(FN_NAME, SIMPROCEDURE)

Some functions may be too complex to be
symbolically executed efficiently

We can replace such functions with their symbolic summary, a function
written in Python that interacts directly with the SimState and is executed

instead of the real function during symbolic execution

Introduction to Security // Symbolic Execution

Catalyst Challenge Revisited Finding the password

25

Introduction to Security // Symbolic Execution

Catalyst Challenge Revisited Finding the password

26

class NotVeryRand(angr.SimProcedure):

 def run(self, return_values):

 rand_idx = self.state.globals.get('rand_idx', 0) % len(return_values)

 out = return_values[rand_idx]

 self.state.globals['rand_idx'] = rand_idx + 1

 return out

state.globals is copied to the new
state after every step

import ctypes

libc = ctypes.cdll.LoadLibrary("libc.so.6")

libc.srand(

 sum(struct.unpack("I", name[i:i+4])[0] for i in range(0, len(name), 4))

)

p.hook_symbol('rand', NotVeryRand(return_values=[libc.rand() for _ in range(10)]))

p.hook_symbol('srand', lambda _:None)

We generate the seed by adding
together the 3 pieces of the

username

Now rand is a procedure that always
returns the same values

We don’t care about srand so we
replace it with an empty function

Introduction to Security // Symbolic Execution

Catalyst Challenge Revisited Finding the password

27

def password(p):

passwd = claripy.BVS("passwd", 40 * 8)

st = p.factory.call_state(0x00400977,

 angr.PointerWrapper(name, buffer=True),

 angr.PointerWrapper(passwd, buffer=True))

angr doesn't like this loop, so let's skip it :)

p.hook(0x00400a46, hook=lambda _:None, length=6)

simgr = p.factory.simgr(st)

simgr.explore(find=0x400c40)

return simgr.found[0].solver.eval(passwd, cast_to=bytes)

passwd = password(p)
print(passwd)
>>> b'sLSVpQ4vK3cGWyW86AiZhggwLHBjmx9CRspVGggj'

Introduction to Security // Symbolic Execution

The angr binary analysis platform Files and SimFiles

28

SimFile
Represents an open file

seek(where) Seek to a position in the file

read_from(len) Read some (symbolic) data
from the current position in the
file

SimState.posix
Information about the operating system

files List of open file descriptors

dumps(fd) Returns the concrete content
for a file descriptor

angr can also reason about file I/O

Introduction to Security // Symbolic Execution

Catalyst Challenge Revisited Printing the Flag

29

def get_flag(p, username, passwd):

 st = p.factory.call_state(0x00400876,

 angr.PointerWrapper(name, buffer=True),

 angr.PointerWrapper(passwd, buffer=True))

 simgr = p.factory.simgr(st)

 simgr.explore(find=0x004008ef)

 return simgr.found[0].posix.dumps(1).split(b'\n')[0]

print(get_flag(p, name, passwd))

>>> b'your flag is: ALEXCTF{1_t41d_y0u_y0u_ar3__gr34t__reverser__s33}'

Symbolic execution is “execution” so
we can run the get_flag function and

read the stdout!

Introduction to Security // Symbolic Execution

Thank You!
Q&A

Lorenzo Veronese <lorenzo.Veronese@tuwien.ac.at>

30

