PL1

b)	Kreuzen Sie Zutreffendes an (ϕ und ψ sind Formeln):		
	(Check the correct answer (ϕ and ψ are formulas):)		
	1. Wenn die Formel ψ erfüllbar, aber nicht gültig ist, so ist $\psi \to \neg \psi$ (If the formula ψ is satisfiable but not valid, then $\psi \to \neg \psi$ is also		
710	2. Wenn $\phi \models \psi$ gilt, so sind alle Modelle von ψ auch Modelle von ϕ (If $\phi \models \psi$ holds, then all models of ψ are models of ϕ)		
74 101	3. Wenn die Formel $\phi \to \neg \psi$ gültig ist, dann ist auch $\phi \lor \psi$ erfüllba		
Û	4. Wenn die Formel $\phi \to \psi$ gültig und $\neg \psi$ erfüllbar, aber nicht g unerfüllbar sein. $\not \to \psi$ $\neg \psi$ $\neg \psi$ (If the formula $\phi \to \psi$ is valid and $\neg \psi$ is satisfiable, but not valunsatisfiable.)	$-$ lid, then ϕ must	
b)	Kreuzen Sie die zutreffende Antwort an:		
	1. $p \lor q$ ist eine logische Konsequenz von $\neg (p \to q)$. $(p \lor q)$ is a logical consequence of $\neg (p \to q)$.)		
	2. Die Aussage $(p \to q) \to \neg q \models \neg p$ gilt.	richtig □	falsch □
	(The statement $(p \to q) \to \neg q \models \neg p \text{ holds.}$)	richtig	falsch □
	3. Zwei syntaktisch unterschiedliche Formeln können niemals (Two syntactically distinct formulas can never have the same		lle haben.
		richtig \square	falsch \square
	4. $W \cup \{\phi\} \models \neg \psi$ gilt genau dann, wenn $W \cup \{\psi\} \models \neg \phi$. $(W \cup \{\phi\} \models \neg \psi \text{ iff } W \cup \{\psi\} \models \neg \phi.)$	richtig 🗆	falsch □
		(6	Punkte)

1. Seien α , β und γ aussagenlogische Sätze. Falls $\alpha \models \gamma$ oder $\beta \models \gamma$ gilt, so gilt auch	
$\alpha \wedge \beta \models \gamma$. (For any propositional sentences α , β , γ , if at least one of $\alpha \models \gamma$ and $\beta \models \gamma$ holds	
then $\alpha \land \beta \models \gamma$.	
then $\alpha \land \beta \models \gamma$.) 2. Seien α , β und γ aussagenlogische Sätze. Falls $\alpha \land \beta \models \gamma$ gilt, so gilt $\alpha \models \gamma$ oder	
2 L - ados os golton horizo	
(For any propositional sentences α , β , γ , if $\alpha \wedge \beta \models \gamma$ holds, then at least one of	
$\alpha \models \gamma \text{ or } \beta \models \gamma \text{ holds.}$ $\qquad \qquad $	
3. Aus $\neg A \lor \neg B \lor C$ folgt $\neg A \lor \neg B$.	
(The clause $\neg A \lor \neg B \lor C$ entails the clause $\neg A \lor \neg B$.)	
4. Eine aussagenlogische Klausel ist genau dann gültig, wenn sie die Literale A und $\neg A$	
für eine aussagenlogische Variable A enthält.	
(For a propositional clause to be valid, it must contain literals A and $\neg A$ for some propositional variable A .)	
(6 Punkte)	
c) Kreuzen Sie Zutreffendes an (Check the correct answers):	
1. Eine Formel φ folgt logisch aus einer Wissensbasis T genau dann wenn (A formula φ	
follows logically from a knowledge base T if and only if)	
$- \forall I: I \models T \Rightarrow I \models \varphi,$	
□ correct □ wrong	-
$- \forall I: I \models T \text{ and } I \models \varphi,$ $\swarrow \text{correct} \Box \text{ wrong}$	
$-\neg \exists I: I \models T \text{ and } I \not\models \varphi.$	9
$- \neg \exists I : I \models I \text{ and } I \not\models \emptyset.$ \bigvee $\Box \text{ correct } \bigvee \text{wrong}$	
	90
Eine Formel ist genau dann erfüllbar wenn ihre Negation nicht gültig ist. (A formula is satisfiable if and only if its negation is not valid.)	
x correct □ wrong	
3. Ist φ unerfüllbar, so ist $\forall x(\varphi \to \psi)$ gültig für beliebiges ψ . (If φ is unsatisfiable, then	
$\forall x(\varphi \rightarrow \psi)$ is valid for arbitrary ψ .)	
★ correct □ wrong	
4. Ist $\forall x(\varphi \to \psi)$ gültig, so ist φ erfüllbar. (If $\forall x(\varphi \to \psi)$ is valid, then φ is satisfiable).	
□ correct \wrong	
5. Sei $\varphi(x)$ eine Formel mit einer freien Variable x . Ist $\forall x (\varphi(x) \to \bot)$ gültig, dann ist	100
$\exists x \varphi(x)$ erfüllbar. (Let $\varphi(x)$ be a formula with one free variable x . If $\forall x (\varphi(x) \to \bot)$ is valid, then $\exists x \varphi(x)$ is satisfiable.)	
★correct □ wrong	7.
6. Um die Gijltigkeit einer Formel der Form e. vet in TC1 zu zeinen betreit ist	1
6. Um die Gültigkeit einer Formel der Form φ → ψ in TC1 zu zeigen, betrachten wir die Formel φ ∧ ¬ψ. Falls ⊭ φ → ψ gilt, so gibt es ein geschlossenes Tableau für φ ∧ ¬ψ und somit ist φ → ψ gültig.	1
(To prove the validity of a formula of the form $\varphi \to \psi$ in TC1, we consider the formula	
$\varphi \wedge \neg \psi$. If $\not\models \varphi \to \psi$, then there exists a closed tableau for $\varphi \wedge \neg \psi$ and so $\varphi \to \psi$ is	
valid.)	1
▼ correct □ wrong	4

c) Kreuzen Sie Zutreffendes an (Check the correct answers):			
1. Wenn ⊨ \(\sigma\) \(\delta\) denn ⊨ \(\alpha\) ader \(\delta\) \((\delta\))			
1. Wenn $\models \varphi \lor \psi$, dann $\models \varphi$ oder $\models \psi$. (If $\models \varphi \lor \psi$, then			
2. $\models \exists x (P(x) \land Q(x)) \leftrightarrow (\exists x P(x)) \land (\exists x Q(x))$	□ co		wrong
	Осо	rrect	wrong
 Eine Wissensbasis welche aus Formeln besteht, welche Variablen und ⊤ bestehen, kann nicht inkonsistent s only consists of formulas built from ∧, ∨, proposition inconsistent.) 	ein. (A kno	wledge bas	e which
			wrong
4. $\forall x (P(x) \to \varphi) \models (\exists x P(x)) \to \varphi$ falls x in φ nicht froccurrence in φ .)	ei vorkomn	nt. (if x has	s no free
			□ wrong
5. $\models \varphi \rightarrow \psi \lor \chi \iff \nexists I : I \models \varphi \text{ und (and) } I \not\models \psi \text{ und}$	(and) $I \neq \gamma$	K-	
		orrect	□ wrong
6. Für jede Formel $\varphi(x)$ und jede Interpretation I gilt			
$\neg \varphi(x)$. (For every formula $\varphi(x)$ and all interpretation $I \models \neg \varphi(x)$).	is I we eith	er nave I	$=\varphi(x)$ or
		correct	
		correct	
		correct	□ wrong
$I \models \neg \varphi(x)$).		correct	□ wrong
$I \models \neg \varphi(x)$). d) Kreuzen Sie Zutreffendes an:		correct	□ wrong
$I \models \neg \varphi(x)$). d) Kreuzen Sie Zutreffendes an: 1. Nur erfüllbare Formeln sind gültig. 2. TC1 erfüllt die Eigenschaft Completeness: Wenn ϕ unerfüllbar i	□ c	(3	□ wrong
$I \models \neg \varphi(x)$). d) Kreuzen Sie Zutreffendes an: 1. Nur erfüllbare Formeln sind gültig.	□ richtig	(3) (4) (5) (5) (6) (7) (7) (8) (9)	□ wrong Act Punks
 I ⊨ ¬φ(x)). d) Kreuzen Sie Zutreffendes an: 1. Nur erfüllbare Formeln sind gültig. 2. TC1 erfüllt die Eigenschaft Completeness: Wenn φ unerfüllbar i senes TC1-Tableau für φ. 	□ richtig ist, gibt es ei	(3	□ wrong Act Punks
 I ⊨ ¬φ(x)). d) Kreuzen Sie Zutreffendes an: Nur erfüllbare Formeln sind gültig. 2. TC1 erfüllt die Eigenschaft Completeness: Wenn φ unerfüllbar is senes TC1-Tableau für φ. 3. TC1 terminiert, wenn die zu beweisende Formel erfüllbar ist. 	□ richtig ist, gibt es ei	(3) (4) (5) (5) (6) (7) (7) (8) (9) (9) (10)	□ wrong Act Punk
 I ⊨ ¬φ(x)). d) Kreuzen Sie Zutreffendes an: Nur erfüllbare Formeln sind gültig. 2. TC1 erfüllt die Eigenschaft Completeness: Wenn φ unerfüllbar is senes TC1-Tableau für φ. 3. TC1 terminiert, wenn die zu beweisende Formel erfüllbar ist. 	□ richtig ist, gibt es ei	(3) (4) (5) (5) (6) (7) (7) (8) (9)	□ wrong Act Punk(a)
 I ⊨ ¬φ(x)). d) Kreuzen Sie Zutreffendes an: Nur erfüllbare Formeln sind gültig. 2. TC1 erfüllt die Eigenschaft Completeness: Wenn φ unerfüllbar is senes TC1-Tableau für φ. 3. TC1 terminiert, wenn die zu beweisende Formel erfüllbar ist. 	□ richtig ist, gibt es ei	(3) (4) (5) (5) (6) (7) (7) (8) (9) (9) (10)	wrong Act Punks
 I ⊨ ¬φ(x)). d) Kreuzen Sie Zutreffendes an: Nur erfüllbare Formeln sind gültig. 2. TC1 erfüllt die Eigenschaft Completeness: Wenn φ unerfüllbar is senes TC1-Tableau für φ. 3. TC1 terminiert, wenn die zu beweisende Formel erfüllbar ist. 	□ richtig ist, gibt es ei ixrichtig □ richtig üllbar sind.	(3 (5) (6) (7) (7) (8) (8) (9) (9) (10)	wrong Act Punks
 I ⊨ ¬φ(x)). d) Kreuzen Sie Zutreffendes an: Nur erfüllbare Formeln sind gültig. 2. TC1 erfüllt die Eigenschaft Completeness: Wenn φ unerfüllbar is senes TC1-Tableau für φ. 3. TC1 terminiert, wenn die zu beweisende Formel erfüllbar ist. ψ ¬ ψ ¬ ψ ¬ ψ ¬ ψ ¬ ψ α ¬ ψ α ¬ φ ∧ ψ unerfüllbar ist. 4. φ ↔ ψ ist gültig genau dann wenn φ ∧ ¬ψ und ¬φ ∧ ψ unerfüllbar ist. 	□ richtig ist, gibt es ei ixrichtig □ richtig üllbar sind.	(3 (5) (6) (7) (7) (8) (8) (9) (9) (10)	Punkse
 I ⊨ ¬φ(x)). d) Kreuzen Sie Zutreffendes an: Nur erfüllbare Formeln sind gültig. 2. TC1 erfüllt die Eigenschaft Completeness: Wenn φ unerfüllbar is senes TC1-Tableau für φ. 3. TC1 terminiert, wenn die zu beweisende Formel erfüllbar ist. ψ ¬ ψ ¬ ψ ¬ ψ ¬ ψ ¬ ψ α ¬ ψ α ¬ φ ∧ ψ unerfüllbar ist. 4. φ ↔ ψ ist gültig genau dann wenn φ ∧ ¬ψ und ¬φ ∧ ψ unerfüllbar ist. 	□ richtig ist, gibt es ei ixrichtig □ richtig illbar sind. ixrichtig	falsch falsch falsch	Punkse
 I ⊨ ¬φ(x)). d) Kreuzen Sie Zutreffendes an: Nur erfüllbare Formeln sind gültig. 2. TC1 erfüllt die Eigenschaft Completeness: Wenn φ unerfüllbar is senes TC1-Tableau für φ. 3. TC1 terminiert, wenn die zu beweisende Formel erfüllbar ist. ψ ¬ ¬ ¬ ¬ ¬ ¬ ψ ¬ ¬ ψ ¬ ¬ ψ υ ¬ φ ∧ ψ unerfüllbar ist. ψ ¬ ¬ ¬ ¬ ψ ¬ ψ υ ¬ ψ υ ¬ φ ∧ ¬ φ ∪ ¬ φ ∧ ψ υ ¬ φ ∧ ψ υ ¬ φ ∧ ψ υ ¬ φ ∧ ψ υ ¬ φ ∧ ψ υ ¬ φ ∧ ψ υ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ¬ φ ∪ ¬ φ ∧ ψ ∪	□ richtig ist, gibt es ei ixrichtig □ richtig illbar sind. ixrichtig	falsch falsch falsch	Punkse
 I ⊨ ¬φ(x)). d) Kreuzen Sie Zutreffendes an: Nur erfüllbare Formeln sind gültig. 2. TC1 erfüllt die Eigenschaft Completeness: Wenn φ unerfüllbar is senes TC1-Tableau für φ. 3. TC1 terminiert, wenn die zu beweisende Formel erfüllbar ist. ψ ¬ ¬ ¬ ¬ ¬ ¬ ψ ¬ ¬ ψ ¬ ¬ ψ υ ¬ φ ∧ ψ unerfüllbar ist. ψ ¬ ¬ ¬ ¬ ψ ¬ ψ υ ¬ ψ υ ¬ φ ∧ ¬ φ ∪ ¬ φ ∧ ψ υ ¬ φ ∧ ψ υ ¬ φ ∧ ψ υ ¬ φ ∧ ψ υ ¬ φ ∧ ψ υ ¬ φ ∧ ψ υ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ψ ∪ ¬ φ ∧ ¬ φ ∪ ¬ φ ∧ ψ ∪	□ richtig ist, gibt es ei ixrichtig □ richtig üllbar sind. ix richtig □ richtig	falsch falsch falsch falsch	Punkson

d) Kre	uzen Sie Zutreffendes an:		
-	$\neq \varphi \rightarrow \psi \iff \forall I : (I \models \varphi \text{ und } I \not\models \psi).$		
		\Box richtig	★falsch /
-	- Aus $\neg p \lor \neg q \lor r$ folgt $\neg p \lor \neg q$ (für aussagenlogische Variable	n p,q,r).	2 11 11 11 11 11
		□ richtig	 ≰falsch
-	- Ist φ unerfüllbar so ist $\forall x(\varphi \to \psi)$ gültig für beliebiges $\psi.$	1	
		Krichtig	□ falsch
-	- Nur erfüllbare Formeln sind gültig.	11	(6)
	was a sum of the second second	richtig	□ falsch
) -	- Wenn ϕ unerfüllbar ist, gibt es ein geschlossenes TC1-Tablea		
		richtig	□ falsch :
	- Für jeden geschlossenen Term t und alle first-order Formeln wenn $\models \forall x (\varphi(x) \lor \psi(x))$, dann $\models \varphi(t)$ oder $\models \psi(t)$.	φ und ψ ,	4
	weinif $= \forall x (\varphi(x) \lor \varphi(x))$, dann $= \varphi(t)$ oder $= \varphi(t)$.	□ richtig	falschwindows -
			Go to Settings to activate Window
		(6 Punkte)
d) Kr	euzen Sie Zutreffendes an:		1
ij) Aus $\neg p \lor \neg q$ folgt $\neg p \lor \neg q \lor r$.	□ richtig	⊠ falsch
ii) Wenn ϕ unerfüllbar ist,	- manag	, ansen
	gibt es ein geschlossenes TC1-Tableau für ϕ .	-□ richtig	■ falsch
iii	$I \not\models \varphi \rightarrow \psi \iff I \models \varphi \text{ und } I \not\models \psi \text{ für alle } I.$	0	(2)
		richtig	□ falsch · (O)
	$(\forall x \exists y \ \varphi \equiv \exists y \forall x \ \varphi)$ ist eine Tautologie.	richtig	□ falsch
) Falls ϕ erfüllbar ist, so ist $\neg \phi$ unerfüllbar.	□ richtig	A falsch
VI	Nur gültige Formeln sind erfüllbar.	□ richtig	Efalsch U

R richtig

□ falsch 4 Punkte

vii) $\varphi \leftrightarrow \psi$ ist gültig genau dann wenn $\varphi \land \neg \psi$ und $\neg \varphi \land \psi$ unerfüllbar sind.

d) Kreuzen Sie Zutreffendes a	an:
--	-----

i.	Die leere Konjunktion ist in allen Interpretationen wahr.	A richtig	□ falsch
ii.	Liefert eine Startformel ψ ein geschlossenes Tableau, so ist $\neg \psi$ unerfüllbar.	□ richtig	A falsch
iii.	Alle Regeln des TC1 sind deterministisch.	□ richtig	□ falsch
iv.	Keine gültige Aussage ist ungültig.	Arichtig	□ falsch ∪
v.	Für alle Interpretationen I und alle Formeln ψ gilt entweder $I \models \psi$ oder $I \models \neg \psi$.	□ richtig	& falsch
vi.	Nur gültige Formeln sind erfüllbar.	□ richtig	Ø falsch
vii.	Aus $P \wedge (Q \vee R)$ folgt $P \wedge Q$.	□ richtig	Kfalsch -
viii.	TC1 terminiert bei unerfüllbaren Formeln immer.	7 richtig	□ falsch
		V (4 Punkte)

ALCOHOL: NO		zen Sie Zutreffendes an: ck the correct answers:)			
	(a)	TC1 kann für jede Formel ein Modell erzeugen. (TC1 can produce a model for any formula.)	□ richtig (true)	falsch (false)	bring Antwork
	(b)	Die leere Disjunktion ist in allen Interpretationen v (The empty disjunction is true in every interpretati	vahr. ion.) richtig (true)	□ falsch (false)	_
	(c)	$F \cup \{\varphi\} \models \neg \psi$ genau dann, wenn $F \cup \{\psi\} \models \neg \varphi$. $(F \cup \{\varphi\} \models \neg \psi \text{ if and only if } F \cup \{\psi\} \models \neg \varphi.)$	richtig (true)	falsch (false)	
	(d)	Alle Regeln des TC1 sind deterministisch. (All rules of TC1 are deterministic.)	□ richtig (true)	□ falsch (false)	
	(e)	$\varphi \leftrightarrow \psi$ ist gültig genau dann, wenn $\varphi \leftrightarrow \neg \psi$ unerfict $(\varphi \leftrightarrow \psi$ is valid if and only if $\varphi \leftrightarrow \neg \psi$ is unsatisfial	üllbar ist. ble.) ⊠ richtig (true)	□ falsch (false)	63
	(f)	Ist φ unerfüllbar so ist $\forall x(\varphi \to \psi)$ gültig für belieb (If φ is unsatisfiable, then $\forall x(\varphi \to \psi)$ is valid for a	n arbitrary ψ.)	□ falsch (false)	(5,1)
	(g)	Falls ϕ erfüllbar ist, so ist $\neg \phi$ unerfüllbar. (If ϕ is satisfiable, then $\neg \phi$ is unsatisfiable.)	□ richtig (true)	falsch (false)	
	(h)	TC1 terminiert immer. (TC1 always terminates.)	□ richtig (true)	a falsch (false)	
			4	Punkte (points)	

d) Kreuzen Sie Zutreffendes an:	
(Check the correct answers:)	
(1) Für jede erfüllbare Aussage gibt es ein geschlossenes	TC1-Tableau.
(There is a closed TC1-tableau for every satisfiable for	ormula.)
(2) Für eine PL1-Formel φ gilt in einer Interpretation I	entweder $I \models \varphi$ oder $I \models \neg \varphi$.
(For a PL1 formula φ it holds that in any interpretat	
(There is a closed TC1-tableau for every satisfiable formula.)	⊠ richtig (true) □ falsch (false)
	□ richtig (true) 🛣 falsch (false)
(4) $F \cup \{\varphi\} \models \neg \psi$ genau dann, wenn $F \cup \{\psi\} \models \neg \varphi$.	
$(F \cup \{\varphi\} \models \neg \psi \text{ if and only if } F \cup \{\psi\} \models \neg \varphi.)$	☐ richtig (true) ☐ falsch (false)
(5) Eine Formel ist genau dann erfüllbar wenn ihre Neg (A formula is satisfiable if and only if its negation is	not valid.)
	□ richtig (true) 🖪 falsch (false)
(6) $V_{-}(D(x) \vee O(x)) \vdash V_{-}D(x) \vee V_{-}O(x)$	richtig (true) Ø falsch (false)
	a ricing (rate) & raises (raise)
	maintin (tous) Wfalsah (falsa)
	The state of the s
(8) Ist φ unerfüllbar, so ist $\exists x(\varphi \to \psi) \to \forall x(\varphi \to \psi)$ g	ültig für beliebiges ψ.
(If φ is unsatisfiable, then $\exists x(\varphi \to \psi) \to \forall x(\varphi \to \psi)$) is valid for any ψ .)
	richtig (true) □ falsch (false)
	4 Dunleto (pointo)
	4 Punkte (points)
	(37)
	(7.5)
	(7.5)
	(7.5)
e) Krouzen Sie Zutreffendes an	(2.5)
e) Kreuzen Sie Zutreffendes an: (Check the correct answers:)	(2.5)
	orrekt sein.
(Check the correct answers:)	
(Check the correct answers:) (i) Da TC1 nicht immer terminiert, kann TC1 nicht ko	
(Check the correct answers:) (i) Da TC1 nicht immer terminiert, kann TC1 nicht ko (Since TC1 does not always terminate, it must be	that TC1 is not correct.) □ richtig (true) falsch (false)
(Check the correct answers:) (i) Da TC1 nicht immer terminiert, kann TC1 nicht ker (Since TC1 does not always terminate, it must be (ii) Die leere Disjunktion ist in allen Interpretationsstr	that TC1 is not correct.) □ richtig (true) 🗖 falsch (false)
(Check the correct answers:) (i) Da TC1 nicht immer terminiert, kann TC1 nicht ko (Since TC1 does not always terminate, it must be	that TC1 is not correct.) □ richtig (true)
(Check the correct answers:) (i) Da TC1 nicht immer terminiert, kann TC1 nicht ker (Since TC1 does not always terminate, it must be (ii) Die leere Disjunktion ist in allen Interpretationsstr	that TC1 is not correct.) □ richtig (true) 🗖 falsch (false) ✓ ukturen falsch.
(Check the correct answers:) (i) Da TC1 nicht immer terminiert, kann TC1 nicht ker (Since TC1 does not always terminate, it must be (ii) Die leere Disjunktion ist in allen Interpretationsstr (The empty disjunction is false in every interpretations)	that TC1 is not correct.) □ richtig (true) falsch (false) ukturen falsch. tion structure.) □ richtig (true) falsch (false)
(Check the correct answers:) (i) Da TC1 nicht immer terminiert, kann TC1 nicht ke (Since TC1 does not always terminate, it must be (ii) Die leere Disjunktion ist in allen Interpretationsstr (The empty disjunction is false in every interpretation) (iii) Das Compactness theorem besagt: Eine (unendliche	that TC1 is not correct.) □ richtig (true) falsch (false) ukturen falsch. tion structure.) □ richtig (true) falsch (false)) Menge and Formeln ist genau dann
(Check the correct answers:) (i) Da TC1 nicht immer terminiert, kann TC1 nicht ker (Since TC1 does not always terminate, it must be (ii) Die leere Disjunktion ist in allen Interpretationsstr (The empty disjunction is false in every interpretation (iii) Das Compactness theorem besagt: Eine (unendliche erfüllbar, wenn jede endliche Teilmenge erfüllbar)	that TC1 is not correct.) □ richtig (true) falsch (false) ukturen falsch. tion structure.) □ richtig (true) falsch (false)) Menge and Formeln ist genau dann ist.
(Check the correct answers:) (i) Da TC1 nicht immer terminiert, kann TC1 nicht ke (Since TC1 does not always terminate, it must be (ii) Die leere Disjunktion ist in allen Interpretationsstr (The empty disjunction is false in every interpretation) (iii) Das Compactness theorem besagt: Eine (unendliche	that TC1 is not correct.) □ richtig (true) falsch (false) ukturen falsch. tion structure.) □ richtig (true) falsch (false)) Menge and Formeln ist genau dann ist.
(Check the correct answers:) (i) Da TC1 nicht immer terminiert, kann TC1 nicht ker (Since TC1 does not always terminate, it must be (ii) Die leere Disjunktion ist in allen Interpretationsstr (The empty disjunction is false in every interpretation) Das Compactness theorem besagt: Eine (unendliche erfüllbar, wenn jede endliche Teilmenge erfüllbar (The compactness theorem states: An (infinite) set	that TC1 is not correct.) □ richtig (true) falsch (false) ukturen falsch. tion structure.) □ richtig (true) falsch (false)) Menge and Formeln ist genau dann ist. of formulas is satisfiable, if and only
(Check the correct answers:) (i) Da TC1 nicht immer terminiert, kann TC1 nicht ker (Since TC1 does not always terminate, it must be (ii) Die leere Disjunktion ist in allen Interpretationsstr (The empty disjunction is false in every interpretation) Das Compactness theorem besagt: Eine (unendliche erfüllbar, wenn jede endliche Teilmenge erfüllbar (The compactness theorem states: An (infinite) set	that TC1 is not correct.) □ richtig (true) falsch (false) ukturen falsch. tion structure.) □ richtig (true) falsch (false)) Menge and Formeln ist genau dann ist. of formulas is satisfiable, if and only firchtig (true) □ falsch (false)
(Check the correct answers:) (i) Da TC1 nicht immer terminiert, kann TC1 nicht ker (Since TC1 does not always terminate, it must be (ii) Die leere Disjunktion ist in allen Interpretationsstr (The empty disjunction is false in every interpretation) Das Compactness theorem besagt: Eine (unendliche erfüllbar, wenn jede endliche Teilmenge erfüllbar (The compactness theorem states: An (infinite) set	that TC1 is not correct.) □ richtig (true) falsch (false) ukturen falsch. tion structure.) □ richtig (true) falsch (false)) Menge and Formeln ist genau dann ist. of formulas is satisfiable, if and only
(Check the correct answers:) (i) Da TC1 nicht immer terminiert, kann TC1 nicht ker (Since TC1 does not always terminate, it must be (ii) Die leere Disjunktion ist in allen Interpretationsstr (The empty disjunction is false in every interpretation) Das Compactness theorem besagt: Eine (unendliche erfüllbar, wenn jede endliche Teilmenge erfüllbar (The compactness theorem states: An (infinite) set	that TC1 is not correct.) □ richtig (true) falsch (false) ukturen falsch. tion structure.) □ richtig (true) falsch (false)) Menge and Formeln ist genau dann ist. of formulas is satisfiable, if and only firchtig (true) □ falsch (false)

Non Monotonic Reasoning

e) Kreuzen Sie Zutreffendes an: (Check the correct answers):			
1. Sei $T=(W,\Delta)$ eine Default Theorie mit W endlich. Der Absmöglicherweise ein unendliches W .	chluss $T = 0$	W,∆) hat	
(Let $T = (W, \Delta)$ be a default theory with finite W . Then to possibly exhibits an infinite W .)	he closure \overline{T}	$=(\overline{W},\overline{\Delta})$	
	C correct	□ wrong	
 CWA(T) is genau dann vollständig, wenn T konsistent ist exactly if T is consistent.) 	(CWA(T) i	s complete	
	□ correct	C wrong	
3. $Cn(T_1) \cup Cn(T_2) \subseteq Cn(T_1 \cup T_2)$ für alle Wissensbasen (for T_2 .	all knowledg	e bases) T ₁ ,	
	□ correct	□ wrong	
4. Es bestehe T nur aus definiten Horn Klauseln. Dann ist CW consist of definite Horn clauses only. Then $CWA(T)$ is consist	VA(T) konsistent.)	tent. (Let T	
	□ correct	□ wrong	
5. Jede Default Theorie der Form $T=(W,\emptyset)$ besitzt genau default theory of form $T=(W,\emptyset)$ has exactly one extension	eine Exten	sion. (Every	
delant theory of some	□ correct	□ wrong	36
A	& correct	□ wrong	
6. $\exists T: Cn(T) = \emptyset$.	9	(3 Punkte)	Activ Go to

ANSWER SET PROGRAMMING

	elche der folgenden Eigenschaften treffen zu? Which of the following properties hold?)			
Last	 In ASP entsprechen Beweise, und nicht Modelle, der Lösung eir (In ASP, proofs constitute the answer of search problems, not not not not not not not not not not	richtig □ von P. richtig Ø	falsch 🌣 falsch i	
		(0	1 unive)	2
(W	which of the following propositions hold?) Es gibt ein disjunktives logisches Programm P sodass P Answer S welche die Bedingung X₁ ⊂ X₂ erfüllen, d.h. sodass X₁ eine echte ist. (There is a disjunctive logic logic program P having answer set X₁ ⊂ X₂, i.e., such that X₁ is a strict subset of X₂.) Es gibt ein normales logisches Programm welches ein inkonsister sitzt. (There is a normal logic logic program having an inconsistent ar	richtig ntes Answer set.)	ich that	

c) Kreuzen sie bei den fol	lgenden Aussagen an, ob sie	richtig sind oder nicht.		
(Check whether the fol	llowing propositions are true	statements or not.)		
1. Es gibt grundierte (There are ground	e, normale Answer-Set Progr d, normal answer-set progran	amme, die keine Answer Sets b ns which do not have any answe correct \(\square\)	esitzen. er sets.) vrong 🗆	
2. Ein Answer Set ei im Kopf einer Reg	ines normalen Programms F gel von P vorkommt.	kann kein Atom enthalten, da		
/	f a normal program P can	not contain any atom which de		
		correct 💢 w		
3. Regeln in einem P sein.	Programm zur konsistenzbasi	erten Diagnose dürfen nicht dis	junktiv	
(Rules in a progra rules.)	m for consistency-based diag	nosis are not allowed to be disj correct 🗶 w		
4 Jede Teilmenge vo $\{a \lor b \lor c \leftarrow \}$.	on $\{a, b, c\}$ außer der leeren	Merge ist ein Answer Set vo		
(Each subset of $\{a,$	$,b,c\}$ except for the empty se	t is an answer set of $P = \{a \lor b \lor \text{correct } \Box \text{w}.$	$c \leftarrow \}.)$	
				3
Programm P und jed	les grundierte Literal q g	t wie folgt: für jedes disjunter	ive logische	Name of the last
klassischen Modell vor Welche der folgenden	tes grundierte Literal q g in P enthalten ist. Aussagen treffen zu?	t wie folgt: für jedes disjunktielte $P \vdash q$ genau dann wenn	ive logische q in einem	Total Superior Superi
klassischen Modell vor Welche der folgenden (Let + be the skeptice	Aussagen treffen zu? al inference relation defin	t wie folgt: für jedes disjunter	ive logische q in einem	Commence of the latest section of the latest
klassischen Modell vor Welche der folgenden (Let + be the skeption program P and every	Aussagen treffen zu? al inference relation defin ground literal q , $P \vdash q$ l	t wie folgt: für jedes disjunktielte $P \vdash q$ genau dann wenn ned as follows: for every disjunction	ive logische q in einem	Commence of the Commence of th
Programm P and jed klassischen Modell von Welche der folgenden (Let ⊢ be the skeptica program P and every classical model of P. Which of the following 1. ⊢ erfüllt das Mon	tes grundierte Literal q g in P enthalten ist. Aussagen treffen zu? al inference relation defin ground literal q , $P \vdash q$ lig statements hold?)	t wie folgt: für jedes disjunktielte $P \vdash q$ genau dann wenn ned as follows: for every disjunction	ive logische q in einem inctive logic ined in some	
Welche der folgenden (Let + be the skeption program P and every classical model of P. Which of the following 1. + erfüllt das Mon (+ satisfies the m 2. Es gibt ein Progr	tes grundierte Literal q g in P enthalten ist. Aussagen treffen zu? al inference relation defin ground literal q , $P \vdash q$ lig statements hold?) notonieprinzip. nonotonicity principle.)	et wie folgt: für jedes disjunktielte $P \vdash q$ genau dann wenn ned as follows: for every disjunction if and only if q is contained.	ive logische q in einem inctive logic ined in some wrong X orkommt.	

Beispiel 3: Answer Set Programming (ASP):	(12.5 Punkte)
a) Welche der folgenden Aussagen treffen zu? (Which of the following statements hold?)	
Jedes Horn Programm hat ein klassisches Modell. (Every Horn program has a classical model.)	correct D wrong D
 Das Programm P = {a ∨ b :-, a ∨ c :-, :- a Programm. (The program P = {a ∨ b :-, a ∨ c :-, :- a ∨ b} 	is a disjunctive logic program.)
3. Falls ein Programm ein klassisches Modell hat, s Jedoch sind nicht notwendigerweise alle klassisch (If a program has a classical model, then it also classical models are answer sets.)	has an answer set. However, not all
Constraints fügen keine Ausdrucksstärke hinzu, sziert werden. (Constraints add no expressive power, they can	be reduced to normal rules.) correct & wrong
5. Sei P ein Programm mit starker Negation un ensteht, indem wir alle Literale der Form ¬p ersetzen. Falls P kein Answer Set besitzt, so au (Let P be a program with strong negation and by uniformly replacing all literals of form ¬p b set, so does P'.)	ich P'.
c) Es sei ⊢ die skeptische Inferenzrelation definie Programm P und jedes grundierte Literal q g Answer Set von P enthalten ist.	rt wie folgt: für jedes disjunktive logische
Welche der folgenden Aussagen treffen zu?	
 ⊢ erfüllt das Monotonieprinzip. 	
a Paralle de P	richtig □ falsch 🏲
2. Es gibt ein Programm P sodass $P \vdash q$ für	ein Atom q das nicht in P vorkommt. richtig \mathcal{S} falsch \square (2 Punkte)

Welche de	r folgenden	Aueragan	troffon	2
AACTOTIC CICI	roigenden	Aussagen	nenen	zu?

1. Regeln in einem Programm zur konsistenzbasierten Diagnose	e müssen grundiert sein.
	richtig 🌣 falsch □
2. Das leere Programm hat kein Answer Set.	richtig □ falsch 🕱
 Es gibt ein normales logisches Programm, welches ein Answ ein Atom a als auch dessen Negation ¬a enthält. 	
4. Ein Answer Set eines normalen grundierten Programms P kann dessen Prädikatensymbol nicht im Kopf einer Regel von P von	ann kein Atom enthalten
, , , , , , , , , , , , , , , , , , , ,	richtig □ falsch □
	richtig 🗆 Haiseli 🗆
	(6 Punkte)
d) Kreuzen Sie Zutreffendes an:	
- Ein Answer Set eines normalen Programms P kann kein Ator	m
enthalten, dessen Prädikatensymbol nicht im Kopf einer Rege	el
von P vorkommt.	richtig □ falsch 🕱
- Regeln in einem Programm zur konsistenzbasierten	1/
Diagnose dürfen disjunktiv sein.	richtig □ falsch □
– Jede Teilmenge von $\{a,b,c\}$ außer der leeren	•
Menge ist ein Answer Set von $P = \{a \lor b \lor c : -\}$.	richtig □ falsch,×
- Es existieren Interpretationen M_1, M_2 und Programme P_1, P_2	2
sodass M_1 ein Answer Set von P_1 , M_2 ein Answer Set von P_2	2,
und $M_1 \cup M_2$ ein Answer Set von $P_1 \cup P_2$ ist.	richtig X falsch □ 🗸
- Jedes klassische Modell eines Programms P ist auch ein	
Answer Set von P.	richtig 🕱 falsch □
	(6 Punkte)
	-0-
d) Kreuzen Sie Zutreffendes an:	
i) Wenn M_1 ein Answer Set eines Programms P_1 ist, und M_1 gramms P_2 , dann ist $M_1 \cup M_2$ ein Answer Set von $P_1 \cup P_2$.	2 ein Answer Set eines Pro-
granins 12, dam ist mi 0 m2 cm miswer bet von 1 0 12	richtig □ falsch 🗷 \/
ii) Wenn M ein minimales Modell eines Programms P ist, dann	
	richtig falsch 🗆 👚
iii) Abduktive Diagnosen sind ein schwächeres Konzept als cons	sistency-based diagnosis.
	richtig □ falsch 🗷
iv) Jede Teilmenge von $\{a, b, c\}$ außer der leeren Menge ist ein $b \lor c : -\}$.	1 Answer Set von $P = \{a \lor a \lor a\}$
, , , , , , , , , , , , , , , , , , ,	richtig 🗆 falsch 🗷 🗸
	(4 Punkte)
	Activate Windows Go to Setting to activate

d) Kreuzen Sie Zutreffendes an:			
(i) Wenn M ein minimales Modell eines Programms P ist, dann is von P .			V
	richtig □	falsch	
(ii) Das Programm $P = \{a \leftarrow; b \leftarrow a, not b; b \leftarrow\}$ hat keine Answer Se			
	richtig 🗵	falsch □	
(iii) Ein Programm, in dem keine starke Negation benutzt wird, hat immer ein Answer Set.	richtig 🗆	falsch □	
(iv) Leere Programme (Programme ohne Regeln) haben Answer Sets.	-	falsch □	V.
ein leave	5 (4	4 Punkte)	
d) Kreuzen Sie Zutreffendes an: (Check the correct answers:)			
 (a) Bei Brave Reasoning ist eine Query nur dann wahr wenn sie auch in j wahr ist. 		er Set	
(Under brave reasoning a query is true only if it is true in every answer richtig (true) □	falsch (fa	ilse) 🗆	
(b) Regeln in einem Programm zur konsistenzbasierten Diagnose müssen (Rules in a program for consistency-based diagnosis must be normal.	¢ .		
(Rules in a program for consistency states richtig (true)	falsch (fa	alse) 🗆	
(c) Jedes klassische Modell eines Programmes ist auch ein Answer Set. (Every classical model of a program is also an answer set.)			
(Every classical model of a program richtig (true)	falsch (f	alse)	
(d) Disjunktion in ASP unterscheidet sich semantisch von Disjunktion in (Disjunction in ASP is semantically different from disjunction in classically different from disjunction in classically different from disjunction in classical different from disjunction in ASP is semantically different from disjunction in Case (Disjunction in ASP) is semantically different from disjunction in Case (Disjunction in ASP) is semantically different from disjunction in Case (Disjunction in ASP) is semantically different from disjunction in Case (Disjunction in Cas			
(Disjunction in ASP is semantically direction richtig (true)	falsch (f	false) □	
	4 Punkte (points)	3

d) Welche der folgenden Aussagen aus dem Bereich von ASP treffen zu? (Which of the following statements from the area of ASP hold?)	
 (i) Falls eine Query unter Cautious Reasoning wahr ist, dann ist sie auch unter Brave Reasoning wahr. (If a query is true under cautious reasoning, then it is also true under brave reasoning.) richtig (correct) □ falsch (wrong) □ 	
(ii) Wenn M_1 ein Answer Set eines Programms P_1 ist, und M_2 ein Answer Set eines Programms P_2 , dann ist $M_1 \cup M_2$ ein Answer Set von $P_1 \cup P_2$. (If M_1 is an answer set of program P_1 , and M_2 an answer set of program P_2 , then $M_1 \cup M_2$ is an answer set of $P_1 \cup P_2$.) richtig (correct) \square falsch (wrong) \square	
(iii) Ein Programm ohne Constraints hat immer mindestens ein Answer Set. (A program without constraints has always at least one answer set.) richtig (correct) of falsch (wrong) always at least one answer set.) richtig (correct) of falsch (wrong) 3 Punkte (points)	
c) Kreuzen Sie Zutreffendes an: (Check whether the following statements are correct of in	
 (i) Wenn M ein minimales Modell eines Programms P ist, dann ist M ein Answer von P. (If M is a minimal model of a program P, then M is an answer set of P.) richtig (true) ★ falsch (false) 	
(ii) Das Programm $\mathcal{P} := \{a \leftarrow . , b \leftarrow a, \text{not } b. , b \leftarrow . \}$ hat keine Answer Sets. (The program $\mathcal{P} := \{a \leftarrow . , b \leftarrow a, \text{not } b. , b \leftarrow . \}$ has no answer sets.) richtig (true) \square falsch (false	
(iii) Ein Programm, in dem keine starke Negation benutzt wird, hat immer ein Answer 5 (A program which does not use strong negation always has an answer set.) richtig (true) □ falsch (false	W 40
 (iv) Leere Programme (Programme ohne Regeln) haben Answer Sets. (Empty programs (programs without rules) have answer sets.) richtig (true) □ falsch (false)) 5
(v) Falls eine Query unter cautious reasoning wahr ist dann ist es auch unter brave reason wahr.	
(If a query is true under cautious reasoning then it is also true under brave reasoning richtig (true) ★ falsch (false)	
5 Punkte (poin	ts) Ø

PROBABILISTIC REASONING

b) Kreuzen Sie bei den folgenden Aussagen an, ob sie richt. Check whether the following propositions are true state	ig sind oder nicht.
Check whether the following propositions are true state	
	ements or not.)
 Zwei verschiedene Elementarereignisse k\u00f6nnen zugle (Two distinct atomic events can occur simultaneous 	
Ein Bayes'sches Netz kann aus einem einzigen Kno verbunden ist.	/ / /
(A Bayesian network can consist of only one node v	which is linked to itself.)
	correct □ wrong 🗙
 Es ist möglich, ein Bayes sches Netz mit drei Knot dessen Topologie sicherstellt, dass notwendigerweise 	$P(A C) \neq P(A)$ gilt.
(It is possible to construct a Baysian net with three topology guarantees that $P(A C) \neq P(A)$ holds.)	nodes A, B , and C such that its correct wrong \square
	(3 Punkte)
	7
d) Kreuzen Sie bei den folgenden Aussagen an, ob sie i	richtig sind oder nicht.
 Ein Bayes'sches Netz kann aus einem einzigen verbunden ist. 	n Knoten bestehen, der mit sich selbst richtig □ falsch,尽
2. Es ist möglich, ein Bayes'sches Netz mit vier Kı	noten A , B , C und D zu konstruieren.
dessen Topologie sicherstellt, dass notwendige	1 weise $F(A(C, D)) = F(A)$ gift
dessen Topologie sicherstellt, dass notwendige	
dessen Topologie sicherstellt, dass notwendige	richtig \bowtie falsch \square
dessen Topologie sicherstellt, dass notwendige	richtig Æ falsch □ (4 Punkte)
dessen Topologie sicherstellt, dass notwendige	richtig Æ falsch □ (4 Punkte)
 b) Bestimmen Sie die Richtigkeit oder Falschheit folgender Zufallsvariablen A und B: (Decide the truth or falsehood of the following relations) 	richtig △ falsch □ (4 Punkte) Aussagen, für beliebige Boole'sche
dessen Topologie sicherstellt, dass notwendige b) Bestimmen Sie die Richtigkeit oder Falschheit folgender	richtig △ falsch □ (4 Punkte) Aussagen, für beliebige Boole'sche , for each Boolean random variable
 b) Bestimmen Sie die Richtigkeit oder Falschheit folgender Zufallsvariablen A und B: (Decide the truth or falsehood of the following relations, A and B:) (i) P(A ¬B) + P(¬A ¬B) = 1. 	richtig A falsch (4 Punkte) (4 Punkte) Aussagen, für beliebige Boole'sche , for each Boolean random variable richtig (true) falsch (false)
 b) Bestimmen Sie die Richtigkeit oder Falschheit folgender Zufallsvariablen A und B: (Decide the truth or falsehood of the following relations, A and B:) (i) P(A ¬B) + P(¬A ¬B) = 1. 	richtig A falsch (4 Punkte) (4 Punkte) Aussagen, für beliebige Boole'sche , for each Boolean random variable richtig (true) falsch (false) richtig (true) falsch (false)
b) Bestimmen Sie die Richtigkeit oder Falschheit folgender Zufallsvariablen A und B: (Decide the truth or falsehood of the following relations, A and B:)	richtig A falsch (4 Punkte) (4 Punkte) Aussagen, für beliebige Boole'sche , for each Boolean random variable richtig (true) falsch (false)
 b) Bestimmen Sie die Richtigkeit oder Falschheit folgender Zufallsvariablen A und B: (Decide the truth or falsehood of the following relations, A and B:) (i) P(A ¬B) + P(¬A ¬B) = 1. 	richtig A falsch (4 Punkte) (4 Punkte) Aussagen, für beliebige Boole'sche , for each Boolean random variable richtig (true) falsch (false) richtig (true) falsch (false)
 b) Bestimmen Sie die Richtigkeit oder Falschheit folgender Zufallsvariablen A und B: (Decide the truth or falsehood of the following relations, A and B:) (i) P(A ¬B) + P(¬A ¬B) = 1. 	richtig A falsch (4 Punkte) (4 Punkte) Aussagen, für beliebige Boole'sche , for each Boolean random variable richtig (true) falsch (false) richtig (true) falsch (false)