Beispiel 443 (MA1 Sammlung)

LVA 118.153, Übungsrunde 4, 05.04. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 03/2006

1 Angabe

Berechnen Sie $\int_2^3 x^2 dx$ mit Hilfe von Untersummen bei äquidistanter Teilung. (Hinweis: $\sum_{k=1}^n k^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}, \sum_{k=1}^n k = \frac{n \cdot (n+1)}{2}$).

2 Lösung des Beispiels

Betrachten wird die äquidistante Teilung: Wenn wir das Intervall [2; 3] in n gleiche Teile teilen, erhalten wir als Grenzen $x_i = 2 + \frac{i}{n}$ für alle i von 0 bis n (x_0 ist also 2, x_n ist 3) Nun benötigen wir die Untersummen: da die Funktion x^2 im ersten Quadranten steigend ist, ist bei dem Intervall von x_i bis x_{i+1} der kleinere Funktionswert bei x_i (liegt weiter links) - somit ist der Flächeninhalt von einem solchen 'untergeschriebenen' Rechteck:

$$\underbrace{\frac{1}{n}}_{1} \cdot (2 + \frac{i}{n})^2$$

Nun berechnet man die Summe über alle solchen Rechtecke: das erste Rechteck geht von x_0 bis x_1 : also müssen wir bei i = 0 anfangen; das letzte Rechteck geht von x_{n-1} bis x_n , also müssen wir bei i = n - 1 aufhören:

$$\sum_{i=0}^{n-1} \frac{1}{n} \cdot (2 + \frac{i}{n})^2$$

Da $\frac{1}{n}$ für alle Summanden ein konstanter Faktor ist, kommt er vor die Summe. Außerdem quadrieren wir die Klammer aus:

$$\frac{1}{n} \cdot (\sum_{i=0}^{n-1} 4 + \frac{4i}{n} + \frac{i^2}{n^2})$$

Die Summe können wir nun in drei Summen aufteilen:

$$\frac{1}{n} \cdot (\sum_{i=0}^{n-1} 4 + \sum_{i=0}^{n-1} \frac{4i}{n} + \sum_{i=0}^{n-1} \frac{i^2}{n^2})$$

Bei der ersten Summe wird n mal (nämlich von 0 bis n-1) die 4 aufsummiert, also ist es $4 \cdot n$. Bei der zweiten Summe können wir $\frac{4}{n}$ als konstanten Faktor herausnehmen; bei der dritten Summe nehmen wir $\frac{1}{n^2}$ heraus:

$$\frac{1}{n} \cdot (4 \cdot n + \frac{4}{n} \cdot \sum_{i=0}^{n-1} i + \frac{1}{n^2} \cdot \sum_{i=0}^{n-1} i^2)$$

Die Formeln für die Summen über i und für die Summe über i^2 stehen bei der Angabe dabei, jedoch Vorsicht: Wir summieren nur bis n-1, nicht bis n! Dass wir bei 0 beginnen ist egal, da bei i=0 sowieso der Summand 0 ist.

$$\frac{1}{n} \cdot (4n + \frac{4}{n} \cdot (n-1) \cdot \frac{n}{2} + \frac{1}{n^2} \cdot (n-1) \cdot n \cdot \frac{2n-1}{6})$$

 $\frac{1}{n}$ multiplizieren wir nun in die Klammer hinein und kürzen:

$$4 + 2 \cdot \frac{n-1}{n} + \frac{1}{6} \cdot (1 - \frac{1}{n}) \cdot (2 - \frac{1}{n})$$

Diese Formel ist nun der Flächeninhalt über Untersummen bei Teilung in n gleich große Intervalle. Wenn man nun das Integral haben möchte, lässt man die Anzahl der Intervalle gegen unendlich gehen, d.h. wir bilden den Grenzwert für n gegen unendlich:

$$\lim_{n \to \infty} 4 + 2 \cdot \frac{n-1}{n} + \frac{1}{6} \cdot (1 - \frac{1}{n}) \cdot (2 - \frac{1}{n})$$

4 geht nach 4, $\frac{1}{n}$ geht nach 0, d.h. $(1-\frac{1}{n})$ geht nach 1 und $2\cdot(1-\frac{1}{n})$ geht nach 2, $(1-\frac{1}{n})$ geht nach 2 und $(2-\frac{1}{n})$ geht nach 2, d.h. $\frac{1}{6}\cdot(1-\frac{1}{n})\cdot(2-\frac{1}{n})$ geht nach $\frac{1}{6}\cdot1\cdot2=\frac{1}{3}.$

Das heisst, der Grenzwert und somit auch das Ergebnis für das Integral ist: $6\frac{1}{3}$