Exercise 5

Discrete Mathematics

November 12, 2020

Exercise 41

Note that the left hand side of the equality is the total number of fixed points in all
permutations of {1,2,...,n}. To show that this number is equal to n!, note that there
are (n — 1)! permutations of {1,2,...,n} fixing 1,(n — 1)! permutations fixing 2, and
so on, and (n — 1)! permutations fixing n. It follows that the total number of fixed
points in all permutations is equal to n - (n — 1)! = nl.
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Exercise 42

Consider the binomial theorem (1+x)" = > _; (¥)a*. Substitute z = —1. As long as
n >0, we get 0 on the left side, so we obtain 0 =Y} , (})(—1)*. Move the negative

terms to the left side to get
n n
2 (k) e <k>

0<k<n 0<k<n
k odd k even

The sum on the left side is the number of odd-sized subsets and the sum on the right
is the number of even-sized subsets.

See Exam 3 in http://math.colorado.edu/ jonathan.wise/teaching/math2001-fall-2014/


http://math.colorado.edu/~jonathan.wise/teaching/math2001-fall-2014/

Exercise 43

1. We can place the first rook anywhere on the board, i.e. n-n choices. The second
rook cannot be placed in the row or column of the first one, i.e. (n—1)-(n—1)
choices. This way, the last rook has exactly 1 -1 choice. This gives us 117 ;i? =
(n!)2. However, we still have to take into account, that the rooks are not labeled.
Therefore the final result is

(n!)?

=n!
n!

2. Each rook has to be on a different row. There is only one such way to assign
rooks to rows (rooks are indistinguishable). Then for the first rook, there is a
choice of n columns, for the second of n — 1 columns, for the third of n — 2
columns and so on so in total there are n! possibilities.



Exercise 44

https://math.stackexchange.com/q/3013488
We use double counting.

Let A= B ={a1,a9,...,a,},RC A X B.
Rio={be B:(a;,b) € R}, Roj;={acA:(a,bj)eR}

and define R as
(aj,ar) ER <= a; <ap,i>k 1<k<n

the result is proven in the image
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This example is relevant for the double counting explanation
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Exercise 45
Define 10 sets

{zreA|lz=1 (mod20)Vz=19 (mod 20)}
{reA|z=2 (mod20)Vz=18 (mod 20)}

{reAlz=9 (mod20)Vz=11 (mod 20)}
{r€eAlr=10 (mod 20)}

As there are 11 integers z € A and 10 sets, by the pigeonhole principle there are two
integers a,b € A (let wlog b < a) that are element of the same set.

Case 1 a =b (mod 20). Then 20 | (a —b).
Case 2 a # b (mod 20). Then 20 | (¢ +b).

Examples:

401=1 (mod 20),19=19 (mod 20) => {401,19} and 20 | 420 = 401 + 19
401=1 (mod 20),21 =1 (mod 20) = {401,21} and 20 | 380 = 401 — 21
418 =18 (mod 20),118 =18 (mod 20) = {418,118} and 20 | 300 = 418 — 118

Exercise 46

For each column, there are 4 points and 3 possible colors per point, for a total of
3* = 81 possible colorings. As there are 4 points per column and 3 possible colors,
by the Pigeonhole Principle some color appears twice in a single column. With 81 + 1
columns, by the Pigeonhole Principle, there are two columns with the same coloring.
From each of the two columns, take some corresponding two points of a color that
appears twice. These form a rectangle all of whose vertices are the same color.



Exercise 47

https://math.stackexchange.com/questions/1519803 /proving-identities-using-combinatorial-
interpretation-of-binomial-coefficients

1. Let X be an n-element set. Then (Z) is the number of k-element subsets of X.
If x € X is a fixed element of X, then we can divide the k-element subsets of X
into two classes: those which contain x and those that do not. The k-element
subsets not containing x are precisely the k-clement subsets of X \ {z}, and there

are (”;1) such sets. Then k-element subsets of X which do contain z are all of

the form {z}UY, where Y is a (k — 1)-element subset of X \ {z}; there are (Zj)
such sets. Thus, in total, there are (") + (}7]) total k-element subsets of X,
proving that

n\ (n-1 n n—1
k) k k-1
2. Let X = X; U X, with |X1| = |X2| = n. Then (2:) is the number of n-element
subsets of X. Let Y be one such subset. It chooses k elements of Xy, with

0 < k < n. There are (Z) such subsets. Then Y has to choose n—k elements from

Xs. There are (nﬁk) such subsets. Consequently, there are (2) () = (2)2

possible choices for Y. Summing up all possible k gives the identity

> () =)


https://math.stackexchange.com/questions/1519803/proving-identities-using-combinatorial-interpretation-of-binomial-coefficients
https://math.stackexchange.com/questions/1519803/proving-identities-using-combinatorial-interpretation-of-binomial-coefficients

Exercise 48

Combinatorial proof using double counting. Note that the left side counts bit strings
of n + 1 length with r + 1 ones. We show that the right side counts the same objects.
The final one must occur at position r+1 or r+2 or ...or n+1 Assume that it occurs
at the m! bit, where r +1 < m < n + 1.

1. Thus, there must be r ones in the first m — 1 positions
2. Thus, there are (mr_l) such strings of length m — 1
As m can be any value from r + 1 to n + 1, the total number of possibilities is
r

m=r-+1

> (%)

m=r

which is illustrated for r = 2,n =4




Exercise 49
https://math.stackexchange.com/a/1523108 /844881

The second equation from the task description and a new notation E| shows

k

(x) 2 zx—-1)(z-2)...(z— (k-1)) :H%l—z

k) TR k(k—1)(k—2)...1

=1

With j =n—1—4 in the second line (in one product the factors are increasing and in
the other they are decreasing), we calculate

and thus

Thttps://en.wikipedia.org/wiki/Binomial_coefficient#Multiplicative_formula


https://en.wikipedia.org/wiki/Binomial_coefficient#Multiplicative_formula

Exercise 50

https://math.stackexchange.com/questions/580435 /number-of-2n-letter-words-using-double-
n-letter-alphabet-without-consecutiv

Definitions
We know from the lecture that the number of arrangements of a multiset {65, 652 ... bkm}
of cardinality n is
n!
—_— 1
kylko!l. . Ky ()

[1] Let S be a set of properties that the elements of some other set A may or may not
have. For any subset T' C S, denote by

e f=(T) the number of elements of A that have ezactly the properties in T'.
o f>(T) the number of elements of A that have at least the properties in T

From that definition we get

f(T) =Y f=(Y). (2)

YDOT

By Theorem 2.1.1 from [1] the existence and form of the following inverse function

follows
f=(T) = (=) (v) (3)

Y2T

Of which the following (the number of elements having none of the properties in \S) is
a special case

) = 3 )Y

Y2T
where Y ranges over all subsets S.
Examples demonstrating the application of 2| and its inverse [3]
1. Suppose S = {s1,s2} and T = {s1} Then

f=(sih) = DO (s ) + (D)2 o ({51, 82))

({s1}) = f>({s1,52})

({s1}) + f=({s1, 82}) — f=({s1, 52})

({s1})

We think of f>({s1}) as being a first approximation to f-({s1}). We then

substract f>(s1,s2) to get a better approximation. This reasoning brings us to
the terminology "Inclusion-Exclusion”.

(_
f>
f=
f=



2. Suppose S = {s1, s2,53}. Then
f>({s1,82}) = f=({51,82}) + f=({51,52,83})

= (-1 )l{}|f>({817 s2}) + (=D ({51, 80, 83}) + (= 1)U £ ({51, 52, 53})

({s1,82}) — f=({s1, 52, 83}) + f=({s1, 52, s3})
({s1,82})

f>
f>

A special case of the Principle of Inclusion-Exclusion occurs when the function f—
satisfies f=(T") = f=(T") whenever |T| = |T"|. Then also f>(T) depends only on |T.
We set a(n — i) = f=(T) and b(n — i) = f>(T) whenever |T| = i. From equations [2]
and [3] then follows the equivalence of the following formulas

b(m) = é (’?>a(i), 0<m<n (4)
m=3 (") vmv, o<m<n (5)

Examples:

1. Suppose A = {a1,a2},S = {s1, 52} where the properties are assigned a; : s; and

az © s2. Then f-({s1} = f=({s2}) = 1 and f-({}) = f=({s1,s2}) = 0. For
n=2,|T| =i =1 we get by application of equations [4] and

b(2—1) <(1)> ) +

)]0 Hi)
1-[1-1-b(0)]+1-[1-(=1)-b(0)+1-1-b(1)]
b(0) — b()+b(1) b(1)

2. Suppose A = {a1,a9,a3,a4},S = {s1,s2} where the properties are assigned
a1 : 1 and ag : s9 and ag : s1,82 and ay : s1,82. Then fo({s1} = f=({s2}) =1

and f-({}) = 0 and f-({s1,s2}) = 2.

Solution

This can be reduced to the problem of the number of permutations of the multiset
M, = {1,1,2,2,...,n,n} (or in equivalent notation M, = {12,22 ... n?}) with no
two consecutive terms equal ﬂ We use the principle of inclusion and exclusion.

22

10


http://oeis.org/A114938

Let h(n) be the number of permutations of M,, with no two consecutive terms equal.
Thus h(0) = 0, k(1) = 0, and h(2) = 2 (corresponding to the permutations 1212 and
2121). For 1 < i < n, let P; be the property that the permutation w of M,, has two
consecutive i’s. Hence, we seek f—((})) = h(n).

It follows by symmetry that for fixed n, f>(T") depends only on i = |T|, so write
g(i) = f>(T). Then g¢(i) is equal to the number of permutations w of the multiset

{1,2,...,4,(i+1)%,...,n?} (replace any j > i appearing in w by two consecutive j’s),
SO
, (i4+2(n—1)! (2n—1)!
g(l) = n—i = n—i
2 2
a special case of equation [l with k1! = ko! = --- =kl =1 and kjy1 = kiqo = -+ =
kn!l=2

Now we have b(i) := g(n — i) = (”;-i)l. From equationwe then get

=0

Example

Let A be the permutations of M, = My = {1,1,2,2}. We look for the number of
permutations h(2) of My with no consecutive terms equal.

The set of properties S is given by properties like: P; is the property that a permutation
has two consecutive 1’s.

f=(@) is the number of elements of A having none of the properties in S, that is the
number of elements of A with no consecutive terms equal. Therefore, f—(0) = h(2).

We have n fixed to n =2, so f>(T) (the number of elements of My that have at least
the properties in T'), depends only on |T| = i. That means that, for example, the
number of permutations of Ms that have the property P, or P, or both depends only
on |[{Pi, P»}| =2 So we write f>(T') = g(i) and get, for example, for i = 1 a multiset
{1,2,2} the number of its permutations is

(2-2-1)! 3!

g(]‘): 22_1 - 5:3

We verify this by enumerating the permutations of {1,2,2}: 122,212,221.

For the same i = 1 we get b(1) = g(2—1) = (2;1)!. Looking again at the general case,

11



we finally get

1-2 (=1)-3-2 1-4-3.2
—1.—249. 1-
T > ' 4

=2—-6+6 =2

Which we verify again by enumerating the two permutations 1212 and 2121 that fulfill
the requirement.
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