Exercise 5

Discrete Mathematics

November 12, 2020

Exercise 41

Note that the left hand side of the equality is the total number of fixed points in all permutations of $\{1,2, \ldots, n\}$. To show that this number is equal to n !, note that there are $(n-1)$! permutations of $\{1,2, \ldots, n\}$ fixing $1,(n-1)$! permutations fixing 2 , and so on, and $(n-1)$! permutations fixing n. It follows that the total number of fixed points in all permutations is equal to $n \cdot(n-1)!=n!$.

$$
\begin{array}{ccc}
123 & p_{3}(0)=2 & \text { "Fixing " } 1 \text { a vertical } \\
132 & p_{3}(1)=3 & \text { lines in table } \\
321 & p_{3}(2)=0 & \text { columas } \\
213 & p_{3}(3)=1 & \\
312 & \\
231 & \\
0 \cdot 2+1 \cdot 3+2 \cdot 0+3 \cdot 1=6=3!
\end{array}
$$

Exercise 42

Consider the binomial theorem $(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}$. Substitute $x=-1$. As long as $n>0$, we get 0 on the left side, so we obtain $0=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}$. Move the negative terms to the left side to get

$$
\sum_{\substack{0 \leq k \leq n \\ k \text { odd }}}\binom{n}{k}=\sum_{\substack{0 \leq k \leq n \\ k \text { even }}}\binom{n}{k}
$$

The sum on the left side is the number of odd-sized subsets and the sum on the right is the number of even-sized subsets.

See Exam 3 in http://math.colorado.edu/ jonathan.wise/teaching/math2001-fall-2014/

Exercise 43

1. We can place the first rook anywhere on the board, i.e. $n \cdot n$ choices. The second rook cannot be placed in the row or column of the first one, i.e. $(n-1) \cdot(n-1)$ choices. This way, the last rook has exactly $1 \cdot 1$ choice. This gives us $\Pi_{i=1}^{n} i^{2}=$ $(n!)^{2}$. However, we still have to take into account, that the rooks are not labeled. Therefore the final result is

$$
\frac{(n!)^{2}}{n!}=n!
$$

2. Each rook has to be on a different row. There is only one such way to assign rooks to rows (rooks are indistinguishable). Then for the first rook, there is a choice of n columns, for the second of $n-1$ columns, for the third of $n-2$ columns and so on so in total there are n ! possibilities.

Exercise 44

https://math.stackexchange.com/q/3013488
We use double counting.
Let $A=B=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}, R \subseteq A \times B$.

$$
R_{i, 0}=\left\{b \in B:\left(a_{i}, b\right) \in R\right\}, \quad R_{0, j}=\left\{a \in A:\left(a, b_{j}\right) \in R\right\}
$$

and define R as

$$
\left(a_{i}, a_{k}\right) \in R: \Longleftrightarrow a_{i}<a_{k}, i>k \quad 1 \leq k \leq n
$$

the result is proven in the image

This example is relevant for the double counting explanation

This is just another one

Mind the accidental switch in columns B_{k}^{1}, B_{k}^{2}

Exercise 45

Define 10 sets

$$
\begin{aligned}
& \{x \in A \mid x \equiv 1 \quad(\bmod 20) \vee x \equiv 19 \quad(\bmod 20)\} \\
& \{x \in A \mid x \equiv 2 \quad(\bmod 20) \vee x \equiv 18 \quad(\bmod 20)\} \\
& \{x \in A \mid x \equiv 9 \quad(\bmod 20) \vee x \equiv 11 \quad(\bmod 20)\} \\
& \{x \in A \mid x \equiv 10 \quad(\bmod 20)\}
\end{aligned}
$$

As there are 11 integers $x \in A$ and 10 sets, by the pigeonhole principle there are two integers $a, b \in A$ (let wlog $b \leq a$) that are element of the same set.

Case $1 a \equiv b(\bmod 20)$. Then $20 \mid(a-b)$.
Case $2 a \not \equiv b(\bmod 20)$. Then $20 \mid(a+b)$.
Examples:

$$
\begin{aligned}
& 401 \equiv 1 \quad(\bmod 20), 19 \equiv 19 \quad(\bmod 20) \Longrightarrow\{401,19\} \text { and } 20 \mid 420=401+19 \\
& 401 \equiv 1 \quad(\bmod 20), 21 \equiv 1 \quad(\bmod 20) \Longrightarrow\{401,21\} \text { and } 20 \mid 380=401-21 \\
& 418 \equiv 18(\bmod 20), 118 \equiv 18 \quad(\bmod 20) \Longrightarrow\{418,118\} \text { and } 20 \mid 300=418-118
\end{aligned}
$$

Exercise 46

For each column, there are 4 points and 3 possible colors per point, for a total of $3^{4}=81$ possible colorings. As there are 4 points per column and 3 possible colors, by the Pigeonhole Principle some color appears twice in a single column. With $81+1$ columns, by the Pigeonhole Principle, there are two columns with the same coloring. From each of the two columns, take some corresponding two points of a color that appears twice. These form a rectangle all of whose vertices are the same color.

Exercise 47

https://math.stackexchange.com/questions/1519803/proving-identities-using-combinatorial-interpretation-of-binomial-coefficients

1. Let X be an n-element set. Then $\binom{n}{k}$ is the number of k-element subsets of X. If $x \in X$ is a fixed element of X, then we can divide the k-element subsets of X into two classes: those which contain x and those that do not. The k-element subsets not containing x are precisely the k-element subsets of $X \backslash\{x\}$, and there are $\binom{n-1}{k}$ such sets. Then k-element subsets of X which do contain x are all of the form $\{x\} \cup Y$, where Y is a $(k-1)$-element subset of $X \backslash\{x\}$; there are $\binom{n-1}{k-1}$ such sets. Thus, in total, there are $\binom{n-1}{k}+\binom{n-1}{k-1}$ total k-element subsets of X, proving that

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

2. Let $X=X_{1} \cup X_{2}$ with $\left|X_{1}\right|=\left|X_{2}\right|=n$. Then $\binom{2 n}{n}$ is the number of n-element subsets of X. Let Y be one such subset. It chooses k elements of X_{1}, with $0 \leq k \leq n$. There are $\binom{n}{k}$ such subsets. Then Y has to choose $n-k$ elements from X_{2}. There are $\binom{n}{n-k}$ such subsets. Consequently, there are $\binom{n}{k} \cdot\binom{n}{n-k}=\binom{n}{k}^{2}$ possible choices for Y. Summing up all possible k gives the identity

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

Exercise 48

Combinatorial proof using double counting. Note that the left side counts bit strings of $n+1$ length with $r+1$ ones. We show that the right side counts the same objects. The final one must occur at position $r+1$ or $r+2$ or \ldots or $n+1$ Assume that it occurs at the $m^{\text {th }}$ bit, where $r+1 \leq m \leq n+1$.

1. Thus, there must be r ones in the first $m-1$ positions
2. Thus, there are $\binom{m-1}{r}$ such strings of length $m-1$

As m can be any value from $r+1$ to $n+1$, the total number of possibilities is

$$
\sum_{m=r+1}^{n+1}\binom{m-1}{r}=\sum_{m=r}^{n}\binom{m}{r}
$$

which is illustrated for $r=2, n=4$

Exercise 49

https://math.stackexchange.com/a/1523108/844881
The second equation from the task description and a new notation ${ }^{1}$ shows

$$
\binom{x}{k}=\frac{x^{\underline{k}}}{k!}=\frac{x(x-1)(x-2) \ldots(x-(k-1))}{k(k-1)(k-2) \ldots 1}=\prod_{i=1}^{k} \frac{x+1-i}{i}
$$

With $j=n-1-i$ in the second line (in one product the factors are increasing and in the other they are decreasing), we calculate

$$
\begin{aligned}
(-x)^{\underline{k}} & =\prod_{i=0}^{k-1}(-x-i) \\
& =\prod_{j=0}^{k-1}(-x-k+1+j) \\
& =\prod_{j=0}^{k-1}(-(x+k-1-j)) \\
& =(-1)^{k} \prod_{j=0}^{k-1}(x+k-1-j) \\
& =(-1)^{k}(x+k-1)^{\underline{k}}
\end{aligned}
$$

and thus

$$
\binom{-x}{k}=\frac{(-x)^{\underline{k}}}{k!}=\frac{(-1)^{k}(x+k-1)^{\underline{k}}}{k!}=(-1)^{k}\binom{x+k-1}{k}
$$

[^0]
Exercise 50

https://math.stackexchange.com/questions/580435/number-of-2n-letter-words-using-double-n-letter-alphabet-without-consecutiv

Definitions

We know from the lecture that the number of arrangements of a multiset $\left\{b_{1}^{k_{1}}, b_{2}^{k_{2}}, \ldots, b_{m}^{k_{m}}\right\}$ of cardinality n is

$$
\begin{equation*}
\frac{n!}{k_{1}!k_{2}!\ldots k_{m}!} \tag{1}
\end{equation*}
$$

1] Let S be a set of properties that the elements of some other set A may or may not have. For any subset $T \subseteq S$, denote by

- $f_{=}(T)$ the number of elements of A that have exactly the properties in T.
- $f_{\geq}(T)$ the number of elements of A that have at least the properties in T.

From that definition we get

$$
\begin{equation*}
f_{\geq}(T)=\sum_{Y \supseteq T} f_{=}(Y) . \tag{2}
\end{equation*}
$$

By Theorem 2.1.1 from [1] the existence and form of the following inverse function follows

$$
\begin{equation*}
f_{=}(T)=\sum_{Y \supseteq T}(-1)^{|Y \backslash T|} f_{\geq}(Y) \tag{3}
\end{equation*}
$$

Of which the following (the number of elements having none of the properties in S) is a special case

$$
f_{=}(\emptyset)=\sum_{Y \supseteq T}(-1)^{|Y|} f_{\geq}(Y)
$$

where Y ranges over all subsets S.
Examples demonstrating the application of 2 and its inverse 3 :

1. Suppose $S=\left\{s_{1}, s_{2}\right\}$ and $T=\left\{s_{1}\right\}$ Then

$$
\begin{aligned}
f_{=}\left(\left\{s_{1}\right\}\right) & =(-1)^{|\{ \}|} f_{\geq}\left(\left\{s_{1}\right\}\right)+(-1)^{\left|\left\{s_{2}\right\}\right|} f_{\geq}\left(\left\{s_{1}, s_{2}\right\}\right) \\
& =f_{\geq}\left(\left\{s_{1}\right\}\right)-f_{\geq}\left(\left\{s_{1}, s_{2}\right\}\right) \\
& =f_{=}\left(\left\{s_{1}\right\}\right)+f_{=}\left(\left\{s_{1}, s_{2}\right\}\right)-f_{=}\left(\left\{s_{1}, s_{2}\right\}\right) \\
& =f_{=}\left(\left\{s_{1}\right\}\right)
\end{aligned}
$$

We think of $f_{\geq}\left(\left\{s_{1}\right\}\right)$ as being a first approximation to $f_{=}\left(\left\{s_{1}\right\}\right)$. We then substract $f_{\geq}\left(s_{1}, s_{2}\right)$ to get a better approximation. This reasoning brings us to the terminology "Inclusion-Exclusion".
2. Suppose $S=\left\{s_{1}, s_{2}, s_{3}\right\}$. Then

$$
\begin{aligned}
f_{\geq}\left(\left\{s_{1}, s_{2}\right\}\right) & =f_{=}\left(\left\{s_{1}, s_{2}\right\}\right)+f_{=}\left(\left\{s_{1}, s_{2}, s_{3}\right\}\right) \\
& =(-1)^{|\{ \}|} f_{\geq}\left(\left\{s_{1}, s_{2}\right\}\right)+(-1)^{\left|\left\{s_{3}\right\}\right|} f_{\geq}\left(\left\{s_{1}, s_{2}, s_{3}\right\}\right)+(-1)^{|\{ \}|} f_{\geq}\left(\left\{s_{1}, s_{2}, s_{3}\right\}\right) \\
& =f_{\geq}\left(\left\{s_{1}, s_{2}\right\}\right)-f_{=}\left(\left\{s_{1}, s_{2}, s_{3}\right\}\right)+f_{=}\left(\left\{s_{1}, s_{2}, s_{3}\right\}\right) \\
& =f_{\geq}\left(\left\{s_{1}, s_{2}\right\}\right)
\end{aligned}
$$

A special case of the Principle of Inclusion-Exclusion occurs when the function $f_{=}$ satisfies $f_{=}(T)=f_{=}\left(T^{\prime}\right)$ whenever $|T|=\left|T^{\prime}\right|$. Then also $f_{\geq}(T)$ depends only on $|T|$. We set $a(n-i)=f_{=}(T)$ and $b(n-i)=f_{\geq}(T)$ whenever $|T|=i$. From equations 2 and 3 then follows the equivalence of the following formulas

$$
\begin{gather*}
b(m)=\sum_{i=0}^{m}\binom{m}{i} a(i), \quad 0 \leq m \leq n \tag{4}\\
a(m)=\sum_{i=0}^{m}\binom{m}{i}(-1)^{m-i} b(i), \quad 0 \leq m \leq n \tag{5}
\end{gather*}
$$

Examples:

1. Suppose $A=\left\{a_{1}, a_{2}\right\}, S=\left\{s_{1}, s_{2}\right\}$ where the properties are assigned $a_{1}: s_{1}$ and $a_{2}: s_{2}$. Then $f_{=}\left(\left\{s_{1}\right\}=f_{=}\left(\left\{s_{2}\right\}\right)=1\right.$ and $f_{=}(\{ \})=f_{=}\left(\left\{s_{1}, s_{2}\right\}\right)=0$. For $n=2,|T|=i=1$ we get by application of equations 4 and 5

$$
\begin{aligned}
b(2-1) & =\binom{1}{0} a(0)+\binom{1}{1} a(1) \\
& =\binom{1}{0}\left[\binom{0}{0} \cdot(-1)^{0} b(0)\right]+\binom{1}{1}\left[\binom{1}{0} \cdot(-1)^{1} b(0)+\binom{1}{1} \cdot(-1)^{0} b(1)\right] \\
& =1 \cdot[1 \cdot 1 \cdot b(0)]+1 \cdot[1 \cdot(-1) \cdot b(0)+1 \cdot 1 \cdot b(1)] \\
& =b(0)-b(0)+b(1)=b(1)
\end{aligned}
$$

2. Suppose $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, S=\left\{s_{1}, s_{2}\right\}$ where the properties are assigned $a_{1}: s_{1}$ and $a_{2}: s_{2}$ and $a_{3}: s_{1}, s_{2}$ and $a_{4}: s_{1}, s_{2}$. Then $f_{=}\left(\left\{s_{1}\right\}=f_{=}\left(\left\{s_{2}\right\}\right)=1\right.$ and $f_{=}(\{ \})=0$ and $f_{=}\left(\left\{s_{1}, s_{2}\right\}\right)=2$.

Solution

This can be reduced to the problem of the number of permutations of the multiset $M_{n}=\{1,1,2,2, \ldots, n, n\}$ (or in equivalent notation $M_{n}=\left\{1^{2}, 2^{2}, \ldots, n^{2}\right\}$) with no two consecutive terms equal ${ }^{2}$. We use the principle of inclusion and exclusion.

Let $h(n)$ be the number of permutations of M_{n} with no two consecutive terms equal. Thus $h(0)=0, h(1)=0$, and $h(2)=2$ (corresponding to the permutations 1212 and 2121). For $1 \leq i \leq n$, let P_{i} be the property that the permutation w of M_{n} has two consecutive i 's. Hence, we seek $f_{=}(\emptyset)=h(n)$.
It follows by symmetry that for fixed $n, f_{\geq}(T)$ depends only on $i=|T|$, so write $g(i)=f_{\geq}(T)$. Then $g(i)$ is equal to the number of permutations w of the multiset $\left\{1,2, \ldots, i,(i+1)^{2}, \ldots, n^{2}\right\}$ (replace any $j \geq i$ appearing in w by two consecutive j 's), so

$$
g(i)=\frac{(i+2(n-i))!}{2^{n-i}}=\frac{(2 n-i)!}{2^{n-i}}
$$

a special case of equation 1 with $k_{1}!=k_{2}!=\cdots=k_{i}!=1$ and $k_{i+1}=k_{i+2}=\cdots=$ $k_{n}!=2$
Now we have $b(i):=g(n-i)=\frac{(n+i)!}{2^{i}}$. From equation 5 we then get

$$
h(n)=\sum_{i=0}^{n}\binom{n}{i} \frac{(-1)^{n-i}(n+i)!}{2^{i}}
$$

Example

Let A be the permutations of $M_{n}=M_{2}=\{1,1,2,2\}$. We look for the number of permutations $h(2)$ of M_{2} with no consecutive terms equal.

The set of properties S is given by properties like: P_{1} is the property that a permutation has two consecutive 1's.
$f_{=}(\emptyset)$ is the number of elements of A having none of the properties in S, that is the number of elements of A with no consecutive terms equal. Therefore, $f_{=}(\emptyset)=h(2)$.

We have n fixed to $n=2$, so $f_{\geq}(T)$ (the number of elements of M_{2} that have at least the properties in T), depends only on $|T|=i$. That means that, for example, the number of permutations of M_{2} that have the property P_{1} or P_{2} or both depends only on $\left|\left\{P_{1}, P_{2}\right\}\right|=2$ So we write $f_{\geq}(T)=g(i)$ and get, for example, for $i=1$ a multiset $\{1,2,2\}$ the number of its permutations is

$$
g(1)=\frac{(2 \cdot 2-1)!}{2^{2-1}}=\frac{3!}{2}=3 .
$$

We verify this by enumerating the permutations of $\{1,2,2\}: 122,212,221$.
For the same $i=1$ we get $b(1)=g(2-1)=\frac{(2+1)!}{2^{1}}$. Looking again at the general case,
we finally get

$$
\begin{aligned}
h(2) & =\sum_{i=0}^{2}\binom{2}{i} \frac{(-1)^{2-i}(2+i)!}{2^{i}} \\
& =\binom{2}{0} \frac{(-1)^{2}(2+0)!}{2^{0}}+\binom{2}{1} \frac{(-1)^{1}(2+1)!}{2^{1}}+\binom{2}{2} \frac{(-1)^{0}(2+2)!}{2^{2}} \\
& =1 \cdot \frac{1 \cdot 2}{1}+2 \cdot \frac{(-1) \cdot 3 \cdot 2}{2}+1 \cdot \frac{1 \cdot 4 \cdot 3 \cdot 2}{4} \\
& =2-6+6
\end{aligned}
$$

$$
=2
$$

Which we verify again by enumerating the two permutations 1212 and 2121 that fulfill the requirement.

References

[1] Richard P. Stanley and Gian-Carlo Rota. Enumerative Combinatorics. Vol. 1. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1997. DOI: 10.1017/CB09780511805967.

[^0]: ${ }^{1}$ https://en.wikipedia.org/wiki/Binomial_coefficient\#Multiplicative_formula

