Discrete Mathematics

November 12, 2020

Exercise 41

Note that the left hand side of the equality is the total number of fixed points in all permutations of $\{1, 2, ..., n\}$. To show that this number is equal to n!, note that there are (n-1)! permutations of $\{1, 2, ..., n\}$ fixing 1, (n-1)! permutations fixing 2, and so on, and (n-1)! permutations fixing n. It follows that the total number of fixed points in all permutations is equal to $n \cdot (n-1)! = n!$.

Exercise 42

Consider the binomial theorem $(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$. Substitute x = -1. As long as n > 0, we get 0 on the left side, so we obtain $0 = \sum_{k=0}^n \binom{n}{k} (-1)^k$. Move the negative terms to the left side to get

$$\sum_{\substack{0 \le k \le n \\ k \text{ odd}}} \binom{n}{k} = \sum_{\substack{0 \le k \le n \\ k \text{ even}}} \binom{n}{k}.$$

The sum on the left side is the number of odd-sized subsets and the sum on the right is the number of even-sized subsets.

See Exam 3 in http://math.colorado.edu/jonathan.wise/teaching/math2001-fall-2014/

1. We can place the first rook anywhere on the board, i.e. $n \cdot n$ choices. The second rook cannot be placed in the row or column of the first one, i.e. $(n-1) \cdot (n-1)$ choices. This way, the last rook has exactly $1 \cdot 1$ choice. This gives us $\prod_{i=1}^{n} i^2 = (n!)^2$. However, we still have to take into account, that the rooks are not labeled. Therefore the final result is

$$\frac{(n!)^2}{n!} = n!$$

2. Each rook has to be on a different row. There is only one such way to assign rooks to rows (rooks are indistinguishable). Then for the first rook, there is a choice of n columns, for the second of n - 1 columns, for the third of n - 2 columns and so on so in total there are n! possibilities.

https://math.stackexchange.com/q/3013488

We use double counting.

Let $A = B = \{a_1, a_2, \dots, a_n\}, R \subseteq A \times B$.

$$R_{i,0} = \{ b \in B : (a_i, b) \in R \}, \quad R_{0,j} = \{ a \in A : (a, b_j) \in R \}$$

and define R as

$$(a_i, a_k) \in R : \iff a_i < a_k, i > k \quad 1 \le k \le n$$

the result is proven in the image

This example is relevant for the double counting explanation

		$\begin{array}{c} a_{1} a_{2} \\ 5 \end{array} \\ 3 \end{array} \\ \begin{array}{c} 4 \\ 1 \end{array} \\ \begin{array}{c} \lambda \\ \lambda \end{array}$				
& AR	AR A	AL AL	BA	Bh	BR BR	
1 2030205	azaza4a5	azaza445				
2 9495	azayas	ayas	anaz	Q1	91	
J az ayas	9495	aga5	91	a ₁ a ₂	91	
4	as		anazazaz	Q,QQQ	an az az	
5 94			9,0293	9,0203ay	a,a,az	
E laglerc	2 E/Ap2/=10	E14414R1=8	EIBà EIO	E10,21=10	E134154/8	

This is just another one

k	AK	Ag .	ARNAL	B_R^{\prime}	BR 2	Ban Ba	
1	@103.Q4Q5	Q1Q3Q4Q5	a1a3a4a5				0,0,0,0,0,0,0
2	Q3Q405	Q3 94 95	Q36405	0,		Q1	54312
3	94,95	94,95	- ay 05	9,07	G,G1	0,01	
ι,		CK6		0,020,005	Q, Q, Q3	Q1Q1Q3	
5	94			Q, Q7Q3	Q,Q,Q,Q,Q4	a, a 19	;
C	5 A:1=10	51A2 = 10	$\sum A_i^* \wedge A_i^3 = 9$	51821=10	5 153=10	5 BANB	31-9

Mind the accidental switch in columns B^1_k, B^2_k

	AL	A ² _k	AANAL	32 8	BA	BANBA	
1	azazaza5	azazayaz	Q2030405				
	aza495	039495	a39495-	an	a,	a	
5		9495		arai	0,020405	araz	
1		@		a, a, a,	Q1Q2 95	e, Qz	
-	aza4			_{વત્} વર વરુ વ	4 9192	arac	۴
	$\sum A_{R}^{A} = 10$	E14x2=10	E14 0 A2 =7	DBR1=10	E15/=10	EIBA 132 = 7	

Define 10 sets

 $\{x \in A \mid x \equiv 1 \pmod{20} \lor x \equiv 19 \pmod{20} \}$ $\{x \in A \mid x \equiv 2 \pmod{20} \lor x \equiv 18 \pmod{20} \}$ \vdots $\{x \in A \mid x \equiv 9 \pmod{20} \lor x \equiv 11 \pmod{20} \}$ $\{x \in A \mid x \equiv 10 \pmod{20} \}$

As there are 11 integers $x \in A$ and 10 sets, by the pigeonhole principle there are two integers $a, b \in A$ (let wlog $b \leq a$) that are element of the same set.

Case 1 $a \equiv b \pmod{20}$. Then $20 \mid (a - b)$.

Case 2 $a \not\equiv b \pmod{20}$. Then $20 \mid (a+b)$.

Examples:

$$401 \equiv 1 \pmod{20}, 19 \equiv 19 \pmod{20} \implies \{401, 19\} \text{ and } 20 \mid 420 = 401 + 19$$

$$401 \equiv 1 \pmod{20}, 21 \equiv 1 \pmod{20} \implies \{401, 21\} \text{ and } 20 \mid 380 = 401 - 21$$

$$418 \equiv 18 \pmod{20}, 118 \equiv 18 \pmod{20} \implies \{418, 118\} \text{ and } 20 \mid 300 = 418 - 118$$

Exercise 46

For each column, there are 4 points and 3 possible colors per point, for a total of $3^4 = 81$ possible colorings. As there are 4 points per column and 3 possible colors, by the Pigeonhole Principle some color appears twice in a single column. With 81 + 1 columns, by the Pigeonhole Principle, there are two columns with the same coloring. From each of the two columns, take some corresponding two points of a color that appears twice. These form a rectangle all of whose vertices are the same color.

https://math.stackexchange.com/questions/1519803/proving-identities-using-combinatorial-interpretation-of-binomial-coefficients

1. Let X be an n-element set. Then $\binom{n}{k}$ is the number of k-element subsets of X. If $x \in X$ is a fixed element of X, then we can divide the k-element subsets of X into two classes: those which contain x and those that do not. The k-element subsets not containing x are precisely the k-element subsets of $X \setminus \{x\}$, and there are $\binom{n-1}{k}$ such sets. Then k-element subsets of X which do contain x are all of the form $\{x\} \cup Y$, where Y is a (k-1)-element subset of $X \setminus \{x\}$; there are $\binom{n-1}{k-1}$ such sets. Thus, in total, there are $\binom{n-1}{k} + \binom{n-1}{k-1}$ total k-element subsets of X, proving that

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

2. Let $X = X_1 \cup X_2$ with $|X_1| = |X_2| = n$. Then $\binom{2n}{n}$ is the number of *n*-element subsets of *X*. Let *Y* be one such subset. It chooses *k* elements of *X*₁, with $0 \le k \le n$. There are $\binom{n}{k}$ such subsets. Then *Y* has to choose n-k elements from X_2 . There are $\binom{n}{n-k}$ such subsets. Consequently, there are $\binom{n}{k} \cdot \binom{n}{n-k} = \binom{n}{k}^2$ possible choices for *Y*. Summing up all possible *k* gives the identity

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$

Combinatorial proof using double counting. Note that the left side counts bit strings of n + 1 length with r + 1 ones. We show that the right side counts the same objects. The final one must occur at position r + 1 or r + 2 or ... or n + 1 Assume that it occurs at the m^{th} bit, where $r + 1 \le m \le n + 1$.

- 1. Thus, there must be r ones in the first m-1 positions
- 2. Thus, there are $\binom{m-1}{r}$ such strings of length m-1

As m can be any value from r + 1 to n + 1, the total number of possibilities is

$$\sum_{m=r+1}^{n+1} \binom{m-1}{r} = \sum_{m=r}^{n} \binom{m}{r}$$

which is illustrated for r = 2, n = 4

https://math.stackexchange.com/a/1523108/844881

The second equation from the task description and a new notation 1 shows

$$\binom{x}{k} = \frac{x^{\underline{k}}}{k!} = \frac{x(x-1)(x-2)\dots(x-(k-1))}{k(k-1)(k-2)\dots1} = \prod_{i=1}^{k} \frac{x+1-i}{i}$$

With j = n - 1 - i in the second line (in one product the factors are increasing and in the other they are decreasing), we calculate

$$(-x)^{\underline{k}} = \prod_{i=0}^{k-1} (-x-i)$$

=
$$\prod_{j=0}^{k-1} (-x-k+1+j)$$

=
$$\prod_{j=0}^{k-1} (-(x+k-1-j))$$

=
$$(-1)^k \prod_{j=0}^{k-1} (x+k-1-j)$$

=
$$(-1)^k (x+k-1)^{\underline{k}}$$

and thus

$$\binom{-x}{k} = \frac{(-x)^k}{k!} = \frac{(-1)^k (x+k-1)^k}{k!} = (-1)^k \binom{x+k-1}{k}$$

 $^{^{1}} https://en.wikipedia.org/wiki/Binomial_coefficient\#Multiplicative_formula$

https://math.stackexchange.com/questions/580435/number-of-2n-letter-words-using-double-n-letter-alphabet-without-consecutiv

Definitions

We know from the lecture that the number of arrangements of a multiset $\{b_1^{k_1}, b_2^{k_2}, \ldots, b_m^{k_m}\}$ of cardinality n is

$$\frac{n!}{k_1!k_2!\dots k_m!}\tag{1}$$

[1] Let S be a set of properties that the elements of some other set A may or may not have. For any subset $T \subseteq S$, denote by

- $f_{=}(T)$ the number of elements of A that have *exactly* the properties in T.
- $f_{>}(T)$ the number of elements of A that have at least the properties in T.

From that definition we get

$$f_{\geq}(T) = \sum_{Y \supseteq T} f_{=}(Y).$$
⁽²⁾

By Theorem 2.1.1 from [1] the existence and form of the following inverse function follows

$$f_{=}(T) = \sum_{Y \supseteq T} (-1)^{|Y \setminus T|} f_{\geq}(Y)$$
(3)

Of which the following (the number of elements having *none* of the properties in S) is a special case

$$f_{=}(\emptyset) = \sum_{Y \supseteq T} (-1)^{|Y|} f_{\geq}(Y)$$

where Y ranges over all subsets S.

Examples demonstrating the application of 2 and its inverse 3 :

1. Suppose $S = \{s_1, s_2\}$ and $T = \{s_1\}$ Then

$$\begin{split} f_{=}(\{s_1\}) &= (-1)^{|\{\}|} f_{\geq}(\{s_1\}) + (-1)^{|\{s_2\}|} f_{\geq}(\{s_1, s_2\}) \\ &= f_{\geq}(\{s_1\}) - f_{\geq}(\{s_1, s_2\}) \\ &= f_{=}(\{s_1\}) + f_{=}(\{s_1, s_2\}) - f_{=}(\{s_1, s_2\}) \\ &= f_{=}(\{s_1\}) \end{split}$$

We think of $f_{\geq}(\{s_1\})$ as being a first approximation to $f_{=}(\{s_1\})$. We then substract $f_{\geq}(s_1, s_2)$ to get a better approximation. This reasoning brings us to the terminology "Inclusion-Exclusion". 2. Suppose $S = \{s_1, s_2, s_3\}$. Then

$$\begin{split} f_{\geq}(\{s_1,s_2\}) &= f_{=}(\{s_1,s_2\}) + f_{=}(\{s_1,s_2,s_3\}) \\ &= (-1)^{|\{\}|} f_{\geq}(\{s_1,s_2\}) + (-1)^{|\{s_3\}|} f_{\geq}(\{s_1,s_2,s_3\}) + (-1)^{|\{\}|} f_{\geq}(\{s_1,s_2,s_3\}) \\ &= f_{\geq}(\{s_1,s_2\}) - f_{=}(\{s_1,s_2,s_3\}) + f_{=}(\{s_1,s_2,s_3\}) \\ &= f_{\geq}(\{s_1,s_2\}) \end{split}$$

A special case of the Principle of Inclusion-Exclusion occurs when the function $f_{=}$ satisfies $f_{=}(T) = f_{=}(T')$ whenever |T| = |T'|. Then also $f_{\geq}(T)$ depends only on |T|. We set $a(n-i) = f_{=}(T)$ and $b(n-i) = f_{\geq}(T)$ whenever |T| = i. From equations 2 and 3 then follows the equivalence of the following formulas

$$b(m) = \sum_{i=0}^{m} \binom{m}{i} a(i), \quad 0 \le m \le n$$
(4)

$$a(m) = \sum_{i=0}^{m} \binom{m}{i} (-1)^{m-i} b(i), \quad 0 \le m \le n$$
(5)

Examples:

1. Suppose $A = \{a_1, a_2\}, S = \{s_1, s_2\}$ where the properties are assigned $a_1 : s_1$ and $a_2 : s_2$. Then $f_{=}(\{s_1\} = f_{=}(\{s_2\}) = 1$ and $f_{=}(\{\}) = f_{=}(\{s_1, s_2\}) = 0$. For n = 2, |T| = i = 1 we get by application of equations 4 and 5

$$b(2-1) = {\binom{1}{0}}a(0) + {\binom{1}{1}}a(1)$$

= ${\binom{1}{0}}\left[{\binom{0}{0}} \cdot (-1)^{0}b(0)\right] + {\binom{1}{1}}\left[{\binom{1}{0}} \cdot (-1)^{1}b(0) + {\binom{1}{1}} \cdot (-1)^{0}b(1)\right]$
= $1 \cdot [1 \cdot 1 \cdot b(0)] + 1 \cdot [1 \cdot (-1) \cdot b(0) + 1 \cdot 1 \cdot b(1)]$
= $b(0) - b(0) + b(1) = b(1)$

2. Suppose $A = \{a_1, a_2, a_3, a_4\}, S = \{s_1, s_2\}$ where the properties are assigned $a_1 : s_1$ and $a_2 : s_2$ and $a_3 : s_1, s_2$ and $a_4 : s_1, s_2$. Then $f_{=}(\{s_1\} = f_{=}(\{s_2\}) = 1$ and $f_{=}(\{\}) = 0$ and $f_{=}(\{s_1, s_2\}) = 2$.

Solution

This can be reduced to the problem of the number of permutations of the multiset $M_n = \{1, 1, 2, 2, ..., n, n\}$ (or in equivalent notation $M_n = \{1^2, 2^2, ..., n^2\}$) with no two consecutive terms equal ². We use the principle of inclusion and exclusion.

 $^{^{2}2}$

Let h(n) be the number of permutations of M_n with no two consecutive terms equal. Thus h(0) = 0, h(1) = 0, and h(2) = 2 (corresponding to the permutations 1212 and 2121). For $1 \le i \le n$, let P_i be the property that the permutation w of M_n has two consecutive *i*'s. Hence, we seek $f_{=}(\emptyset) = h(n)$.

It follows by symmetry that for fixed n, $f_{\geq}(T)$ depends only on i = |T|, so write $g(i) = f_{\geq}(T)$. Then g(i) is equal to the number of permutations w of the multiset $\{1, 2, \ldots, i, (i+1)^2, \ldots, n^2\}$ (replace any $j \geq i$ appearing in w by two consecutive j's), so

$$g(i) = \frac{(i+2(n-i))!}{2^{n-i}} = \frac{(2n-i)!}{2^{n-i}},$$

a special case of equation 1 with $k_1! = k_2! = \cdots = k_i! = 1$ and $k_{i+1} = k_{i+2} = \cdots = k_n! = 2$

Now we have $b(i) := g(n-i) = \frac{(n+i)!}{2^i}$. From equation 5 we then get

$$h(n) = \sum_{i=0}^{n} \binom{n}{i} \frac{(-1)^{n-i}(n+i)!}{2^{i}}$$

Example

Let A be the permutations of $M_n = M_2 = \{1, 1, 2, 2\}$. We look for the number of permutations h(2) of M_2 with no consecutive terms equal.

The set of properties S is given by properties like: P_1 is the property that a permutation has two consecutive 1's.

 $f_{=}(\emptyset)$ is the number of elements of A having none of the properties in S, that is the number of elements of A with no consecutive terms equal. Therefore, $f_{=}(\emptyset) = h(2)$.

We have n fixed to n = 2, so $f_{\geq}(T)$ (the number of elements of M_2 that have at least the properties in T), depends only on |T| = i. That means that, for example, the number of permutations of M_2 that have the property P_1 or P_2 or both depends only on $|\{P_1, P_2\}| = 2$ So we write $f_{\geq}(T) = g(i)$ and get, for example, for i = 1 a multiset $\{1, 2, 2\}$ the number of its permutations is

$$g(1) = \frac{(2 \cdot 2 - 1)!}{2^{2-1}} = \frac{3!}{2} = 3$$

We verify this by enumerating the permutations of $\{1, 2, 2\}$: 122,212,221.

For the same i = 1 we get $b(1) = g(2-1) = \frac{(2+1)!}{2^1}$. Looking again at the general case,

we finally get

$$\begin{aligned} h(2) &= \sum_{i=0}^{2} \binom{2}{i} \frac{(-1)^{2-i}(2+i)!}{2^{i}} \\ &= \binom{2}{0} \frac{(-1)^{2}(2+0)!}{2^{0}} + \binom{2}{1} \frac{(-1)^{1}(2+1)!}{2^{1}} + \binom{2}{2} \frac{(-1)^{0}(2+2)!}{2^{2}} \\ &= 1 \cdot \frac{1 \cdot 2}{1} + 2 \cdot \frac{(-1) \cdot 3 \cdot 2}{2} + 1 \cdot \frac{1 \cdot 4 \cdot 3 \cdot 2}{4} \\ &= 2 - 6 + 6 \end{aligned}$$

Which we verify again by enumerating the two permutations 1212 and 2121 that fulfill the requirement.

References

 Richard P. Stanley and Gian-Carlo Rota. *Enumerative Combinatorics*. Vol. 1. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1997. DOI: 10.1017/CB09780511805967.