
Exercise 5
Discrete Mathematics

November 12, 2020

Exercise 41
Note that the left hand side of the equality is the total number of fixed points in all
permutations of {1, 2, . . . , n}. To show that this number is equal to n!, note that there
are (n − 1)! permutations of {1, 2, . . . , n} fixing 1,(n − 1)! permutations fixing 2, and
so on, and (n − 1)! permutations fixing n. It follows that the total number of fixed
points in all permutations is equal to n · (n− 1)! = n!.

Exercise 42
Consider the binomial theorem (1+x)n =

∑n
k=0

(
n
k

)
xk. Substitute x = −1. As long as

n > 0, we get 0 on the left side, so we obtain 0 =
∑n

k=0

(
n
k

)
(−1)k. Move the negative

terms to the left side to get ∑
0≤k≤n
k odd

(
n

k

)
=

∑
0≤k≤n
k even

(
n

k

)
.

The sum on the left side is the number of odd-sized subsets and the sum on the right
is the number of even-sized subsets.

See Exam 3 in http://math.colorado.edu/ jonathan.wise/teaching/math2001-fall-2014/
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Exercise 43
1. We can place the first rook anywhere on the board, i.e. n ·n choices. The second

rook cannot be placed in the row or column of the first one, i.e. (n− 1) · (n− 1)
choices. This way, the last rook has exactly 1 · 1 choice. This gives us Πn

i=1i
2 =

(n!)2. However, we still have to take into account, that the rooks are not labeled.
Therefore the final result is

(n!)2

n!
= n!

2. Each rook has to be on a different row. There is only one such way to assign
rooks to rows (rooks are indistinguishable). Then for the first rook, there is a
choice of n columns, for the second of n − 1 columns, for the third of n − 2
columns and so on so in total there are n! possibilities.

2



Exercise 44
https://math.stackexchange.com/q/3013488

We use double counting.

Let A = B = {a1, a2, . . . , an}, R ⊆ A×B.

Ri,0 = {b ∈ B : (ai, b) ∈ R}, R0,j = {a ∈ A : (a, bj) ∈ R}

and define R as
(ai, ak) ∈ R :⇐⇒ ai < ak, i > k 1 ≤ k ≤ n

the result is proven in the image

This example is relevant for the double counting explanation
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This is just another one

Mind the accidental switch in columns B1
k, B

2
k
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Exercise 45
Define 10 sets

{x ∈ A | x ≡ 1 (mod 20) ∨ x ≡ 19 (mod 20)}
{x ∈ A | x ≡ 2 (mod 20) ∨ x ≡ 18 (mod 20)}

...
{x ∈ A | x ≡ 9 (mod 20) ∨ x ≡ 11 (mod 20)}
{x ∈ A | x ≡ 10 (mod 20)}

As there are 11 integers x ∈ A and 10 sets, by the pigeonhole principle there are two
integers a, b ∈ A (let wlog b ≤ a) that are element of the same set.

Case 1 a ≡ b (mod 20). Then 20 | (a− b).

Case 2 a 6≡ b (mod 20). Then 20 | (a+ b).

Examples:

401 ≡ 1 (mod 20), 19 ≡ 19 (mod 20) =⇒ {401, 19} and 20 | 420 = 401 + 19

401 ≡ 1 (mod 20), 21 ≡ 1 (mod 20) =⇒ {401, 21} and 20 | 380 = 401− 21

418 ≡ 18 (mod 20), 118 ≡ 18 (mod 20) =⇒ {418, 118} and 20 | 300 = 418− 118

Exercise 46
For each column, there are 4 points and 3 possible colors per point, for a total of
34 = 81 possible colorings. As there are 4 points per column and 3 possible colors,
by the Pigeonhole Principle some color appears twice in a single column. With 81+ 1
columns, by the Pigeonhole Principle, there are two columns with the same coloring.
From each of the two columns, take some corresponding two points of a color that
appears twice. These form a rectangle all of whose vertices are the same color.
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Exercise 47
https://math.stackexchange.com/questions/1519803/proving-identities-using-combinatorial-
interpretation-of-binomial-coefficients

1. Let X be an n-element set. Then
(
n
k

)
is the number of k-element subsets of X.

If x ∈ X is a fixed element of X, then we can divide the k-element subsets of X
into two classes: those which contain x and those that do not. The k-element
subsets not containing x are precisely the k-element subsets of X \{x}, and there
are

(
n−1
k

)
such sets. Then k-element subsets of X which do contain x are all of

the form {x}∪Y , where Y is a (k−1)-element subset of X \{x}; there are
(
n−1
k−1

)
such sets. Thus, in total, there are

(
n−1
k

)
+

(
n−1
k−1

)
total k-element subsets of X,

proving that (
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

2. Let X = X1 ∪X2 with |X1| = |X2| = n. Then
(
2n
n

)
is the number of n-element

subsets of X. Let Y be one such subset. It chooses k elements of X1, with
0 ≤ k ≤ n. There are

(
n
k

)
such subsets. Then Y has to choose n−k elements from

X2. There are
(

n
n−k

)
such subsets. Consequently, there are

(
n
k

)
·
(

n
n−k

)
=

(
n
k

)2
possible choices for Y . Summing up all possible k gives the identity

n∑
k=0

(
n

k

)2

=

(
2n

n

)
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Exercise 48
Combinatorial proof using double counting. Note that the left side counts bit strings
of n+ 1 length with r + 1 ones. We show that the right side counts the same objects.
The final one must occur at position r+1 or r+2 or . . . or n+1 Assume that it occurs
at the mth bit, where r + 1 ≤ m ≤ n+ 1.

1. Thus, there must be r ones in the first m− 1 positions

2. Thus, there are
(
m−1
r

)
such strings of length m− 1

As m can be any value from r + 1 to n+ 1, the total number of possibilities is

n+1∑
m=r+1

(
m− 1

r

)
=

n∑
m=r

(
m

r

)
which is illustrated for r = 2, n = 4
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Exercise 49
https://math.stackexchange.com/a/1523108/844881

The second equation from the task description and a new notation 1 shows(
x

k

)
=

xk

k!
=

x(x− 1)(x− 2) . . . (x− (k − 1))

k(k − 1)(k − 2) . . . 1
=

k∏
i=1

x+ 1− i

i

With j = n− 1− i in the second line (in one product the factors are increasing and in
the other they are decreasing), we calculate

(−x)k =
k−1∏
i=0

(−x− i)

=

k−1∏
j=0

(−x− k + 1 + j)

=

k−1∏
j=0

(−(x+ k − 1− j))

= (−1)k
k−1∏
j=0

(x+ k − 1− j)

= (−1)k(x+ k − 1)k

and thus (
−x

k

)
=

(−x)k

k!
=

(−1)k(x+ k − 1)k

k!
= (−1)k

(
x+ k − 1

k

)

1https://en.wikipedia.org/wiki/Binomial_coefficient#Multiplicative_formula
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Exercise 50
https://math.stackexchange.com/questions/580435/number-of-2n-letter-words-using-double-
n-letter-alphabet-without-consecutiv

Definitions
We know from the lecture that the number of arrangements of a multiset {bk1

1 , bk2
2 , . . . , bkm

m }
of cardinality n is

n!

k1!k2! . . . km!
(1)

[1] Let S be a set of properties that the elements of some other set A may or may not
have. For any subset T ⊆ S, denote by

• f=(T ) the number of elements of A that have exactly the properties in T .

• f≥(T ) the number of elements of A that have at least the properties in T .

From that definition we get
f≥(T ) =

∑
Y⊇T

f=(Y ). (2)

By Theorem 2.1.1 from [1] the existence and form of the following inverse function
follows

f=(T ) =
∑
Y⊇T

(−1)|Y \T |f≥(Y ) (3)

Of which the following (the number of elements having none of the properties in S) is
a special case

f=(∅) =
∑
Y⊇T

(−1)|Y |f≥(Y )

where Y ranges over all subsets S.

Examples demonstrating the application of 2 and its inverse 3 :

1. Suppose S = {s1, s2} and T = {s1} Then

f=({s1}) = (−1)|{}|f≥({s1}) + (−1)|{s2}|f≥({s1, s2})
= f≥({s1})− f≥({s1, s2})
= f=({s1}) + f=({s1, s2})− f=({s1, s2})
= f=({s1})

We think of f≥({s1}) as being a first approximation to f=({s1}). We then
substract f≥(s1, s2) to get a better approximation. This reasoning brings us to
the terminology "Inclusion-Exclusion".
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2. Suppose S = {s1, s2, s3}. Then

f≥({s1, s2}) = f=({s1, s2}) + f=({s1, s2, s3})
= (−1)|{}|f≥({s1, s2}) + (−1)|{s3}|f≥({s1, s2, s3}) + (−1)|{}|f≥({s1, s2, s3})
= f≥({s1, s2})− f=({s1, s2, s3}) + f=({s1, s2, s3})
= f≥({s1, s2})

A special case of the Principle of Inclusion-Exclusion occurs when the function f=
satisfies f=(T ) = f=(T

′) whenever |T | = |T ′|. Then also f≥(T ) depends only on |T |.
We set a(n − i) = f=(T ) and b(n − i) = f≥(T ) whenever |T | = i. From equations 2
and 3 then follows the equivalence of the following formulas

b(m) =

m∑
i=0

(
m

i

)
a(i), 0 ≤ m ≤ n (4)

a(m) =

m∑
i=0

(
m

i

)
(−1)m−ib(i), 0 ≤ m ≤ n (5)

Examples:

1. Suppose A = {a1, a2}, S = {s1, s2} where the properties are assigned a1 : s1 and
a2 : s2. Then f=({s1} = f=({s2}) = 1 and f=({}) = f=({s1, s2}) = 0. For
n = 2, |T | = i = 1 we get by application of equations 4 and 5

b(2− 1) =

(
1

0

)
a(0) +

(
1

1

)
a(1)

=

(
1

0

)[(
0

0

)
· (−1)0b(0)

]
+

(
1

1

)[(
1

0

)
· (−1)1b(0) +

(
1

1

)
· (−1)0b(1)

]
= 1 · [1 · 1 · b(0)] + 1 · [1 · (−1) · b(0) + 1 · 1 · b(1)]
= b(0)− b(0) + b(1) = b(1)

2. Suppose A = {a1, a2, a3, a4}, S = {s1, s2} where the properties are assigned
a1 : s1 and a2 : s2 and a3 : s1, s2 and a4 : s1, s2. Then f=({s1} = f=({s2}) = 1
and f=({}) = 0 and f=({s1, s2}) = 2.

Solution
This can be reduced to the problem of the number of permutations of the multiset
Mn = {1, 1, 2, 2, . . . , n, n} (or in equivalent notation Mn = {12, 22, . . . , n2}) with no
two consecutive terms equal 2. We use the principle of inclusion and exclusion.

22
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Let h(n) be the number of permutations of Mn with no two consecutive terms equal.
Thus h(0) = 0, h(1) = 0, and h(2) = 2 (corresponding to the permutations 1212 and
2121). For 1 ≤ i ≤ n, let Pi be the property that the permutation w of Mn has two
consecutive i’s. Hence, we seek f=(∅) = h(n).

It follows by symmetry that for fixed n, f≥(T ) depends only on i = |T |, so write
g(i) = f≥(T ). Then g(i) is equal to the number of permutations w of the multiset
{1, 2, . . . , i, (i+1)2, . . . , n2} (replace any j ≥ i appearing in w by two consecutive j’s),
so

g(i) =
(i+ 2(n− i))!

2n−i
=

(2n− i)!

2n−i
,

a special case of equation 1 with k1! = k2! = · · · = ki! = 1 and ki+1 = ki+2 = · · · =
kn! = 2

Now we have b(i) := g(n− i) = (n+i)!
2i . From equation 5 we then get

h(n) =

n∑
i=0

(
n

i

)
(−1)n−i(n+ i)!

2i

Example
Let A be the permutations of Mn = M2 = {1, 1, 2, 2}. We look for the number of
permutations h(2) of M2 with no consecutive terms equal.

The set of properties S is given by properties like: P1 is the property that a permutation
has two consecutive 1’s.

f=(∅) is the number of elements of A having none of the properties in S, that is the
number of elements of A with no consecutive terms equal. Therefore, f=(∅) = h(2).

We have n fixed to n = 2, so f≥(T ) (the number of elements of M2 that have at least
the properties in T ), depends only on |T | = i. That means that, for example, the
number of permutations of M2 that have the property P1 or P2 or both depends only
on |{P1, P2}| = 2 So we write f≥(T ) = g(i) and get, for example, for i = 1 a multiset
{1, 2, 2} the number of its permutations is

g(1) =
(2 · 2− 1)!

22−1
=

3!

2
= 3.

We verify this by enumerating the permutations of {1, 2, 2}: 122,212,221.

For the same i = 1 we get b(1) = g(2− 1) = (2+1)!
21 . Looking again at the general case,
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we finally get

h(2) =

2∑
i=0

(
2

i

)
(−1)2−i(2 + i)!

2i

=

(
2

0

)
(−1)2(2 + 0)!

20
+

(
2

1

)
(−1)1(2 + 1)!

21
+

(
2

2

)
(−1)0(2 + 2)!

22

= 1 · 1 · 2
1

+ 2 · (−1) · 3 · 2
2

+ 1 · 1 · 4 · 3 · 2
4

= 2− 6 + 6 = 2

Which we verify again by enumerating the two permutations 1212 and 2121 that fulfill
the requirement.
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