192.067 VO Deductive Databases January 28, 2021 Matrikelnummer (student id) Familienname (family name) Vorname (first name)

1.) Consider a program P consisting of the following rules:

$$a \leftarrow b \leftarrow a, c$$

$$b \leftarrow a, c$$

$$w \leftarrow c, b$$

$$c \leftarrow e$$

$$c \leftarrow e, g$$

$$e \leftarrow$$

$$g \leftarrow c, f$$

List all minimal models of P. Explain your answer.

(10 points)

1.)
$$\rho$$
 facts

 a^{c}
 e^{c}
 e^{c}

-> [a,e,b,c,w] is a minimal model

{a,e3 has to be included and {6,c,u3 con be inferred from {a,e}

2.) Consider interpretations $I_1 = \{c, d\}$ and $I_2 = \{e, f\}$, and a program P consisting of the following rules:

$$e \leftarrow not \ c, not \ d$$

$$f \leftarrow not \ c, e$$

$$c \leftarrow not \ e$$

Compute the programs P^{I_1} and P^{I_2} , i.e. the reducts of P with respect to I_1 , and with respect to I_2 . Is I_1 a stable model of the program P? Is I_2 a stable model of the program P? Justify your answer. (10 points)

reduct is defined as P'= {H(r) = B+(r) | rep; lnB-(r) = Ø}

pla

_

1° is model of P'
-> not minimal

Fee 12 is model of P12

-> also minimal thus a stable model of P

3.) Consider a program P consisting of the following rules:

$$\begin{aligned} d &\leftarrow c \\ c &\leftarrow not \ d \\ d &\leftarrow not \ c \end{aligned}$$

List all stable models of P. Justify your answer.

(10 points)

candidates

1)
pue

de c

ce

Honol a model

de c

2) pun

de c

My nal a model

3) pm2

UEC

Hz model of PM2 x minimal -> stable model

UE

4) PM3

dec M3 model of PM3 however not minimal

```
4.) Consider an interpretation \mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}) satisfying the following:
```

$$\bullet \ \Delta^{\mathcal{I}} = \{a, b, c\},\$$

•
$$A^{\mathcal{I}} = \{b, c\}$$
 for the concept name A ,

•
$$B^{\mathcal{I}} = \{a\}$$
 for the concept name B ,

•
$$P^{\mathcal{I}} = \{(b,b),(a,b)\}$$
 for the role name P , and

•
$$R^{\mathcal{I}} = \{(a, a), (b, b)\}$$
 for the role name R .

Compute the extension of $\cdot^{\mathcal{I}}$ for the following complex concepts (i.e. compute $C^{\mathcal{I}}$ for all complex concepts C listed below):

(1)
$$B \sqcup \neg A$$

$$(2) \ (B \sqcup A) \sqcap \neg B$$

$$(3) \forall P.A$$

(5)
$$\forall P.(B \sqcap \neg B)$$

(6)
$$\exists R.(B \sqcup \neg B)$$

(15 points)

$$(\beta_{U1}A)' = \beta'U\Pi A)' = \{a\} \cup \{a\} = \{a\}$$

2)
$$((B \cup A)_{\Pi \cap B})^{\dagger} = \{a, b, c\} \cap \{b, c\} = \{b, c\}$$

5.) By defining a suitable interpretation, show that the concept $A \sqcap \neg (\forall R.A)$ is satisfiable. Here A is a concept name and R is a role name. (15 points)

$$A' = \{a\}$$
 $\Delta' = \{a, b\}$
 $R' = \{(a, b)\}$

$$A' = \{a\}$$

 $(\forall R.A)' = \{6\}$ => $\Delta' \setminus \{6\} = \{a\}$
a
 $(a,b) \ 6 \omega \ b \in A'$

-> slalisfiable