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Implementing MPI collective operations (MPI1 3.1, Chapter 5)

|deally, MPI library

« implements best known/possible algorithms for given
communication network

« gives smooth performance for each operation in problem size,
data layout, number of processes, process mapping (given by
communicator), ...

* has predictable performance (concrete performance model
for concrete library?)

* has consistent performance between related operations
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Questions (empirical and theoretical):
 How good are actual MPI libraries?

« What are realistic/possible expectations for a “high quality”
MPI library?
Possible answer:
- Howtojudge?  Benchmark with (performance guideline)
expectations

There is usually no single, “one size fits all” algorithm. For most
collectives, MP libraries use a mix of different algorithms
(depending problem size, numbers of processes, placement in
network, ...)

But, there are some recurring, common ideas in all these
algorithms and implementations
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Modeling basic communication performance

1. Between (any) pairs of processors (MPI processes). Are all
pairs equal (homogeneous/heterogeneous communication
system)?

2. Between all/some pairs of processors (MPI processes).
Contention effects in system/network? How to model?

Algorithms for collective operations built from basic, pairwise
communication operations. Want model to estimate cost of each
collective operation (MPI and in general)
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Performance models, definitions, notations:

p: Number of (physical processors) ~ number of MPI processes
in communicator
m: Total size of message, total size of problem in collective

For hierarchical systems (like SMP clusters, more later ):
N: Number of nodes

n: Number of processes per node, p = nN ( regular cluster )
n.: Number of processes at node N , p= %Nn

Note : Here, log p denotes base 2 logarithm, log , p
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Linear transmission cost model: Two processes, nothing else

First approximation :
Model physical point-to-point communication time, time to
transmit message between any two processors (processes)

t(m) = o+Bm

o: start-up latency (unit: seconds)
B: time per unit, inverse bandwidth (unit: seconds/Byte)

0" @

MPI_Send MPI_Recv Isthisso?
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First approximation :
Model physical point-to-point communication time, time to

transmit message between any two processors (processes)

t(m) = o+Bm

Note :
* Models transfer time , both processors involved in the

transfer (synchronous point-to-point)
« Assumes homogeneous network, same transfer time for any

pair of processes

Second assumption not realistic : SMP clusters,
specific, high-diameter mesh/torus networks, ...
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Processor pi sending m-unit message to pj

O+Bm time
B —
>
Bm
N -
>
o+m .
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MPI Send(&x,c,datatype,dest, tag, comm) ;

@Software and algorithmic(*) latency:
« decode arguments (datatype, comm, ...)

« (optional) check arguments
« select algorithm/protocol, initialize
* MPIR Send(&x, ..); // library internal ADI
 decide fabric, build envelope: communication
context, source rank, size, mode info, ... ( Note : no
datatype)

Software o: 100-10000 instructions

Hardware latency: setup, initiate transfer

Physical transfer

(*) can be a decisive factor for collective operations
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Typical MPI software/algorithmic latency

« Different “protocols” depending on message size (short,
eager, rendezvous)

« Software pipelining

« Handling of structured data (possibly intermediate packing
into consecutive buffer)

« Ensuring message integrity (MPI reliability) and order

« Data structures for received and scheduled messages
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Linear transmission cost model is sometimes called Hockney-
model (misnomer; but common in MPI community)

Roger W. Hockney: Parametrization of computer performance.
Parallel Computing 5(1-2): 97-103 (1987)

Roger W. Hockney: Performance parameters and benchmarking of
supercomputers. Parallel Computing 17(10-11): 1111-1130 (1991)
Roger W. Hockney: The Communication Challenge for MPP: Intel
Paragon and Meiko CS-2. Parallel Computing 20(3): 389-398
(1994)
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Linear cost model justified?

Measure the time of transmission m units of data (Bytes)
between two processes

Repeat (until result is stable: how?):

Synchronize processes (with MPI Barrier: Beware!)
Start time (with  MPI Wtime: Resolution?)

Perform communication between processes

Stop time

Optional: Synchronize

Time for operation is time of slowest process

(MPI Allreduce (MPI MAX))

® oA wN

Jesper Larsson Traff: mpicroscope: Towards an MPIl Benchmark
Tool for Performance Guideline Verification. EuroMP1 2012: 100-
109
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Experiment design, motivation

Experimental computer science is hypothesis driven: What are
our expectations, how can these be corroborated or disproved?

Parallel computing:

« User “pays” for total time the system is used...

« We focus on total completion time, time from start of an
algorithm, until the system is again free, that is, slowest
process has finished

« Also for individual operations

Therefore: start all processes “at the same time”, wait for

completion of slowest
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Experimental factors(l)

« Time is measured locally by the processes: Are the local
clocks accurate? Synchronized? Drifting?

» Is the MPI_Barrier operation synchronizing in time, do all
processes “start at the same” time”?

Answers:

« Partly, no (or sometimes), yes (often)

* No (MPI standard has no performance model), nevertheless
often good enough

Remedies:

Compensate, repeated measurements

Barrier algorithms design for temporal accuracy (“at the same
time”)
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mpicroscope benchmark reports only the best seen completion
time (inspired from mpptest), and uses this to determine the

number of repetitions (repeat until best time has not changed
for some window of iterations). Does not report all

measurements (raw data), no statistical analysis _

Jesper Larsson Traff: mpicroscope: Towards an MPl Benchmark

Tool for Performance Guideline Verification. EuroMPI 2012: 100-
109

William Gropp, Ewing L. Lusk: Reproducible Measurements of MPI
Performance Characteristics. PVM/MP1 1999: 11-18
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Communication patterns (over MPI_COMM_WORLD, or other
communicator):

1. Ping:
Process i -> process |, i even, j=i+1 (odd), p even

2. PingPing:
Process i <-> process j

3. PingPong:
Process i -> process j, process | -> process |

MPI operations: Also interesting/possible:
->: MPI_Send, MPIl_Recv  MPI _Isend/MPI_lrecv
<->: MP|_Sendrecv « MPI _Put/MPI_Get

Performance differences?

ing

16
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Data:

« Which data sizes (MPI counts)? Beware of only choosing
selectively, e.g., powers of 2 ( bad experimental practice! )

« Structure of data? MPI_Datatypes?
2000 Bytes, as

Slurm, 2 nodes, 1 process/node MPI_INT (default)
srun -N 2 —--tasks-per-node=1 ./mpicro -range=0,2000

—lln 50 -tail=1000 -E PingEvenOdd PingPingEvenOdd

ongkEv d —gnuplot-1in —spllt
1000 repetitions, alwaﬁ
50 equidistant Experiments

message sizes One plot per experiment
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“Hydra” system at TU Wien

36 nodes with dual-socket Intel Xeon Gold 6130 at 2.1GHz, dual-
rail Intel OmniPath network

MPI libraries:

* OpenMPI (version 3.1.3, 4.0.1), compiled with gcc 8.3.0
 mpich 3.3, compiled with gcc 8.3.0

* Intel MPI 2018 ﬁ

Following measurements

Compllatlon with —O3 with OpenMPI

Reproducibility: State all experimental circumstances (context,
environment)
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Linear cost model on Hydra (mpicroscope benchmark)?

Ping pattern, m=2.000Bytes

PingEvenOdd PingEvenOdd

T T T T

PingEvenOdd —}— N PingEvenOdd —}—
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Split Split

[

:

I
1 1 1 1 |
Time (microseconds)
o o o BoR e
B oo 0 = N B O
T T I
-

1000 2000 0 500 1000 1500 2000
Datasize (Bytes) . Datasize (Bytes)
Not linear
Two MPI processes on same Two MPI processes on

SMP node: intra different SMP nodes: inter
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Time (microseconds)

Ping pattern, m=20.000Bytes

PingEvenOdd
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PingEvenOdd
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X = 2.38|JS X = 5.09|JS
B~ 7.88 10 ~uS/Byte B~1.23 10“4pS/Byte

Ping pattern, m=200.000Bytes (for m=32000Bytes)

PingEvenOdd PingEvenOdd
20 : . . 30 : 2
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SMP node: intra different SMP nodes: inter
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Ping pattern, m=2000.000Bytes

PingEvenOdd PingEvenOdd
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Is the network bidirectional? Compare against PingPing pattern
Hypothesis: t(MPl_Send+MPI_Recv) = 2t(MPI|_Sendrecv)

PingPing pattern, m=2.000Bytes

PingPingEvenOdd PingPingEvenOdd

T T T 2.2 T

PingPingEvenOdd —}— - PingPingEvenOdd —}—

1.9 F Monotone —¢— A 2 + Monotone
>

18
1.6
1.4
1.2

Time (microseconds)

0.8 [

0.6, =5

1 l 1 0.4 1 l 1
0 500 1000 1500 2000 0 500 1000 1500 2000

Datasize (Bytes) Datasize (Bytes)

Two MPI processes on same Two MPI processes on
SMP node: intra different SMP nodes: inter

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS

Para

Computing



Time (microseconds)

3.8

3.6

3.4

3.2

28 |

2.6

2.4

2.2

Para

27

Is the network bidirectional? Compare against PingPing pattern

Hypothesis: t(MPl_Send+MPI_Recv) = 2t(MPI|_Sendrecv)
PingPong pattern, m=2.000Bytes
PingPongEvenOdd PingPongEvenOdd
PingPongEvenOdld —— B > PingPongEvenOdld —— I
Monotone e 3 Monotone
g 25
¢
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SMP node: intra different SMP nodes: inter
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Is the network bidirectional? Compare against PingPing pattern
Hypothesis: t(MPl_Send+MPI_Recv) = 2t(MPI|_Sendrecv)

PingPing pattern, m=20.000Bytes

PingPingEvenOdd PingPingEvenOdd

T T
PingPingEvenOdd —}— PingPingEvenOdd —}—
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SMP node: intra different SMP nodes: inter
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Is the network bidirectional? Compare against PingPing pattern
Hypothesis: t(MPl_Send+MPI_Recv) = 2t(MPI|_Sendrecv)

PingPong pattern, m=20.000Bytes

PingPongEvenOdd PingPongEvenOdd
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Is the network bidirectional? Compare against PingPing pattern
Hypothesis: t(MPl_Send+MPI_Recv) = 2t(MPI|_Sendrecv)

PingPing pattern, m=200.000Bytes
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Is the network bidirectional? Compare against PingPing pattern
Hypothesis: t(MPl_Send+MPI_Recv) = 2t(MPI|_Sendrecv)

PingPong pattern, m=200.000Bytes

PingPongEvenOdd

T
PingPongEvenOdd —}—
35 | Monotone

60

Time (microseconds)

10

1
0 50000

1 1
100000 150000 20000C
Datasize (Bytes)

Two MPI processes on same

SMP node:

Parallel WS23

intra

50

40 |

30

20

PingPongEvenOdd

Monotone
Split

T
PingPongEvenOdd —}—

1
0 50000

1 1
100000 150000 20000(
Datasize (Bytes)

Two MPI processes on
different SMP nodes: inter

©Jesper Larsson Traff

I Informatics



Time (microseconds)

32

Is the network bidirectional? Compare against PingPing pattern
Hypothesis: t(MPl_Send+MPI_Recv) = 2t(MPI|_Sendrecv)

PingPing pattern, m=2000.000Bytes

PingPingEvenOdd
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Is the network bidirectional? Compare against PingPing pattern
Hypothesis: t(MPl_Send+MPI_Recv) = 2t(MPI|_Sendrecv)

PingPong pattern, m=2000.000Bytes

PingPongEvenOdd PingPongEvenOdd
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All process pairs communicate (even-odd), MPI_COMM_WORLD
vs. cyclic communicator (all messages between nodes)

MPI_COMM_WORLD cyclic comm

00 - 00

L 00 . 0o
L 00 . oo

What is the difference between communication inside shared-
memory node (intra) and between (inter)?
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All process pairs communicate (even-odd), MPI_COMM_WORLD
vs. cyclic communicator (all messages between nodes)

PingPing pattern, m=2.000Bytes

PingPingEvenOdd PingPingEvenOdd

T
= PingPingEvenOdd —}—

T
PingPingEvenOdd —}—
B Monotone

Monotone

Time (microseconds)
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1 1 1 1 1 1
0 500 1000 1500 2000 0 500 1000 1500 2000
Datasize (Bytes) Datasize (Bytes)

MPI_COMM_WORLD, 2x32 cyclic comm, 2x32 processes
pProcesses
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PingPing pattern, m=20.000Bytes

PingPingEvenOdd PingPingEvenOdd
T T 45

T T T T
PingPingEvenOdd —}— PingPingEvenOdd —}— B
; Monotone —¢— 40 - Monotone
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O 1 1 1
0 5000 10000 15000 20000 0 5000 10000 15000 20000

Datasize (Bytes) Datasize (Bytes)

MPI_COMM_WORLD, 2x32 cyclic comm, 2x32 processes
pProcesses
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PingPing pattern, m=200.000Bytes

PingPingEvenOdd PingPingEvenOdd
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MPI_COMM_WORLD, 2x32 cyclic comm, 2x32 processes
pProcesses
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PingPing pattern, m=2000.000Bytes

PingPingEvenOdd PingPingEvenOdd
900 T T T 3500 T T T -
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O | | | O 1 | 1
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MPI_COMM _ WORLD, 2x32

Processes
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Datasize (Bytes)
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All process pairs communicate (even-odd), MPI_COMM_WORLD
vs. cyclic communicator (all messages between nodes)

Performance difference due to limited bandwidth out of
compute nodes: All 32 MPI processes on compute node share
bandwidth to network ( see first lecture )

Note : Slowdown (much) less than a factor of 32/2: Dual-rail
(lane) network in “hydra” cluster

Communication network Communication network
One lane to one network Multiple lanes to (multiple)
networks
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All processes communicate (MPI_lsend, MPI_Irecv) with k+K
neighbors.

K neighbors on same node

S processes per node

kKsRing pattern

neighbors on different nodes

Can MPI_Cart_create, MPI_Dist_graph_create with reorder=1
make sense? Is it beneficial to favor intra-node communication?

WS23 ©Jesper Larsson Tréff m | N ]C orma ‘t | CS

Para
mp



Time (microseconds)

41

kKsRing pattern, m=200.000Bytes

kKsRings0 kKsRings8
500 T 2500 T
450 kKsRings0 —}— kKsRings8 —}—
400 2000
w
350 E
300 o 1500 |
w0
o
250 g
200 E 1000 |
1]
150 =
=
100 500
50
0 1 0 1 1 1
0 50000 100000 150000 20000C 0 50000 100000 150000 20000(
Datasize (Bytes) Datasize (Bytes)

MPI_COMM_WORLD, MPI_COMM_WORLD,
36x32 processes, k=8, K=0 36x32 processes, k=0, K=8
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kKsRing pattern, m=2000.000Bytes

kKsRingsO kKsRings8

T T
kKsRings0 —}— kKsRings8 —}—
Split Monotone
10000 25000 + Split
v
8000 |- 2
(W)
a
S
6000 5
E
- )]
4000 =
s
2000
T
O-H+|-H- ] ] |

0 500000 1x106 1.5x10° 2x10° 1x106 1.5x10° 2x10°
Datasize (Bytes) Datasize (Bytes)

MPI_COMM_WORLD, MPI_COMM_WORLD,
36x32 processes, k=8, K=0 36x32 processes, k=0, K=8
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All processes communicate (MPI_lsend, MPI_Irecv) with k+K
neighbors.

Can MPI_Cart_create, MPI_Dist_graph_create with reorder=1
make sense? Is it beneficial to favor intra-node communication?

Performance difference due to all processes on node sharing the
network bandwidth. Slower with K=8 than K=0, but not by a
factor 8, rather a factor of 5-6: Dual lane network of “hydra”
cluster
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kKsRing pattern, m=200.000Bytes

kKsRings1 kKsRings2

kKsRings1 ——I-I— | I B kKsRings2 ——{—I—

Time (microseconds)
u
=)
1=

1 1 1 1 1
0 50000 100000 150000 20000C 0 50000 100000 150000 20000¢
Datasize (Bytes) Datasize (Bytes)

MPl_ COMM_ WORLD, MP|I_ COMM_ WORLD,
36x32 processes, k=7, K=1 36x32 processes, k=6, K=2
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kKsRing pattern, m=200.000Bytes

kKsRings3 kKsRings4

kKsRings4 ——|—I—

1400

kKsRings3 ——|—I—

1200

1000 |

800

600 [
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0 50000 100000 150000 20000¢C 0 50000 100000 150000 20000(
Datasize (Bytes) Datasize (Bytes)

MPl_ COMM_ WORLD, MP|I_ COMM_ WORLD,
36x32 processes, k=5, K=3 36x32 processes, k=4, K=4
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kKsRing pattern, m=200.000Bytes

kKsRings5 kKsRings6
1800 T T T 2000 T T T
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0 50000 100000 150000 20000C 0 50000 100000 150000 20000C
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MPI_COMM_WORLD, MPI_COMM_WORLD,
36x32 processes, k=3, K=5 36x32 processes, k=2, K=6
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kKsRing pattern, m=200.000Bytes

kKsRings7 kKsRings8
2500 T 2500 T
kKsRings7 —}— kKsRings8 —}—
2000 2000
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S
S
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u
E
=
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0 50000 100000 150000 20000C 0 50000 100000 150000 20000¢
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MPI_COMM_WORLD, MPI_COMM_WORLD,
36x32 processes, k=1, K=7 36x32 processes, k=0, K=8
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Some conclusions:

« Linearity only an approximation, valid at most in certain
ranges of message sizes m

* Modern networks support bidirectional communication

« Raw bandwidth inside and across compute nodes in same
ballpark, but cumulated node bandwidth limited (singe-rail,
multi-rail, number of NIC’s, ...)

« (Can make sense to have more communication inside compute
node (intra) than between (inter)?

 MPI communication (MP1l_Send, MPI_Recy, ...) is not strictly
synchronous, the two processes are not both involved during
entire transmission

paraller WS23 ©Jesper Larsson Traff m | N ]CO M a't CS
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Experimental factors(ll)

* Process placement (across the nodes/parts of the system)

« Process pinning (on the node, disable process migration)
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Linear cost model on Jupiter (mpicroscope benchmark)?
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PingPong —+—
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5 - Spllt ..... ¥-ene ﬁ*ﬁwﬁ' 4
4t x]

0 500 1000 1500 2000
Datasize (Bytes)

Two MPI processes on same
SMP node: intra
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Linear cost model on Jupiter (mpicroscope benchmark)?
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Linear cost model on Jupiter (mpicroscope benchmark)?

PingPong PingPong
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Larger messages: approx. linear(?)
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Linear cost model on Jupiter (mpicroscope benchmark)?
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Experimental factors(lll)

 The mpirun command (different runs behave differently)

« Compiler, compiler options

« Cache (warm cache vs. cold cache: a question of experimental
design)

Good practice:
Average benchmark over several mpirun’s

Sascha Hunold, Alexandra Carpen-Amarie: Reproducible MPI
Benchmarking is Still Not as Easy as You Think. IEEE Trans.
Parallel Distrib. Syst. 27(12): 3617-3630 (2016)
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Refinement of linear cost model
For non-homogeneous systems, different processor pairs (i,)
may have different latencies and costs per unit

Piece-wise linear model, short and long messages

o +B.m, if 0<m<M.
t(m) = (X2+B2m, |f M 15m<M2

Og+Bsm, if M ,<m Etc.

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Non-homogeneous, hierarchical systems

Regqular, hierarchica] sys.tem can represent & ;, By matrices more
compactly, lookup via suitable tree structure

Level k

N; os B

Level O

Regular processor-hierarchy:

Number of subnodes (with same number of nodes) at leveliisn ..
Communication between processors at level i modeled linearly by
o, B;, system described by the sequence (n ,, «, B,), i=0,...,k. Total
number of processors is p=Iln ; g

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma t | CS

Computing




58

A more detailed model: LogP-family of models (LogGP)

Account for time processor is busy with communication, permit
overlapping of communication/computation

L: Latency, time per unit for traveling through network

0: overhead, for processor to start/complete message transfer
(both send and receive)

g: gap, between injection ( and ejection) of subsequent messages

G: Gap per byte, between injection of subsequent bytes for large
messages

P: number of processors (homogeneous communication)

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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Processor i sending message to processor |
9 Injection gap for sender, may

be smaller than L
L time

- O
>
+—>
>
- O

o+L

Sending small message at time t, receive at time t+o+L+0

Sender and receiver only involved for o seconds; overlap possible

Para
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LogP is not a (synchronous) transmission cost model

g _ Time to wait for next injection
(effective bandwidth)

6\‘ L :ime

Sending processor busy

Additional network capacity constraint: at most ceil(L/g)
messages can be in transit (if more, sending process stalls)
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Processor i sending message to processor |

time

- — ‘
>
-«
>
- O

o+L

Sending k small messages from time t, receive at t+0+(k-1)g+L+0

Next message can be sent after g time units (assume g=0)
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Processor i sending message to processor |

I L time

- — ‘
>
-«
>
- O

o+L

Sending large message at time t, receive at time t+o+(m-1)G+L+0
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Processor i sending message to processor |

o | !
«—
>
0]

o+L

Sending k large messages t time t, receive at time
t+o+k(m-1)G+(k-1)g+L+0
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Processor i sending message to processor |

I L time

- — ‘
>
-«
>
- O

o+L

Compared to linear cost model (in which sender and receiver are
occupied for the whole transfer,  no overlap):
a~20+L, B~ G
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Starting point for LogGP, see:

D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, E. E. Santos, K.
E. Schauser, R. Subramonian, T. von Eicken: LogP: A Practical
Model of Parallel Computation. Comm ACM 39(11): 78-85 (1996)
Alexandrov, M. F. lonescu, Klaus E. Schauser, C. J. Scheiman:
LogGP: Incorporating Long Messages into the LogP Model for
Parallel Computation. J. Parallel Distrib. Comput. 44(1): 71-79
(1997)

Many variations, some ( few ) results (optimal tree shapes)

Para

Computing

Eunice E. Santos: Optimal and Near-Optimal Algorithms for k-
ltem Broadcast. J. Parallel Distrib. Comput. 57(2): 121-139
(1999)

Eunice E. Santos: Optimal and Efficient Algorithms for Summing
and Prefix Summing on Parallel Machines. J. Parallel Distrib.
Comput. 62(4): 517-543 (2002)
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LogP-family vs. linear transmission cost model

« Transmission cost model symmetric , often leads to simple,
balanced (in some sense, ..., see later) communication
structures (trees), simple, closed form completion time
expressions

* LogP-family asymmetric , sending process finishes earlier than
receiving process, often leads to skewed structures (trees),
often hard to find provably optimal structures, often no
closed form completion time expressions

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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LogP-family vs. linear transmission cost model

Para

Transmission cost model: o, B parameters “easy” to measure

LogP-family: Parameters very difficult to measure
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Many, more recent papers in MPl community use some variations
of the LogP model (see papers by Hoefler and others)

Recent overview on communication performance models:

Juan A. Rico-Gallego, Juan Carlos Diaz Martin, Ravi Reddy
Manumachu, Alexey L. Lastovetsky: A Survey of Communication

Performance Models for High-Performance Computing. ACM
Comput. Surv. 51(6): 126:1-126:36 (2019)

. WS23
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These papers (Culler, Patterson) were a major and final cause in
terminating the PRAM as a respectable model for parallel

computation Was this right? Productive?

Para

Computing

“The LogP model eliminates a variety of loopholes that other
models permit. For example, many PRAM algorithms are
excessively fine grained, since there is no penalty for
interprocessor communication. Although the EREW PRAM
penalizes data access contention at the word level, it does not
penalize contention at the module level.”

“It has been suggested that the PRAM can serve as a good model
for expressing the logical structure of parallel algorithms, and

that implementation of these algorithms can be achieved by
general-purpose simulations of the PRAM on distributed-memory
machines [26]. However, these simulations require powerful
interconnection networks, and, even then, may be unacceptably
slow, especially when network bandwidth and processor overhead
for sending and receiving messages are properly accounted.”

70

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS



71

Network assumptions

A communication network graph G=(V,E) describes the structure

of the communication network (“topology”, “communication
structure”)

Processors i and j with (i,j) in E are neighbors and can
communicate directly with each other

Linear cost for neighbor communication, all pairs of neighbors
have same cost: Network is homogeneous

A processor has k, k=1, communication ports, and can at any
iInstant be involved in at most (2)k communication operations
(send and/or receive)

« k=1: Single-ported communication

Pa,a"e, WS23 ©Jesper Larsson Traff '
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Most ( but not all : shuffle-exchange, deBruijn, Kautz) networks
G=(V,E) are undirected, a communication edge (i,j) allows
communication from i to j, and from j to i.

Network (graph) properties:

« Diameter of network G=(V,E), diam(G): Longest path between
any two processors i,j in V

« Degree of network G=(V,E), A(G): Degree of i with maximum
number of (out-going and in-coming) edges

» Bisection width of network G=(V,E), Bisec(G): Number of
edges in a smallest cut (V1,V2) with |V1| = |V2]

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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Single-ported, fully bidirectional, send-receive communication:

Processor i can simultaneously send
to processor j and receive from
processor k, k=j (telephone) or k=]

For sparse networks (mesh/torus) Q

k-ported, bidirectional (telephone)

communication is often possible
and assumed (e.g., k=2d for d- O@Q}Q
dimensional torus)

WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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k-ported vs. k-lane communication capabilities

K-ported assumption: A process can simultaneously communicate
(e.g. MPI_Sendrecv) with k other processes

For clustered systems, communication system is shared between
all processes on compute node _
Communication network
I I k lanes (rails) shared between
processes

WS23 ©Jesper Larsson Traff m | N ]C orma ‘t | CS
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Each of k processes on compute node can communicate
simultaneously with a process on another node. Possibly each
process can also do one (or more) communication operations with
processes on the same node.

What can be done under this model? How do good algorithms
look? How do they differ from traditional, k-ported algorithms?

Jesper Larsson Traff: k-ported vs. k-lane Broadcast, Scatter,
and Alltoall Algorithms. CoRR abs/2008.12144 (2020)
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Some communication networks (actual, or as design vehicles)

Linear processor array; diameter p-1

Linear processor ring; dimeter p-1, but now strongly connected

0000000
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Fully connected network:
Complete graph, all (u,v) in E for uzv in V, each processor can

communicate directly with any other processor; diameter 1,
bisection width p 2/4

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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(rxcx...) d-dimensional mesh/torus: each processor has 2d
neighbors, diameter (r-1)+(c-1)+... (roughly, divide by 2 for torus)

0 ] 5 3 Row-orqler (or some other)
numbering

Torus wrap-around edges

L Ws23 ©Jesper Larsson Trff m INnformatics
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Hypercube: (109 » p)-dimensional torus, size 2 in each dimension

HO H1 H2
O M Processors 0x (binary)
and 1x (binary)
m neighbors in Hi for x in
H(i-1), i>1

H3

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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Hypercube: (109 » p)-dimensional torus, size 2 in each dimension

Processors 0x (binary) and 1x (binary)
neighbors in Hi for x in H(i-1), i>1

e
3 ©
.

Diameter: log p

Degree: log p, each processor has log p neighbors
Naming: k’'th neighbor of processor i: flip k’th bit of i

Remark: This is a particular, often convenient naming of the
processors in the hypercube

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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Communication algorithms in networks

Assumption: Independent pairs consisting of a sending and a
receiving processor in a network can communicate independently,
concurrently, in parallel with all other pairs.

1 Communication step
— with possible
transmissions

In a k-ported, bidirectional communication system, each
processor belongs to at most 2k pairs (as sending or receiving).

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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Synchronous, round-based algorithm communication complexity:

In each step of the given algorithm, there is a (maximal) set of
such processor pairs, in each of which a message of size m | g
transmitted. A step where all these processors communicate is
called a communication round. The cost of a communication round
IS o+Pmax,_.m,

o+Bmi | N\ i g Communication round

Assume all possible processor pairs communicate in each round.
The communication complexity of the algorithm is the sum of the
round costs in the worst case

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS

Para
mp!



83

Synchronous, round-based algorithm communication complexity :

Alternatively : Communication takes place in synchronized rounds,
in each of which as many processor pairs as possible
communicate. The complexity is the number (and cost) of such
rounds

Sometimes computation between rounds is not accounted for
(too fast; not relevant; ...); unbounded computation assumed...

Algorithm design goals:

« Smallest possible number of communication rounds
* High network utilization

 Balanced communication rounds (all m;=m;)

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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Asynchronous communication complexity

Processors start at the same time. Communication between two
processors can take place when both are ready. Complexity is
cost of longest path to a processor finishing last

Useful for
algorithms for

irreqular
O O collectives;
optimization
problem is
scheduling problem
in flavor. Rarely
used

Done after finish time of
last incoming i, plus o+Bm.
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For a synthesis with more networks:

Pierre Fraigniaud, Emmanuel Lazard: Methods and problems of
communication in usual networks. Discrete Applied Mathematics
53(1-3): 79-133 (1994)

« Shuffle-exchange

* deBruijn

* Benes

« Kautz

« Cube-connected cycles

e Tree
Clos See also notes on

“Algorithms for
Collective Operations”
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Abstract, network independent (“bridging”) round model: BSP

Parallel computation in synchronized rounds (“supersteps”),
processors working on local data, followed by exchange of data
(h-relation) and synchronization.

Claim: Any reasonable, real, parallel computer/network can
realize (emulate) the BSP model

h-relation:

Data exchange operation in which each processor sends or
receives at most h units of data (and at least one processor
sends or receives h data units), data visible after
synchronization

WS23 ©Jesper Larsson Traff m | n ]CO [’m a 't | C S
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A BSP(P,g,l,L) computer(*) consists of P processors with local
memory, a router (network+algorithm) that can route arbitrary
h-relations with a cost of g per data unit, a synchronization
algorithm with cost I(P), and a minimum superstep duration L

Cost of routing h-relation: gh+I(P)

(*)There are different variants of the BSP computer/model; also
other related models (CGM). Note : Parameters have some
similarity to LogP

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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Superstep of BSP algorithm: Local computation, h-relation,
synchronization

- [
>L
A 4

Sync. I(P)

jifE;;;:::%;;g§§i;sz£:””::377 h-relation (h=2)

Sync. [(P)

©Jesper Larsson Traff m | N ]CO M at | CS
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BSP algorithm with S supersteps:

Each superstep either computation step or communication step.
« Cost per superstep at least L

» Cost of computation step: W=max _,(wi,L)

« Cost of communication step (h-relation): H=max(gh,L)

« Cost of synchronization after superstep: I(P)

Total cost of algorithm: SI(P)+ Y, W +% gH,

Leslie G. Valiant: A Bridging Model for Parallel Computation.
Commun. ACM 33(8): 103-111 (1990)
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Implementing BSP computer (library):
« Efficient h-relation ( e.g., sparse, irregular MPI alltoall )
« Efficient synchronization

Designing good BSP algorithms:
« Small number of supersteps
« Small h-relations

Rob. H. Bisseling: Parallel Scientific Computation. A structured
approach using BSP and MPI. Oxford University Press, 2004
(reprint 2010)
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Lower bounds on communication complexity

Broadcast operation (MPI_Bcast): One “root” process has data
of size m to be communicated to all other processes

Assume (for proofs) that communication takes place in
synchronized rounds

Diameter lower bound:
In a 1-ported network with diameter d, broadcast takes at least
d communication rounds, and time

Tbcast(m) > ad + Bm

Proof:

The processor at distance d from root must receive the data,
distance can decrease by at most one in each round. All data
must eventually be transferred from root

WS23 ©Jesper Larsson Tréff m | N ]CO ma ‘t | CS
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Fully connected lower bound: 1-ported
In a fully connected, 1-ported network, broadcast takes at least

ceil(log > p) communication rounds, and time

Tbcast(m) = a ceil(log 5 p)+pm

Proof:

In round O, only 1 root has data. The number of processors that
have (some) data can at most double from one round to the next.
By induction, in round |, j=0, 1, ..., the number of processors that
have (some) data is at most 2 1, therefore ceil(log p) rounds are
required for all processors to have the data.

WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Fully connected lower bound:
In a fully connected, k-ported network, broadcast takes at least

ceil(log 1 p) communication rounds, and time

Tbcast(m) = a ceil(log .1 p)+pm

Proof:

In round 0, only root has data.The number of processors that
have (some) data can at most grow by a factor of k from one
round to the next, by each processor sending on all of its k

ports. By induction, in round |, j=0, 1, ..., the number of
processors that have (some) data is at most (k+1) I1+k(k+1)1 =

(k+1)!, therefore ceil(log s p) rounds are required for all
processors to have the data.
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Multiple message/pipelining lower bound:
The number of communication rounds required to broadcast M
blocks of data (in fully connected, 1-ported network) is at least

M-1+ceil(log, p)

Proof:
The root can possibly send M-1 blocks in M-1 rounds; the last
block requires at least ceil(log  ; p) rounds

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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Observation:

Assume the m data are arbitrarily divisible into M blocks ( MPI :
could be difficult for structured data described by derived
datatypes). The best possible broadcast (also: reduction) time in
the linear cost model on fully connected network is

T(m) = (ceil(log p)-1)a + 2V[ceil(log p)-1)oBm] + Bm

I )

) extra
Iatency “Full, optimal
bandwidth”

Proof: See pipeline lemma (but also next slide)
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By lower bound, best time for M blocks is

T(m,M) = (M-1+log p)(c+Bm/M) =
(logp- 1o+ Mo+ (logp-1)Bm/M + MBm/M =
(logp- 1)+ Mo+ (logp—1)Bm/M + Bm

Balancing Ma and (log p-1)Bm/M terms yields

Best M:[(log p-1)Bm/a]
» Best blocksize m/M: \[om/(B(log p-1))]

... follow the rest of the lecture!!
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Basic lower bounds for collective operations in «,3-model
m data to be sent or received by any process

« Fully connected network, 1-ported: olog,p + pm
« Diameter d network, 1-ported: od + Bm

All m data have to be sent or received, diameter or doubling
argument applies to at least some of the data

Can we match these simple lower bounds?

WS23 ©Jesper Larsson Traff m | n ]CO [’m a 't | C S
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Bisection (band)width lower bound for alltoall communication

Regular alltoall problem: Each process has m individual data to be
sent (and received from) any other process

Let G=(V,E) be a bidirectional communication network (with c(e)
a capacity of each edge e in E) with (weighted) bisection width
Bisec(G). Solving the regular alltoall problem requires at least
Bm|V/2| 2/Bisec(G) time.

Proof:

Partition V into two subsets V1 and V2 of size |V/2|. The time to
send and receive all data for all processors in either subset is at
least Bm|V/2||V/2| divided by the capacity of cut(V1,V2). This

in particular holds for the cut in Bisec(G).
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Before/after semantics of the (MP1) collectives

Input: Vector(s) x of elements, x0, x1, ...

Output: Vector(s) of elements, x0, x1, ...

Collectives:
Broadcast, Gather/Scatter, Allgather, Alltoall, Reduce,
Allreduce, Reduce-scatter, Scan
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Broadcast: before

100

1 2 3

Broadcast: after
X X X

x0
x1
X2
X3

Scatter: before

x0

Scatter: after

X1
X2
X3

x0

Gather: before

X1
X2

x0
x1
X2
X3 X3
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Gather: after
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0 1 2 3
Allgather: before
x0
X1
X2
X3
Alltoall: before

0x0 1x0 2x0 3x0
Ox1 1x1 2X1 3x1
0x2 1x2 2X2 3x1
0x3 1x3 2X3 3x3

0 1 2 3
Allgather: after
x0 x0 x0 x0
X1 X1 X1 X1
X2 X2 X2 X2
X3 X3 X3 X3
Alltoall: after

0x0 Ox1 0x2 0x3
1x0 1x1 1x2 1x3
2x0 2X1 2X2 2X3
3x0 3x1 3x2 3x3

Parallel W823
Computing
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0 1 2 3 0 1 2 3
Reduce: before Reduce: after
x0 X1 X2 X3 Y Xi
Allreduce: before Allreduce: after
x0 X1 X2 X3 Y Xi Y Xi Y Xi Y xi
Reducescatter: before Reducescatter: after
x0 x0 x0 x0 . x0
X1 X1 X1 X1 Y. x1
X2 X2 X2 X2 Y X2
X3 X3 X3 X3 Y X3
Scan/exscan: before Scan/exscan: after
x0 X1 X2 x3 y0 y1 y2 y3

Scan: yi = ), (0<j<i): xi
Exscan: yi = ), (0<j<i): xi, no y0
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Observations

Gather and Scatter are “dual” operations

x0
X1
X2
X3

Scatter: before

103

x0

Scatter: after

X1
X2
X3

x0

Gather: before

X1
X2

x0
X1
X2
X3 X3

Para

Computing

L, WS23

Gather: after
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Broadcast and Reduce are “dual” operations
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Broadcast: after
X X X

Reduce: after

Broadcast: before
X X
Reduce: before
x0 X1 X2 X3 Y Xi
paraller WS23 ©Jesper Larsson Traff
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Alltoall ~ pxp matrix-transpose

Alltoall: before Alltoall: after
0x0 1x0 2x0 3x0 0x0 Ox1 0x2 0x3
Ox1 1x1 2X1 3x1 1x0 1x1 1x2 1x3
0x2 1x2 2X2 3x1 2x0 2X1 2X2 2X3
0x3 1x3 2x3 3x3 3x0 3x1 3x2 3x3

WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Allgather ~ Gather + Broadcast

Gather: before Gather: after
x0 x0
X1 X1
X2 X2
X3 X3
Broadcast: before Broadcast: after
X X X X X

©Jesper Larsson Traff m | N ]CO M at | CS



Allreduce = Reduce + Broadcast

x0

Reduce: before
x1 X2

107

X3 Y. Xi

Reduce: after

Broadcast: before

X

Broadcast: after
X X X

©Jesper Larsson Traff

I Informatics



Reducescatter = Reduce + Scatter

Reduce: before

108

X3 Y. Xi

Reduce: after

x0 X1 X2
Scatter: before

x0

X1

X2

X3

x0

Scatter: after

X1
X2

X3

©Jesper Larsson Traff
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Broadcast ~ Scatter + Allgather
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Scatter: before Scatter: after
x0 x0
X1 X1
X2 X2
X3 X3
Allgather: before Allgather: after
x0 x0 x0 x0 x0
X1 X1 X1 X1 X1
X2 X2 X2 X2 X2
X3 X3 X3 X3 X3

©Jesper Larsson Traff
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Allreduce = Reducescatter + Allgather

Reducescatter: before Reducescatter: after
x0 x0 x0 x0 Y. x0
X1 X1 X1 X1 Y. x1
X2 X2 X2 X2 Y. X2
X3 X3 X3 X3 Y. X3
Allgather: before Allgather: after
x0 x0 x0 x0 x0
X1 X1 X1 X1 X1
X2 X2 X2 X2 X2
X3 X3 X3 X3 X3
Allreduce: before Allreduce:after
x0 X1 X2 X3 Y Xi Y Xi Y Xi Y Xi

Para
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Reduce = Reducescatter + Gather

Reducescatter: before Reducescatter: after
x0 x0 x0 x0 Y. x0
X1 X1 X1 X1 Y X1
X2 X2 X2 X2 Y X2
X3 X3 X3 X3 Y. X3
Gather: before Gather: after
x0 x0
X1 X1
X2 X2
X3 X3
Reduce: before Reduce:after
x0 X1 X2 X3 Y. Xi

Para
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Allgather = ||

OSi<IOBroadcas’[(i)

x0

Broadcast(0): before
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Broadcast(0): after
x0 x0 x0 x0

Broadcast(1): before
x1

Broadcast(1): after
X1 X1 X1 X1

Broadcast(2): before
X2

Broadcast(2): after
X2 X2 X2 X2

©Jesper Larsson Traff
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Alltoall = || Scatter(i)

O<i<p

Scatter(i): before Scatter(i): after
ix0
ix1
X2 ix0 ix1 X2 ix3
ix3

©Jesper Larsson Traff m | N ]CO M at | CS
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Alltoall = || 4 ,Gather(i)
Gather(i): before Gather(i): after
Oxi
1Xi
Oxi 1Xi 2Xi 3Xi 2Xi
3Xi

©Jesper Larsson Traff m | N ]CO M at | CS
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MPI collective interfaces (reminder): Regular

Bcast:

MPI Bcast (void *buffer,
int count, MPI Datatype datatype,
int root, MPI Comm comm)

Triple (buffer,count,datatype) describes block of data in
broadcast: where, how much, which structure?

Recall MPI rule: Count and datatype may be different on
different processes, but the signature of the block must match

WS23 ©Jesper Larsson Tréff m | N ]CO ma ‘t | CS
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Triples (sendbuf,sendcount,sendtype)
and (recvbuf,recvcount,recvtype)
describe blocks sent and received.

Gather, scatter: ,
Signatures must match

MPI Gather (void *sendbuf,
int sendcount, MPI Datatype sendtype,
vold *recvbuf,
int recvcount, MPI Datatype recvtype,
int root, MPI Comm comm)

MPI Scatter (void *sendbuf,
int sendcount, MPI Datatype sendtype,
volid *recvbuf,
int recvcount, MPI Datatype recvtype,
int root, MPI Comm comm)

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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Allgather, alltoall:

MPI Allgather (void *sendbuf,
int sendcount, MPI Datatype sendtype,

volid *recvbuf,
int recvcount, MPI Datatype recvtype,

MPI Comm comm)

MPI Alltoall (void *sendbuf,
int sendcount, MPI Datatype sendtype,

volid *recvbuf,
int recvcount, MPI Datatype recvtype,

MPI Comm comm)

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Reduce, allreduce:

MPI Reduce (void *sendbuf, void *recvbuf,
int count, MPI Datatype datatype,
MPI Op op, 1int root, MPI Comm comm)

MPI Alleduce (void *sendbuf, void *recvbuf,
int count, MPI Datatype datatype,
MPI Op op, MPI Comm comm)

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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Reduce-scatter:

MPI Reduce scatter block(void *sendbuf,
void *recvbuf,
int count,
MPI Datatype datatype,
MPI Op op, MPI Comm comm)

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Scan, exscan:

MPI Scan(void *sendbuf, void *recvbuf,
int count, MPI Datatype datatype,
MPI Op op, MPI Comm comm)

MPI Exscan(void *sendbuf, void *recvbuf,
int count, MPI Datatype datatype,
MPI Op op, MPI Comm comm)

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS



MPI collective interfaces (reminder): Irregular (v-vector)

Gather:

MPI Gatherv(void *sendbuf,

vold *recvbuf,

int sendcount, MPI_Datat*kV;;endtype,

int recvcounts|[], 1nt recvdispls]|[],
MPI Datatype recvtype,
int root, MPI Comm comm)

4-tuples (recvbuf,recvcounts]i],recvdispls]i],recvtype) describe
blocks to be received. Signature of tuple i must match triple

sendcount, sendtype of process i

paraller WS23 ©Jesper Larsson Traff
[ Computing |
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Scatter:

MPI Scatterv(void *sendbuf,
int sendcounts([], 1nt senddispls]|[],
MPI Datatype sendtype,
volid *recvbuf,
int recvcount, MPI Datatype recvtype,
int root, MPI Comm comm)

4-tuples (sendbuf,sendcounts|i],senddispls|i],sendtype) describe
blocks to be sent. Signature of tuple i must match recvcount,
recvtype of process i

WS23 ©Jesper Larsson Traff m | N ]C oOrm a‘t 1CS
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Allgather:

MPI Allgatherv(void *sendbuf, int sendcount,
MPI Datatype sendtype,
volid *recvbuf,
int recvcounts|[], 1nt recvdispls]|[],
MPI Datatype recvtype,
MPI Comm comm)

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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Alltoall:

MPI Alltoallv(void *sendbuf,
int sendcounts([], 1nt senddispls]|[],
MPI Datatype sendtype,
volid *recvbuf,
int recvcounts([], 1nt recvdispls]|[],
MPI Datatype recvtype,
MPI Comm comm)

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Alltoall:

MPI Alltoallw(void *sendbuf,
int sendcounts([], 1nt senddispls]|[],
MPI Datatype sendtypes|[],
volid *recvbuf,
int recvcounts([], 1nt recvdispls]|[],
MPI Datatype recvtypes|[],
MPI Comm comm)

Note: Only collective where each block may have individual
structure (signatures must match pairwise)

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Reduce-scatter:

MPI Reduce scatter (void *sendbuf, void *recvbuf,
int count]|[],
MPI Datatype datatype,
MPI Op op, MPI Comm comm)

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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MPI sparse collective interfaces

out-proceses k

Each process in communicator
in (small) neighborhood of in-
and out-processes. Defined by
MPI_Dist_graph_create(_adja
cent) or MPI_Cart_create

Process transmits data to out-
in-processes | processes, becomes data from
in-processes. Order of data
blocks = order of neighbors

WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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MPI Neighbor allgather (void *sendbuf,
int sendcount, MPI Datatype sendtype,

volid *recvbuf,
int recvcount, MPI Datatype recvtype,

MPI Comm comm)

MPI Neighbor allgatherv(void *sendbuf,
int sendcount,
MPI Datatype sendtype,
void *recvbuf,
int recvcounts|[], 1nt recvdispls]|[],
MPI Datatype recvtype,
MPI Comm comm)

Note: Same signature as standard collective counterparts

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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MPI Neighbor alltoall (void *sendbuf,
int sendcount, MPI Datatype sendtype,
volid *recvbuf,
int recvcount, MPI Datatype recvtype,
MPI Comm comm)

MPI Neighbor alltoallv(void *sendbuf,
int sendcounts([], int senddispls]|[],
MPI Datatype sendtype,
vold *recvbuf,
int recvcounts[], 1nt recvdispls]|[],
MPI Datatype recvtype,
MPI Comm comm)

MPI Neighbor alltoallw(void *sendbuf,
int sendcounts([], int senddispls]|[],
MPI Datatype sendtypes|[],
void *recvbuf,
int recvcounts[], int recvdispls]|],
MPI Datatype recvtypes|[],
MPI Comm comm)

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Torsten Hoefler, Rolf Rabenseifner, Hubert Ritzdorf, Bronis R.
de Supinski, Rajeev Thakur, Jesper Larsson Traff: The scalable
process topology interface of MPI 2.2. Concurr. Comput. Pract.
Exp. 23(4): 293-310 (2011)

Jesper Larsson Traff, Sascha Hunold, Guillaume Mercier, Daniel
J. Holmes: MPI collective communication through a single set of
interfaces: A case for orthogonality. Parallel Comput. 107:
102826 (2021)

Para
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MPI collective interfaces (reminder)

All collectives shown so far are blocking (in the MPI sense)

Since MPI 3.1, non-blocking versions of all collectives

Since MPI 3.1, special, socalled neighborhood collectives for
sparse alltoall and allgather type operations, with the same
interface signatures(!)

WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS

Para
Computi



132

Questions?

 Why is there an MPI_Allgather (= MPI_Gather+MPI|_Bcast)
in MPI1?

 Why is there an MPI_Alilreduce (= MPIl_Reduce+MPI|_Bcast)
in MPI1?

 Why is there an MPI_Reduce_scatter (=
MPI_Reduce+MPI_Scatter) in MPI?

Answers:

« Convenience, specialized operation possibly more handy for
application context
« Better algorithms possible  (this lecture)

WS23 ©Jesper Larsson Traff m | N ]C orma ‘t | CS
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MPI collectives and algorithm design

« Many specific requirements (arbitrary roots, datatypes,
mapping in network, ...)

* Any MPI communicator allows (sendrecv) communication
between any pair of processes: Virtually fully connected

« Underlying (routing) system (software and hardware) should
ensure good (homogeneous) performance between any process
pair, under any communication pattern

Approach:

« Implement algorithms with send-recv operations, assume fully
connected network, use virtual network structure as design
vehicle, use actual network for analysis and refinement

WS23 ©Jesper Larsson Tréff m | N ]CO m a‘t 1CS
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MPI is (too) powerful

Even if underlying network (hardware) is known, network specific
algorithms may still not be useful

MPI comm (e.qg.,
MPI_COMM_WORLD): Must
support all collectives

- Torus algorithms

paraller WS23 ©Jesper Larsson Traff m | N ]CO 1) at | CS
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MPI is (too) powerful

Even if underlying network (hardware) is known, network specific
algorithms may still not be useful

MPI comm (subcomm): Must
support all collectives

Torus/mesh algorithms
(possibly different, virtual
processor numbering)

WS23 ©Jesper Larsson Traff m | N ]CO 1) at | CS
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MPI is (too) powerful

Even if underlying network (hardware) is known, network specific
algorithms may still not be useful

MPI comm (subcomm): Must
support all collectives

- Torus assumption does not

hold
15
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MPI is (too) powerful

Even if underlying network (hardware) is known, network specific
algorithms may still not be useful

€ \--
\

- Torus assumption does not

MPI comm (subcomm): Must
support all collectives

hold

paraller WS23 ©Jesper Larsson Traff m | N ]CO 1) at CS
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MPI is (too) powerful
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Even if underlying network (hardware) is known, network specific
algorithms may still not be useful

P

commf

Para
Computing

EEEEBE

comm?2

Different, disjoint

communicators (comm1, commz2)
may share network (edges,
ports)

Analysis can hardly account for
this. No way in MPI for one
communicator to know what is
happening concurrently in other
communicators

. WS23 ©Jesper Larsson Traff m | N ]CO Ma t | CS
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MPI (send-receive) communication guarantees:

« Any correct communication algorithm, designed under any
network assumption (structure, ports) will work when
implemented in MPI (for any communicator)

« Performance depends on how communicator mapping and
traffic fits the assumptions of the algorithm

Exploit
« Fully bidirectional, send-receive communication:
MPI_Sendrecv()

« Multi-ported communication: MPI_Isend()/MPI_Irecv +
MPI_Waitall()

Para
mp!
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MPI collective interfaces in applications and algorithms

Algorithm analysis assume that all processors participate at the
same time:

Communication rounds and cost determined by communication
cost model

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Application

start (synchronized)

MPI_Bcast MPI_Bcast MPI_Bcast

end (time is time of
last process)

'time

WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS

Para
Computil



142

Application

MPI|_Bcast

MPI_Bcast

MPI| Bcast

'time

In actual execution of MPI application:
No requirement, no guarantee that all processes call collective

operation at the same time. Often they do not! (trace application
to find out)

e WS23 ©Jesper Larsson Traff m | n ]C O rm a 't | C S
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Questions :

How bad can the algorithms be under non-synchronized process
arrival (and progress) patterns? How can algorithms be designed
that are (provably) good under non-synchronized process arrival?

Research on sensitivity of MPI (collective) operations to
* Non-synchronized process arrival patterns

* “Noise” (OS)

still needed

WS23 ©Jesper Larsson Traff m | n ]CO rm a 't | C S
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Ahmad Faraj, Pitch Patarasuk, Xin Yuan: A Study of Process
Arrival Patterns for MPI Collective Operations. International
Journal of Parallel Programming 36(6): 543-570 (2008)

Petar Marendic, Jan Lemeire, Dean Vucinic, Peter Schelkens: A
novel MPI reduction algorithm resilient to imbalances in process
arrival times. J. Supercomput. 72(5): 1973-2013 (2016)

Fabrizio Petrini, Darren J. Kerbyson, Scott Pakin:

The Case of the Missing Supercomputer Performance: Achieving
Optimal Performance on the 8, 192 Processors of ASCI Q. SC
2003: 55

Torsten Hoefler, Timo Schneider, Andrew Lumsdaine: The Effect
of Network Noise on Large-Scale Collective Communications.
Parallel Processing Letters 19(4): 573-593 (2009)

144

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS



145

MPI collective correctness requirement

If some process in comm calls collective operation MPI_<coll>,
then eventually all other processes in comm must call MPI_<coll>
(with consistent arguments), and no process must call any other
collective on comm before MPI_<coll> (assumption: all collective
calls before MPI_<coll> have been completed)

Rank i:

MPI_Bcast(...,comm);

MPI_Bcasit(...,comm);

..is legal MPI_Bcast(...,comm);

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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MPI collective correctness requirement

If some process in comm calls collective operation MPI_<coll>,
then eventually all other processes in comm must call MPI_<coll>
(with consistent arguments), and no process must call any other
collective on comm before MPI_<coll> (assumption: all collective
calls before MPI_<coll> have been completed)

MPI_Bcast(...,comm);

MPI_Gather(comm): MPI_Gather(comm);

MPI_Bcast(...,comm);

... Is not

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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MPI collective correctness requirement

If some process in comm calls collective operation MPI_<coll>,
then eventually all other processes in comm must call MPI_<coll>
(with consistent arguments), and no process must call any other
collective on comm before MPI_<coll> (assumption: all collective
calls before MPI_<coll> have been completed)

Rule:
MPI processes must call collectives on each communicator in the
same sequence

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Mixing MPI collectives with different completion semantics

WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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The “Van de Geijn” implementations

« Linear-array algorithms for large problems
« Binomial tree (“ Minimum Spanning Tree”) for small problems
« Heavy use of Broadcast = Scatter + Allgather observation

« Assumes homogeneous, fully-connected network, linear
transmission cost model
« 1-ported communication

« Tree algorithms almost always generalize to k-ported
communication, number of rounds decrease from log ,p to

log,,1P

lgnores many MPI specific problems : Buffer placement,
datatypes, non-commutativity, ...

WS23 ©Jesper Larsson Traff m | N ]CO rma ‘t | CS
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Mostly concerned with collectives relevant for linear algebra : No
scan/exscan, alltoall

E. Chan, M. Heimlich, A. Purkayastha, Robert A. van de Geijn:
Collective communication: theory, practice, and experience.
Concurrency and Computation: Practice and Experience 19(13):
1749-1783 (2007)

See also this interesting, silently highly influential (on MPI and
other things), but no longer very well known book

Geoffrey C. Fox , Mark Johnson, Gregory Lyzenga,

Steve Otto, John Salmon, and David Walker: Solving Problems on
Concurrent Processors. Volume 1: General Techniques and Regular
Problems. Prentice-Hall, 1988

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Before starting...

MPI Comm rank (comm, &rank) ;
MPI Comm size (comm, &size);

Get process rank i, and number of processes p. It always holds
that O<i<p

m denotes the total problem size (eg., in Bytes)

Blocks for now are stored consecutively in some buffer

Memory:

buffer /
WS23 ©Jesper Larsson Traff m |nforma‘t|cs
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Linear-array scatter

:l— m/p

pu—

m-‘

1

0
MPI Scatter (sendbuf, scount, stype,
recvbuf, rcount, rtype, root, comm) ;

scount/rcount: number of elements in one block (m/p), root
scatters p-1 blocks to other processes, copies own block

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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Recall: MPI collectives convention

(buffer-address, count, datatype) triple in MPI collectives
specifications always describes one block:

MPI Bcast (buffer, count, datatype, root, comm) ;

MPI Scatter (sendbuf, sendcount, sendtype,
rz[jguf,recvcount,recvtype,root,comm);

p consecutive blocks scattered from root

MPI Gatherv (sendbuf, sendcount, sendtype,
recvbuf, recvcounts, recvdispls, recvtype,

root, comm) ; /\

p triples: ( recvbuf+recvdispls[i] ,recvcounts]i],recvtype)

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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I:>

© 6 0 6

Root (0
for (1 =p-1; 1>0; 1--) |

MPI Send(sendbuf[i],...,root+l,comm) ;
}

Para
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I:>l

®©@ © 0 O

Non-root, O<rank<size:
MPI Recv (recvbuf,..rank-1,..,comm) ;
for (i=rank; i<p-1; 1i++) {
MPI Sendrecv replace (recvbuf, ...,
rank-1, rank+1,.., comm) ;

Para
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1-ported, bidirectional send-receive communication

=

®©@ © 0 O

Non-root, O<rank<size:
MPI Recv (recvbuf,..rank-1,..,comm) ;
for (i=rank; i<p-1; 1i++) {
MPI Sendrecv replace (recvbuf, ...,
rank-1, rank+1,.., comm) ;

Para
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1-ported, bidirectional send-receive communication

=

—
® O O O

Non-root, O<rank<size:
MPI Recv (recvbuf,..rank-1,..,comm) ;
for (i=rank; i<p-1; 1i++) {
MPI Sendrecv replace (recvbuf, ...,
rank-1, rank+1,.., comm) ;

Para
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1-ported, bidirectional send-receive communication

=

Tscatter(m) = (p-1)(o+Bm/p) = (p-1)a + (p-1)/p M

INGHSHIMENAGHEMNNN  Orimalin p-term

in linear processor array with 1-ported, bidirectional,
send-receive communication

el WS23 ©Jesper Larsson Traff m | n ]C O rm a ‘t | C S
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Linear-ring allgather

. MPI :

. All processes
stores gathered

! blocks in rank
m/p —[ 0 order

MPI Allgather (sendbuf, scount, stype,
recvbuf, rcount, rtype, comm) ;

scount/rcount: number of elements in one block, each process
contributes one block and gathers p-1 blocks

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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=

@ @

for

(1=0;

1i<p-1; 1i++)

{

MPI Sendrecv (recvbuf[ (rank-i+size) %size],..,
recvbuf [ (rank-i-1+size) $size], .., comm) ;

Parallel WS23
| Computing

©Jesper Larsson Traff
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=

-@H@
© 0 o0 o

for (1=0; i<p-1; 1i++) {
MPI Sendrecv (recvbuf[ (rank-i+size) %size],..,
recvbuf [ (rank-i-1+size) $size], .., comm) ;

Para
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-8

for (1=0; i<p-1; 1i++) {

MPI Sendrecv (recvbuf[ (rank-i+size) %size],..,
recvbuf [ (rank-i-1+size) $size], .., comm) ;

—

Para
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TR R
© 0 0 @

for (1=0; i<p-1; 1i++) {

MPI Sendrecv (recvbuf[ (rank-i+size) %size],..,
recvbuf [ (rank-i-1+size) $size], .., comm) ;

Para
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Tallgather(m) = (p-1)(c+Bm/p) = (p-1)ax + (p-1)/p BmM

INGHSHIRENAGHEMNN Octimal in p-term

PG,GL, WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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MPI Bcast (buffer, count, datatype, root, comm) ;

Tbroadcast(m) = Tscatter(m)+Tallgather(m)
= 2(p-1)ac+ 2(p-1)/p fm

by Broadcast =~ Scatter + Allgather observation

But major improvement over trivial algorithm that sends the m
elements along the ring: Tbroadcast(m) = (p-1)(c+Bm)

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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Linear-ring reduce-scatter

- All processes has
} m/p own m-vector,
each receives
™ reduced block of

m/p elements
MPI Reduce scatter block(sendbuf,

resultbuf, count,datatype,
op, comm) ;

WS23 ©Jesper Larsson Traff m | N ]CO rma ‘t | CS
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Aside: Requirements for MPI reduction collectives

Computing

op one of MPI_SUM (+), MP1_PRQOD (*), MP1_BAND,
MPI_LAND, MPI_MAX, MPI_MIN, ...
Special: MP1_MINLOC, MPI_MAXLOC
Work on vectors of specific basetypes
User defined operations on any type
All operations assumed to be associative (Note : Floating point
addition etc. is not)
Built-in operations also commutative

“High quality”
Reduction in (canonical) rank order requirements
Result should be same irrespective of process placement
(communicator)
Preferably same order for all vector elements
sendbuf must not be destroyed (cannot be used as temporary
buffer)

WS23 ©Jesper Larsson Tréff m | N ]CO Ma -t | CS
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Let Xi be the vector contributed by MPI process i

Order and bracketing: Chosen bracketing should be same for all
vector elements ( careful with pipelined or blocked, shared-
memory implementations ), e.g.,

((X0+X1)+(X2+X3))+((X4+X5)+(X6+X7))

And same, for any communicator of same size ( careful with mix
of algorithms for hierarchical systems )

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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for (i=1; i<p; 1i++) {
si = (rank-i+size)%size;
MPI Sendrecv (recvbuf [si]

recvbuf[ri] = tmp OP recvbuf|[ri];

ri = (rank-i-l+size)%size
; ...y LMD, ..., COMM) ;

// do MPI op

L, WS23

©Jesper Larsson Traff
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recvbuf[ri] = tmp OP recvbuf[ri]; // do MPI op

Need for (MPI 2.2 function):

MPI Reduce local (1n, inout, count,datatype,op);

Para
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recvbuf[ri] = tmp OP recvbuf[ri]; // do MPI op

Note : Technically, it was not possible to implement
MPI_Reduce_scatter algorithms on top of MPI before MPI 2.2

WS23 ©Jesper Larsson Traff m | N ]C oOrm a‘t 1CS
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"= i Bl.

for (1=1; i<p; 1++) {
si = (rank-i+size)%size; ri = (rank-i-1l+size)$%size

MPI Sendrecv (recvbuf([si],.., tmp,.., comm) ;
recvbuf[ri] = tmp OP recvbuf[ri]; // do MPI op

—
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for (1=1; i<p; 1++) {
si = (rank-i+size)%size; ri = (rank-i-1l+size)$%size
MPI Sendrecv (recvbuf([si],.., tmp,.., comm) ;
recvbuf[ri] = tmp OP recvbuf[ri]; // do MPI op

—
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for (1=1; 1i<p; 1i++) {
si = (rank-i+size)%size; ri = (rank-i-1l+size)$%size
MPI Sendrecv (recvbuf([si],.., tmp,.., comm) ;
recvbuf[ri] = tmp OP recvbuf[ri]; // do MPI op

WS23 ©Jesper Larsson Traff m | N ]C oOrm a‘t 1CS
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p-1 rounds i=1,2,...,p-1; after round i, process rank has computed

2 rankisjsrank X[ raNk-1-1] MPI (user-defined)
But: Exploits commutativity of + operations may not be

WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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p-1 rounds i=1,2,...,p-1; after round i, process rank has computed
L rank-iSerankX[rank'-I 'i]
Recall: MPI assumes that all operations for MPI_Reduce etc. are

associative; but floating point operations are not associative
e.g., (large+small)+small = large+(small+small)

WS23 ©Jesper Larsson Traff m | N ]CO rma ‘t | CS
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Treducescatter (m) = (p-1)(o+Bm/p)

Computing

= (p-1)x + (p-1)/p Bm

©Jesper Larsson Traff
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Ilgnoring time to
perform p-1 m/p
block reductions

Optimal in B-term
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Combining reduce-scatter with allgather/gather immediately
gives
MPI Allreduce (sendbuf, recvbuf, count,datatype, op,

comm) ;
MPI Reduce (sendbuf, recvbuf, count,datatype, op, root,

comm) ;

7 Note: Same complexity
Tall = 2(p-1 2(p-1)/
allreduce(m) = 2(p-1)ax + 2(p-1)/p Bm | under model
assumptions. Is that
Treduce(m) = 2(p-1)a+ 2(p-1)/PPM | 1aqly so (benchmark!)?

But major improvement over trivial algorithms that reduce the m
elements along the ring: Treduce(m) =Tallreduce(m) = 2(p-
1)(o+Bm)

e WS23 ©dJesper Larsson Traff m | n ]C O I’m a 't | C S
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The power of pipelining

MPI Bcast (buffer, count, datatype, root, comm) ;

Assume m large, m>p

Assume m can be arbitrarily divided into smaller, roughly equal
sized blocks

Chose M, number of rounds, send blocks of size m/M one after
the other

MPI technicality :If datatype (structure of data element in
buffer of count elements) describes a large element, dividing
into blocks of m/M units requires special capabilities from MPI
library implementation. Currently insufficient MPI functionality

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS

Para
mp!




180

Pipelined broadcast
4
3 } m/M
P

=
® © © ©

Root (0):
for (b=0; b<M; b++) {

MPI Send(buffer[b],.., rank+1,..,comm) ;
}

WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Non-root, rank<size-1:
MPI Recv (buffer(0],.., comm) ;
for (b=1; J<M; Jj++) {
MPI Sendrecv (buffer[b-1],..,buffer([b],.., comm);

J
MPI Send(buffer[M-1],..,comm);

L, WS23
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Non-root, rank<size-1:

MPI Recv (buffer(0],.., comm) ;
for (b=1; J<M; J++) {

MPI Sendrecv (buffer[b-1],..,buffer([b],.., comm);
}

MPI Send(buffer[M-1],..,comm);

L, WS23
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Non-root, rank<size-1:

MPI Recv (buffer(0],.., comm) ;
for (b=1; J<M; J++) {

MPI Sendrecv (buffer[b-1],..,buffer([b],.., comm);
}

MPI Send(buffer[M-1],..,comm);

Parallel W823

®Jesper L Traff m '
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Non-root, rank<size-1:
MPI Recv (buffer(0],.., comm) ;
for (b=1; j<M; j++) {

MPI Sendrecv (buffer[b-1],..,buffer([b],.., comm);
}

MPI Send(buffer[M-1],..,comm);

L WS23
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Non-root, rank<size-1:
MPI Recv (buffer(0],.., comm) ;
for (b=1; J<M; Jj++) {
MPI Sendrecv (buffer[b-1],..,buffer([b],.., comm);

J
MPI Send(buffer[M-1],..,comm);

WS23 ®Jesper Larsson Traff m INnformatics




186

N W s
N W s

:>:>:>
@ © O

Non-root, rank<size-1:

MPI Recv (buffer(0],.., comm) ;
for (b=1l; J<M; j++) {
MPI Sendrecv (buffer[b-1],..,buffer([b],.., comm);

J
MPI Send(buffer[M-1],..,comm);

©Jesper Larsson Traff m | N ]CO M at | CS
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Non-root, rank<size-1:
MPI Recv (buffer(0],.., comm) ;
for (b=1; J<M; Jj++) {
MPI Sendrecv (buffer[b-1],..,buffer([b],.., comm);

J
MPI Send(buffer[M-1],..,comm);

WS23 ®Jesper Larsson Traff m INnformatics
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Non-root, rank=size-1:

for (b=0; J<M; J++) {
MPI Recv (buffer[b],.., comm);
}

©Jesper Larsson Traff m | N ]CO M at | CS
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Last processor receives first block after p-1 rounds

Last processor completes after p-1+M-1 rounds
Processor i receives first block after i rounds, and a new
block in every round

Root completes after M rounds

WS23
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Observation:

Tbroadcast(m) = (p-1+M-1)(o+Bm/M)

A best possible number of blocks, and a best possible block size
can easily be found: Pipelining lemma

Similar linear pipelined algorithms for reduction, scan/exscan

MPI_Reduce needs special care for root=0 and root=p-1

o WS23 ©dJesper Larsson Traff m | n ]C O I’m a 't | C S
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Pipelining lemma:

With latency of k rounds to deliver the first block, and  a new
block every s rounds , the best possible time (in linear cost
model) for a pipelined algorithm that divides m into blocks is

(k-s)ax + 2V[s(k-s)oBm] + spm

Proof:

Pipelining with M blocks takes

(k+s(M-1))(0+Bm/M) = (k-s)a + sMa + (k-s)Bm/M + spm rounds.
Balancing the sMa and (k-s)Bm/M terms gives best M of

\[(k-s)Bm/saf

Substitution yields the claim

el WS23 ©Jesper Larsson Traff m | n ]C O I’m a 't | C S
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Corollary:
Best possible time for linear pipeline broadcast is

(p-2)o+ 2\[(p-2)oBm] + Bm

since k=p-1 and s=1 Optimal in B-term

Practical relevance : Extremely simple, good when m>>p

WS23 ©Jesper Larsson Traff m | N ]CO rma ‘t | CS



MPI difficulty with pipelined algorithms: Structured buffers

datatype

Bufferis count repetitions of datatype

| | | | |
Block O Block 1 Block 2 Block 3 Block 4

MPI library needs internal functionality to access parts of
structured buffers. MPI specification does not expose any such
functionality

ccccccccc
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Pipelined irregular allgather: First result for irreg. collective

MPI Allgatherv (sendbuf, sendcount, sendtype,
recvbuf,

recvcounts|[], recvdispl|[], recvtype,
comm) ;

Total data m = ), sendcount*size(sendtype), each process can
have a different amount of data (sendcount)

Choose blocksize b, send and receive in M rounds until all blocks
received by all processes. What is M?

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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Organize processes in a ring, and pipeline. Observation from:

Jesper Larsson Traff, Andreas Ripke, Christian Siebert, Pavan
Balaji, Rajeev Thakur, William Gropp: A Pipelined Algorithm for
Large, Irregular All-Gather Problems. Int. J. High Perform.
Comput. Appl. 24(1): 58-68 (2010)

Parallel W823
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Organize processes in a ring, and pipeline.

1 ws23 ©Jesper Larsson Tréff m | N ]CO 88 aJ[ | CS
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Organize processes in a ring, and pipeline.
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Organize processes in a ring, and pipeline.
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Organize processes in a ring, and pipeline.

©Jesper Larsson Traff m | N ]CO M at | CS
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Organize processes in a ring, and pipeline.
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Organize processes in a ring, and pipeline.

©Jesper Larsson Traff m | N ]CO M at | CS
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Organize processes in a ring, and pipeline. Number of rounds is
M= 2 ceiling(m;/b), where m ; is the amount of data in the block
of processor i. Effective latency k is p-1 (why?). Each process
sends and receives a new block every s=1 rounds. Pipelining

WS23 ©Jesper Larsson Traff m | N ]CO rmat | CS
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The power of trees: Binomial tree gather

Assume (some convenient) tree can be embedded in
communication network: Each tree edge is mapped to a network
edge. Many processors in tree receive blocks from subtrees in
parallel

For simplicity, continue to assume root=0

Wilog: Case rootz0 can be handled by “shifting towards 0” (set
rank’ = (rank-root+size)%size) for broadcast, gather/scatter.
For reduction to root, same works for commutative MPI
operations, otherwise, modifications are necessary

Note : Algorithms exploits 1-ported communication, but can be
(optimally) generalized to k-ported communication

Para
mp!
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Binomial tree for gathering to root=0

Processors numbered by pre-order traversal

WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Binomial tree gather in rounds

Round 0 «——
Round 1

Round2

o+Bm/p o<+%m/p

« Three (3) communication rounds (= ceil(log 7))

« Each child can be found in O(1) steps, followed by parent in
O(1) steps

« At most 2 'm/p data per round, i=0,1,..,ceil(log p)-1

« Total time in linear cost transmission model 30+B6m/p

el WS23 ©Jesper Larsson Traff m | n ]C O I’m a 't | C S
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recvbuf tmpbuf tmpbuf
4
m —

m/p

@@@@@@@

MPI Gather (sendbuf, scount, stype,
recvbuf, rcount, rtype, root, comm) ;

Para
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recvbuf tmpbuf tmpbuf

6 6 g
_ 0 |

{1

1

MPI Gather (sendbuf, scount, stype,
recvbuf, rcount, rtype, root, comm) ;

©Jesper Larsson Traff m | N ]CO M at | CS



208

recvbuf tmpbuf tmpbuf

< > %
=l

<7 |
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« ceil(log p) communication rounds

« Root process 0 active in each communication round

* Non-root processes send only once: in round k, where k
(=0,1,...,log p-1) is the first set bit in process rank

« Amount of data gathered doubles in each round

WS23 ©Jesper Larsson Tréff m | N ]C oOrm a‘t 1CS
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while ((ranké&d)#d&&d<size) {
if (rank+d<size) MPI Recv (tmpbuf,.., rank+d, .., comm) ;
d <<= 1;

}
if (rank!=root) MPI Send (tmpbuf,.., rank-d,..,comm) ;

paraller WS23 ©Jesper Larsson Traff m | N ]CO 1) at | CS
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recvbuf tmpbuf
6
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0000000

4

Tgather(m) = ceil(log p)o+Bm(p-1)/p

Optimal in o-term

6 1
1< 0 ]

210

Optimal in B-term

Note : In each round, a non-idle processor either only sends or
receives. Each processor can determine in O(1) steps what to do

Computing

©Jesper Larsson Traff
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Binomial tree reduction

MPI Reduce (sendbuf, recvbuf, count,datatype, op, root,
comm) ;

All processes contribute a (typed) vector in sendbuf. Root
process computes result in recvbuf (significant at root only)

if (rank==root) result = recvbuf;
else result = malloc (count*..); // datatype
memcpy (result, sendbuf,..); // need typed memcpy

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS



if (rank==root) result = recvbuf;
else result = malloc (count*..); // datatype
memcpy (result, sendbuf,..); // need typed memcpy

There is no typed, local memcpy function in MPI. But library
might implement typed copy efficiently?:

Para

1f (rank==root) result = recvbuf;
else result = malloc (count*..); // datatype
MPI Sendrecv (sendbuf, count,datatype, TAG, 0,
result, count,datatype, TAG, 0,
MPI COMM SELF,MPI STATUS IGNORE);

1

Special, singleton communicator, process
has rank 0 in MPI COMM SELF

212
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(————

1 1

0 _0 | 0|
d=1;
while ((ranké&d) #d&&d<size) {
if (rank+d<size) {

MPI Recv (tmpbuf, .., rank+d, .., comm) ;
MPI Reduce local (tmpbuf, result,..,);

}
d <<= 1;

}

if (rank!=root) MPI Send(result,.., rank-d,..,comm) ;

Para
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m-element
reductions

Treduce(m) = ceil(log p)(a+Bm) = ceil(log p)o+ceil(log p)Bm

No algorithmic latency: Each process can start receiving
immediately, that is after O(1) operations (same for gather)

. WS23 ©Jesper Larsson Tréff m | N ]CO ma t | CS
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Binomial tree broadcast

@First subtree

Pre-order traversal numbering unsuited for broadcast:
algorithmic latency . Processor 0 can start sending to processor
2' after i steps, where 2 <p, undesirable broadcast latency

WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS

Para
Computi



216

Binomial tree broadcast with harmful algorithmic latency

=5 2

0000000

d = 1;
while ((ranké&d) !=dé&&d<size) d <<= 1;
if (rank!=root) MPI Recv (buffer,.., rank-d,..,comm) ;
while (d>1) {

d >>= 1;

if (rank+d<size) MPI Send(buffer,.., rank+d,.., comm) ;
}

WS23 ©Jesper Larsson Traff m | N ]C oOrm a‘t 1CS
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Binomial tree broadcast without harmful algorithmic latency

=
=
=

©O00O0OO®

d = 1;
while (rank>=d) { dd = d; d <<= 1; }
if (rank!=root) MPI Recv (buffer,.., rank-dd, .., comm) ;
while (rank+d<size) {
MPI Send (buffer,.., rank+d, .., comm) ;
d <<= 1;
}

WS23 ©Jesper Larsson Tréff m | N ]C oOrm a‘t 1CS
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« Find first set bit k (Isb)

« Parent: Flip bit k (subtract
2K)

« Children: Flip bits k+1, k+2,

- @
Better suited for broadcast: Bit-reversed pre-order traversal
numbers. Parent needed in round k can be found O(k) steps

First HPC lecture : Parent can be found in O(log k) steps, or O(1)
steps with hardware support

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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Tbroadcast(m) = ceil(log p)(a+Bm) = ceil(log p)a+ceil(log p)Bm

Optimal in a-term, not in B-term

No harmful algorithmic latency: Process to start in round k
executes while loop of K iterations

el WS23 ©Jesper Larsson Traff m | n ]C O rm a 't | C S
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Algorithmic latency in tree algorithms

K preceding communication operations

Latency for node i to decide
position in tree:

O(1): No algorithmic latency

O(k): No harmful algorithmic
latency

w(k): Possibly harmful algorithmic
latency

WS23 ©Jesper Larsson Traff m | N ]CO rma ‘t | CS
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Binomial tree: Structure

B3 B2 B1 B0 o

e WS23 ©Jesper Larsson Tréff m | f ]C Orma 't | CS
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Binomial tree: Structure

Bi

B(i-1) B(i-2) BO

Properties:

« Bihas 2' nodes, i=0

« Bihasi+1levels, 0, ..., |

« Bi has choose(i,k) = il/(i-k) k! nodes at level k

Home exercise : Prove by induction

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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Standard choose(i,k) exercises

Prove that
» choose(i-1,k)+choose(i-1,k-1) = choose(i,k)

* ¥ ,asChoose(ik) = 2!

Argue either a) combinatorially, b) by definition and induction.
Do not use the binomial theorem

WS23 ©Jesper Larsson Traff m | N ]CO rma ‘t | CS
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Binomial tree: Naming (ranks)

B(i-1) B(i-2) BO

Recursively:
« RankinBOis O
« Fork=1,...,i, add 2"k to ranks in subtree B(i-k)

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS

Computing



225

Binomial tree: Naming (ranks)

B(i-1) B(i-2) BO

In binary (root=0):

Let rank i = Y10...00; for some binary prefix Y, k be position of
first 1 (from least significant bit, k=1)

* i'sk-1children Y10...01, Y10...10, ..., Y11...00

« i's parent Y00...00

« alli’'s descendants Y1X for k-1 bit suffix X

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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Binomial tree: Naming (ranks) This naming
corresponds to a
BS pre-order traversal

numbering of the
binomial tree.

Other namings:
post-order
numbering, level
numbering (BFS), ...

For any i: Find parent in O(k) steps (or even O(log k) steps, O(1)
if Isb(x) in hardware), find each child in O(1) steps

WS23 ©Jesper Larsson Traff m | N ]CO rma ‘t | CS
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Binomial tree: Alternative definition (and proof of 3 'd property)

Bi

B(i-1)

Level k in Bi:
/ \ B(i-1) choose(i-1,k)+choose(i-1,k-1) =
choose(i,k)

Properties:

« Bihas 2' nodes, i=0

« Bihasi+1levels, 0, ..., |

« Bi has choose(i,k) = il/(i-k) k! nodes at level k

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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Binomial tree gather/broadcast/reduction

Bi

T(i): Processing time
S(i): Data volume

Optimality in linear cost model:
Since the processing time of the two subtrees is the same,
transfer between root and subtree root incurs no delay

WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Structural properties of trees and collectives

Completion times for Broadcast, Reduction, Gather and Scatter
with binomial trees can be expressed as recurrence relations

... and solved by standard techniques

WS23 ©Jesper Larsson Traff m | n ]CO [’m a 't | C S
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o T(i) =T(@-1) + o+ BS(i-1) T(i) = (log p)o+B(p-1)/p m

Scatter:

o T(i) = o+ BS(i-1) + T(i-1) T(i) = (log p)o+B(p-1)/p m

Broadcast:
o T()=o+BS(i-1) + T(i-1) T(i)
« S(i)=m

(log p)(o+pm)

Reduction:
« T()=T(@-1) + o+ BS(i-1) + yS(i-1) T(i) = (log p)(c+Bm+ym)

WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Broadcast/scatter completion times in Log(G)P, o<g

Broadcast, single item (LogP):

* T(P) = min,__max[o+T(P-i)+(g-0),0+L+0+T(i)]

« T(1)=0 Linear algorithm,
star-tree

Scatter, k item (LogP):

TK(P) = min,__.max[o+(ki-1)g+Tk(P-i)+(g-0),0+L+(ki-1)g+0+T%(i)]

1) =0 Best possible: T k(P) = o+((P-1)k-1)g+L+0

Scatter, single item (LogGP):
« T(P) = min,__.max[o+T(P-i)+(g-0),0+L+(i-1)G+0+T(i)]
« T(1)=0

Scatter, k item (LogGP) assuming tree communication

« TKP) = min,__max[o+(ik-1)G+T*(P-i)+(g-0),0+L+(ik-1)G+0+TK(i)]

« Tk(1)=0

|e, WS23 ©Jesper Larsson Traff m |nforma‘t|cs
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Broadcast, single item (LogP):
* T(P) = min,__max[o+T(P-i)+(g-0),0+L+0+T(i)

« T(1)=0
‘ ‘ | iRootlnsetofl

Processors receives

Root in set of P-i processors sends item after o+L+o0 time
item to root in other set of i units and can start
processors with overhead time o. broadcast over the |
Root is ready for next message processors

after g-o time units (next message
can be injected after the gap g,
but the overhead can be
overlapped)

L, Ws23 ©Jesper Larsson Trff m INnformatics
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Master thesis?

For Log(G)P, best possible completion times depends on the
values of L, o, g, G, P. Closed form expression (and best tree) can
sometimes be found.

Claim: Best solution can be found by dynamic programming

Richard M. Karp, Abhijit Sahay, Eunice E. Santos, Klaus E.
Schauser: Optimal Broadcast and Summation in the LogP Model.
SPAA 1993: 142-153

Eunice E. Santos: Optimal and Near-Optimal Algorithms for k-
ltem Broadcast. J. Parallel Distrib. Comput. 57(2): 121-139
(1999)

Albert D. Alexandrov, Mihai F. lonescu, Klaus E. Schauser, Chris
J. Scheiman: LogGP: Incorporating Long Messages into the LogP
Model for Parallel Computation. J. Parallel Distrib. Comput. 44(1):
71-79 (1997)

Eunice E. Santos: Optimal and Efficient Algorithms for Summing
and Prefix Summing on Parallel Machines. J. Parallel Distrib.
Comput. 62(4): 517-543 (2002)
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Binomial tree broadcast in hypercube

H3
Round O:

If processor has data,
flip bit 0
Send block

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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H3
Round 1:

If processor has data,
flip bit 1
Send block

. WS23 ©Jesper Larsson Tréff m | N ]CO ma t | CS
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Round 2:

If processor has data,
flip bit 2

Send block

. WS23 ©Jesper Larsson Tréff m | N ]CO ma t | CS
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Round i:

If processor has data,
flip bit i

Send block

Theorem:

Binomial tree Bi can be optimally embedded into hypercube Hi,

each edge in Bi corresponds to an edge in Hi:

« Dilation 1: every edge in Bi is mapped to an edge in Hi (not a
path)

« Congestion 1: There is at most one edge in Bi mapping to an
edge in Hi

Does not contradict NP-completeness of
general embedding problem

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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Embedding, terminology

Let [': G->H be an embedding (injective mapping) of a guest graph
G=(V,E) into a host graph H=(V’,E’) with a path function R(u,v)
that maps e=(u,v) to a path from I'(u) to I'(v) in H.

» The congestion of ' is the maximum number over all €’ in V of
edges e=(u,v) in G such that there is a path R(u,v) in H from
[(u) to I'(v) that includes e’ for some e’ in H

« The dilation of I' is the longest path in H from [(u) to '(v)
over all edges e=(u,v) in G

« The expansion is the ratio |V|/|V]|

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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Loosely:

« Congestion: How many parallel communication operations need
the same edge? Can cause slowdown proportional to
congestion

« Dilation: What extra distance must a message travel?

Increases latency (by length of path), can decrease
bandwidth

Optimal embedding: Congestion 1, dilation 1

Paul D. Manuel, Indra Rajasingh, R. Sundara Rajan, N. Parthiban,
T. M. Rajalaxmi: A Tight Bound for Congestion of an Embedding.
CALDAM 2015: 229-237

Optimizing congestion, dilation, expansion are different
problems

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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Network design vehicle approach

Many, many results on embedding different, fixed networks into
other networks (e.g., binomial tree into hypercube, trees into
meshes, ...); research in 80ties, 90ties

1. Chose convenient network for design of algorithm
2. Prove properties

3. Embed into actual system network

4. Use embedding results to prove further properties

WS23 ©Jesper Larsson Traff m | n ]CO I’m a 't | C S
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Binomial tree scatter in hypercube
H

Round O:

If processor has
data, flip bit d-1
Send p/2 blocks

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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H3
Round 1:

If processor has
data, flip bit d-2
Send p/4 blocks

. WS23 ©Jesper Larsson Tréff m | N ]CO ma t | CS
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Round 2:

If processor has
data, flip bit d-3
Send p/8 blocks

. WS23 ©Jesper Larsson Tréff m | N ]CO ma t | CS
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Result: Different embedding of binomial tree into hypercube.

Question :
What if p is not a power of two? Possible to achieve ceil(log )

rounds?

paraller \WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Binomial tree-like, divide-and-conquer scatter (zpower-of-two)

S m=(e+S)/2+S
Processors s..m-1 Processors m..e-1

e

root subroot

|dea : Divide processors into two parts, root sends blocks for
other half to subroot; recurse

MPI Scatter (sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, root, comm) ;

sendbuf only significant on root; data blocks in rank order

WS23 ©Jesper Larsson Tréff m | N ]C oOrm a‘t 1CS



Scatter (void *sendbuf, .., void *recvbuf, ..,

int s, int e, int root, MPI Comm comm)

// base case: only one process

i1f (s+l==e) {
memcpy (recvbuf, sendbuf,..); // should be typed
// can (should) be avoided for non-roots
return;

/] ..

MPI_Scatter calls recursive Scatter with s=0 and e=p,
sendbuf=void*, unless rank==root

Para
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n = (e-s)/2; m = s+n;
if (root<m) {
subroot = m; blocks = e-s-n;
if (rank<m) {
if (rank==root) sendbuf += m;
e = m; newroot = root;
} else {
S = m; newroot = subroot;
}
} else {
subroot = s; blocks = n;
if (rank>=m) {
S = m; newroot = root;
} else {
e = m; newroot = subroot;
}
}
o WS23 ©Jesper Larsson Traff
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S

Processors s..m-1

root

m=(e+S)/2+S e
Processors m..e-1

root

I Informatics
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// root sends data to subroot
if (rank==root) {

MPI Send (sendbuf,blocks,.., subroot, .., comm) ;
} else if (rank==subroot) {

sendbuf = (void*)malloc (blocks*..);

MPI Recv (sendbuf,blocks,.., root,..,comm) ;

}

// recurse

Scatter (sendbuf, .., recvbuf, .., newroot, s, e, comm) ;
1f (rank!=root&&sendbuf!=NULL) free (sendbuf);
return;

Algorithmic latency is constant, root/subroot can start
immediately

Contiguous blocks from sendbuf

Temporary buffers for subroots

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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Tscatter(m) = ceil(log p)a + (p-1)/p Bm
Optimal in both ot and B terms

Note :
Same scheme for reduction/gather will have  O(log p) harmful
algorithmic latency

Remark:

Van de Geijn and others call these algorithms “MST (Minimum

Spanning Tree)”... Misnomer:

e  Minimum wrt. to what?

* Any algorithm for broadcast etc. must use one (or more)
spanning trees, since all processors must be reached

el WS23 ©Jesper Larsson Traff m | n ]C O I’m a 't | C S
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Binomial gather/scatter with root=0

Standard solution: Use virtual rank’ = (rank-root+size)%size

Drawback: Result not in rank order (shifted), requires local
reordering at root, further algorithmic latency

Divide-and-conquer gather does not have this drawback,
received buffers always in rank order, still ceil(log p) rounds

o WS23 ©dJesper Larsson Traff m | n ]C O rm a 't | C S
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Final remark: binomial and k-nomial trees

The binomial-tree algorithms and variants naturally extend to
systems with k-ported communication.

The latency term becomes ceil(log ,p)

WS23 ©Jesper Larsson Traff m | n ]CO [’m a 't | C S
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Irregular collectives: Gather and scatter

 lIrregular (v-) collectives algorithmically much more difficult
than regular collectives seen so far.

* Not that many good results

« MPI libraries most often have trivial implementations : Same
algorithm as corresponding, regular collective

What to do?

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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“Well-behaved”, irregular collectives: Gather, scatter, allgather,
reduce_scatter

Jesper Larsson Traff: Practical, linear-time, fully distributed

algorithms for irregular gather and scatter. EuroMPI/USA 2017:
1:1-1:10

Jesper Larsson Traff, Andreas Ripke, Christian Siebert, Pavan
Balaji, Rajeev Thakur, William Gropp: A Pipelined Algorithm for
Large, Irregular All-Gather Problems. IJHPCA 24(1): 58-68
(2010)

J. L. Traff: An Improved Algorithm for (Non-commutative)
Reduce-Scatter with an Application. PVM/MPI 2005: 129-137

And others...
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Linear time irregular gather

Let my, my, my, ..., m;, ..., Mgy be the (sizes of the) blocks
contributed by the p processors. Assume blocks are to be

gathered in rank order at some processor r, 0<r<p

mO m1 m2 B m(p-1)

MPI Gatherv (sendbuf, scount, stype,
recvbuf, rcounts, rdispl, rtype, root,
comm) ;

MPI specifics:
« Only root knows all mi, in rcounts vector (of size p)

« Root provides a displacement rdispl[i] for each mi

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Algorithms (for regular collectives) so far have (implicitly) used
a round-based, synchronous communication cost model

« Some pairs of processes active in each round

« Communication costs per round determined by largest m
message transmitted

« Linear transmission cost t(m) = o+Bm

The following algorithm for irregular gather/scatter

(MPI_Gatherv/MPI_Scatterv) only assumes that processes

start at the same time.

« Each message can be transmitted as soon as both sending and
receiving process are ready

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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Problem with static (rank-structured) binomial trees

Bi

S(i-1) = ¥ mi of right
subtree might be larger
than S(i-1) of left
subtree, and the
processing time T(i-1) of
the two subtrees differ

Delay at root Bi (root of smaller, left tree) waiting for right
tree to complete gather

Gather delay 0 = Tright-Tleft

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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Problem with static (rank-structured) binomial trees

. S(i-1) = ¥ mi of right
Bi subtree might be larger
than S(i-1) of left
subtree, and the
processing time T(i-1) of
the two subtrees differ

No delay at root of Bi (root of larger, right tree), can start
transmission as soon as right tree is completed

ldea : Avoid gather delays by letting faster constructed trees
send to slower trees

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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Extended hypercube : Processors are organized in a hypercube H,
and one extra non-hypercube edge between two processors is

allowed.

An extended, d-dimensional hypercube H consists of two d-1
dimensional, extended subcubes H and H”, such that processors
in H form a consecutive range of the processors in H’ followed

by the processors in H”

Remark: The algorithm works also for incomplete hypercubes,
where p is not a power of 2

e WS23 ©dJesper Larsson Traff m | n ]C O I’m a 't | C S
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Let my, my, My, ..., m;, ..., Mgy be the (sizes of the) blocks
contributed by the p processors. Assume blocks are to be

gathered in rank order at some processor r, 0<r<p

Mo m1 m2 [ (1)

Lemma: There exist an extended hypercube algorithm that

gathers the p blocks in rank order at some (  unspecified ) root r in
ceil(log p)oc+ B L .. m;

time units

WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Proof: Induction on the dimension of the hypercube
Base case, d=0: Process | has it's block m ;, nothing to gather

Induction step, assume claim holds for hypercubes of dimension
d-1: Hypercube H of dimension d is formed by gathering data
from one d-1 dimensional cube H’ to the root of the other d-1
dimensional cube H”. Let r and r’ be the roots of H and H”.

r r

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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Assume that 2 i iq ojer Mi < 3 iin Hejr M (with ties broken arbitrarily,
but consistently).

Send the data gathered at r to r*.

Sending the data gathered at r takes o+B Y. i, M time units.
By the induction hypothesis, gathering the data at the other

root r* has taken (d-1)a+ B X in i M time units (which is not
smaller than time of gathering in H':  no gather delay ), for a total

of dot + B 2 jin 1, M; time units. The root in H becomes r”, and the
claim follows.

In H, there is communication along (r’,r”’) which may not be a
hypercube edge, but is allowed in the extended hypercube

WS23 ©Jesper Larsson Traff m | N ]CO rma ‘t | CS



Data can be gathered in order: Assume H’ contains the
processors 0, ..., 241-1, and H” the processes 2 41, ..., 29-1. The
buffer in H is allocated such that the H’ blocks comes before

the H” blocks

Linear cost root r

Computing
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Proposition: There exist a hypercube algorithm that gathers the
p blocks in rank order at a given root r in linear time at most

ceil(log p)o + B 2 iwrM; 4 B iin =r Mi time units for some subcube H’

Proof: Break all ties in favor of given root r. Processor r receives
from a sequence of optimal, binomial trees B(i), i=0,1,...,ceil(log p)-1

B(i+1)

B(i)

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Let H' be the last tree causing a delay. Construction cost of H’ is
therefore larger than the cost of receiving from all previous
subcubes (including delays). The cost of receiving from all ceil(log p)
subcubes is ceil(log p)a + B 2 ..,m;. The delay is at most

10+ B L jin Hoier M = (10 + B Y i< M) S B X jin Hjier M

Last delay

B(i+1)

B(i)

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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Question: How does r’ know r”’ and vice versa?

Algorithm:

Maintain a fixed binomial tree B with root b in each hypercube H
with root r. Maintain the invariant: The fixed root b knows r, r
knows b, and both r and b knows . ...m; and ¥ mi

Invariant holds for O-
dimensional hypercube with r=b

WS23 ©Jesper Larsson Tréff m | N ]C orma ‘t | CS
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Algorithm:

Maintain a fixed binomial tree B with root b in each hypercube H
with root r. Maintain the invariant: The fixed root b knows r, r
knows b, and both r and b knows }, ...m; and ¥ m:

Step 1: b’ and b” exchange (', %, ..m;, ¥ m) and (r’, % .-m, ¥ m;)

sendrecv >

Para
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Algorithm:

Maintain a fixed binomial tree B with root b in each hypercube H
with root r. Maintain the invariant: The fixed root b knows r, r
knows b, and both r and b knows }, ...m; and ¥ m:

Step 2': Fixed root b’ sends (r”, Y. ..»-m;, L m) to r (if b’=r’)

Para
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Algorithm:

Maintain a fixed binomial tree B with root b in each hypercube H
with root r. Maintain the invariant: The fixed root b knows r, r
knows b, and both r and b knows }, ...m; and ¥ m:

Step 2”: Fixed root b” sends (', ). ...m;,xm,) to r” (if b”=r")

Para
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Algorithm:

Maintain a fixed binomial tree B with root b in each hypercube H
with root r. Maintain the invariant: The fixed root b knows r, r
knows b, and both r and b knows }, ...m; and ¥ m:

Step 3: Both hypercube roots r and r” compare % ..M and ¥ M,
and decide which will be the new root in H. The new fixed root b”
likewise decides

Para
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By the three steps, the invariant is maintained for H formed
from H and H”. The construction takes ceil(log p) communication
rounds, each consisting of 2 steps
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Theorem: The irregular gather problem with block sizesm  ,, m,,
..., my_4, @and given root r can be solved in at most 3ceil(log p)o +

BLiwrMi + B X iinHi=r Mi time units

Jesper Larsson Traff: Practical, distributed, low overhead
algorithms for irregular gather and scatter collectives. Parallel
Computing 75: 100-117 (2018)
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Is this better than existing MPI_Gather(v) implementations

Intel MPI 2017 on VSC-3 (Vienna Scientific Cluster),
www.vsc.ac.at, p=500x16=8000 MPI processes, dual-rail
InfiniBand interconnect. For MPIl_Gatherv, Intel MPI uses a
binomial tree (can be configured), for MP1_Scatterv a star (root
send to all)

Comparison against

« native MPI_Gather ( expectation : for regular problems,
MPI_Gather(m) < MPIl_Gatherv(m))

« native MP|_Gatherv

« padded MPI_Gather ( expectation : Gatherv(m) <
MPI_Allreduce(1)+MPI_Gather(m’) for padded m’ with m’>m)

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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Different problem types

« Same (all blocks same size)

 Random

« Bucket (fixed part plus random part)

* Increasing (block sizes increase linearly with rank)

« Decreasing (block sizes decrease)

« Spikes (some randomly chosen large blocks)

« Alternating (large/small blocks)

« Two blocks (first and large blocks small, all other unit size)

with increasing, total problem size m=), . m,

Findings say: Yes, much better (the block size aware irregular
gather algorithm is implemented as TUW_Gatherv)
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Intel MPI, Same blocks

le+06 r . — . - : — : — : : -
. MPI_Gather —— ]

| Guideline2 i
MPI Gatherv =sen
100000 :_TUWZGathEW ' / “’"‘:
10000 | /f’ -
1000 | .
100 - N __— |
1.0 I i i | i i i i i | i i | i i |_

1000 10000 100000 le+06 le+07 le+08

Problem size (MPI_INT)
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Intel MPI, Random blocks
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le+08

le+06 ——— -

. MPI_Gather —}—

| Guideline2 i
MPI_Gatherv
100000 Eryw Gatherv —(- /,, }
10000 |- /,f’ -
1000 + _ | =
100 f = _
/5 :
1.0_ i i A g g i o i ] ||||||_
10000 100000 le+06 le+07
Problem size (MPI_INT)
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Intel MPI, Random buckets

le+06
100000
10000

1000 |

100 -

10

- TUW_Gatherv

MPI_Gather —— ]

Guideline2 i
MPI_Gatherv _

1000

Parallel WS23
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Problem size (MPI_INT)
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Intel MPI, Increasing blocks

277

le+06 ———T -
| MPI_Gather ——
| Guideline2 i

100000 |- _MPI_Gatherv _

- TUW_Gatherv

10000

1000 |

100 f£

le+08

1.0 i i N g g i o i PR T T B
10000 100000 le+06 le+07
Problem size (MPI_INT)
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le+06 ——————
. MPI_Gather —}—

%

100000
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Intel MPI, Decreasing blocks

278

Guideline2
| MPI_Gatherv
- TUW_Gatherv

/

/

/

le+08

1.0 i i N | i g g i o i PR T T B
10000 100000 le+06 le+07
Problem size (MPI_INT)
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Intel MPI, Spiked blocks
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le+08

le+06 — . v
L MPI_Gather —— ]
| Guideline2 i ]

MPI_Gatherv

100000 :_TUW_GEIthEl"\f : | /'ﬁ E
10000 | /,—f‘ -
1000 ] -
L P r" i
e — :
100 _— .
].'D_ 1 T T A B R A ! ol j | ||.|.._

10000 100000 le+06 le+07

Problem size (MPI_INT)

paraller WS23 ©Jesper Larsson Traff m |ﬂform aUCS

Computing



Time (microseconds)

280

Intel MPI, Alternating blocks

le+06 —— — — . — .
. MPI_Gather —}— ]
| Guideline2 i
MPI Gatherv
100000 & ryw Gatherv —- /,_
10000 | % i
1000 | i
100 | S |
1.0 | i i | ] i | ] i 1 ] i | ] ] |_
1000 10000 100000 le+06 le+07 le+08

Problem size (MPI_INT)
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Intel MPI, Two blocks

281

10000C

[ MPI_Gather i

Guideline2 i |

| MPI_Gatherv _ |

- TUW_Gatherv I

L = ._._._._._____________._._-—-—'-"'" -

| i i ] i i i i i i i i i i |
1 10 100 1000 10000

Problem size (MPI_INT)
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Intel MPI, Same blocks

le+06 r . T . — . — . S . . -
| MPI_Scatter —}— ]
I Guideline2
MPI Scatterv
100000 - TUW _Scatterv
10000 |
1000 |
100 —
1.0 | i i | ] i | ] i 1 ] i | ] ] |_
1000 10000 100000 le+06 le+07 le+08
Problem size (MPI_INT)
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Intel MPI, Random blocks
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le+06 ——T T -
. MPI_Scatter
I Guideline2
MPI_Scatterv
100000 - TUW _Scatterv
10000 e

1000 |

100
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Intel MPI, Random buckets

le+06 —— —— — . — . — . —
| MPI_Scatter —}— ]
I Guideline2
MPI_Scatterv
100000 - TUW _Scatterv
10000 X ;l,{

]. 'D'D'D — / i
| i _
100 |- ;jﬁﬁﬁﬁfff |

1.0 i i | i i i i i i ] i | i i i
1000 10000 100000 le+06 le+07 le+08

Problem size (MPI_INT)
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Intel MPI, Decreasing blocks
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le+08

le+06 — T -
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I Guideline2
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1000 .
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Intel MPI, Increasing blocks
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MPI_Scatter
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Intel MPI, Spiked blocks
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Intel MPI, Alternating blocks

le+06 . T . — . . | 2
| MPI_Scatter —}— |

I Guideline2
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100000 - TUW _Scatterv
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1000 -
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Intel MPI, Two blocks

:I MPI_écalttler ]

Guideline2 |

MPI_Scatterv |

- TUW_Scatterv ]

| i i ] i i i i i ] i i i i i |
1 10 100 1000 10000 10000C

Problem size (MPI_INT)
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Theorem: The irregular gather problem with block sizesm  ,, m,,
..., my_4, @and given root r can be solved in at most 3ceil(log p)o +

BLiwrMi + B X iinHi=r Mi time units

Question : What is the minimum possible delay?

Claim 1: An ordered gather/scatter tree with minimum possible
delay can be constructed in polynomial time

Claim 2: If the order restriction is dropped, finding a minimum
delay tree is NP-hard

Jesper Larsson Traff: Practical, distributed, low overhead
algorithms for irregular gather and scatter collectives. Parallel
Comput. 75: 100-117 (2018)
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Claim 1: Indeed, by offline dynamic programming in O(n 3)
operations for homogeneous transmission costs t(m) = a+pm, and
O(n#) operations for non-homogeneous costs t(m) = o j+B;m

Claim 2: By reduction from PARTITION

Ad claim 1: Such algorithms are not useful in practice. Is it
possible to find better, low complexity, online algorithms than
the adaptive binomial tree?

Master’s thesis?

Jesper Larsson Traff: On Optimal Trees for Irregular Gather
and Scatter Collectives. IEEE Trans. Parallel Distrib. Syst. 30(9):
2060-2074 (2019)
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Claim 1, idea:

Ordered gather/scatter tree:
Each subtree is over a consecutive range of processes

Gather: Root in B gathers
blocks from processes i,
B i+1, .., ]

WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Claim 1, idea: Let TJi...j] be the best possible gather time for
some ordered tree over [i...jJ], and Si...j]= 2 «<qMk

Best ordered tree over |[i...|] from best subtrees [i...k], [k+1...]]
for some k; optimal substructure obviously holds

i omet [k e [

T[i...K],S]i...K] T[k+1...jl,S[k+1...j]

This gives the following dynamic programming equations
« TI[i] =0, S[i] =mi for all i
« T[i...j] = min,g.ymax(T[i...K], T[k+1...j])+o+Bmin(S[i...k],S[k+1...j])

. WS23 ©Jesper Larsson Tréff m | N ]CO ma t | CS
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i@l

e

-l
om [
(o) () (=) () (5) (o) ()

Round k partner: rank XOR 2 k (flip k'th bit), exchange distance 2 K
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W
OO0 00 0060 6006

Round k partner: rank XOR 2 * (flip k'th bit), exchange distance 2

1 ws23 ©Jesper Larsson Tréff m | N ]CO 88 aJ[ | CS
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Round k partner: rank XOR 2 * (flip k'th bit), exchange distance 2

©Jesper Larsson Traff m | N ]CO M at | CS
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Butterfly/FFT communication pattern: Telephone bidirectional

WS23 ©Jesper Larsson Traff m | N ]CO ' aJ[ | CS
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Hypercube embedding of butterfly:
H3 Round 0

Round 1 Round 2

o WS23 ©Jesper Larsson Traff m | n ]C O rm a -t | C 8
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The power of the hypercube/butterfly: Aligather

Tallgather(m) = (log p)x + (p-1)/p Bm
Optimal in both terms

since the amount of data exchanged in round K is
m/2'e9pk k=0, 1, ..., log po-1

Drawback:
Butterfly (hypercube) algorithms  do not extend nicely to the
case where p is not a power of 2

R. Rabenseifner, J. L. Traff: More Efficient Reduction
Algorithms for Non-Power-of-Two Number of Processors in
Message-Passing Parallel Systems. PVM/MPI 2004: 36-46
J. L. Traff: An Improved Algorithm for (Non-commutative)
Reduce-Scatter with an Application. PVM/MPI1 2005: 129-137
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Fully-connected network: Allgather

Exploit fully bidirectional communication to accumulate and
disseminate blocks. Another viewpoint: Multiple, edge disjoint

binomial trees.
H [ ]
||
[ ]

00000
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Round k:

Each process
sends/receives
block of size 2 &
to/from processor
(i+2K, i-2 ) mod p

©Jesper Larsson Traff m | N ]CO M at | CS
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Round k:

Each process
sends/receives
block of size 2 &
to/from processor
(i+2K, i-2 ) mod p

©Jesper Larsson Traff m | N ]CO M at | CS
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Round k:

Each process
sends/receives
block of size 2
to/from processor
(i+2%, i-2%) mod p

B Informatics
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Round k:

Each process
sends/receives
block of size 2
to/from processor
(i+2%, i-2%) mod p

Except for last
round: block of size
p-2*

I Informatics



©Jesper Larsson Traff

310

Round k:

Each process
sends/receives
block of size 2
to/from processor
(i+2%, i-2%) mod p

Except for last
round: block of size
p-2*

I Informatics
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“Bruck”/”Dissemination” Allgather algorithm (sketch):

d=1

floor(log p) rounds:
Receive block[rank-2*d+1:rank-d] from rank-d
Send block[rank-d+1:rank] to rank+d
d=d*?2

iff d<ceil(log p)
Receive block[rank-d-r+1:rank-d] from rank-d
Send block[rank-r+1:rank] to rank+d

where r = p-d

/* all rank+/-x operations are mod p */

Tallgather(m) = ceil(log p)a + (p-1)/p mp Optimal in both terms

No algorithmic latency

WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Fundamental paper to study

“Bruck”/”’Dissemination” Allgather algorithm (sketch):

d=1
floor(log p) rounds:

Receive block[rank-2*d+1:rank-d] from rank-d
Send block[rank-d+1:rank] to rank+d
d=d*2
iff d<ceil(log p)
Receive block[rank-d-r+1:rank-d] from rank-d

Send block[rank-r+1:rank] to rank+d
where r = p-d

/* all rank+/-x operations are mod p */

Tallgather(m) = ceil(log p)a + (p-1)/p mpB \/

J. Bruck, Ching-Tien Ho, S. Kipnis, E. Upfal, D. Weathersby:
Efficient Algorithms for All-to-All Communications in Multiport

Message-Passing Systems. IEEE Trans. Parallel Distrib. Syst.
8(11): 1143-1156 (1997)

. WS23
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“Bruck”/”’Dissemination” Allgather algorithm (sketch):

d=1
floor(log p) rounds:
Receive block[rank-2*d+1:rank-d] from rank-d

Send block[rank-d+1:rank] to rank+d
d=d*?2
iff d<ceil(log p)
Receive block[rank-d-r+1:rank-d] from rank-d
Send block[rank-r+1:rank] to rank+d
where r = p-d
/* all rank+/-x operations are mod p */

For MPI : Blocks are received in order, e.g. [4,5,6,0,1,2,3] for
rank 3, so internal buffering and copying may be necessary in
some steps(*); MPI standard prescribes [0,1,2,3,4,5,6] order for
all ranks

(*) or use MPI derived datatypes
o WS23 ©Jesper Larsson Traff m |nform aUCS
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Communication pattern in Dissemination allgather is a circulant
graph: processor i communicates with processors (i+d) mod p and
(i-d) mod p, for d=1, 2, 4, 2 ceilllogp) -1

From Wolfram MathWorld,
www.mathworld.wolfram.com/CirculantGraph.html
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MPI_Allgather vs. MPI_Allgatherv (OpenMPI 3.1.3). Is log p
round algorithm used?

Allgather
E - 1 T T
F Allgather —}—
[ Monotone
H Split
| L | L L Ml L L | " L L
1 10 1000 10000 100000 1x106

Datasize (Bytes)

MPI_COMM_ WORLD,

. WS23

Computing

36x32 processes
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IAIIge;thlelrv ——|—— i

Monotone —
Split

b

1 10

1000

Datasize (Bytes)

36x32 processes

100000 1x10°
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MPI_Allgather vs. MPI_Allgatherv (OpenMPI 3.1.3). Is log p
round algorithm used?

Allgather Allgatherv
10000 — —— —T 100000 — —— —
E Allgather —}— F Allgatherv —}—
[ Monotone [ Monotone
Split Split
10000
1000 E
1000

Time (microseconds)

100

E ; .
SRR ¥ | o
10 L L :I_E_: .: : L PR | L PR | L PR | L PR 10 L PR | L PR | L 1

N L M " Ml | M L | " " "
1 10 100 1000 10000 100000 1x106 1 10 100 1000 10000 100000 1x106
Datasize (Bytes) Datasize (Bytes)

MPI_COMM WORLD, 36x1 MPI_COMM WORLD, 36x1
Processes Processes
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MPI_Allgather vs. MPI_Allgatherv (OpenMPI 3.1.3). Is log p
round algorithm used?

Allgather Allgatherv
1)(106 T L | T L | T L | T L | T — 1] 1X106 E

F T T T T T T T T T
L Allgathelr —— ] F Allgatherv —}—

| Monotone —¢— 1 | [ Monotone .
100000 Split J)gr ] s Split 5i-
i . gl ] 100000 3 3
] - M

10000 ¢

1000 | ﬁ%
I S

{1 1000 - w
100 | AT e

10000

Time (microseconds)

10

1 T ‘1|0 T Illool ‘1Ic;00l Ilbloool Ildc;oocl) I1Ix105 100 1 10 100I ‘1I000l Ilboool Ildooocl) I1Ix105
Datasize (Bytes) Datasize (Bytes)

cyclic comm, 36x32 cyclic comm, 36x32

Processes Processes
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Allgather pattern application: Non-MPI collective operation

Problem:
Each process has a block of n elements in order (<). Collect at
each process a large block consisting of all elements in order (<)

Solution: Use the circulant graph communication pattern, in each
round merge received block with block at process. Complexity is
ceil(log p) communication rounds, O(pn) operations (send-receive
and merge)

Can also be used for duplicate elimination, key-value pairs, etc.
(e.g., maintaining tentative distances in a distributed
implementation of Dijkstra’s algorithm)

_ Be very careful not to loose elements,
see next algorithm

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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Beyond the butterfly: Allreduce in fully-connected networks

Will the allgather circulant graph scheme work for
(commutative) reduction operations (Allreduce)?

S -g Idea:
Maintain partial
sum S;=7 ;'By
where B, is the

If‘> iInput vector of
process k

Circulant graph: All
SO E <=
are mod p

. WS23 ©Jesper Larsson Tréff m | N ]CO ma t | CS
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Invariant:

Partial sum S =% 'Bx where B« is the input vector of process k
and j=i-2 " after round r=0, 1, ...

Si = Si+Si. = Bi+Bi1

o
Q000
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Invariant:

Partial sum S =% 'Bx where B« is the input vector of process k
and j=i-2 " after round r=0, 1, ...

Si=Si+Si2 =
(Bi+Bi.1)+(Bi.2+Bi3)

O000®
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Invariant:

Partial sum S=%,'B, where B« is the input vector of process k
and j=i-2" aﬁerroundr 0, 1

Si= Si+Si4 =
(Bi+B;4+Bj +Bi-3)+Si-4

EEse——

O000®

e WS23 ©Jesper Larsson Tréff m | N ]CO 'Ma 't | CS

ccccccccc




323

Different invariant, different communication pattern: Each
process i maintains two sums, S ;' = L k=jin and S° = L k=ji'1Bk for j<i

May work?

S IS sum up to and including process i

A
[ !

When process |

receives from

| > process |, it must
decide whether B |

has already been

added to S ' @and So

Y Which pattern,
. which j?
S;° IS sum Tp to and excl g process |

. WS23 ©Jesper Larsson Tréff m | N ]CO ma t | CS
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Key insight

"

Write p-1inbinary as (b b;...b;...b1)> with bits b j (0 or 1), b o
being the most significant bit of p-1.  Note thatb =1, always

Define n_; = 0, and Nj = 2nj-1+9; for j=0,...,k-1.

It follows that n =3 4ib,2r1 (By induction,n 5 5 ib2ii )+b,

= ¥._o*'b,2i+11). By the observation that b ,=1, thus ny=1. Also, for
j=k-1, n;=p-1

Each process i maintains the following invariants on S1 and SO:

* S1=1Y.,'B, the sum of n;+1 previous elements including the
process itself,

e SO= Z |=i-nj i-1 B|, the sum of n J previous elements eXCIUding the
process itself,

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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Each process i maintains the following invariants on S1 and SO:

* S1=1%,,'B, the sum of n;+1 previous elements including the
process itself,

* S0=%in"'B, the sumof n | previous elements €xcluding the
process itself,

When j=k-1, S1 is the desired result for each process (since n
Nk = p-1)

j =

WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Maintaining the invariants, n .y = op;+b;,

Case analysis, b, y=1:n, +1 = (2nj+1)+1 = (nj+1)+(nj+1), receive S1

from i-(n +1), update S1
( J ), up nj+1,S1

A

—00 00O

n; +1, 81 nj, SO
o WS23 ©Jesper Larsson Traff m |nforma‘t|c S
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Maintaining the invariants, n .y = op;+b;,

Case analysis. b;,1=1: nj,; = (2n;+1) = nj+(n;+1), receive S1 from i-
(n;+1), update SO
nj+1, St

A

—00 00O

n; +1, 81 nj, SO
o WS23 ©Jesper Larsson Traff m |nforma‘t|c S
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Maintaining the invariants, n .y = op;+b;,

Case analysis, b;,{=0: n4+1 = (2n;+0)+1 = (n;+1)+n;, receive SO

fromi-n ;, update S1
n+1, S1

A

SO OO O

n;, SO n;, SO
o WS23 ©Jesper Larsson Traff m |nforma‘t|c S
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Maintaining the invariants, n .y = op;+b;,

Case analysis, b,.,=0: n

(2n;+0) = nj+n;, receive SO from i-n
update SO

j+1 = i

j+1=

nj+1, ST
A

SO OO O

n;, SO n;, SO
o WS23 ©Jesper Larsson Tréaff m |nformat|c 8
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Case analysis summary:

In round j:

* Receive S and update both S1 = S1+S and S0 = S0+S

» Ifb ;=1, receive S1 fromi-(n ;+1) and send S1 to i+(n;+1)
« Ifb ;=0, receive SO fromi-n ; and send SO to i+n

o WS23 ©Jesper Larsson Tréff m | N ]C orma ‘t | CS
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Tallreduce(m) = (log p)(c+Bm) Optimal in o term

Algorithm (b pits of p-1):

S1 = B /* input vector */

S0 = 0 /* neutral element under ), */
n=20

far j=0,1,...,k-1: /* round */

iff b, =1
Send S1 to process rank+n+1<: All rank
Receive S from rank-(n+1) calculations
else q
Send SO0 to process rank+n modp
Receive S from rank-n _ .
S1=581+8 Algorithmic
S0 = S0+S latency : find

n-2n+b _ msh
Remark: A neutral element for ), is actually not needed, SO can

be initialized after first round (recall b0=1).

WS23 ©Jesper Larsson Traff m | N ]C oOrm a‘t 1CS
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Communication neighbor

Examples: @
II n (701 .8)3) | ni+b; (01 0.8)3)

S e G, ons W2 same
6 101), 0,12 18 neighbor
7 110),  0,1,3 123 twice!
8

111), 0,1,3 1,2,4

o N O O

(

(

(

(1000), 0,1,2,4
10 9  (1001), 0,1,2,4
1110  (1010), 0,1,2,5
12 11 (1011), 0,1,2,5

13 12 (1100), 0,1,3,6 1,2,3,6
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Notes:
« Two papers with same idea, at the same time, from two
different IBM labs (T. J. Watson/Almaden)!?

« Second paper generalizes to k-ported systems, and have
other extended results

Can be used for the Can the idea be made to work for
merge problem non-commutative functions ), ?

Amotz Bar-Noy, Shlomo Kipnis, Baruch Schieber: An Optimal
Algorithm for computing Census Functions in Message-Passing
Systems. Parallel Processing Letters 3: 19-23 (1993)

Jehoshua Bruck, Ching-Tien Ho: Efficient Global Combine
Operations in Multi-Port Message-Passing Systems. Parallel
Processing Letters 3: 335-346 (1993)
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The same result, derived in a different way, also in

Jesper Larsson Traff, Sascha Hunold, loannis Vardas, Nikolaus
Manes Funk: Uniform Algorithms for Reduce-scatter and (most)
other Collectives for MPl. CLUSTER 2023: 284-294

The communication pattern and algorithms is extended to
reduce-scatter (reduce, allgather, gather/scatter)

Para
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Scan/Exscan in fully-connected networks

Hillis-Steele ( reminder from Bachelor lecture, sketch):

Processor i, round k, k=0, 1, ..., ceil(log p)-1:

1. Receive partial result from processor i-2 K (if i-2 *>0)

2. Send own partial result to processor i+2 K (if i+2 k<p)

3. Compute partial result for next round by summing own and
received partial result

Partial result: 2. ax(0.-21)<j<i XI

Note :

. Attribution not correct,
Tscan(m) = ceil(log p)(o+Bm) algorithm was known before

WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Round O:
1. Sendrecv(rank-1,rank+1)
2. Add received partial result to own vector

o WS23 ©dJesper Larsson Traff m | n ]C O rm a 't | C S
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Round 1:
1.  Sendrecv(rank-2,rank+2)
2. Add received partial result to own vector

I
000000 0®

el WS23 ©Jesper Larsson Traff m | n ]C O rm a ‘t | C 8
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Round 2:
1. Sendrecv(rank-4,rank+4)
2. Add received partial result to own vector

—
Q0000006

W. Daniel Hillis, Guy L. Steele Jr.: Data Parallel Algorithms.
Commun. ACM 29(12): 1170-1183 (1986)
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The power of the hypercube/butterfly:Allreduce,ReduceScatter

Building on the allreduce = reducescatter+allgather observation,
the butterfly can be used for a good (best possible?) Allreduce
algorithm

Note :

In MPI community the algorithm is sometimes called
Rabenseifner’s algorithm , although the algorithm has been known
for longer in the parallel/distributed computing field (incorrect
attribution), see for instance

Robert A. van de Geijn: On Global Combine Operations. J. Parallel
Distrib. Comput. 22(2): 324-328 (1994)

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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Treducescatter’'(m) = (log p)a + (p-1)/p Bm

)
O

.
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Reverse the process to allgather the result:

©Jesper Larsson Traff
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Reducescatter part, MPI note :
The blocks are not scattered as prescribed by MPI, i'th block at
I'th process

Simple trick: Reorder blocks (FFT permutation) before starting,
at the cost of an O(m) algorithmic latency

J. L. Traff: An Improved Algorithm for (Non-commutative)
Reduce-Scatter with an Application. PVM/MPI1 2005: 129-137

Again: Butterfly algorithm does not extend nicely to case where
p is not a power of two. A better than trivial algorithm in:

R. Rabenseifner, J. L. Traff: More Efficient Reduction Algorithms
for Non-Power-of-Two Number of Processors in Message-Passing
Parallel Systems. PVM/MPI 2004: 36-46

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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The power of fixed-degree trees

Binomial trees cannot be pipelined : For same block size m/M,

different nodes in tree would have different amount of work per
round

Fixed-degree trees, e.g., linear pipeline, binary trees, admit
pipelining

Lpép-UO & @
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Note :

Extreme case, non-constant degree star(tree) can be useful, e.g.
gather for very large problems (MPI: No need for intermediate
buffering); pipelining can be employed for each child:

Sp

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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Complete, balanced, binary tree: Structure

T3
C)
) )
@ @ @ @
©O O O ©0 ©0 O O O
| Properties:
Ti  Tihas 2+ —1 nodes, i=0
| | « Tihas 2 —1 interior nodes
T(i-1) T(i-1) « Tihas 2ileaves

« Tihas i+1 levels

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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Complete, balanced, binary tree: Naming (BFS)

T3

© @ 5 6
@ ® © O © O © O

Navigation in O(1):
parent is (rank-1)/2, children 2rank+1, 2rank+2

For MPI : Not always convenient , processor ranks of subtrees do
not form a consecutive range (e.g., in gather/scatter block
reordering necessary; reduction not in rank-order, ...)

el WS23 ©Jesper Larsson Traff m | n ]C O rm a 't | C S
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Complete, balanced, binary tree: Naming (in-order)

T3
©

O 5) 9) @
© @ ® ® ® O O O

Property : Processor ranks of subtree from a consecutive range
[j, ..., j+2K1] for some j and k

o WS23 ©Jesper Larsson Traff m | N ]C oOrma -t | CS
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Pipelined binary tree

Can be used for broadcast, reduction, scan/exscan; for the
latter, inorder numbering of the processors is required (unless
MPI operation is commutative)

In-order numbering

WS23 ©Jesper Larsson Traff m | n ]CO I’m a 't | C S
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Broadcast: 2(M-1)+x rounds

* Root: Send blocks

» Leaf: Receive blocks

» Interior: Receive new block from parent, send previous block
to left subtree, send previous block to right subtree

M blocks a
(2 e
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Broadcast: 2(M-1)+x rounds

* Root: Send blocks

» Leaf: Receive blocks

» Interior: Receive new block from parent, send previous block
to left subtree, send previous block to right subtree

M blocks
(2 (5
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Broadcast: 2(M-1)+x rounds

* Root: Send blocks

» Leaf: Receive blocks

» Interior: Receive new block from parent, send previous block
to left subtree, send previous block to right subtree

M blocks

. WS23 ©Jesper Larsson Tréff m | N ]CO ma t | CS
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Broadcast: 2(M-1)+x rounds

* Root: Send blocks

» Leaf: Receive blocks

» Interior: Receive new block from parent, send previous block
to left subtree, send previous block to right subtree

M blocks
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Broadcast: 2(M-1)+x rounds

* Root: Send blocks

» Leaf: Receive blocks

» Interior: Receive new block from parent, send previous block
to left subtree, send previous block to right subtree

M blocks
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Broadcast: 2(M-1)+x rounds

* Root: Send blocks

» Leaf: Receive blocks

» Interior: Receive new block from parent, send previous block
to left subtree, send previous block to right subtree

M blocks

. WS23 ©Jesper Larsson Tréff m | N ]CO ma t | CS
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Broadcast: 2(M-1)+x rounds

* Root: Send blocks

» Leaf: Receive blocks

» Interior: Receive new block from parent, send previous block
to left subtree, send previous block to right subtree

M blocks a
(2)
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Broadcast: 2(M-1)+x rounds

* Root: Send blocks

» Leaf: Receive blocks

» Interior: Receive new block from parent, send previous block
to left subtree, send previous block to right subtree

M blocks
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Broadcast: 2(M-1)+x rounds

* Root: Send blocks

» Leaf: Receive blocks

» Interior: Receive new block from parent, send previous block
to left subtree, send previous block to right subtree

M blocks a
(2 (e
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Broadcast: 2(M-1)+x rounds

* Root: Send blocks

» Leaf: Receive blocks

» Interior: Receive new block from parent, send previous block
to left subtree, send previous block to right subtree

M blocks a
(2 e
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Broadcast: 2(M-1)+x rounds

* Root: Send blocks

» Leaf: Receive blocks

» Interior: Receive new block from parent, send previous block
to left subtree, send previous block to right subtree

M blocks a
(2 e
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Broadcast: 2(M-1)+x rounds

* Root: Send blocks

» Leaf: Receive blocks

» Interior: Receive new block from parent, send previous block
to left subtree, send previous block to right subtree

M blocks a
(2 e
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Broadcast: 2(M-1)+x rounds

* Root: Send blocks

» Leaf: Receive blocks

» Interior: Receive new block from parent, send previous block
to left subtree, send previous block to right subtree

M blocks a
(2 e

Observe: ‘ e e a

« Non-root nodes get a new block every second round, 2(M-1)
« Last leaf gets first block after x=2(log(p+1)-1) rounds
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Corrollary (pipelining lemma):

(k-s)ox + 2\[s(k-s)oBm] + sPm
Best possible time for pipelined, binary tree broadcast is

Tbroadcast(m) =
(2ceil(log((p+1)/4))o+ 2V[4(ceil(log((p+1)/4))aBm] + 2Bm =
(2ceil(log((p+1)/4))o+ 4V[(ceil(log((p+1)/4))opm] + 2Bm

since k=2(ceil(log(p+1))-1) and s=2, giving k-s = 2(ceil(log(p+1)-2) =
2ceil(log((p+1)/4))

el WS23 ©Jesper Larsson Traff m | n ]C O rm a 't | C S
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Reduction: 2(M-1)+2(log(p+1)-1) rounds

« Leaf: Send blocks

 Interior and root: Receive from left subtree, add to partial
result, receive from right subtree, add to partial result, send
to parent (root does not send)
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Scan/Exscan: Two phases, up and down

Up-phase: Interior node receives from left subtree, adds to own
value, stores partial result, receives from right subtree,
computes temporary partial result and sends upwards

[2 Tert +val(i)=2 ogval(j), 2 T]
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Scan/Exscan: Two phases, up and down

Down-phase: Interior node receives result from parent, sends to
left subtree, adds to own partial result, sends complete result to
right subtree

%, T\op +val(root)

WS23 ©Jesper Larsson Traff m | N ]CO rma ‘t | CS
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Scan/Exscan: Two phases, up and down

Both phases can be pipelined, best time is twice the best time
for reduction (some extra overlap of up- and down phase
possible with bidirectional communication)

Peter Sanders, Jesper Larsson Traff: Parallel Prefix (Scan)
Algorithms for MPIl. PVM/MPI 2006: 49-57
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Problem with pipelined trees

Problem with pipelined binary trees: bidirectional communication
only partially used (receive from parent, send to one child)

|dea: For operations consisting of both up and down phases, the
two phases can be overlapped; bidirectional communication in

each step

Example: Allreduce, Scan/Exscan

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Doubly-rooted, doubly pipelined allreduce
Pipelined Reduce&Bcast, simultanenously

Programming exercise

e Per round, 3 steps:
1.  Sendreceive from first

G e child, local reduce

2. Sendreceive from second
0 e ° e child, local reduce
3. Sendreceive from parent

Leaves and root are special: Only Sendreceive with parent; only
Sendreceive with children

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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Doubly-rooted, doubly pipelined allreduce

Pipelined Reduce&Bcast, simultanenously
With two connected, rooted trees

Leaves are special: Only Sendreceive with parent. Root in one
tree communicates with root in other trees (and needs extra
reduction)

WS23 ©Jesper Larsson Traff m | N ]CO rma ‘t | CS
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Doubly-rooted, doubly pipelined allreduce

Pipelined Reduce&Bcast, simultanenously
With two connected, rooted trees

Implementation detail: After how many rounds will a process at
depth d receive a block from parent? What is the running time of

the algorithm with a best possible pipeline block size?

Bonus programming exercise

Jesper Larsson Traff: A Doubly-pipelined, Dual-root Reduction-
to-all Algorithm and Implementation. CoRR abs/2109.12626

(2021)
e WS23 ©Jesper Larsson Traff m | n ]C O I’m a 't | C S
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Problem with balanced binary tree

Broadcast in Ti:
Last leaf becomes data after 2i rounds (latency k in pipelining

lemma)

Possible solution: Imbalanced binary tree, left subtree deeper
than right subtree

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS



379

An imbalanced binary tree: Fibonacci tree

FO F1
O

F2 F3

O ¢

O O
Fi O

F(i-1) F(i-2) Properties:

* Fihas Fib(i+3)-1 nodes
« Fihas depth i, i=0,
 Fihasi+1 levels

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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Lemma: Fi = Fib(i+3)-1 where Fi is the number of nodes in i'th
Fibonacci tree

Proof: Recall that by definition Fib(0) = 0, Fib(1) = 1, and Fib(i) =
Fib(i-1)+Fib(i-2) for i=2. By definition Fi = 1+F(i-1)+F(i-2)

Fib(i) o1
Fi 1 2 4 7 12 20 33 54

Claim follows by induction. Base: FO =1 = Fib(3)-1, F1 =2 =
Fib(4)-1. Assume claim holds for i-1, .... Then Fi = 1+F(i-1)+F(i-2) =
1+Fib(i+2)-1+Fib(i+1)-1 = Fib(i+2)+Fib(i+1)-1 = Fib(i+3)-1

WS23 ©Jesper Larsson Tréff m | N ]C oOrm a‘t 1CS
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Recall: For the i'th Fibonacci number Fib(i) = 1A5(¢  -¢‘) where ¢
= (1+V5)/2 and ¢’ = (1-V5)/2

Exercise: Proof by induction

Hint: Can be found explicitly using generating functions (see
Wilf, Knuth, and others: powerful technique)

Fib(i+2)-12p if 1N5 @ *22p & i+2 2log, p ® i2log, p - 2

Fibonacci trees introduced explicitly for broadcast in

Jehoshua Bruck, Robert Cypher, Ching-Tien Ho: Multiple Message
Broadcasting with Generalized Fibonacci Trees. SPDP 1992: 424-
431
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Broadcast in Fibonacci tree
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Broadcast in Fibonacci tree
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Broadcast in Fibonacci tree
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Broadcast in Fibonacci tree
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Broadcast in Fibonacci tree

« All leaves become data at
the same time

« Every node becomes a new
block every second round

WS23 ©Jesper Larsson Traff m | N ]C oOrm a‘t 1CS
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Broadcast (reduction) trees: Properties

 Binomial tree Bi: All leaf nodes receive data after i rounds
 Fibonacci tree Fi: All leaf nodes receive data after i rounds

« Binary tree Ti: First leaf receives data after i rounds, last

leaf after 2i rounds
Exercise : Prove by induction

For small data: Binomial tree is round optimal, Fibonacci almost
round optimal, binary tree factor 2 off

Binary tree and Fibonacci tree can be pipelined (binomial tree
not)

Fixed-degree trees can be pipelined; all nodes (except root and
leaves) have the same amount of work

WS23 ©Jesper Larsson Traff m | N ]CO rma ‘t | CS
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Two (pipelined) binary trees

Binary tree drawbacks:
* Nodes receive a new block only every second round
« Leaves only receiving

> Capabilities of communication model not fully exploited

|dea :

Use two binary trees instead of one. Interior node of one tree is
leaf of other, vice versa; in each round processors receive a new
block from parent in either tree, send a previous block to one of
its children

Could perhaps work for incomplete binary trees  with even
number of nodes?

WS23 ©Jesper Larsson Tréff m | N ]CO m a‘t 1CS
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|dea :

Use two binary trees instead of one. Interior node of one tree is
leaf of other, vice versa; in each round processors receive a new
block from parent in either tree, send a previous block to one of
its children

Each processor associated with two nodes: leaf in one tree,
interior node in other three

Peter Sanders, Jochen Speck, Jesper Larsson Traff: Two-tree
algorithms for full bandwidth broadcast, reduction and scan.
Parallel Computing 35(12): 581-594 (2009)
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Example: Reduction °

Incomplete binary tree with even number of nodes: Same
number of interior nodes and leaf nodes.

Tree in in-order numbering, processors numbered from 1, ..., p

WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS

Para
Computil



391

Example: Reduction °

Incomplete binary tree with even number of nodes: Same
number of interior nodes and leaf nodes.

Construction: Given p, remove processor 0 (root), construct in-
order tree over remaining processors, if p-1is even. (If p-1is
odd, remove one more processor, add as virtual root)

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Duplicate tree
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Rotate (mirror) tree

Each processor is in two trees, once
with rank, once with rank’ = p-rank

WS23 ©Jesper Larsson Traff m | N ]CO rmat | CS
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Duplicate and mirror tree

Same processor

rocessor is either: leaf in
upper tree and interior node in lower,
or vice versa

WS23 ©Jesper Larsson Traff m | N ]CO rmat | CS
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Add reduction root, shall receive from both trees

Same processor
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Add reduction root, shall receive from both trees

Same processor
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Both trees can work simultaneously, m/2 data reduction in either
by pipelining. Pipelining lemma with s=2 and k=2(log(p+1)-1) gives

Treduce(m) =
(2ceil(log((p+1)/4))o+ 2V[4(ceil(log((p+1)/4))apm/2] + 2Pm/2 =
(2ceil(log((p+1)/4))o+ 2V[2(ceil(log((p+1)/4))apm] + Bm

Optimal in B-term, logarithmic in a-term

Remark: Currently best known reduction time with logarithmic

S Care needed not to exploit commutativity

Problem:

How to schedule communication such that in each round each
processor sends to a parent (in either tree) and receives from a
child?

el WS23 ©Jesper Larsson Traff m | n ]C O rm a 't | C S
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In even rounds processors

send and receive on red
Answer: By colors edges 8
4
2 (§) 10

In odd rounds on black edges

., WS23 ©Jesper Larsson Tréff m | N ]CO ' at | CS
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Coloring (2-tree scheduling) lemma:

There is an edge 2-coloring of the 2-tree such that for each

node

« The colors of the edges to parents in upper and lower trees
are different

* The colors from the (up to two) children are different

Proof:

Construct schedule graph B as follows: Let {s1,...,sp} be a set of
sending, {r1,...,rp} a set of receiving processor nodes; there is an
edge between si and rj iff si is a child of rj in either upper or

lower tree.

Graph B is clearly bipartite and each node si or rj has degree at
most two. B is therefore edge 2-colorable.

WS23 ©Jesper Larsson Traff m | N ]CO rma ‘t | CS
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Note (recall?):
A bipartite edge 2-coloring can be computed in O(n+m) time
(Cole, Ost, Schirra, 2001)

Richard Cole, Kirstin Ost, Stefan Schirra: Edge-Coloring
Bipartite Multigraphs in O(E log D) Time. Combinatorica 21(1): 5-
12 (2001)

Too expensive (algorithmic latency), not parallel
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Main theorem:
Using the mirroring construction for 2-trees, the color of the

edge to the parent of an interior tree node v, 1<v<p, in the upper
tree is computed in O(log p) steps by calling
EdgeColor(p,root,v,1):

EdgeColor (p, root,v,H) {
if (v==root) return 1;
while ((v & H)==0) H <<= 1;

W =((v & (H<<1))!=0 || v+H>p) ? v-H : viH; Find

parent

LI

c = (u>v) 21 : 0;
return EdgeColor (p,root,u,H) " (p/2 mod 2)"c;
}

Proof: In paper (room for improvement)

g WS23 ©Jesper Larsson Traff m | n ]C O I’m a 't | C S
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EdgeColor(10,8,2,1) = EdgeColor(10,8,4,2) = EdgeColor(10,8,8,4) = 1

EdgeColor(10,8,4,1) = EdgeColor(10,8,8,4) = 1

EdgeColor(10,8,6,1) = EdgeColor(10,8,4,2) XOR 1=
EdgeColor(10,8,8,4) XOR 1 =0

EdgeColor(10,8,8,1) = 1

EdgeColor(10,8,10,1) = EdgeColor(10,8,8,2) XOR 1

=0

EdgeColor (p, root,v,H) {
if (v==root) return 1;
while ((v & H)==0) H <<= 1;
u =((v & (H<<1))!'!'=0 || v+H>p)
c = (u>v) 21 : 0;
return EdgeColor (p,root,u,H)” (p/2 mod

? v—H

. V+H;

2) "¢y

©Jesper Larsson Traff
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Final remark : Latency can be improved by using two Fibonacci
trees

Details ... (Peter Sanders and students, personal communication)
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The power of the hypercube: Optimal Broadcast
Goal: Broadcast M blocks in M-1+ceil(log p) rounds

Idea : Use allgather like algorithm on hypercube (or circulant
graph), each processor broadcasts some of the blocks

root Blocks buffer[i], 0<i<M to
be broadcast

Bin Jia: Process cooperation in multiple message broadcast.
Parallel Computing 35(12): 572-580 (2009)
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The M-1+log p round hypercube algorithm

MPI Comm rank (comm, &rank) ;
MPI Comm size (comm, &size);

for (3=0; J<M-1+qg; J++) {

MPI Sendrecv (buffer[s (rank,j)1,..,
partner (rank, j), ..,
buffer [t (rank,j)]1,..,
partner (rank, j),.., comm) ;

Partner in j'th round is (] mod q)’th hypercube neighbor:
partner(rank,j) = rank XOR (2 1meda)

where for now q = log , p

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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The algorithm is correct if

1.  The block s(rank,j) that processor rank sends in round j has
been received in a previous round j'<]

2. The block s(rank,j) that a processor sends in round j is the
block that its partner expects to receive in round |,
t(partner(rank,j),j)

3. The block t(rank,j) that a processor receives in round j is
the block that its partner expects sends in round |,
s(partner(rank,j),j)

4. All blocks have been received after M-1+log  , p rounds by
each processor
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From now on (wlog) root = O (otherwise: shift towards 0)

Root sends blocks out one after the other to partner(0,j):
$(0,)) = min(j,M-1)
The root never receives; if partner(i,j) = 0 for processor i in

round j, processor i does not send (in MPI: Send to
MPI1_PROC_NULL)
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Round 0

Root sends to partner O:

o flip bit 0
P

Parallel
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Round 1

Root sends to partner 1:

o flip bit 1
P

Parallel
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4 Round 1
3
2
Root sends to partner 1:

flip bit 1

Processor 1 sends to
partner 1: flip bit 1
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N

Round 2

w

N
[ ]

Root sends to partner 2:
flip bit 2
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S

Round 2

w

N
[ ]

Root sends to partner 2:
flip bit 2

Processors 1,2,3 sends to
partners: flip bit 2
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Set q =109, p, and define
bit(i,j): (j mod g)’th bit of i (from least significant bit)

s(i,j) = j — g + (1-bit(i,j)) NEXTBIT(i)[j mod ]
tij)=j—q+ bit(i,j) NEXTBIT(i)[j mod q]

Observation (by definition of partner):

t(partner(i,j),))
s(partner(i,j),j)

s(.i,.j)
t(i.j)
Remedy: if s(i,j)=M, send instead block M-1. If t(i,j)=M, receive
instead block M-1.

Also: Blocks with s(i,j)<0 or t(i,j)<0 are not sent/received
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NEXTBIT(i) is a precomputed function for each processor i with

NEXTBIT(i)[j]: distance from bit j of i to next left (more
significant) 1-bit in i, with wrap-around (for technical

convenience NEXTBIT(0)[j] = )

: N

01...1..0...

Observation : NEXTBIT(i)[j] = NEXTBIT(partner(i,j))[j]
Examples: Lemma:
NEXTBIT(010011)[0] = 1 For any i, O<i<p, NEXTBIT(i) can
NEXTBIT(010011)[1] =3 be computed in O(log p) steps
NEXTBIT(010011)[2] = Proof: Exercise
NEXTBIT(010011)[3] = 1 '
NEXTBIT(010011)[4] = 2
NEXTBIT(010011)[5] = 1
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Proposition:
s(i,j+1) = (1-bit(i,j))s(i,j) + bit(i,j)t(i,})

The block that processor i sends in round j+1 is either the same
block as sent in round |, or the block received in the previous
round j.

A processor therefore does not attempt to send a block that it
has not received!
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Proposition:
s(i,j+1) = (1-bit(i,j))s(i,j) + bit(i,j)t(i,})

Proof:

First note that if bit(i,j+1)=0, then

NEXTBIT()[(j+1) mod q] = NEXTBIT(i)[j mod g]-1; and
if bit(i,j+1)=1, then NEXTBIT(i)[j mod q] = 1

It follows that
s(i,j+1) =
j+1—q+ (1-bit(i,j+1)) NEXTBIT(i)[(j+1) mod q] = (definition)
j—q + NEXTBIT(i)[j mod q] =
j—q + (1-bit(i,j)) NEXTBIT(i)[j mod q] +
bit(i, )NEXTBIT(i)[j mod q] =
(1-bit(i,j)) s(i,j) + bit(i,j)t(i,})
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S

Round 2

w

N
[ ]

Root sends to partner 2:
flip bit 2

Processors 1,2,3 sends to
partners: flip bit 2
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S

Round 3

N W
[ ]

[ ]

[ ]

Flip bit (3 mod 3) = 0

Processor 4:
NEXTBIT(100)[0] = 2, so
s(4,3) =2,14,3) =0

Processor 5:
NEXTBIT(101)[0] = 2, so
s(5,3) =0,1(5,3) =2

parclle WS23 ©Jesper Larsson Traff m | ﬂ ]CO rm at | C S
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N

Round 4

w
H

N
N
N

’ ’ Flip bit (4 mod 3) = 1

Processor 4:
NEXTBIT(100)[1] =1, so
s(4,4)=2,14,4) =1

Processor 6:
NEXTBIT(110)[1] =1, so
s(6,4) =1,1(6,4) =2
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Round 5
3
2
’ Flip bit (5 mod 3) = 2
0

Processor 2:
NEXTBIT(010)[2] = 2, so
s(2,5) =4,1(2,5) =2

Processor 6:
B NEXTBIT(110)[2] = 2, so
3 s(6,5) = 2, 1(6,5) = 4
2

WS23 ©Jesper Larsson Traff m | N ]C ormm at | CS
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o
o
N
N

Round 6

N W
N W
N W
N W

Flip bit (6 mod 3) = 0

0 0
Processor 2:
NEXTBIT(010)[0] =1, so
s(6,2) =4,1(6,2) = 3
Processor 3:
‘. NEXTBIT(011)[0] = 1, s0

s(3,6) = 3, 1(3,6) = 4

N W
N W
N W
N W A

’
0
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N
N
N

Round 6

w
w
N W~
w

2 2

N

N P Flip bit (5 mod 3) = 0

1
0
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Processor 7:

NEXTBIT(111)[0] = {(7,0) = - 5(7,0) = -1
NEXTBIT(111)[1] =

NEXTBIT(111)[2] = {(7,2) = 0

NEXTBIT(111)[0] = {(7,3) = 1 5(7,3) = 0
NEXTBIT(111)[1 {(7,4) = 2 S(7,4) = 1
NEXTBIT(111)[2] = {(7,5) = 3 5(7,5) = 2
NEXTBIT(111)[0] = {(7,6) = 4 5(7,6) = 3
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Processor 5:

NEXTBIT(101)[0] = 2 {(5,0) = - 5(5,0) = -1
NEXTBIT(101)[1] = 1

NEXTBIT(101)[2] = 1 {(5,2) = 0

NEXTBIT(101)[0] = 2 {(5,3) = 2 5(5,3) = 0
NEXTBIT(101)[1] = 1 t(5,4) = 1 5(5,4) = 2
NEXTBIT(101)[2] = 1 t(5,5) = 3 5(5,5) = 2
NEXTBIT(101)[0] = 2 t(5,6) = 4 5(5,6) = 3
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Proposition: Suppose there is an infinite number of blocks. For
round =0, define G(j,k) = {IINEXTBIT(i)[j mod qg]=k} for 0<k<q,
and G(j,0) = {i|0<i<p}.

Claim: After round j, processors of G(j,k) have received all
blocks j-g+k, for j-q+k=0.

It follows that after round j=M-2+q (last round of algorithm), all
processors (in G(j,0)) have received blocks 0, ..., M-2; half the
processors in G(j,1) have received block M-1, and the other half
have received a block after M-1. Since blocks after M-1 are
handled as block M-1, all processors have all blocks.

q ; 0 Half the processors
iin G(j,0): 01...1x... have bit j+1=1, the
other half bit j+1=0
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Proposition: Suppose there is an infinite number of blocks. For
round j=0, define G(j,k) = {iNEXTBIT(i)[j mod g]=k} for 0<k<q,
and G(j,0) = {i|0<i<p}.

Claim: After round j, processors of G(j,k) have received all
blocks j-g+k, for j-q+k=0.

Proof: Induction on the number of rounds j

Base:
For j=0, k=q. Since G(0,q) = {0,1} and processor 1 receives block
0=j-g+k after round 0O, the claim holds
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Induction step: Assume claim holds for round j-1; recall G(j,k) =
{INEXTBIT(i)[j] mod q]=k}. Case analysis on k.

Case 0<k<q:

In round j each processor i in G(j-1,k+1) sends block s(i,j) = j-
g+(1-bit(i,})) NEXTBIT(i)[] mod q] = ]-g+k (case analysis, k=0 and
k>0) to partner(i,j), and by induction hypothesis i has block j-1-
g+k+1 = j-g+k.

Since G(j,k) = G(j-1,k+1) union {i|partner(i,j) in G(j-1,k+1)}, all
processors in G(j,k) have block j-g+k in round j

: >

iin G(j-1,k+1): 01..0x...

k+1
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Induction step: Assume claim holds for round j-1; recall G(j,k) =
{INEXTBIT(i)[j] mod q]=k}. Case analysis on k.

Case k=Q:

G(j,q) = {0,21meda} and processor 0 sends block j to processor 2 |
mod q IN round |

This concludes the proof of the claim, which shows that after

M-1+q rounds of the algorithm (blocks larger than M-1 are sent
and received as M-1, blocks smaller than O are neither sent nor
received), all processors have received all M blocks O, ..., M-1.
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Beyond hypercube

The hypercube result was known long before Bin Jia, similar to
the ideas (“Edge Disjoint Spanning Trees”) in a fundamental
paper by Johnsson and Ho (1989).

|dea :

When p is not a power of two, let q = floor(log , D)’ pair each
excess process i>29 with processor i-2 9+1, and use the hypercube
algorithm on the processor pairs

S. Lennart Johnsson, Ching-Tien Ho: Optimum Broadcasting and
Personalized Communication in Hypercubes. IEEE Trans.
Computers 38(9): 1249-1268 (1989)
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Ofori=0

29 -1+i for O<igp-29

| for p-2 9<i<p
|_I-29+q for 2 %<i<p

co(i) = =

rep(i) = i for i<2 9, co(i) otherwise

unit(i) = {i,co(i)}
Each processor i has a co(i) processor (cooperating processor).
Together i and co(i) play the role of one processor in the
hypercube algorithm

Each pair has a representative rep(i)
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Round j: O in(i,j): the processor of
unit(i) that receives a new
block in round |

unit(i) (O out(i,j): the processor of
N N unit(i) that sends a block in
) = round j
t(i,j) from s(i,j) to processor in
processor in unit(partner(i,j))

unit(partner(i,j))

Previous block sent from in(i,j) to out(i,j)

Note :
in(i,j) and out(i,j) may swiich from round | to round j+1
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in(i,0) = rep(i)
out(i,0) = co(rep(i))

in(i,j) = co(out(i,j))

out(i,j+1) = (1-bit(rep(i),j)) out(i,j) + bit(rep(i),j) in(i,))

Rationale:

out(i,j) sends block s(rep(i),j) to in(partner(rep(i),j),j), and in(i,j)
receives block t(rep(i),j) in round |.

By the proposition s(rep(i),j+1) is s(rep(i),)) if bit(rep(i),j)=0,
thus processor out(i,j) can continue as out(i,j+1).

If bit(rep(i),j)=1, s(rep(i),j+1) = t(rep(i),j), which was received by
in(i,]), thus out(i,j+1) shall switch to in(i,))
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in(i,0) = rep(i)
out(i,0) = co(rep(i))

in(i,j) = co(out(i,j))

out(i,j+1) = (1-bit(rep(i),j)) out(i,j) + bit(rep(i),j) in(i,)

Thus, the role of each processor in unit(i) for round j+1 can be
computed in O(1) time from the role in round j.

It remains to determine the role of the processors in
unit(partner(i,j))
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for

1if

(3=0; Jj<M-1+g; J++) {
(co(rank)==rank) { // singleton unit
MPI Sendrecv (buffer[s(rank,j)1,..,
in(partner (rank,j),3) ..,
buffer [t (rank,j)]1,..,
out (partner (rank,j),3J),.., comm) ;
else if (rank==out (rank,j)) { // out processor
MPI Sendrecv (buffer[s(rep(rank),3j)],..,
in(partner (rep(rank),J3),3) , ..y
buffer([j-g-1],..,
in(rank,Jj),..,comm) ;
else {
MPI Sendrecv (buffer[j-g-1],..,
out (rank, j),..,
buffer[t (rep(rank),j)],
out (partner (rep(rank),j),3),.., comm) ;

Parallel WS23
| Computing
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One extra round (for processor in units with two processors)

if (co(rank)!=rank) { // non-trivial unit
if (rank==out (rank,j)) { // out processor
MPI Sendrecv (buffer[M-1],..,
co (rank), ..,
buffer[M-2], ..,
co (rank), .., comm) ;
} else {
MPI Sendrecv (buffer[M-2], ..,
co (rank), ..,
buffer[M-1],
co (rank), .., comm) ;
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To determine role of processors in partner unit, it is necessary
to compute the number of role switches in constant time. This is

u(i,j) = SWITCH(i)[g-1] (-1)/q + SWITCH(i)[(j-1) mod q]

SWITCH(i) is a g-element array that stores for each bit position
j of i, the number of 1-bits from 0 to j (included)

Lemma:
For any i, O<i<p, SWITCH(i) can be computed in O(log p) steps

Easy exercise
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Recall u(i,j) = SWITCH(i)[g-1] (j-1)/q + SWITCH(i)[(j-1) mod q]
Let u’(i,j) = u(i,j) mod 2: u’(i,)) is the parity of the number of role
switches for process i up to round j. Then

out(i,j) = (1-u’(i,))) co(rep(i)) + u(i,)) rep(i)

Let v(i,j) = (u(i,j) + J/q) mod 2. Since rep(i) and partner(rep(i),)j)
differs by only one bit (for each j), the partner roles can be
computed as

out(partner(rep(i),j),j) = (1-v(i,j)) co(partner(rep(i),j)) +
v(i,j) partner(rep(i),j)
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Proposition:
Before round j, processor in(i,j) has received block j-g-1 if |-g-
120, and processor out(i,j) has received block s(rep(i),j) if

s(rep(i),j)=0

Proof: Induction on j. In round 0, in(1,0) receives block 0 from

processor 0, and out(1,1) = in(1,0), and s(rep(i))<0 for the other

rep(i)=1. Hence, the induction base holds.

Assume the proposition holds for j. Case analysis on bit j+1 of

rep(i):

* rep(i) 41y modq = 1: Here out(i,j+1) = in(i,j), and s(rep(i),j+1) =
t(rep(i),j), and in(i,j) has receive block t(rep(i),j) in round j.
Also, in(i,j+1) = out(i,j), and s(rep(i),j) = (j+1)-9-1

* rep(i) 41y modq = 0: Here out(i,j+1) = out(i,j) and (s(rep(i),j+1) =
s(rep(i),j). Also, in(i,j+1) = in(i,j) which receives block
t(rep(i),)) in round j; and t(rep(i),]) = j+1-9-1.
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Proposition:

Before round j, processor in(i,j) has received block |-g-1 if |-g-
120, and processor out(i,j) has received block s(rep(i),j) if
s(rep(i),j)=0

This shows correctness of the final, extra exchange step.
Together with the previous proposition, the main theorem
follows
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Main Theorem:

In the fully connected, 1-ported communication model, broadcast
of M blocks can be done optimally in M-1+ceil(log p)
communication rounds. In the linear cost model

Tbroadcast(m) =
(ceil(log p)-1)a + 2\[ceil(log p)-1)opm] + Bm

Note :

There are at least three other algorithms in the literature
achieving the optimal bound; Bin Jia’s is arguably the most
elegant and easy to implement.
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Another algorithms achieving the same result is:

Jesper Larsson Traff, Andreas Ripke: Optimal broadcast for
fully connected processor-node networks. J. Parallel Distrib.
Comput. 68(7): 887-901 (2008)

Not elegant , needs O(p log?p) step precomputation to determine
schedule of ceil(log p) entries for process all processes.
Challenge: process local, O(log p) step schedule computation for
local process i, 0<i<p

Advantage : Can be used for allgather as well, exploiting allgather
~ p bcast, in particular to give an optimal allgatherv algorithm

Master thesis?
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Recent, major improvement

Jesper Larsson Traff: Fast(er) Construction of Round-optimal n-
Block Broadcast Schedules. CLUSTER 2022: 142-151
Jesper Larsson Traff: Brief Announcement: Fast(er)

Construction of Round-optimal n-Block Broadcast Schedules.
SPAA 2022: 143-146

« Sublinear, O(log 2p) precomputation time per processor
* Implementation for Broadcast and Allgather(v)

Possible to do in O(log p) precomputation? Probably “yes”
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Yet more algorithms with round and bandwidth optimal broadcast

Amotz Bar-Noy, Shlomo Kipnis, Baruch Schieber: Optimal
multiple message broadcasting in telephone-like communication
systems. Discrete Applied Mathematics 100(1-2): 1-15 (2000)

Oh-Heum Kwon, Kyung-Yong Chwa: Multiple message broadcasting
in communication networks. Networks 26(4): 253-261 (1995)

In LogP model (k-item broadcast)

Richard M. Karp, Abhijit Sahay, Eunice E. Santos, Klaus E.
Schauser: Optimal Broadcast and Summation in the LogP Model.
SPAA 1993: 142-153
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Alltoall communication

MPI Alltoall (sendbuf, scount, stype,
recvbuf, rcount, rtype, comm) ;

Each MPI process has an individual (personalized) block of data
(“sendbulf[i]”) to each other process in comm (including itself)
Each MPI process receives an individual (personalized) block of
data (“recvbuf[i]”) from each other process in comm (including
itself)

Alltoall, personalized alltoall, total exchange, transpose, ...
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Bisection width lower bound for alltoall communication

Definition:

The bisection width of a network is the minimum number edges
that have to be removed to partition the network into two parts
with floor(p/2) and ceil(p/2) nodes, respectively.

Observation:
Let the bisection width of a k-ported, bidirectional network be
w. Any alltoall algorithm that sends/receives each block

separately requires at least

floor(p/2) x ceil(p/2)/w/k

communication rounds (and, trivially, at least p-1 rounds)
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Argument: In any partition of p into roughly equal sized parts,
ceil(p/2)/k of the (p-1)/k communication rounds need to cross

the cut. In each round, floor(p/2) processors want to
communicate, but there is a minimum cut that can accommodate
at most w simultaneous communication operations. Thus the
number of rounds is at least ceil(p/2) x floor(p/2)/w/k

Ly

/ / ‘Bisection\width W

\ 4

[ DD o\ ]
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Bisection width facts

« Fully connected network: w = floor(p/2) x ceil(p/2)
« Linear array (ring): 1 (2)

. 2-dimensional torus with equal dimension sizes: w = 2\p (for
p>2)

« 3-dimensional torus with equal dimension sizes: w =2 (p 13)?

- d-dimensional torus with equal dimension sizes: 2 ( Hp)d! (for
dNp>2, if =2, divide cut size by 2)

« d-dimensional hypercube: 2 d-1 = 2logp-1

Note: d-dimensional hypercube is isomorphic to a d-dimensional
torus with dimension size 2!
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Direct alltoall, fully-connected network

MPI Alltoall (sendbuf, scount, stype,
recvbuf, rcount, rtype, comm) ;

Direct algorithm for fully connected networks: Each processor
sends to and receives from each other processor, including itself

for (i=1; i<=size; 1++) {
prev = (rank-i+size)%size;
next = (rank+i) %size;
MPI Sendrecv (sendbuf [next], .., next, ..,
recvbuf [prev],..,prev, .., comnm) ;
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Direct algorithm, p-1 communication rounds ( no communication in
last round):
« High latency, (p-1)x
« Optimal in bandwidth term, since (p-1)/p m units of data have
to be sent and received by each processor
« Exploits fully bidirectional, send-receive communication

Talltoall(m) = (p-1)ax + (p-1)/p Bm

for (i=1; i<=size; 1++) {
prev = (rank-i+size)%size;
next = (rank+i) %size;
MPI Sendrecv (sendbuf [next], .., next, ..,
recvbuf [prev],..,prev, .., comnm) ;
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Less tightly coupled alltoall: All scheduling decisions left to MPI
library and communication subsystem

MPI Request request([2*size];
MPI Status status[2*size];

for (i=1; i<=size; i++) {

prev = (rank-it+size)%size;
next = (rank+i) %$size;

MPI Irecv (recvbuf[prev],..,prev,.., comn,
&request [2* (1-1)1]);

MPI Isend(sendbuf[next],..,next,.., comm,
&request[2*1-11);

}
MPI Waitall (2*size, request,status);
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Telephone exchange algorithm (1-factoring)

Lemma: The fully connected network (complete graph with self-
loops) can be partitioned into p subgraphs in each of which each
node has degree exactly 1 (allowing self-loops): 1-factors

Proof:
Define for each node u the i‘th partner as

vi(u) = (i-u+p) mod p.
Since v;(v,(u)) = (i-(i-u+p) mod p) mod p = u (*), which shows that
each node has degree 1, the i‘t factor can be defined as the the
set of edges (u,v (u)) for i=0,...,p-1

(*) if i-u=0, then (i-u+p) mod p = i-u, and u mod p = u; if i-u<0,
then (i-u+p) mod p = i-u+p
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1-factor self-loop algorithm for alltoall

for (i=0; i<size; i++) {
int partner = (i-rank+size)%size:

MPI Sendrecv (sendbuf [partner], .., partner,
recvbuf [partner], .., partner,
comm,MPI STATUS IGNORE) ;

Works for all p (even, odd, not power-of-two, ...)
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Example, p=4

Po,qle, WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Round 1

v,(0) = (1-0) mod p = 1
v,(1) =(1-1) mod p =0
v,(2) = (1-2) mod p =3
Vv,(3) =(1-3) mod p =2
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Round 3

V5(0) = (3-0) mod p =3
V5(1) = (3-1) mod p =2
V5(2) = (3-2) mod p =
V5(3) =(3-3) modp=0

B Informatics
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Example, p=5
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Example, p=5
@ Round O:
Vp(0) = (0-0) modp=0
@ @ ve(1) = (0-1) mod p = 4
Vo(2) = (0-2) mod p =3
@—@® Vo(3) = (0-8) mod p = 2
Vo(4) = (0-4) mod p =
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Round 1

v,(0) = (1-0) mod p =
v,(1) =(1-1) mod p =0
v.(2) =(1-2) modp=4
v,(3) =(1-3) mod p=3
v.(4) =(1-4) mod p =2

B Informatics



Example, p=5

o

B

Computing

0)

©)

©Jesper Larsson Traff

463

B Informatics



Example, p=5

Computing

0)

8

©Jesper Larsson Traff

464

mod p =3
mod p =2
mod p =

modp=0
mod p =4

B Informatics
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Example, p=5
(0) Round 4:
0 v,(0) = (4-0) mod p = 4
vs(1) = (4-1) modp =3
V4(2) = (4-2) modp =2
@ V4(3) = (4-3) mod p = 1
V4(4) = (4-4) mod p =0
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Improvements:
* p even: p-1 communication rounds needed
* p odd: p communication rounds needed

Lemma: For even p, there exist a 1-factorization of the fully
connected network into (p-1) 1-factors. For p odd, there exist an
almost 1-factorization into p almost 1-factors (each factor has
one un-paired node)

Proof: Folklore, see for instance

Eric Mendelsohn, Alexander Rosa: One-factorizations of the
complete graph - A survey. Journal of Graph Theory 9(1): 43-65
(1985)

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS



467

Even p construction: The i'th 1-factor has edges (i,p-1) and ((j+i)
mod (p-1),(p-1-j+i) mod (p-1)) for j=1,...,p/2-1. Each node clearly
has degree 1, and each edge of the network is in exactly one
factor

Round i, O<i<p-1, for each node u:

1f (u==p-1) v = 1; else {
uu = (p-l-u-i+p-1)%(p-1);
if (uu==0) v = p-1;
else
p-3 v = ((p-l-uu)+i)%(p-1);
}

Rotate along circle, in round i, node u communicates with node v
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Example, p=6
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Example, p=6

@ 0 Round O:
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Example, p=6

@ 0 Round 1:
3 2
@ 6
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Example, p=6

@ 0 Round 2:
©
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Example, p=6
Round 3:
3) O
@ ©

el WS23 ©Jesper Larsson Traff m | n ]C O rm a 't | C S

uuuuuuuuu



473

Example, p=6

@ Round 4:

3

Talltoall(m) = (p-1)a + Bm(p-1)/p
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Odd p construction: Use even p construction for p+1, remove in
each round the edge to virtual node p-1 (or use previous
construction)

p odd, p’ = p+1

Folklore: Even p, p power of two, use v =u XOR |, i=1,...,p-1
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The power of the hypercube: Fewer communication rounds

Message combining:

In round k, 0<k<d, each processor
sends/receives 2 * blocks per processor
of 2 9k1 dimensional neighboring
hypercube

Neighboring hypercube of processor i in round k:
flip bit d-1-k

Total amount of data per processor per round:
2k 20k1 m/p =291 m/p = m/2
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Combine messages:

In round k, d>k=0, each processor
sends/receives 2 ¥ blocks per processor
of 2 9k1 dimensional neighboring
hypercube
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Combine messages:

In round k, d>k=0, each processor
sends/receives 2 ¥ blocks per processor
of 2 9k1 dimensional neighboring
hypercube

Proc. 110 0112 3_ Sendo1o>

WS23 ©Jesper Larsson Tréff m | N ]C oOrm a‘t 1CS



478

Combine messages:

In round k, d>k=0, each processor
sends/receives 2 ¥ blocks per processor
of 2 4«1 dimensional neighboring
hypercube

Proc. 110 [4[5]6[7 [4]5 67 gend100>
Round 1 6|[7]6[7]6[7 67 <Recv1oo

Para
Comp
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Combine messages:

In round k, d>k>0, each processor
sends/receives 2 ¥ blocks per processor
of 2 4«1 dimensional neighboring
hypercube

WS23 ©Jesper Larsson Traff m | N ]C oOrm a‘t 1CS



480

Talltoall(m) = (log p)(c+Bm/2)

This tradeoff is optimal (see later)
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The power of the circulant graph

The hypercube result does not generalize to fully connected
networks (non-power of 2 number of processors).

But the pattern (circulant graph) used in Dissemination Allgather
algorithm does!

J. Bruck, Ching-Tien Ho, S. Kipnis, E. Upfal, D. Weathersby:
Efficient Algorithms for All-to-All Communications in Multiport
Message-Passing Systems. IEEE Trans. Parallel Distrib. Syst.
8(11): 1143-1156 (1997)
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Three (3) steps:

1. Processor local reordering of send blocks to get a symmetric
situation for all processors

2. Routing in ceil(log p) rounds with message combining

3. Local reordering to get blocks into rank order
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n Block from processor i to processor |
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Step 1:

Local rotate upwards; processor i by i positions
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- Block at right destination processor
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After step 1, symmetric situation:

For each process i: Block in row | has to be sent to processor
(i+]) mod p (“shift”)

|dea :
Write row index j as a binary number (e.g.j=5=(101) , -2+
29), shift according to the 1-bits
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Step 2: ceil(log p) rounds

Round k:

For process i, all blocks destined to a processor where bit k=1
are combined and sent together to processor (i+2 ) mod p
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Step 3:

Local reverse and rotate downwards, processor i by i+1 positions
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Total time:
ceil(log p) communication rounds (Step 2), O(m) copy-shift (Step
1), O(m) reverse-shift (Step 3)

Talltoall(m) = ceil(log p)(o+Bfloor(m/2)) + O(m)

Algorithm is used in some MPI libraries (mpich, mvapich,
OpenMPI) for small m.

Drawback: Many copy/pack-unpack operations (Steps 1 and 3)
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Note :
Step 1 and Step 3 can be eliminated: Reverse communication

direction, shift implicitly by communication step; MPI derived
datatypes to avoid explicit packing/unpacking

Jesper Larsson Traff, Antoine Rougier, Sascha Hunold:
Implementing a classic: zero-copy all-to-all communication with
mpi datatypes. ICS 2014: 135-144

Next example shows how to eliminate Step 3
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MPI| sendbuf
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Step 1:

Copy sendbuf blocks into recvbuf in reverse order
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Step 2: ceil(log p) rounds

Round k:

For process i, all blocks destined to a processor with bit k=1 are
sent to processor (i-2 %) mod p

Block j is in row (i+j) mod p, block jis sentif ] XOR 2 k=1
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Done! (no step 3)

Step 1 and all intermediate pack/unpack eliminated by using MPI
derived datatype and double buffering per block (see paper)
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Bandwidth/Latency trade-offs for alltoall communication
In fully connected, k-ported, bidirectional nertworks:

Theorem:

« Any allgather algorithm requires at least ceil(log .1 p)
communication rounds in the k-ported communication model

* Any alltoall algorithm requires at least ceil(log ., p)
communication rounds in the k-ported communication model

Theorem:

« Any alltoall algorithm that transfers exactly (p-1)/p m Bytes
requires at least p-1 communication rounds

* Any alltoall algorithm that uses ceil(log ,; p) communication
rounds must transfer at least m/(k+1) log ., p Bytes

WS23 ©Jesper Larsson Traff m | N ]CO rma ‘t | CS
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Trade-off results from

J. Bruck, Ching-Tien Ho, S. Kipnis, E. Upfal, D. Weathersby:
Efficient Algorithms for All-to-All Communications in Multiport

Message-Passing Systems. IEEE Trans. Parallel Distrib. Syst.
8(11): 1143-1156 (1997)
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Hierarchical communication systems

Many/most HPC systems have a (two-level) hierarchical
communication system, e.g.

“shared-memory” communication

C@000> (OO > Q000>
CommunM/

lane Communication network: torus/tree/...

All processors (cores) inside node share inter-node
communication bandwidth to network
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Hierarchical SMP/multi-core cluster:

« Intra-node communication via shared memory: Somewhat like
fully connected, 1-ported, bidirectional

« Inter-node communication via network: bidirectional
communication with network characteristics, e.g., torus, fat
tree (hierarchical), fully connected (  rare), ... If more than one
communication “lane” (connections to network, network
switches), up to k processes can communicate out of node
concurrently, and/or bandwidth for a single process can be
increased by a factor of k, where k is the number of “lanes”

Goal: Exploit full network bandwidth out of/into nodes

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Linear-array/ring algorithms for MPI collectives can often be
embedded efficiently into hierarchical network

No conflicts on inter-node communication, so all linear algorithms
can be used

Example:

Jesper Larsson Traff, Andreas Ripke, Christian Siebert, Pavan
Balaji, Rajeev Thakur, William Gropp: A Pipelined Algorithm for

Large, Irregular All-Gather Problems. [JHPCA 24(1): 58-68
(2010)
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But: MPI allows creation of arbitrary subsets of processes
(communicators), can lead to contention/serialization on inter-
node network

0008> 000>

@9 & @0 > @ >

MPI Comm split (comm,color=0, key=random, &newcomm) ;
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For “commutative” collectives (Broadcast, Allgather,
Gather/Scatter): Use linear, virtual process numbering

ef%) [T 000>

1 4 5 6 7

Reduction: If operator is commutative, use linear, virtual
ordering. Scan/Exscan: Reordering not possible

Complication: Data reordering may be required at different
steps (e.g., MPI_Gather must receive blocks in rank order)
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Hierarchical collectives

c: communicator over N nodes

* Cgy, Cy, Cyp, ... Cy.q: Partition of ¢ into subcommunicators, eachc |

fully on node, size(C ;) =n; (=n for homogeneous ommunicator)
* C:subcommunicator of ¢ with one process of each c

C

CN1

0000 > 000> oo)
\_

MPI Comm split type(c,MPI COMM TYPE SHARED, key,
info, &ci) ;

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS

Computing




532

Bcast(c): Note : Rounds at least

1. Bcast(C) ceil(log n)+ceil(log N) >

2. Inparallel: Bcast(c ;) ceil(log n + log N) = ceil(log p)
since n=p/N

but ceil(log n)+ceil(log N) <
ceil(log p)+1, at most one round

ff f timal
Reduce(c): Off from optima

1. In parallel: Reduce(c )

2. Reduce(C)
If all the processes inc ; grein order of ¢

Total amount of data out of/into node: m

Note :Time for Bcast(c ;) may differ since size(c ;) may be
different from size(c )
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Allreduce(c): One ceil(log n) operation too
1. In parallel: Reduce(c ;) much, ceil(log n)+ceil(log
2. Allreduce(C) N)+ceil(log n)

3. In parallel: Becast(c ;)

If all the processes inc ; grein order of ¢

Allgather(c):
1. Inparallel: Gather(c ;)
2. Allgatherv(C)

3. Bcast(c)) Note : To solve regular problem, algorithm

for irregular problem is needed when
size(c;)=size(c;)

Similar observations for Gather/Scatter, Scan/Exscan
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Alltoall(c):
1. In parallel: Gather(c ;)
2. Alltoallv(C)

3. Inparallel: Scatter(c ;)

Note : To solve regular problem, algorithm
for irregular problem is needed when

Scan(c): size(c;)=size(c)

1. In parallel: Reduce(c ;)
2. Exscan(C)
3. In parallel: Scan(c ;)

If all the processes inc ; grein order of ¢
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Writing own, hierarchical collectives, avoiding explicit data
reordering

Jesper Larsson Traff, Antoine Rougier: MPI Collectives and
Datatypes for Hierarchical All-to-all Communication.
EuroMPI/ASIA 2014: 27

Jesper Larsson Traff, Antoine Rougier: Zero-copy, Hierarchical

Gather is not possible with MPI Datatypes and Collectives.
EuroMPI/ASIA 2014: 39

A good MPI library internally implements collective operations in
a hierarchical fashion (shared memory part, network part, ...)

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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Hierarchical collectives

Goals:

« Avoid contention on connection(s) to inter-node network

« Avoid sending/receiving same data more than once per node

« Achieve same number of communication rounds as best, non-
hierarchical algorithm

« Achieve same asymptotic bandwidth (3-term) as best, non-
hierarchical algorithm

WS23 ©Jesper Larsson Traff m | n ]CO [’m a 't | C S
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Hierarchical, full-lane collectives

“shared-memory” communication

000> (000® ?

Communication network Communication network

Communlcatlon lane”s (k=2)

k-lane model: k processors per node can communicate
concurrently with full network bandwidth (with more than k:
serialization, linear, proportional slowdown)

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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node communicators and I,
“lane” communicators

¥ Co Full-lane collectives:
@'@'@I\]> Split communicator cinto ¢ |

Co
Works when n; _ n for all nodes
(c Is a regular communicator )

Pm' o WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Bcast(c):

1. Scatter(c o)

2. In parallel over lanes: Bcast(l ;) with blocksize m/n
3. In parallel on nodes: Allgather(c )

One ceil(log n) operation too
much, ceil(log n)+ceil(log

Reduce(c): N)+ceil(log n)

1. In parallel on nodes: Reduce-scatter(n )
2. In parallel over lanes: Reduce(c ;) with vector size m/n

3. Gather(c o)

Total amount of data out of/into node: m
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Allreduce(c): Rounds at most 2ceil(log n) +

1. Reduce-scatter(c ;) 2ceil(log N) < ceil(log p)+2. Data
2. Allreduce(l ;) per process at most 2m

3. Allgather(c ;) (check!)

Same as best known
homogeneous Allreduce

Allgather(c): Note : Rounds at least

1. Allgather(l ;) ceil(log n)+ceil(log N) =

2. Allgather(c ) ceil(log n + log N) = ceil(log p)
since n=p/N

but ceil(log n)+ceil(log N) <
ceil(log p)+1, at most one round
off from optimal

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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Gather(c):
1. Gather(l )
2. Gather(c ;o)

Scatter(c):
1. Scatter(C ,oo1)
2. Scatter(l )

MPI implementation: Use derived datatypes to avoid copying into
intermediate buffers
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Alltoall(c):
1. Alltoall(l )
2. Alltoall(c ;)

Reduce-scatter(c):
1. Reduce-scatter(c )
2. Reduce-scatter(l ;)

MPI implementation: Use derived datatypes to avoid copying into
intermediate buffers
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Experimental question: How do hierarchical and full-lane
collective implementations compare to standard, homogeneous
algorithms? How do hierarchical and full-lane collective
implementations compare to the collectives in common MPI
libraries?

Themes for Master theses

Jesper Larsson Traff, Sascha Hunold: Decomposing MPI
Collectives for Exploiting Multi-lane Communication. CLUSTER
2020: 270-280

Jesper Larsson Traff: Decomposing Collectives for Exploiting
Multi-lane Communication. CoRR abs/1910.13373 (2019)

Code available at
www.par.tuwien.ac.at/Downloads/TUWMPI/tuw_lanecoll.zip
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Another lecture: Algorithms for 2d-ported, d-dim. tori

Lower bounds to meet:
* Diameter

« Bisection

« Edge congestion

Algorithms look different, tricky, still open problems (alltoall)

First approximation (van de Geijn): Use combinations of linear
ring algorithms along the dimensions

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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Algorithms summary (communication costs only)

p-processor linear array

T(m) imilisearazishatieel |

Gather/Scatter  (p-1)ax + (p-1)/p Bm

Allgather same

Reduce-scatter same

Bcast/Reduce (p-2)a + o(pm) + Bm Pipelining
Scan/Exscan same

All-to-all Not covered

Para
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Fully connected (tree, hypercube):

T(m) imilisearazishaeel |

Gather/Scatter ceil(log p)a + (p-1)/p Bm Binomial tree
Allgather same Circulant graph
Reduce-scatter
Bcast 2ceil(log p) o + o(pm) + 2Bm Binary tree pipe
2ceil(log p) o + 20(pm) + Bm 2-trees
ceil(log p)a + o(pm) + Bm Pipelining, Bin-dia
Scan/Exscan ceil(log p)(o+pm) Hillis-Steele

4ceil(log p) o + 20(pm) + 2Bm  2-trees

All-to-all (p-1) (x+ 1/p Bm) Direct, fully
conn., 1-factor

ceil(log p)(o+Bfloor(m/2)) Circulant Bruck
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Back to MPI (Example: Changing data distributions)

Matrix-vector multiplication algorithms with different layouts

&
L
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The MPI collective interfaces

MPI Bcast (buffer, count, type, root, comm) ;

buf fer: address of data (address)

count: number of elements (int)

type: MPI datatype describing layout (= static structure) of
element

_ Contiguous buffer of consecutive
elements
- - - _Noncontiguous buffer
(homogeneous)
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The MPI collective interfaces

MPI Bcast (buffer, count, type, root, comm) ;

buf fer: address of data (address)

count: number of elements (int)

type: MPI datatype describing layout (= static structure) of
element

Contiguous buffer of consecutive
elements

Noncontiguous buffer

. :- - (heterogeneous: different types
of elements)
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MPI typed data communication

All communication operations: Sequence of typed, basic
elements are sent and received in predefined order

Basic elements (MPI predefined datatypes):
int (MPL_INT), char (MP1_CHAR), double (MPI_DOUBLE), ...

Order , position and number of elements is determined by count
and datatype arguments:

Count repetitions of the layout described by datatype, the i'th
repetition, O<i<count is at relative offset i*extent(datatype) in
buffer

el WS23 ©Jesper Larsson Traff m | n ]C O I’m a 't | C S
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buffer:

datatype
H BN B N

extent(datatype)

Important (very):
extent(datatype) is just an  arbitrary (almost...) unit associated

with the datatype, used for calculating offsets

Datatypes always have extent. Default rules for how the extent
is set, but can also be set explicitly set. Sometimes very powerful

tool
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MPI datatypes (layouts), formally

Data layout: Finite sequence of (basic element,offset) pairs

Type map: Finite sequence of (basic type,offset) pairs
Type signature : Finite sequence of (basic type)

Sequence: Basic elements in layout has an order. Elements are
communicated in that order

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS

Computing



554

Type map (layout)

| T712]

&
~

\ 4

True extent: Difference between offset of first and last
element

Corresponding type signature

-

- - Basetype elements, correspondmg to C
(Fortran) int, double, float, char, .

Para
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MPI typed data communication, again

Sequences of elements described by the type signature of the
count and datatype arguments are communicated.

MPI| communication is correct if signature of sent elements
matches the signature of received element

Matching:
» In collective operations, send and receive signatures must be
identical

* In point-to-point and one-sided communication, send signature
must be a prefix of receive signature
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MPI Scatter (sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, root, comm) ;

sendbuf, sendcount, sendtype: Describes one block of data
elements to be sent to one other processor

recvbuf, recvcount, recvtype: Describes one block of data
elements to be received from some other processor

Block of data elements : count repetitions of type with j'th
repetition of i'th block at offset (j+i*count)*extent(type) from
buf, O<i<size, 0<j<count

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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MPI Gather (sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, root, comm) ;

sendbuf (ranki): Example: different send/recv types, with
same signature

_ Root must allocate memory for size(comm)

blocks of recvcount*[true]extent(recvtype)
recvbuf (root):  glements, otherwise BIG TROUBLE

EEE EEEE N pEEE N

7

extent(recvtype) Block from rank i

paraller WS23 ©Jesper Larsson Traff m | ﬂ ]CO rm at | C S

[Compuing |



558

MPI Scatter (sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, root, comm) ;

Consistency rules:

« Signature of sendblock must be exactly same as signature of
corresponding receive block (sequence of basic elements sent
by one processor must be same as sequence expected by
receiving process)

« Consistent values for other arguments, e.g. same root, same
op, ...

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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MPI Scatter (sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, root, comm) ;

Consistency rules:

« Signature of sendblock must be exactly same as signature of
corresponding receive block (sequence of basic elements sent
by one processor must be same as sequence expected by
receiving process)

Recall: Point-to-point and one-sided models are less strict: Send
signature must be a prefix of receive signature

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS



Change distribution >

Process i shall send block of m/p x n/p elements to process j,
j=0, ..., p-1: Transpose of submatrices: alltoall communication

colmatrix

rowmatrix

Proc |

Recall:
Matrices in C stored in
row order

MPI Alltoall (rowmatrix,l,coltype,
colmatrix,m/p*n/p,MPI DOUBLE, comm) ;

Parallel WS23
| Computing

©Jesper Larsson Traff
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MPI Alltoall (rowmatrix,1l,coltype,
colmatrix,m/p*n/p,MPI DOUBLE, comm) ;

AN

colltype

Block to rank i

Para
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Process i stores m/p x n matrix in row major.

m/p x n/c submatrix consists of n/c element rows strided n

elements apart.

rowmatrix

>
| |

\ ' J
m/p times

This layout can be described as MPI vector data type

WS23 ©Jesper Larsson Tréff m | N ]C orma ‘t | CS
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Legal use of datatypes: Different send and receive types

MPI Alltoall (rowmatrix,l,coltype,
colmatrix,m/p*n/p,MPI DOUBLE, comm) ;

Process root
MPI Bcast (buffer,1,coltype, root,comm) ;

Non-root
MPI Bcast (buffer, 1, rowtype,root, comm) ;

Number of basic elements must be same for all pairs of
processes exhanging data; sequence of basic datatypes (int,
float, float, int, char, ...) must be same: Type signature

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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coltype: derived datatype that describes m/p rows of n/p
element column of n-element vector

MPI Type vector (m/p,n/p,n,MPI DOUBLE, &coltype) ;

MPI Type commit (&coltype);

i | Extent of datatype is used to compute offset of
next block in MP1_Alltoall

WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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coltype: derived datatype that describes m/p rows of n/p
element column of n-element vector

MPI Type vector (m/p,n/p,n,MPI DOUBLE, &coltype) ;

MPI Type commit (&coltype);

D Correct extent for redistribution

WS23 ©Jesper Larsson Tréff m | N ]C oOrm a‘t 1CS
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coltype: derived datatype that describes m/p rows of n/p
element column of n-element vector

MPI Type vector (m/p,n/p,n,MPI DOUBLE, &cc) ;

MPI Type create resized(cc,0,n/p*sizeof (double),
&coltype) ;

MPI Type commit (&coltype);

D Correct extent for redistribution

WS23 ©Jesper Larsson Tréff m | N ]C oOrm a‘t 1CS
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Change distribution >

Process i shall send block of m/p x n/p elements to process |,
=0, ..., p-1

Process sends rowmatrix+i*1*extent(coltype) to process i,

receives colmatrix+i*m/p*n/p*extent(MPI_DOUBLE) from
pProcess |

MPI Alltoall (rowmatrix,1l,coltype,
colmatrix,m/p*n/p,MPI DOUBLE, comm) ;

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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Example: 2d-stencil 5-point computation

I Column can be
< described as MPI
: : @ vector type

Each process i communicates with 4 neighbors and exchanges

data at the border of own submatrix:

« Vector data type for first and last column

« Communication pattern can be implemented with point-to-
point, one-sided, and MPI 3.0 neighborhood collective

communication

g WS23 ©Jesper Larsson Traff m | n ]C O rm a 't | C S
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Example: Round k of Bruck all-to-all algorithm

More in

J. Traff, A. Rougier,
S. Hunold:
Implementing a

classic. ICS 2014

MPI|_Sendrecv

<

Can be described as:

 MPI vector followed
by contig followed by
contig followed by
vector

« MPI indexed
« MPI struct

L WS23
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(Research) Questions:

» Are all descriptions of the same data layout equally good:
Performance?

 Is there a best possible description?

« How expensive is it to compute a best description?

Robert Ganian, Martin Kalany, Stefan Szeider, Jesper Larsson
Traff: Polynomial-Time Construction of Optimal MPI Derived
Datatype Trees. IPDPS 2016: 638-647

Alexandra Carpen-Amarie, Sascha Hunold, Jesper Larsson Traff:
On the Expected and Observed Communication Performance with
MPI Derived Datatypes. EuroMP1 2016: 108-12

Master thesis

Para
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MPI derived datatypes to describe application data layouts

- Basic type: MPI_INT, MPI_FLOAT, MPI_DOUBLE,
MPI_CHAR, ... - or previously defined, derived datatype

New derived datatypes built from previously defined ones (do
not have to be committed) using the MPI type constructors

MPI Type contiguous (count,oldtype, &newtype) ;

extent
Constructor defines type signature (order
0 1 23 4 of elements)

o WS23 ©dJesper Larsson Traff m | n ]C O rm a 't | C S
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MPI Type vector (n,block,stride,oldtype, &newtype) ;

extent

0 1 2 3 4 5 6 7 8

stride block

Note :
Vector extent does not include stride (full block) of last block.

Both block(count) and stride are in units of extent(oldtype).
Constructor defines type signature (order of elements)

MPI Type create hvector allows stride in bytes

paraller \WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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MPI Type create indexed block (n,block,displacement([],
oldtype, &newtype) ;

extent
(T (T
block i block 1 block 0

MPI Type create indexed(n,block[],dlisplacement][],
oldtype, &newtype) ;

Also constructers with byte displacements

Para

WS23 ®Jesper Larsson Traff m INnformatics



574

MPI Type create struct(n,block[],displacement[],
oldtypel[], &newtype) ;

« Derived datatypes make it possible to (recursively) describe
any layout of data in memory

« Derived datatypes can be used in all communication
operations: point-to-point, one-sided, collective

« Essential in MPI-IO

Before use in communication: After use:
MPI Type commit (&type); MPI Type free (&type);
paraller WS23 ©Jesper Larsson Traff m | N ]CO M a'UC S
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Advanced datatype usage

MPI Type create resized(oldtype,lb,extent, &énewtype);

extent, before

<>

extent, after

MPI Type size(type, &size); // number of bytes consumed

MPI Type get extent (datatype, &lb, &extent);

MPI Type get true extent (type, &lb, &extent);

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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MPI Type get true extent (type, &lb, &extent);

True extent: Difference between the highest and the lowest
offset of two basic datatypes in the datatype. The true lower
bound is the lowest offset of a basic datatype in the datatype

Use true extent for (safer) buffer allocation

MPI_BOTTOM: Special (null) buffer address, can be used as

buffer argument. Datatype offsets are absolute addresses. Use
with care

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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Communication with datatypes

Question : Overlapping elements?

sendbuf,sendcount,sendtype : Layouts, also between different
blocks of elements, may overlap (some elements are sent multiple
times)

recvbuf,recvcount,recviype : Each element once in layout of total
receive buffer, overlap illegal

Reason: Determinism

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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MPI_Pack/Unpack: Functionality to pack/unpack a structured
buffer to a consecutive sequence of elements (type signature)

Performance expectation:

MPI Pack (buffer, count, type, &outbuf, &outsize,..);
MPI Bcast (outbuf,outsize,MPI PACKED,..);

not slower than (since they are semantically equivalent)

MPI Bcast (buffer, count, type,..);

But:
Pack/unpack still useful for point-to-point communication of
incomplete data (incremental un/packing) and “type safe unions”)

Para

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS



Note : MPI_Pack/Unpack work on units of datatypes. The
functionality is not sufficient for accessing arbitrary sequences
of elements in a layout described by derived datatypes.

Pipelining requires (unexposed) library-internal functionality

Para

Tarun Prabhu, William Gropp: DAME: A Runtime-Compiled Engine
for Derived Datatypes. EuroMP1 2015: 4:1-4:10

Timo Schneider, Fredrik Kjolstad, Torsten Hoefler: MPI
datatype processing using runtime compilation. EuroMPI1 2013:
19-24

Timo Schneider, Robert Gerstenberger, Torsten Hoefler: Micro-
applications for Communication Data Access Patterns and MPI
Datatypes. EuroMPI 2012: 121-131

Jesper Larsson Traff, Rolf Hempel, Hubert Ritzdorf, Falk
Zimmermann: Flattening on the Fly: Efficient Handling of MPI
Derived Datatypes. PVM/MPI 1999: 109-116

579
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Is this true?

Check with different basic layouts. Example:  Alternating layout:
Two blocks with A1 and A2 elements with strides B1 and B2

extent

(D) [0 [ LI

WS23 ©Jesper Larsson Traff m | N ]CO 1) at | CS
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16 processes on one node 32 processes on 32 nodes
307 ma—10000 (datatype) 30 MA=10000 (datatype)
A—=10000 (pack) A—10000 (pack)
E) B A=10 (datatype) E) Ml A=10 (datatype)
F207 © A=10 (pack) Eogl [ A=10 (pack)
@ BaA=2 dm,al;ype] @ A= dm,al;ype]
g A_E% g A_E%
am_ | ‘ am_ I |
N4 =——m== III rII II N4 =——m== -II rlI II
64 320 1280 64 320 640 1280
datamme m [kB] datasize m [kB]

MPI library: mvapich 2-2.1

MPI_Bcast benchmark (root packs, non-roots unpack)

WS23 ©Jesper Larsson Tréff m | N ]C oOrm a‘t 1CS



16 processes on one node

]
=

1 IA=10000 (datatype)

A—10000 (pack)

| EA=10 (datatype)
A—10 (pack)

B A=2 (datatype)
A=2 (pack)

|, | ||| "l

run-time [ms|
P =
I — T

=

Gld 32[] ﬁdﬂ IESD ZJGD
datasize m [kB]

MPI library: NECmpi 1.3.1

582

32 processes on 32 nodes

10.07 mmA—10000 (datatype) I
A—10000 (pack)

7 7.51 EA=10 ( damype]
A—10 (pack

run-time [m.s

5.04 .i:2 %datatype
- ‘ I ‘
0.0 =—== | B I I I11 I I
T
64 32[} 128[} 256['
datas:ze m [kB

Note also absolute performance
difference between the two
libraries

MPI_Bcast benchmark (root packs, non-roots unpack)

Para
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Benchmarking datatypes under expectations:

Alexandra Carpen-Amarie, Sascha Hunold, Jesper Larsson Traff:
On the Expected and Observed Communication Performance with
MPI Derived Datatypes. EuroMPI 2016: 108-120

On the limited support in MPI specification for programming
with datatypes:

Jesper Larsson Traff: A Library for Advanced Datatype
Programming. EuroMPI 2016: 98-107

Master thesis
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Example: Changing distributions (2)

584

Process i in comm shall send an m/pxn/c block to process i%cC+i/r
in Cartesian communicator rccomm

Problem:
Two communicators, but MPlI communication is always relative to
one communicator

WS23 ©Jesper Larsson Traff m | N ]CO rmat | CS
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Solution: Translating ranks between groups

MPI Comm rank (comm, &rank) ;
MPI Comm group (comm, &group) ;
MPI Comm group (rccomm, &rcgroup) ;

int rcrank;
MPI Group translate rank(group,l, &rank, rcgroup,
&rcrank) ;

Problem:
Each process sends blocks only to ¢ other processes

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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« Each rank in comm sends ¢ blocks of m/p rows and n/c

columns to ¢ consecutive processes
« Each rank in rccomm receives m/p rows and n/c columns from

C consecutive pProcesses

paraller WS23 ©Jesper Larsson Traff m | N ]C ormm at | CS




Solution: Irregular alltoall and datatypes

for (i=0; 1i<size; 1i++) {
scount[1] = 0; sdispl[i] = 0O;
rcount[i] = 0; rdisp[i] = 0;

MPI Comm rank (comm, &rank) ;
for (1=0; i<c; 1i++) {
int oldrank, colrank = rank/r+i;
MPI Group translate rank(rcgroup,l,colrank,
group, &oldrank) ;
scount[oldrank] = 1;
sdispl[oldrank] = 1*extent (coltype);
}

MPI Alltoallv (rows, scount,sdisp,coltype,..,comm) ;

587
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Solution: Irregular alltoall and datatypes

MPI Cart coord(rccomm, rank, 2, rccoord);
int rowrank = rccoord[0O]*r;

for (1i=0; i<c; 1++) {

rcount [rowrank] = m/p*n/c;
rdisp[rowrank] = i*m/p*n/c;
rowrank++;

MPI Alltoallv (rows, scount, sdisp,coltype,

rowscols, rcount, rdisp,MPI DOUBLE,
comm) ;

Home exercise : Use a neighborhood collective instead

. WS23
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Performance problem (alltoallv abuse):

« Each process only sends and receives to/from ¢ neighbors
¢ (mostly) O(Np) — sparse neighborhood

Other problems :
« Whatif ¢ and r do not divide n and m?
« What if p does not factor nicely into r and c?

Partial solutions :

« “Padding”

 lIrregular collectives; but some datatype functionality seems
missing (there is only the fully general, expensive
MPI_Alltoallw)

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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Experiment: What is the cost of MPI_Alltoallv when no data are
exchanged scount[l] O rcount[l] =07?

A"tﬂa"\f Average Tlme
30000

reT— On Argomne
25000 1 / - iNational

20000 | o AloalT . iLaboratory
oallv Time Do
. iBlueGene/P
15000 5
: system
10000 :

- ""E&é?éééﬁﬁiéiﬁﬁ""""""""""""'

5000
0 " . .ttoﬂﬁ.‘"./
™

P =0
o b
MR A R I O O

Number of Processes

P. Balaji et al.: MPI on Millions of Cores. Parallel Processing
Letters 21(1): 45-60 (2011)
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New collectives in MPI 3.0

Topological/sparse/neighbor collectives can express collective
patterns on sparse neighborhoods

Neighborhoods expressed by process topologies

MPI_Cart: Each process has 2d outgoing edges, 2d incoming
edges

MPI1_Graph: Each process has outgoing and incoming edges as
described by communication graph in MPIl_Dist_graph_create

Algorithmic flavor totally different from previous, global
neighborhood collectives

o WS23 ©Jesper Larsson Tréff m | N ]CO ma -t | CS
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MPI_Neighbor_allgather(v)

dj

Neighborhood defined by
general communication graph

sk’,dk

sendbuf: -

sendbuf sent to all destinations; individual block received from
each source into recvbuf

WS23 ©Jesper Larsson Traff m | N ]CO 1) at | CS
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MPI_Neighbor_allgather(v)

0 1 Cartesian neighborhood, neighbors in
dimension order, -1 dist, +1 dist

reovouf:  [[NSONNNINSINRIea S
sendbuf: -

sendbuf sent to all destinations; individual block received from
each source into recvbuf

WS23 ©Jesper Larsson Traff m | N ]CO 1) at | CS
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MPI_Neighbor_alltoall(v,w)

Individual block from sendbuf sent to each destination:
individual block received from each source into recvbuf

WS23 ©Jesper Larsson Traff m | N ]CO 1) at | CS
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Algorithms for neighborhood (sparse) collectives

Not much is known, flavor totally different from global, dense
collectives, more difficult, hard optimization problems for
optimality results; see, e.g.,

Torsten Hoefler, Timo Schneider: Optimization principles for
collective neighborhood communications. SC 2012: 98

Seyed Hessam Mirsadeghi, Jesper Larsson Traff, Pavan Balaji,
Ahmad Afsahi: Exploiting Common Neighborhoods to Optimize
MPI1 Neighborhood Collectives. HIPC 2017: 348-357

MPI design questions : Are the neighborhood collectives too
powerful? Are they useful? Better compromises possible?

Para
mp!
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Creation of virtual communication graph/neighborhoods

MPI Dist graph create (comm,.., &graphcomm) ;
MPI Dist graph create adjacent (comm, .., &graphcomm) ;

specify neighborhoods in a fully distributed fashion. Order of
adjacent (in and out edges) implementation dependent, but must
be fixed, as returned by calls to

MPI Dist neighbors count (graphcomm,
&1indegree, &outdegree,
&weighted) ;

MPI Dist graph neighbors (graphcomm,
maxindeg, sources, sweights,
maxoutdeg,destinats,dweights) ;

This order of edges is used in neighborhood collectives

paraller WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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Never use the “old” (MPI 1) graph topology interface,
MPI_Graph_create() etc.

« Non-scalable
* Inconsistent
« May/will be deprecated

. WS23 ©Jesper Larsson Tréff m | N ]CO ma t | CS
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Example: 2d stencil 5-point computation

|
— @
|

« Cartesian neighborhood
« MPI_Neighbor_alltoallw: Why?

Different datatypes in x and
y dimensions

o WS23 ©Jesper Larsson Traff m | n ]C O rm a 't | C S
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Example: 2d stencil 9-point computation

|
— @
|

« Non-Cartesian neighborhood. Have to use distributed graphs
« MPI_Neighbor_alltoallw: Why?

Different datatypes in x and
y dimensions

o WS23 ©Jesper Larsson Traff m | n ]C O rm a 't | C S
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Non-blocking collectives (from MPI 3.0)

In analogy with non-blocking point-to-point communication, all
collective operations (also sparse) have non-blocking

counterparts
MPI lbarrier MPI_Ineighbor_allgather
MPI_Ibcast MPI_Ineighbor_allgatherv
MPI_Iscatter/Igather MPI_Ineighbor_alltoall
MPI_lallgather MPI_Ineighbor_alltoallv
MPI _lalltoall MPI_Ineighbor_alltoallw

Check for completion: MPI_Test (many variants)
Enforce completion: MP1_Wait (many variants)

el WS23 ©Jesper Larsson Traff m | n ]C O I’m a 't | C S
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Example:

MPI Request request; // MPI request object

MPI TIallgather (sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, comm, &req) ;

// compute < Potential for overlap

MPI_ Status status; // MPI status object:

// most fields undefined for non-blocking collectives
MPI Wailt (&req, &status);

Semantics as for blocking collectives: Locally complete (with the
implications this has) after wait

WS23 ©Jesper Larsson Traff m | N ]CO rm a‘t 1CS
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Non-blocking collective vs. point-to-point communication

MPI_Send MPI_Irecv

@ > @ All combinations
permitted

MPI| _|Bcast MPI| Bcast
@ ‘ @ Blocking and non-blocking
collectives do not match.
Why?

Answer : Blocking and non-blocking collective may use a different
algorithm. Specification should not forbid such implementations

WS23 ©Jesper Larsson Traff m | N ]CO rma ‘t | CS
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Blocking collectives:

Assumption: Used in a synchronized manner, MPI process busy
until (local) completion
Objective: Fast algorithms (latency, bandwidth)

Non-blocking collectives:

Assumption: Used asynchronously, MPI process can do sensible
things concurrently, postponed check for completion

Objective: Algorithms that permit overlap, can tolerate skewed
arrival patterns, can exploit hardware offloading

WS23 ©Jesper Larsson Traff m | N ]CO 'Ma 't | CS
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MPI and collective communication algorithms summary

« MPIis the reference communication interface in HPC

* Much to learn from the MPI design

« Good basis to study concepts in interfaces and algorithms for
large-scale, parallel systems

« Many interesting research problems

« Application programmers need to know and understand MPI
well to program effectively

« Much is known about efficient algorithms for collective
communication operations in types of networks; but not
everything

« Good synthesis for not fully-connected networks needed
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