Status	Beendet
Begonnen	Montag, 9. Juni 2025, 17:10
Abgeschlossen	Montag, 9. Juni 2025, 17:21
Dauer	10 Minuten 57 Sekunden
Bewertung	10,00 von 10,00 (100 %)

Frage 1 Richtig

Erreichte Punkte 1,00 von 1,00 Consider the ground formula $F:=g(c,c)=g(a,c)\land b=a\land g(a,b)\neq g(a,a)$ in the theory of equality \mathcal{T}_E . Which one of the answers below is correct?

- \odot a. F is unsatisfiable. \odot
- \bigcirc b. F is valid.
- \circ c. F is satisfiable, but not valid.

Frage 2

Richtig
Erreichte
Punkte 1,00 von
1,00

Consider the following formula $F:=d=f(f(d))\wedge g(g(a))
eq f(c)\wedge f(d)=c$. Which of the following statements hold?

Note: More than one answer might be correct.

- a. All formulas in the other options are unsatisfiable.
- lacksquare c. $F \wedge (g(d) = f(d) \wedge d = c)$ is satisfiable. igotimes
- lacksquare d. $F \wedge (g(d) = f(a) \vee f(a) = f(c))$ is satisfiable. lacksquare

Frage 3

Richtig Erreichte Punkte 1,00 von 1,00 Consider the formula $F:=q(b,f(c))\vee p(a,f(c))\vee f(c)=f(b)\vee b=a$ in the theory \mathcal{T}_E of equality and the fresh symbols f_p,f_q and t. Which of the following formulas is equisatisfiable to F?

- \bigcirc a. $f_q(b,f(c))=tee f_p(a,f_q(c))=tee f_q(c)=f_p(b)ee b=a$
- \odot b. $f_q(b,f(c))=tee f_p(a,f(c))=tee f(c)=f(b)ee b=a$
- \bigcirc c. $f(c) = f(b) \lor b = a$
- \bigcirc d. $f_q(b,f(c))
 eq tee f_p(a,f(c))
 eq tee f(c)=f(b)ee b=a$

Frage 4

Richtig Erreichte Punkte 1,00 von 1,00 Consider the formula $F := read(write(A,a,d),c) = b \land b \neq d$ in the theory of arrays \mathcal{T}_A where a,b,c,d are constants and A is an array constant. Which one of the answers below is correct?

- \odot a. F is satisfiable, but not valid. \odot
- \bigcirc b. F is unsatisfiable.
- \bigcirc c. F is valid.

Frage 5

Richtig

Erreichte Punkte 1,00 von 1,00 Which of the following formula is valid in the theory \mathcal{T}_A of arrays where a,b,c,d are constants and A is an array constant?

- lacktriangledown a. $read(write(A,a,a),a)=c \wedge a=b \Longrightarrow a=c igotimes a$
- \bigcirc b. $read(write(A,d,a),b)=a \wedge b=a \Longrightarrow a=c$
- \bigcirc c. $read(write(A,c,b),c)=b \land a=b \Longrightarrow d=c$
- \bigcirc d. $read(write(A,d,a),b)=b \land b=b \Longrightarrow a=b$

Frage 6

Richtig

Erreichte Punkte 1,00 von 1,00 Consider the formula F := read(write(A, c, b), a) = d in the theory \mathcal{T}_A of arrays where a, b, c, d are constants and A is an array constant. Which formula is valid:

- \bigcirc a. $F \wedge c
 eq b \implies read(A,a) = d$
- \bullet b. $F \wedge c \neq a \implies read(A,a) = d \odot$
- \bigcirc c. $F \land c \neq d \implies read(A, a) = d$

Frage 7

Richtiq

Erreichte Punkte 1,00 von 1,00 Consider the formula $F := read(A,b) \neq read(B,g(a)) \land a \neq f(a) \land f(a) = f(a)$ in the theory \mathcal{T}_A of arrays and f_A , f_B and t are fresh symbols. Which of the following formulas is equisatisfiable to F?

- \bigcirc a. $f_A(b)
 eq t \wedge a
 eq f(a) \wedge f(a) = f(a)$
- \bigcirc b. $a \neq f(a) \land f(a) = f(a)$
- \bigcirc c. $f(b) \neq f(g(a)) \land a \neq f(a) \land f(a) = f(a)$
- ullet d. $f_A(b)
 eq f_B(g(a)) \wedge a
 eq f(a) \wedge f(a) = f(a) <math>ullet$

Frage 8

Richtig

Erreichte Punkte 1,00 von 1,00 Consider the following formula

 $F:=(write(A,y,1)=f(a)+1 \lor f(c)+3 \neq write(read(A,y,4),x+2) \lor read(A,x+3)=write(A,y,1)) \land write(A,x,1)=f(a)+1$ in the theory of equality \mathcal{T}_E , arrays \mathcal{T}_A and linear integer arithmetic $\mathcal{T}_{\mathbb{Z}}$. Which one of the following answers is a correct Boolean abstraction of F?

Note: Use atoms to denote positive literals. For instance, the atom p is the abstraction of a=b. Do not use p as the abstraction of $a\neq b$.

- \bigcirc a. $(p_1 \lor p_2 \lor p_3) \land p_4$
- igcup b. $(p_1 \wedge
 eg p_2 \wedge p_3) \wedge p_4$
- \bigcirc c. $(p_1 \lor \neg p_2 \lor p_3) \land p_1$
- lacksquare d. $(p_1 ee
 eg p_2 ee p_3) \wedge p_4 igotimes$

Frage 9

Richtig

Erreichte Punkte 1,00 von 1,00 Consider the set of formulas $\mathcal F$ as given below, in which the formulas might not belong to a single theory. Furthermore, let a,b,c,d be constants.

$$\mathcal{F} = \{ \ g(d) = c, \ c+1 = b+1, \ write(A,a,c) = d \ \}$$

Which constant symbols are shared among different theories?

Note: Multiple answers might be correct.

- $ightharpoonup c \odot$
- \Box b

Frage 10

Richtig

Erreichte Punkte 1,00 von 1,00 Consider the set of formulas ${\cal F}$ as given below, in which the formulas might not belong to a single theory.

$$\begin{split} \mathcal{F} = \{ & \ g(b+7) = f(c+1) + 1, \\ & \ (b+c \neq f(c) + 1), \\ & \ read(A,y+1) \neq x) \ \} \end{split}$$

Which variables and equalities need to be introduced to allow theory separation?

$$\circ$$
 $c_1 = b + 7, c_2 = c + 1, c_3 = f(c + 1) + 1, c_4 = b + c, c_5 = f(c) + 1$

$$\bigcirc \ c_1=b+7, \ c_2=c+1, \ c_3=f(c_2)+1, \ c_4=b+c, \ c_5=f(c)+1, \ c_6=y+1$$

$$\odot \ c_1 = b+7, \ c_2 = c+1, \ c_3 = f(c_2), \ c_4 = c_3+1, \ c_5 = b+c, \ c_6 = f(c), \ c_7 = c_6+1, \ c_8 = y+1 \odot$$

$$\bigcirc \ c_1 = b + 7, \ c_2 = c + 1, \ c_3 = f(c + 1) + 1, \ c_4 = b + c, \ c_5 = f(c) + 1, \ c_6 = y + 1$$