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Shared-memory architectures & machines

M

P P P P

Shared memory

Naïve, shared-memory architecture model: 

• Processors connected immediately to a memory (UMA or NUMA), 

all communication via read/write from/to memory, processors 

work independently (not synchronized, not lock-step: not PRAM)

Implicit assumption: Memory is consistent as defined by program 

order; writes and reads occur and are observable in that order. 

Outcome of computation is some interleaving of the instructions

Processors, each 

with local program 

(MIMD or SPMD)

A bit 

more 

later
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M
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Naïve, shared-memory programming model: 

a) processors execute processes or threads (inside processes),

b) processes/threads are not synchronized, 

c) methods for process/thread synchronization,

d) processes/threads exchange data through shared memory,

e) methods for sharing memory between processes/threads,

f) NUMA, but all memory directly visible (memory model)

Shared memory

Processors, each 

with local program 

(MIMD or SPMD)
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Naive, shared-memory programming model: 

a) processors execute processes or threads

Note: 

Naïve model does not say which processor (core) executes which 

process or thread. There may be more processes/threads than cores 

(“oversubscription”).

Symmetric Multiprocessing (SMP): All cores equal, OS decides 

when and where to run a process or thread

A bit more later
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Naive, shared-memory programming model: 

a) processors execute processes or threads

Performance:

Sometimes SMP gives good performance (flexibility for OS 

scheduler), sometimes it is (much) better to explicitly bind processes 

to cores (main example: utilization of private caches). This is called 

“pinning”. Most shared-memory programming models support/allow 

some kind of pinning

Parallel computing (dedicated system): As many processes/threads 

as cores, some pinning
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M

P

cache

Cache: small, fast memory, close to processor, 

accessed main memory locations are stored 

temporarily in cache, reused when possible

• Main memory: GBytes, access times > 100 cycles

• Cache: Kbytes to MBytes, access times,1-20 cycles

• Registers: 0-1 cycles

Typically 2-3 levels of caches in modern processors, and several 

special caches, TLB, victim cache, instruction cache, …

Caches help to alleviate/hide memory (“von 

Neumann”) bottleneck

“Real” (shared-memory) architectures
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M

P

cache

SIMD

Not all instructions may take same time:

• Floating point operations longer than 

integer operations?

• Operations on 64bit entities longer than 

32bit entities?

Special HW and instructions for small vectors: SIMD extensions to 

perform operations on several (2-4) words in parallel (SSE: 128 bits, 

Xeon Phi: 512 bits; AVX)

To expose SIMD parallelism in loops: Unrolling (compiler, OpenMP). 

Sometimes different algorithm needed (no help from compiler)

FPU

“Real” (shared-memory) architectures
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M
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D cache

Cache: Small, fast memory, close to 

processor, accessed main memory 

locations are stored temporarily in cache, 

reused when possible

• Main memory: GBytes, access times > 100 cycles

• Cache: Kbytes to MBytes, access times,1-20 cycles

Typically 2-3 levels of caches in modern processors, and several 

special caches, TLB, victim cache, instruction cache, …

Caches at higher levels shared between (some, all) cores

Caches help to alleviate/hide memory (“von 

Neumann”) bottleneck

“Real” (shared-memory) architectures

I cache

Cache

CacheL3

L1

L2
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M

P

“Real” (shared-memory) architectures

Cache

Memory divided into banks, accessed 

through memory controllers and network: 

NUMA (non-uniform access times)

Write buffer help to alleviate write memory 

bottleneck: Pending writes (already in 

cache) effected in some order

Write buffer

Single processor architecture: Cache and memory system contribute 

toward sustaining the RAM abstraction (illusion)

… and have been immensely successful!
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M

P

Cache

Parallel processor-system architecture: Cache and memory system 

contribute toward sustaining the RAM abstraction (illusion)

… and become problematic

“Real” (shared-memory) architectures

Memory divided into banks, accessed 

through memory controllers and network: 

NUMA (non-uniform access times)

Write buffer help to alleviate write memory 

bottleneck: Pending writes (already in 

cache) effected in some order

Write buffer
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M

P P P P

M M M…

cache cache cache cache

cache cache

“Real” parallel, shared-

memory architectures

Problems:

• What happens when same memory address in several caches? 

• When do memory write updates become “visible” to other 

processors?
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M

P P P P

M M M…

cache cache cache cache

cache cache

“Real” parallel, shared 

memory architectures

Problems:

• Cache coherency problem: What happens when processors 

read/write the same address?

• Memory consistency problem: What happens when processors 

interact (read/write) through different addresses?
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M

P P P P

M M M…

cache cache cache cache

cache cache

“Modern” Terminology

The processor (CPU?):

Can consist of several cores 

or processing elements (PE): 

That which is capable of 

executing a program

Core (CPU?): A full-fledged processing-element (still sometimes 

called “processor”), hardware-term

Multi-core: Processor with several cores (2-32…)

Many-core: Processor with very many cores?? (some use these 

terms as in GPU: many-core, CPU: multi-core)
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M

P P P P

M M M…

cache cache cache cache

cache cache

“Modern” Terminology

The processor:

Can consist of several cores 

or processing elements (PE): 

That which is capable of 

executing a program

Thread, process: Programming model concepts, program under 

execution

Task: Programming model concept, some “piece of work” to be 

executed (by a process or thread)
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Caches, recap

Cache consists of a number of lines that stores blocks of memory. A 

cache line holds a block and additional status information (dirty/valid 

bit, tag) 

Typical block/cache line size: 64Bytes (=8 doubles, =16 ints)

Caches exploit and make sense because of:

• Temporal locality: Locations are typically used several times in 

close succession, several operations on same operand (address)

• Spatial locality: When a location is addressed, typically locations 

close to it (a[0], a[1], a[2], …) will be also be used

Locality is a property of algorithm/program: Often, but not always
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Memory read a:

If address a already in cache, reuse from there, if not: read from 

memory and cache (read cache miss)

Whole blocks are read/written to/from cache (granularity)

a S -> cache line

Access to main memory in block/cache line size of S units, aligned 

to block boundary

Block boundary
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Memory write a:

different possibilities. If a is already in cache, write overwrites; if a is 

not in cache (write cache miss)

• Write allocate: If a is not in cache, read a

• Write non-allocate: Write directly to memory

• Write-through cache: Each write is immediately passed on to 

memory (typically non-allocate)

• Write back: Cache line block is written back when line is evicted 

(typically write allocate)
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Address a:

• If a can go into only one specific line of the cache: Directly 

mapped 

• If a can go into any line of the cache: Fully associative

• If a can go into any of a small set of lines: Set-associative

(typically 2-way, 4-way, 8-way)
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M[0,…,n-1]

Line 0

Line 1

Line m-1

Line 2

Line 4

Line 3 Cache: m«n, 

block size s

Directly mapped:

M[i] cached in line (i/s) 

mod m

M[0],…,M[s-1] go to line 0, 

M[s],…,M[2s-1] to line 1,

… , 

M[m],…,M[m+s-1] again to 

line 0, …

Normally m=2r for some r>0, s=2r’ (powers of two: mod and div 

translate into mask and shift)
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M[0,…,n-1]

Line 0

Line 1

Line m-1

Line 2

Line 4

Line 3 Cache: m«n, 

block size s

k-way set associative:

m/k sets of k cache lines

M[i] cached in set (i/s) mod 

(m/k)

Normally m=2r for some r>0, s=2r’ (powers of two: mod and div 

translate into mask and shift)
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Cache misses, eviction: When a referenced address is not in cache, 

a cache miss occurs (read or write); address must be referenced 

from memory

Cold cache: Cache is empty, every (read) memory access will be a 

cache miss, called compulsory miss (or cold miss) 

When cache has been in use (“warm cache”), two other types of 

cache misses can happen

• capacity miss: Cache full, some line must be evicted

• conflict miss: set (or specific cache line) full, but cache itself not 

necessarily full; line from set must be evicted

Hit (miss) rate: Fraction of memory references over a sequence of 

instructions that hits (misses) the cache
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Eviction/Replacement policies for associative caches

• LRU: Least Recently Used

• LFU: Least Frequently Used

• Random replacement

Caches are typically maintained in hardware (functionally 

transparent), “free lunch”

For directly mapped cached, conflicting line is evicted

In case of capacity/conflict miss:

Evict cache line to make room for new block 

(…but can and do impact performance)
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Cache matters for (sequential&parallel) performance

Matrix-matrix multiplication: Given nxn matrices A and B, compute 

matrix C = AB

C[i,j] = ∑0≤k<nA[i,k]B[k,j]

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

C[i][j] = 0;

for (k=0; k<n; k++) {

C[i][j] += A[i][k]*B[k][j];

}

}

}

“Natural” O(n3) steps 

implementation of 

definition

Note: Much better implementations by blocking; “Strassen” and 

related algorithms are asymptotically better
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Matrix-matrix multiplication: Given nxn matrices A and B, compute 

matrix C = AB

C[i,j] = ∑0≤k<nA[i,k]B[k,j]

Reminder: MM is associative/distributive, but not commutative
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Observation:

Iterations in i and j loops are fully independent (“data parallel”), 

iterations in k loop should be in increasing order (unless 

commutativity of + is exploited).

Parallelization trivially possible:

Processor (i,j), 0≤i<n, 0≤j<n:

C[i][j] = 0;

for (k=0; k<n; k++) C[i][j] += A[i][k]*B[k][j];

Wpar(p,n) = O(n2 n) = O(n3) 

Tpar(p,n) = O(n3/p+n)

Same as PRAM parallelization 

from first lecture
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Observation:

Iterations in i and j loops are fully independent (“data parallel”), 

iterations in k loop should be in increasing order (unless 

commutativity of + is exploited).

The three loops can be interchanged freely

There are 6 = 3! = 3*2*1 possible variations of this matrix-matrix 

implementation
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for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

C[i][j] = 0;

for (k=0; k<n; k++) {

C[i][j] += A[i][k]*B[k][j];

}

}

}

Variant 1: ijk

for (i=0; i<n; i++) {

for (k=0; k<n; k++) {

for (j=0; j<n; j++) {

C[i][j] += A[i][k]*B[k][j];

}

}

}

Variant 2: ikj

(initialize C[i][j] 

elsewhere)

Etc. …
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Observation:

Iterations in i and j loops are fully independent (“data parallel”), 

iterations in k loop should be in increasing order (unless 

commutativity of + is exploited). 

The three loops can be interchanged freely

There are 6 = 3! = 3*2*1 possible variations of this matrix-matrix 

implementation

Does it matter?

Side remark on dense matrix algorithm complexities:

Since the input size is m=n2, the complexity of this matrix-

multiplication algorithm as a function of input size is only O(m√m)

Try out all six variants, measure, n=1000
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int double

Non-opt Opt Non-opt Opt

ijk 6.96 sec 6.38 sec 8.62 sec 6.82 sec

Architecture: Intel i7-2600 @ 3.40 GHz, 8MByte cache.

Mean of 30 repetitions (measured with clock(), not OpenMP);
Optimization flags –O3 –funroll-loops (not always good)

n=1000 (so n3=1000,000,000≈GOPS)

Optimization does not make a lot of difference; int/double roughly 

similar. Is this performance reasonable?

Are these the right and final conclusions?

Check if the number of operations/time matches processor 

specification



30

©Jesper Larsson TräffSS23

int double

Non-opt Opt Non-opt Opt

ijk 6.96 sec 6.38 sec 8.62 sec 6.82 sec

ikj 4.51 0.32 4.50 0.81

jik 6.88 6.33 7.00 6.82

jki 11.81 13.76 13.90 15.11

kij 4.53 0.34 4.72 0.89

kji 11.87 13.80 13.98 15.08

Architecture: Intel i7-2600 @ 3.40 GHz, 8MByte cache.

Mean of 30 repetitions (measured with clock(), not OpenMP).
Optimization flags –O3 –funroll-loops

n=1000 (so n3=1000,000,000≈GOPS)
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int double

Non-opt Opt Non-opt Opt

ijk 21.84 17.18 26.90 18.31

ikj 15.11 1.09 14.89 2.26

jik 21.59 17.13 24.16 18.17

jki 42.93 46.62 52.71 49.96

kij 15.56 1.12 15.72 2.71

kji 43.09 46.99 50.50 50.12

Architecture: AMD Opteron 6168 (saturn), 512KByte L2, 6MByte L3 

cache.

Mean of 30 repetitions (measured with clock(), not OpenMP)
Optimization flags –O3 –funroll-loops

n=1000 (so n3=1000,000,000≈GOPS)
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int double

Non-opt Opt Non-opt Opt

ijk 12.45 10.44 13.07 10.93

ikj 9.88 0.60 9.95 1.19

jik 12.10 10.40 12.52 10.84

jki 18.96 22.40 20.21 23.78

kij 9.89 0.62 9.95 1.24

kji 18.94 22.43 20.18 23.73

Architecture: Intel Xeon E7-8850 @ 2.00GHz, 24MByte cache

Mean of 30 repetitions (measured with clock(), not OpenMP)
Optimization flags –O3 –funroll-loops

n=1000 (so n3=1000,000,000≈GOPS)

Exercise: Try this at home on your computer
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Recall:

Matrices in C stored row wise: row major

A[0][0…n-1] A[1][0…n-1] A[2][0…n-1] …

A read into cache in blocks of 8-16 elements. Scanning A in row 

order (second index) reduces the number of main memory accesses 

by this factor. If row larger than cache size, next row forces eviction 
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for (k=0; k<n; k++) {

for (j=0; j<n; j++) {

for (i=0; i<n; i++) {

C[i][j] += A[i][k]*B[k][j];

}

}

}

Worst: innermost loop on i

Variant 4: jki

Variant 6: kji

Inner loop:

• B[k][j] indendent of i, put in register (compiler does this)

• Each iteration 1 load, 1 store

• Each load cache miss, each store cache miss

Assuming cache can store at most 2 matrix rows
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for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

C[i][j] = 0;

for (k=0; k<n; k++) {

C[i][j] += A[i][k]*B[k][j];

}

}

}

Variant 1: ijk

Variant 3: jik

Medium: innermost loop on k

Inner loop:

• Each iteration 2 loads, 1 store

• C[i][j] independent of k, update in register (compiler does this)

• Each load of B[k][j] cache miss, A accessed in row order
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Best: innermost loop on j

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

C[i][j] += A[i][k]*B[k][j];

}

}

}

Variant 2: ikj

Variant 5: kij

Inner loop:

• A[i][k] independent of j, put in register (compiler)

• Each iteration 1 load, 1 store

• Both C and B accessed in row order, miss rate as given by line 

size

These variants exploit spatial and temporal locality well. Much, much 

more can be done (well-known, but different lectures, try MKL)
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A different way of doing matrix-matrix multiplication

A B Cx =

m

k

k

n

m

n

Standard, 3-loop implementation: O(n3) operations
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A00
B00

C00A01
B01

C01

A10
B10

C10A11
B11

C11

x =

C00 = A00 x B00 + A01 x B10

C01 = A00 x B01 + A01 x B11

C10 = A10 x B00 + A11 x B10

C11 = A10 x B01 + A11 x B11

8 matrix multiplications, 4 matrix 

additions

… by (recursive) matrix-matrix multiplication of submatrices

Split matrices, roughly half in each dimension
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Possibility for parallelization:

All 8 matrix multiplications can be done independently, all 4 matrix 

additions can be done independently

Solve recursively

C00 = A00 x B00 + A01 x B10

C01 = A00 x B01 + A01 x B11

C10 = A10 x B00 + A11 x B10

C11 = A10 x B01 + A11 x B11

8 matrix multiplications, 4 matrix 

additions



40

©Jesper Larsson TräffSS23

Work and recursion depth for the MM algorithm is given by

• W(n) = 8W(n/2)+Θ(n2)

• T(n) = T(n/2)+O(log n)

with solutions

• W(n) = Θ(n3)

• T(n) = Θ(log2n)

By Master Theorem

• a=8, b=2, d=2, e=0 (Case 3)

• a=1, b=2, d=0, e=1 (Case 2)

W(n) and T(n) is the number of nodes in an MM DAG and the length 

of a longest path, respectively. Keep in mind for the parallelization 

(later)

Last term: Depth of matrix addition
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Note:

Strassen observed that matrix-matrix multiplication can be done with 

only 7 sub-matrix products (and 18 sums), leading to an algorithm 

running in O(n2.81) operations.

Volker Strassen: Gaussian Elimination is not Optimal. Numerische

Mathematik, 14(3):354-356, 1969

Major computer science result (with several follow-up 

improvements). These are the theoretically best known algorithms 

for matrix-matrix multiplication
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Implementation in C

In C, 2-dimensional matrices are represented by arrays of pointers

A[0][0…n-1] A[1][0…n-1] A[2][0…n-1] …

A[0]

A[1]

A[2]

A[i]

We represent submatrices of A by start and end in each dimension, 

A[m0…m1][n0…n1] to avoid copying into new matrices

…
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The for the result matrix C, temporary matrices c0, c1 are needed, 

these have size (m1-m0)x(n1-n0). 

For the recursive calls, submatrices of these matrices are computed, 

for this, offsets mo and no are needed.

For the matrix summation, the offsets from the parent recursive call 

are needed for the results to go to the right indices.

The recursion is stopped when a matrix is small enough (m1-

m0<CUTOFF), CUTOFF determined experimentally of by a good 

enough performance model (difficult)



44

©Jesper Larsson TräffSS23

void MM(double A[][],double B[][],

int m0, int m1, int k0, int k1, int n0, int n1,

double C[][], int m0, int no) {

if (/*n0,n1,k0,k1,m0,m1 too small: CUTOFF*/) {

BaseMM(A,B,m0,m1,k0,k1,n0,n1,C,mo,no);

} else {

double c0[m1-m0][n1-n0]; // allocate properly

double c1[m1-m0][n1-n0]; // and free at the end

MM(A,B,m0,(m0+m1)/2,k0,(k0+k1)/2,

n0,(n0+n1)/2,c0,0,0);

MM(A,B,m0,(m0+m1)/2,k0,(k0+k1)/2,

n0+n1)/2,n1,c0,0,(n1-n0)/2);

MM(A,B,m0,(m0+m1)/2,(k0+k1)/2,k1,

n0,(n0+n1)/2,c1,0,0);

// remaining 5 MM calls

…

// all 8 MM done, now add
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// all 8 MM done, now add…

for (i=m0; i<m1; i++) { // slowly, sequentially

for (j=n0; j<n1; j++) {

C[mo+i][no+j] = 

c0[i-m0][j-n0]+c1[i-m0][j-n0];

}

}

// free intermediate matrices c0 and c1

}

}

Call with

MM(A,B,0,n,0,k,0,m,C,0,0);

All calls MM calls independent
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Note:

The recursive matrix-matrix multiplication formulation exhibits good 

cache behavior, can be made cache oblivious: Good cache behavior 

independent of actual cache size.

Matteo Frigo, Charles E. Leiserson, Harald Prokop, Sridhar 

Ramachandran: Cache-Oblivious Algorithms. ACM Trans. Algorithms 

8(1): 4:1-4:22 (2012)

Matteo Frigo, Volker Strumpen: The Cache Complexity of 

Multithreaded Cache Oblivious Algorithms. Theory Comput. Syst. 

45(2): 203-233 (2009)
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int double

Non-opt Opt Non-opt Opt

ijk 5.02 0.86 5.85 1.57

ikj 3.64 0.23 3.60 0.35

jik 4.87 0.84 5.26 1.43

jki 7.92 8.01 8.85 7.43

kij 3.57 0.22 3.59 0.39

kji 7.89 8.00 8.10 7.31

recursive 5.72 0.83 5.98 0.87

Architecture: Intel(R) Xeon(R) CPU E3-1225 v5 @ 3.30GHz, 32MB 

cache.

Mean of 30 repetitions (measured with clock(), not OpenMP)
Optimization flags –O3 –funroll-loops

n=1000 (so n3=1000,000,000≈GOPS)

CUTOFF 

= 10
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Aside: Cache-aware matrix-matrix multiplication

Aik

…

…

Bkj

…

…

x

Multiply as smaller k’ x k’’ matrices, C = A x B =

A B

k’

k’’
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k’, k’’ chosen such that the small matrices fit in cache. Best choice 

dependent on the sizes of the caches in the cache hierarchy

Implementation takes 6 nested loops
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M

P P P P

Shared memory, cc-

NUMA through memory 

network

M M M…

cache cache cache cache

cc-NUMA: Cache-coherent 

non-uniform memory 

access

Multiprocessor/multi-core caches 

Typically, several cores shares caches at some levels

cache cache
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More terminology

Multi-core processor: Processor with several cores/processing 

elements/CPUs (physically on the same chip). Always shared-

memory (caches) of some sort

Multi-processor system: System with several processors, not on the 

same chip; the processors can be multi-core processors. Multi-

processor may have shared-memory, and even shared caches

M

P P P P

M M M…

cache cache

M

P P P P

M M M…

cache cache
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Cache coherence

a == 1 a == 1

Processor/core 0 and 1 with private caches, both have read location 

a into cache. Processor 0 writes to a, what happens?

M

a = 7;

b = a; // ?? 

Read by core 1 occurs 

“after” write by core 0. If b 

is still 1, never 7, cache 

system is not coherent

Core 0: Core 1:
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Definition: Cache system is coherent if

1. If processor P writes to a at time t1 and reads a at t2>t1, and 

there are no other writes (by P or other) to a between t1 and t2, 

then P reads the value written at t1

2. If P1 writes to a at t1 and another P2 reads a at t2>t1 and no 

other P writes to a between t1 and t2, then P2 reads the value 

written by P1 at t1

3. If P1 and P2 writes to a at the same time, then either the value 

of P1 or the value of P2 is stored at a

Let the order of memory accesses to a specific location a be given 

by the program order

Ad 1. Program order is preserved for each processor for locations 

that are not written by other processors
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Definition: Cache system is coherent if

1. If processor P writes to a at time t1 and reads a at t2>t1, and 

there are no other writes (by P or other) to a between t1 and t2, 

then P reads the value written at t1

2. If P1 writes to a at t1 and another P2 reads a at t2>t1 and no 

other P writes to a between t1 and t2, then P2 reads the value 

written by P1 at t1

3. If P1 and P2 writes to a at the same time, then either the value 

of P1 or the value of P2 is stored at a

Let the order of memory accesses to a specific location a be given 

by the program order

Ad 2. Here, t1 and t2 have to be “sufficiently” separated in time. 

Updates by P1 must eventually become visible to the other 

processors There is no absolute time, and nothing immediate
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Definition: Cache system is coherent if

1. If processor P writes to a at time t1 and reads a at t2>t1, and 

there are no other writes (by P or other) to a between t1 and t2, 

then P reads the value written at t1

2. If P1 writes to a at t1 and another P2 reads a at t2>t1 and no 

other P writes to a between t1 and t2, then P2 reads the value 

written by P1 at t1

3. If P1 and P2 writes to a at the same time, then either the value 

of P1 or the value of P2 is stored at a

Let the order of memory accesses to a specific location a be given 

by the program order

Ad 3. Writes are required to “serialize”. Either of the values 

simultaneously written will be stored. “Same time” means 

“sufficiently close” in time.
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cc-NUMA systems (most multi-core and SMP nodes): Cache 

coherent, non-uniform memory access

Cache coherence maintained by hardware at the cache line level. 

Standard approaches and protocols:

• Update based

• Invalidation based

• Snooping/bus based

• Directory based

Expensive: bus/network traffic, protocol overhead,  hardware 

(“transistors”, “power”); can affect performance negatively

Bryant, O‘Hallaron: Computer Systems. Prentice-Hall, 2011

Hennessy, Patterson: Computer Architecture – A Quantitative 

Approach, Morgan-Kaufmann, 2011 (and later/earlier)

Protocols in hardware like MESI, 

MOESI, …

Standard textbook:
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Sharing/false sharing

Cache coherence is maintained at the cache line level. Example: 

Core 0 updates y, core 1 updates x which happen to be on the same 

cache line (e.g., &x==&z[1], &y==&z[2] for some array z)

y x

for (i=0; i<n; i++) y += i-1; for (i=0; i<n; i++) x += 2*i;

Although x and y are different memory locations, each update will 

cause cache coherency activity because cache coherency is at the 

cache line level. Variables x and y said to be falsely shared

Can false 

sharing matter?

Memoryz:

Core 0: Core 1:
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// a[m][n] two dimensional matrix

int *a = (int*)malloc(m*n*sizeof(int));

// row order access

#pragma omp parallel for

for (j=0; j<m; j++) {

int *x = a+j*n;

int i;

for (i=1; i<n; i++) {

x[0] = x[0]+x[i];

}

Example: Matrix x[m][n], compute all row sums x[j][0] = ∑x[j][i] 

Matrix stored in row-major (as in C):

Rows j and j+1 not spatially close, likely not in same cache line

Beware: must be local variables

OpenMP parallelization construct



59

©Jesper Larsson TräffSS23

x[i]  = a[0][i]a[0][0]=x[0]:

for (i=1; i<n; i++)

x[i] = a[1][i]a[1][0]=x[0]:

x[i] = a[2][i]a[2][0]=x[0]:

x[i] = a[m-1][i]a[m-1][0]=x[0]:

All a[i][0] likely on different cache lines

Rows in 

row-major
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// x[m][n] two dimensional matrix

int *a = (int*)malloc(n*m*sizeof(int));

// row order access

#pragma omp parallel

{

int t = omp_get_thread_num(); // thread id

int i, j;

int *x = a;

for (j=t+p, i=1; i<n; i++,j+=p) {

x[t] = x[t]+x[j];

}

}

Example: Matrix x[m][n], compute all row sums x[j][0] = ∑x[j][i] 

Matrix stored in column-order (e.g., FORTRAN)

Assumption: p=m

All local

x[0], x[1], x[2], …, x[p-1] may lie on same cache line, updated pn

times
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[0] [1] [2] [p-1]x:

for (j=t+p; i<n; i++,j+=p)

Rows in 

column-

major

Same cache line
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// x[m][n] two dimensional matrix

int *a = (int*)malloc(n*m*sizeof(int));

// row order access

#pragma omp parallel

{

int t = omp_get_thread_num(); // thread id

int i, j;

int *x = a;

register int sum = 0;

for (j=t+p, i=1; i<n; i++,j+=p) {

sum = sum+x[j];

}

x[t] = sum;

}

Example: Matrix x[m][n], compute all row sums x[j][0] = ∑x[j][i] 

Matrix stored in column-order (e.g., FORTRAN): control version

Should have no false sharing

But has another, 

cache related 

problem (which?)
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Architecture:

Intel i7-2600 @ 3.40 GHz, 8MByte cache, 4 cores

Mean of 100 repetitions (measured with OpenMP).
gcc –O3 -fopenmp

m n row column register

2 10,000 2.41 6.59 2.43

4 2.86 8.86 3.57

8 4.51 18.91 4.49

2 1,000,000 947.66 2347.51 564.56

4 955.55 2822.79 1285.36

8 1838.17 7653.76 2631.49
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Architecture:

AMD Opteron 6168, 512KByte L2, 6MByte L3 cache, 48 cores

Mean of 100 repetitions (measured with OpenMP)
gcc –O3 -fopenmp

m n row column register

2 1,000,000 1334.95 6867.88 3914.69

4 1316.17 18682.78 8225.76

8 3998.82 52483.61 32205.00

12 2600.00 84042.84 49556.98

24 11646.59 240534.15 211900.23

48 9529.59 241729.00 236951.06
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Architecture:

Intel Xeon E7-8850 @ 2.00GHz, 24MByte cache, 80 cores

Mean of 100 repetitions (measured with OpenMP)
gcc –O3 –fopenmp (icc worse?)

m n row column register

2 1,000,000 1330.06 2090.08 1278.82

5 1360.92 3999.19 3009.37

10 1374.28 42667.57 40673.03

20 3774.24 83096.40 84314.09

40 7548.22 99135.79 95015.96

60 8735.67 98547.61 97293.80

80 15922.08 135945.35 181497.75

160 15958.70 215910.70 154105.94

NB: Measurements not very stable, but same 

behavior (factors: clock resolution, disturbance)
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Avoiding false sharing:

• Make sure simple, shared variables updated by different threads 

appear in different cache lines (blocks): Pad data structures, e.g., 

padded array

• Not always possible, (too) wasteful in memory space

• Use simple local variables (compiler may put these on different 

cache lines)

0 1 2 n…

Cache block
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Not all systems are cache-coherent:

(NEC) Vector computers:

8-16 processors per node (sequential 

processor+vector processor)

Caches, but no coherence

IBM/Sony/Toshiba Cell BE: Sequential 

PowerPC processor, 8 SPU‘s

No caches: scratchpad memory

IBM BlueGene/L: 2-4 cores, non-

coherent
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On multi-core cache debate (“to be coherent or not”), see, e.g.,

Milo M. K. Martin, Mark D. Hill, Daniel J. Sorin: Why on-chip cache 

coherence is here to stay. Commun. ACM 55(7): 78-89 (2012)
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M

P P P P

M M M…

cache cache

M

P P P P

M M M…

cache cache

Memory (“von Neumann”) bottleneck, NUMA

• Connection to memory via memory-controllers

• Memory in banks

• Memory banks have affinity to memory controllers

• Typically fewer memory controllers than cores (1-4 per CPU)

• Cores share memory bandwidth
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M

P P P P

M M M…

cache cache

M

P P P P

M M M…

cache cache

Memory access times highly non-uniform (NUMA). Accessing the 

memory of a memory controller closest to a core faster than 

accessing memory on a controller of a different CPU
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NUMA performance matters

To exploit memory system well (avoid being penalized), applications 

can aim to allocate memory for the cores “close” to the core that will 

use that memory the most

“First-touch” OS support: The first core (thread) to touch a (virtual) 

memory page will cause the page to be allocated in memory close to 

that core

Does this matter?
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Worst-case program (with OpenMP, see later):

• Each thread (running on a fixed core) allocates medium large 

array (n=1.000.000 elements), touches its array

• In a number of repetitions, goes through all elements, perform 

some computation

• Uses either own array (Local), or array allocated by core “farthest 

away” (Remote)
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start = omp_get_wtime();

#pragma omp parallel

{

double *a = (double*)malloc(n*sizeof(double));

double c;

int i,r;

c = 0.0;

for (i=0; i<n; i++) a[i] = c; // first touch

aa[omp_get_thread_num()] = a;

#pragma omp barrier

double *b = aa[(omp_get_thread_num()+20)%t];

for (r=0; r<REPEAT; r++) { … / some computation

for (i=0; i<n; i++) { c += b[i]; c /= (i+1);}

for (i=0; i<n; i++) b[i] = c;

}

free(a);

}

stop = omp_get_wtime();

Distance (0: best, 20: 

more or less worst)

OpenMP later
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OMP_NUM_THREADS=80

OMP_PROC_BIND=close

OMP_PLACES=cores

Outcome:

Max threads 80

Local: n=1000000 time (micros) 4283003.39

Remote: n=1000000 time (micros) 6008407.72

80-cores, 8 CPU (“socket”) system, Intel(R) Xeon(R) E7-8850  @ 

2.00GHz, with

Factor 1.5 penalty
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Outcome:

Max threads 1

Local: n=1000000 time 578939.91

Remote: n=1000000 time 573594.96
Factor 8 faster!

But there are other things going on

OMP_NUM_THREADS=1

80-cores, 8 CPU (“socket”) system, Intel(R) Xeon(R) E7-8850  @ 

2.00GHz

Is this the price for cache 

coherence? Or the effect of 

limited total bandwidth?
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Approaches to alleviating memory bottleneck: Latency hiding

• Prefetching: Start loading operands well before use (HW or SW)

• Hardware/software multi-threading: When a thread (“virtual 

processor”) issues a load, switch to another thread, come back 

when data have arrived

Multi-threading requires explicitly parallel programs (EPIC)

Both prefetching and multi-threading are latency hiding techniques. 

Memory bandwidth still required for the number of outstanding 

memory requests.
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Disproof (II): Is super-linear speed-up possible?

Simulation argument shows that linear/perfect absolute speed-up is 

best possible!

But: Argument assumes that sequential and parallel processors are 

of the same sort, in particular same memory behavior

This is not true for (real) systems with a deep memory hierarchy:
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Processor
Register 

bank

L1 cache

L2 cache

L3 cache

System DRAM

Bus/memory network

The memory hierarchy

1. Several levels of 

caches (registers, 

L1, L2, …)

3. Banked memories

2. Memory network



79

©Jesper Larsson TräffSS23

Processor
Register 

bank

L1 cache

L2 cache

L3 cache

System DRAM Disk

tape

Bus/memory network

Disk

Disk

Disk

tape
tape

tape
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L3 cache

System DRAM

Bus/memory network

Processor
Register 

bank

L1 cache

L2 cache

Processor
Register 

bank

L1 cache

L2 cache

…
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Bryant, O’Halloran: Computer Systems, Prentice-Hall, 2011 (and 

later)

Typical latency values for memory hierarchy:

Registers: 0 cycles

L1 cache: 1 cycles

L2 cache 10 cycles

L3 cache 30 cycles

Main memory: 100 cycles

Disk: 100,000 cycles

Tape: 10,000,000 cycles
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Example:

• Single processor implementation on huge input of size n that 

needs to use full memory hierarchy

vs.

• Parallel algorithm on distributed data of size n/p where each 

processor may work on data in main memory, or even cache (p is 

large, too)
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• Let ref(n) be the number of memory references

• Mseq(n) average time per reference for the single-processor 

system (deep hierarchy)

• Mpar(p,n) average time per reference per processor for parallel 

system (flat hierarchy)

Then (assuming performance determined by cost of memory 

references) for perfectly parallelizable memory references

Sp(n) = ref(n)*Mseq(n)/((ref(n)/p)*Mpar(p,n)) = p*Mseq(n)/Mpar(p,n)

Example: With Mseq = 1000, Mpar = 100 (independent of n and p), 

this gives super-linear speed-up (misnomer: linear, but greater than 

p)

Sp(n) = 10p  
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Application is

• Memory bound, if the operations to be performed per data 

element can be performed faster than reading/writing the data 

element

• Compute bound, if the operations to performed per data element 

take longer than reading/writing the data element  

Examples:

• Memory bound: Merge, prefix-sums (only a few operations per 

Byte)

• Less memory bound: Matrix-matrix multiplication, O(n3) 

operations on O(n2) data

For memory bound applications, concrete speed-up is limited by the 

memory bandwidth: How much faster can p cores read/write data 

than only one core?

Do not expect too large speed-up

Application performance and memory system
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Application is

• Memory bound, if the operations to be performed per data 

element can be performed faster than reading/writing the data 

element

• Compute bound, if the operations to performed per data element 

take longer than reading/writing the data element  

Given application (implementation) A, define the Operational 

Intensity O as the average number of operations per Byte 

read/written. Given multi-core system with performance P (GOPS, 

e.g.) and memory bandwidth B:

• A is memory bound, if P/O > B

• A is compute bound if P/O ≤ B

Quantitative formulation
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Example:

Prefix-sums performs, say, one FLOP per word (8 Bytes) read and 

written (16 Bytes), O = 1/16 FLOP/Byte. Processor can do 

2GFLOPS

Prefix-sums memory bound, if memory bandwidth less than 32 

GByte/s.

Samuel Williams, Andrew Waterman, David A. Patterson: Roofline: 

an insightful visual performance model for multicore architectures. 

Commun. ACM 52(4): 65-76 (2009)

This performance model/estimate is called Roofline

More Roofline in HPC lecture



87

©Jesper Larsson TräffSS23

Program order and memory consistency

if (id==0) {

a = 1;

a = 2;

b = 3;

} else {

b = 7;

a = 1;

a = 2;

}

Sequential code, expectation:

Memory read/write operations take effect

(become visible) in the order specified by the 

(execution of the) program

“Easy” to prove properties of programs: Invariants etc.

Example property: a=2, and (b=3 if id=0, or b=7 if id!=0)
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Parallel program order:

p processors execute program (SPMD or MIMD)

a = 1;

a = 2;

b = 3;

Some interleaving of the p programs is executed 

by the p processors.

(Natural) Expectation:

Memory read/write operations take effect in this 

order

Still “easy” to prove properties of programs

b = 7;

a = 1;

a = 2;
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Parallel program order:

p processors execute program (SPMD or MIMD)

a = 1;

a = 2;

b = 7;

a = 1;

a = 2;

b = 3;

Some interleaving of the p programs is 

executed.

(Natural) Expectation:

Memory read/write operations take effect in 

this order

Possible outcome: a=2, b=3: or a=2, b=7

Still “easy” to prove properties of programs

Sequential consistency: Outcome of parallel program is as if some 

interleaving of the instructions has been executed, with each 

memory operation taking effect immediately

NOT: a=1, b=3
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Parallel program order:

p processors execute program (SPMD or MIMD)

a = 1;

a = 2;

b = 7;

a = 1;

a = 2;

b = 3;

Some interleaving of the p programs is 

executed.

(Natural) Expectation:

Memory read/write operations take effect in 

this order

Possible outcome: a=2, b=3: or a=2, b=7

Still “easy” to prove properties of programs

Note: Hardware guarantees sequential consistency for sequential 

programs, reads and writes observe program order. Caches, write 

buffers, … are logically transparent (not performance transparent)

NOT: a=1, b=3
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Memory consistency

In what order do writes to different locations become visible in 

memory to other cores?

x = 0;

// … some code

x = 1;

if (y==0) {

// body 

}

y = 0;

// … some code

y = 1;

if (x==0) {

// body 

}

Core 0: Core 1:

Can core 0 and core 1 both execute body of if-statement?

Assumption: x 

not in cache of 

core 1, y not in 

cache of core 0
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x = 0;

// … some code

x = 1;

if (y==0) {

// body 

}

y = 0;

// … some code

y = 1;

if (x==0) {

// body 

}

Core 0: Core 1:

Note:

If x=1; y=1; appears at the same time, no cores execute body, so 

probably not a good lock-algorithm (see later)…

No: If core 0 in body, it has executed x = 1; and core 1 has executed 

y = 0; but not yet y=1; therefore core 1 cannot enter body because 

x=1

Can core 0 and core 1 both execute body of if-statement?
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x = 0;

// … some code

x = 1;

if (y==0) {

// body 

}

y = 0;

// … some code

y = 1;

if (x==0) {

// body 

}

Core 0: Core 1:

Argument 

correct?
Only under certain consistency assumptions

Can core 0 and core 1 both execute body of if-statement?

No: If core 0 in body, it has executed x = 1; and core 1 has executed 

y = 0; but not yet y=1; therefore core 1 cannot enter body because 

x=1
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x = 0;

// … some code

x = 1;

if (y==0) {

// body 

}

y = 0;

// … some code

y = 1;

if (x==0) {

// body 

}

Core 0: Core 1:

With write buffer:

Core 0: x=0; but x=1; is delayed to memory

Core 1: y=0; but y=1; is delayed to memory

Both core 0 and core 1 execute body

M

P

Cachex

Write buffer

This execution is not an interleaving of the two 

program fragments
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Sequential consistency: Memory operations of each processor are 

performed in program order; program result is some interleaving of 

the memory accesses of all processors

Sequential consistency is typically not guaranteed by modern 

multiprocessors (x86, POWER, SPARC):

• Caches: may delay writes

• Write buffers: may delay and/or reorder writes

• Memory network: may reorder writes

• Compiler: may reorder updates

Insisting on sequential consistency could sacrifice performance

Leslie Lamport: How to Make a Multiprocessor Computer That 

Correctly Executes Multiprocess Programs. IEEE Trans. Computers 

28(9): 690-691 (1979)
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Programming model (memory model): Special 

synchronization/coordination constructs to enforce specific (set of) 

interleaving(s); “fence” operation to flush write buffers/etc.

Sequential consistency: Memory operations of each processor are 

performed in program order; program result some interleaving of the 

memory accesses of all processors

x = 0;

fence;

// … some code

x = 1;

fence;

if (y==0) {

// body 

}

y = 0;

fence;

// … some code

y = 1;

fence;

if (x==0) {

// body 

}

Core 0: Core 1:

Ready to 

execute 

“code” and 

enter “body”
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Relaxed consistency models pose weaker constraints on hardware. 

More difficult to reason about correctness 

Relaxed models may permit:

• Loads (reads) reordered after loads

• Loads reordered after stores (writes)

• Stores reordered after loads

• Stores reordered after stores

Special instructions: memory fences/memory barriers enforce 

pending memory operations to complete.

A fence (≠barrier) is a local operation for the core (no to be confused 

with a barrier which involves all processors)

See AMP lecture
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while (!flag) { }

a = otherval;

otherval = 42;

flag = 1;

Example (flag = 0):

Intended (under sequential consistency) outcome: a==42

But:

Writes could be reordered. Any old value could be stored in a. 

Compiler should not attempt to move assignment to a before loop

Beware: Compiler might remove while loop altogether. Declare flag 
as volatile

Relaxed consistency models pose weaker constraints on hardware. 

More difficult to reason about correctness 
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while (!flag) { }

fence;

a = otherval;

otherval = 42;

fence;

flag = 1;

…depending on exact memory model, either might be 

superfluous

Example (flag = 0):

Sarita V. Adve, Kourosh Gharachorloo: Shared Memory Consistency 

Models: A Tutorial. IEEE Computer 29(12): 66-76 (1996)

More on consistency models (huge literature):

Relaxed consistency models pose weaker constraints on hardware. 

More difficult to reason about correctness 

needed
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Memory fence(&flag): Completes all writes executed before the 

fence and sets flag f

Another processor waiting for flag is now assured that all writes of 

the other processor before flag was set will have been completed

while (!flag) { }

fence;

a = otherval;

otherval = 42;

fence(&flag);needed

Example (flag = 0):

Relaxed consistency models pose weaker constraints on hardware. 

More difficult to reason about correctness 
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Typical shared-memory multi-core system (older TU Wien “Saturn”)

4xAMD “magny cours” 12-core Opteron 6168 processors

128GByte main memory, 1.9GHz, total number of cores 48

• Per core L1 cache: 128KB

• Per core L2 cache 512KB

• Shared L3 cache 12288KB

2011, now outdated

Memory consistency model: x86 total store 

order (TSO), writes may be reordered due to 

write buffer
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12 core = 2x6 cores, 2 dies on chip?

HT: HyperTransport, a standardized processor-processor 

interconnect

Multi-processor 

system, built from 

multi-core 

processors
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48-core shared-memory 

system from 4x12-core multi-

core processors

Communication network lead 

to NUMA effects (and limits 

bandwidth, many cores 

competing for the same HT)

Example: 4xAMD Opteron 6168
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From University of Utrecht, EuroBen: www.phys.uu.nl/eurben

Home-exercise:

Try to find the (superscalar) issue width? Peak performance? of the 

Opteron/Magny Cours processor

http://www.phys.uu.nl/eurben
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L1 cache: 64KB data, 64KB instruction

Vector extensions
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Lecture summary, checklist

• Shared-memory machines, caches, NUMA, memory hierarchy

• False sharing

• Matrix-matrix multiplication, cache behavior, recursive matrix-

matrix multiplication

• NUMA performance effects, “first-touch” allocation

• Super-linear speed-up due to memory hierarchy

• Cache coherence problem

• Memory consistence problem


