Nachname:

SE WS23 (194.020) — Test 2, Gruppe A, Dauer: 75min

Matrikelnummer:

Vorname:

21.12.2023

o For questions that ask you to design, “minimum number of test cases”, 1 point is deducted per redundant

test.

1.) Control-Flow Coverage (24 Points)
Given two integers from and to, function sumEven sums the even numbers in range [from, to].

public int sumEven(int from,

int sum = 0;
for (int i =
if (i 4 2 =
sum += 1i;
}
}
return sum,

}

fr

o
0

m;

)

{

i <= to;

int to) {

++i) {

entry E

6: |return sum;

exit }

. How many basic blocks and branches are there in the given CFG? Do not count the entry and exit

blocks.
Basic blocks: Branches:

. How many basic blocks and branches does the test case (from=1, to=1) cover? Compute basic-block
coverage and branch coverage (as fractions).

o VA

. Design a test case that reaches 100% basic-block coverage, but not 100% branch coverage.

Basic-block coverage: / Branch coverage:

from= to=
. Design a test case that reaches 100% branch coverage.

from= to=

. Design test cases that reach 100% loop coverage.

Hint: Use as many lines as you need!

from= to=
from= to=
from= to=
from= to=

2.) Design By Contract (32 Points)

Consider the following two function signatures for functions £ and g.

int f(int x);
int g(int x);

The pre- and postcondition for function f are

e Precondition: input value z € [0, 10000]

¢ Postcondition: return value y € [0, 10000

The pre- and postcondition for function g are

e Precondition: input value z € {2,3,5,7,11, 13}

¢ Postcondition: return value y € {2,3,5,7}

For each implementation of £, mark only the appropriate cells:

2 points for each correct 3-cell block, 0 points for a 3-cell block containing at least one error.

Implementation

is

weakened

The precondition ...

is
strengthened

breaks the
expected
behavior

The postcondition . ..
is is

weakened | strengthened

breaks the
expected
behavior

input value z € [0, 0]
return value y € [0, 10001]

input value z € [—12345,12345]
return value y € [0, 999]

input value z € [0,100]
return value y € [100, 100]

input value z € [0, o0]
return value y € [0, o]

For each implementation of g, mark only the appropriate fields:

Implementation

The precondition . ..

is

weakened

is

strengthened

The postcondition . ..

breaks the is is breaks the
expected weakened | strengthened | expected
behavior behavior

input value z € {1,2,3,5,7,11, 13}

7
return value y € {2,3,5,7,11,13}
input value z € {2,3,5,7,11,13, 14}
return value y € {11, 13}

input value z € {2,3,5}
return value y € {2,3,5}

input value z € [—oc, o0

return value y € {2, 3, 5}

3.) Theory Questions (22 Points)

Choose the correct answer for each of the following questions.
correct answer = 2 points, incorrect answer = -2 points, no answer = 0 points, minimum 0 points for this
task

Ensuring that the system implements requirements correctly is considered to be ...

[0 verification. O validation.

e Testing all possible inputs of a system component is . ..

O always [typically not ...possible.

Writing test cases using program requirements is considered to be . ..

O structural [J property-based O specification-based [exhaustive ...testing.

o Writing test cases based on code coverage is considered to be ...

[structural [property-based L[] specification-based [exhaustive ...testing.

e A test double that returns hard coded answers is considered to be a ...

O dummy object. [fake object. O stub. O mock. O spy.

e A test double that wraps around an implementation and records its actions is considered to be a ...

00 dummy object. [fake object. O stub. O mock. [spy.

Given is a list of found software bugs from an e-commerce company. For each bug listed, find the best
strategy from the testing pyramid:

- Bug #101: Email service component is unable to retrieve certain customer emails from database
component

O unit testing O integration testing [system testing [0 manual testing

- Bug #102: Address validation function does not accept addresses from Germany

O unit testing [J integration testing ([system testing [J manual testing

- Bug #103: Function purchase calculates the price incorrectly

O unit testing [J integration testing O system testing (] manual testing

e An object graph is used to show that an Alloy predicate is ...

O consistent. [inconsistent.

e An object graph is used to show that an Alloy assertion is ...

O valid. O invalid.

4.) Specification-Based Testing (14 Points)

1. Consider a large online shop with thousands of customers every day. On a normal day, the company

1

considers a visitor count over 10.000 a success. On days with a sale announcement, the visitor count
has to be over 20.000 to be considered a success. Function isSuccess1 implements this functionality.
Occasionally, the visitor tracking system is in maintenance mode, yielding negative numbers. For
negative numbers, function isSuccess1 throws an exception.

public boolean isSuccessl(int visitorCount, boolean isSale);

e What are the partitions for each parameter?

¢ How many partitions are there in total (after combining the above partitions without merging
any)?

Partitions:

2. After reviewing the specification, the company comes to the conclusion that distinguishing days based

1

on sale announcements is not a good idea. They decided to drop the isSale parameter and consi-
der every day as a normal day (i.e. no sale announcements). Function isSuccess2 implements this
functionality and behaves identically.to isSuccess1(visitorCount, false).

public boolean isSuccess2(int visitorCount);

e How many partitions are there for parameter visitorCount of function isSuccess2?
Partitions:

¢ Design the minimum number of test cases for function isSuccess2 according to a boundary value
analysis.

Hint: Use as many lines as you need!

visitorCount=
visitorCount=
visitorCount=
visitorCount=
visitorCount=
visitorCount=

R AT]

o

5.) Data-Flow Coverage (28 Points)

entry?
1: (result = 0; t
public int sum(int i) {

int result = 0; 5 'b
: |b = 0; E——\
while (i > 0) A o - e

result = result + i; b

i__,-
} ' . tresult = result + i;}
return result; R

4; (return result ,}—J

b,

exitg
1. Apply the algorithm for computing reaching definitions for variable result, where n is the block
number in the control-flow graph.

hOut(

oo~z

2. List the DU pairs for variable result.
Hint: Use as many lines as you need!

3. Instrument the code as shown in the lecture to measure DU-pairs coverage. What is the state of maps
defCover and useCover after running the test case (i=1)? You may assume the maps start freshly
initialized.

defCover[‘result’] =

useCover [‘result’, , 1=
useCover[‘result’, ,] =
useCover [‘result’, s] =
useCover [‘result’, ,]l =
useCover [‘result’, .] =
useCover [‘result’, 3] =

4. Design the minimum number of test cases that reach 100% DU-pairs coverage for variable result.

Hint: Use as many lines as you need!

6.) MC/DC (30 Paints)

public int compute(int a, int b, int c) {
if ((a > b & a > ¢) || ¢ == 1) {

¥
b

return O;
else {
return 1;

. How many branches and condition values does the function have?

Branches: Condition values:

. How many branches and condition values does the test case (a=1, b=2, c=2) cover? Compute C+B

coverage (as a fraction).

Condition values covered: Branches covered: C+B coverage: /

Design the minimum number of test cases that reach 100% C+B coverage. List for each test case
which conditions are true and which are false. For each test case include the final value of the entire
if-decision.

Hint: Use as many lines as you need!

a b c a>b | a>c = (a>b && a>c) || c==1

. Design the minimum number of test cases that reach 100% MC/DC. List for each test case which

conditions are true and which are false. For each test case include the final value of the entire if-
decision.

Hint: Use as many lines as you need!

Dec

Test id | b L
(a>b && a>c) || c==

T1
T2
T3
T4
TS5
T6

Give the independence pair for each condition using the test ids.

