
VU Einführung in Artificial Intelligence

SS 2024

Hans Tompits

Institut für Logic and Computation
Forschungsbereich Wissensbasierte Systeme

www.kr.tuwien.ac.at



Reasoning



Entailment vs. inference

ä Recall that entailment is based on models while inference is based
on derivations,

• that is, entailment expresses a semantical relation, while

• inference is a relation between syntactical elements.

ä Inference is given in terms of inference rules in a proof system which
describe the syntactic manipulation of formulas.

• A derivation is a sequence of conclusions, sanctioned by
applications of inference rules, leading to a desired goal.

+ Theorem proving is the general term referring to construct
proofs of a desired sentence without consulting models.

ä Soundness and complete relates the semantical entailment with the
syntactical inference, establishing that they coincide.

2/32



Slogan

“Deductive reasoning, that’s the name of the game.”

–Lex Luthor (from “Superman: The Movie”, 1978)

3/32



Inference rules

ä A well-known inference rule, prominently used in Hilbert-type
systems, is modus ponens:

α⇒ β α

β
.

• This notation means that, whenever any sentences of the form
α⇒ β and α are given, then the sentence β can be inferred.

ä Another useful inference rule is ∧-elimination, as featured, e.g., in
tableau systems and natural-deduction systems, which states that,
from a conjunction, any of its conjuncts can be inferred:

α ∧ β
α

and
α ∧ β
β

.

ä Clearly, above rules are sound, i.e., turn valid premisses into valid
conclusions.

4/32



Inference rules (ctd.)

ä In fact, each of the logical equivalences listed earlier (like
commutativity and associativity of ∧ and ∨, double-negation
elimination, contraposition, etc.) can be turned into a corresponding
inference rule.
å These can then be used in derivations, generating sound

inferences without the need for enumerating models.

ä For example, we can use such rules for deriving ¬α from
(α ∨ β)⇒ γ and ¬γ:

1. Apply contraposition to (α ∨ β)⇒ γ:

F1: ¬γ ⇒ ¬(α ∨ β).

2. Apply modus ponens to F1 and ¬γ:
F2: ¬(α ∨ β).

3. Apply De Morgan to F2:
F3: ¬α ∧ ¬β.

4. Apply ∧-elimination to F3:
F3: ¬α. 5/32



Some properties of classical inference

The following properties hold for the inference relation ` of classical
logic, for any sound and complete proof system on which ` is based.

ä Monotonicity property:

• if KB ` α and KB ⊆ KB ′, then KB ′ ` α.

That is, once a conclusion α is inferred, it can never be invalidated
by additional knowledge.

+ Monotonicity means also that inference rules can be applied
whenever suitable premisses are found in the knowledge base

å the conclusion of the rule must follow regardless of what
else is in the knowledge base.

ä Cut rule:

• KB ` α and KB, α ` β, then KB ` β.
(N.B. “KB, α” is a shorthand for “KB ∪ {α}”, and likewise for more

formulas instead of just α.)

Here, the proposition α serves as a “lemma” for β given KB.

6/32



Some properties of classical inference (ctd.)

ä Deduction theorem, or ⇒-introduction:

• if T , α ` β, then T ` α⇒ β.

ä ⇒-elimination (reflecting modus ponens):

• if KB ` α and KB ` α⇒ β, then KB ` β.

ä ∧ -introduction:

• if KB ` α and KB ` β, then KB ` α ∧ β.

ä ∧ -elimination:

• if KB ` α ∧ β, then KB ` α.

• if KB ` α ∧ β, then KB ` β.

7/32



Some properties of classical inference (ctd.)

ä ∨ -introduction:

• if KB ` α, then KB ` α ∨ β;

• if KB ` β, then KB ` α ∨ β.

ä Proof by cases (or ∨ -elimination):

• if KB, α ` γ and KB, β ` γ, then KB, (α ∨ β) ` γ.

ä Proof by contradiction (“reductio ad absurdum”, or ¬-introduction):

• if KB, α ` β and KB, α ` ¬β, then KB ` ¬α.

ä ¬¬-elimination:

• if KB ` ¬¬α, then KB ` α.

ä Weak ¬-elimination (or “ex falso sequitur quodlibet”):

• if KB ` α and KB ` ¬α, then KB ` β.

8/32



Some properties of classical inference (ctd.)

ä ⇔-introduction:

• if KB ` α⇒ β and KB ` β ⇒ α, then KB ` α ⇔ β.

ä ⇔-elimination:

• if KB ` α ⇔ β, then KB ` α⇒ β;

• if KB ` α ⇔ β, then KB ` β ⇒ α.

ä ∀-introduction:

• if KB ` α(x), then KB ` ∀x α(x), providing KB has no free
occurrence of x .

ä ∀-elimination:

• if KB ` ∀x α(x), then KB ` α(t), where t is a term s.t. no
variable of it becomes bound in α(t), and α(t) results from
α(x) by substituting t for x .

9/32



Some properties of classical inference (ctd.)

ä ∃-introduction:

• if KB ` α(t), then KB ` ∃x A(x),under the same
circumstances for t and α(t) as in ∀-elimination.

ä ∃-elimination:

• if KB, α(c) ` β, then KB,∃x α(x) ` β, where c is a constant
not occurring in KB, α(x), and γ.

10/32



Resolution

An important proof method is resolution, first introduced by John Alan
Robinson in 1965 with the aim for mechanisation on a computer.

ä Consequently, the syntax and inference rules were kept minimal.

ä Resolution works on formulas in conjunctive normal form (CNF):

• a CNF is a conjunction of clauses, where

– a clause is a disjunctions of literals, and

– a literal is an atomic formula or the negation of an atomic
formula.

• Two literals are complementary if one is the negation of the
other.

• E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D) is a CNF and B and ¬B are
complementary literals.

11/32



Resolution (ctd.)

ä Resolution inference rule (for CNF):

`1 ∨ · · · ∨ `i ∨ · · · ∨ `k m1 ∨ · · · ∨mj ∨ · · · ∨mn

`1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k ∨m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn

where `i and mj are complementary literals.

• The clause in the conclusion is called resolvent.

ä Unit resolution is the special case of resolution where n = 1, i.e., ,

`1 ∨ · · · ∨ `i ∨ · · · ∨ `k m

`1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k
where `i and m are complementary.

ä Example:
P ∨ Q ¬Q

P

12/32



Resolution (ctd.)

ä Resolution is sound and complete for propositional logic.

ä Resolution detects unsatisfiability of a set of clauses:

• A set KB of clauses is unsatisfiable iff there is a resolution
proof of the empty clause 2 from KB.

• Consequently, to show that KB ` α with resolution, one
negates α and tests KB ∪ {¬α} for unsatisfiability.

– This involves putting all formulas in KB and the formula
¬α into CNF.

+ For the FOL case, resolution involves unification and the process of
putting formulas into CNF requires Skolemisation, i.e., where
existential quantifiers are replaced by terms not appearing in the
original formula.

• E.g., a skolemised version of ∀x∃yP(x , y) is ∀xP(x , f (x)),

– where f (x) is the newly introduced term, called Skolem
function.

13/32



Conversion to CNF

We illustrate to conversion process by means of the formula
B ⇔ (P ∨ Q).

1. Eliminate ⇔, replacing α ⇔ β with (α⇒ β) ∧ (β ⇒ α):

(B ⇒ (P ∨ Q)) ∧ ((P ∨ Q)⇒ B).

2. Eliminate ⇒, replacing α⇒ β with ¬α ∨ β:

(¬B ∨ P ∨ Q) ∧ (¬(P ∨ Q) ∨ B).

3. Move ¬ inwards using De Morgan’s rules and double-negation
elimination:

(¬B ∨ P ∨ Q) ∧ ((¬P ∧ ¬Q) ∨ B).

4. Apply distributivity law (∨ over ∧) and flatten:

(¬B ∨ P ∨ Q) ∧ (¬P ∨ B) ∧ (¬Q ∨ B).

14/32



Resolution example

ä We show B ⇔ (P ∨ Q),¬B ` ¬P by resolution.

ä This means we test {B ⇔ (P ∨ Q),¬B} ∪ {P} for unsatisfiability.

ä We first transform {B ⇔ (P ∨Q),¬B} ∪ {P} into a set of clauses:

{(¬B ∨ P ∨ Q), (¬P ∨ B), (¬Q ∨ B),¬B,P}.

ä The resolution proof proceeds simply as follows:

• From ¬P ∨ B and ¬B we derive

¬P,

• and from ¬P and P we then already derive the empty clause 2 .

15/32



Knowledge Representation



Ontological engineering

We now turn to question how to represent facts about the world.

ä Ontological engineering =⇒ create representations of general
concepts like actions, time, physical objects, and beliefs.

ä Initial disclaimer: we cannot represent everything in the world!

• But we will leave placeholders where new knowledge for any
domain can fit in.

• E.g., we can define the concept of an physical object, but the
details of different types of objects—like robots, televisions,
books, turntables, etc.—can be filled in later.

17/32



Ontological engineering (ctd.)

Further caveat: certain aspects are hard to capture with FOL.

ä In particular, the principal difficulty is that almost all generalisations
have exceptions, or hold only to a degree.

• E.g.: “tomatoes are red” is a useful rule, but some tomatoes
are green, yellow, or orange.

å Other formalisms than FOL have been designed to adequately
handle such patterns:

• nonmonotonic logics (like default logic or circumscription)

• probabilistic reasoning

18/32



Upper ontology

ä The general framework of concepts is called an upper ontology.

+ The name derives from the convention of drawing graphs with the
general concepts at the top and the more specific concepts below.

19/32



Example ontology

20/32



Categories and objects

ä The organisation of objects into categories is a vital part of
knowledge representation.

ä Categories serve to make predictions about objects once they are
classified.

• One infers the presence of certain objects from perceptual input,

• infers category membership from the perceived properties of the
objects,

• and then uses category information to make predictions about
such objects.

E.g., given an object with green, mottled skin, large size, and ovoid
shape, one can infer that it is an watermelon. From this, one can
further infer that it is useful for fruit salad.

21/32



Categories and objects (ctd.)

Two choices for representing categories in FOL: predicates and objects.

ä E.g., for representing basketballs, we can use the predicate
Basketball(b), or we can reify the category as an object, Basketballs.

+ reification: from the Latin res, meaning thing, object
=⇒ reification = “thing-ification”

ä With reification, we can state Member(b,Basketballs) (abbreviated
as b ∈ Basketballs), i.e., b is a member of basketballs.

ä We write Subset(Basketballs,Balls) (abbreviated as
Basketballs ⊂ Balls) to state that basketballs are a subcategory (or
subset) of balls.

22/32



Inheritance and Taxonomy

ä Categories serve to organise and simplify the knowledge base
through inheritance.

• E.g., if we say that all instances of the category Man are
mortal, and if we assert that Greeks is a subclass of Man, then
we know that all Greeks are mortal.

å Individual Greeks (like Aristotle) inherit the property of
mortality.

ä Subclass relations organise categories into a taxonomy, or a
taxonomic hierarchy.

• Taxonomies have a centuries-long tradition in technical fields.

• E.g., systematic biology aims to provide a taxonomy of all living
and extinct species; library science has developed a taxonomy
of all fields of knowledge; etc.

23/32



FOL and categories

FOL makes it easy to state facts about categories:

ä An object is a member of a category:
BBg ∈ Basketballs

ä A category is a subclass of another category:
Basketballs ⊂ Balls

ä All members of a category have some property:
x ∈ Basketballs ⇒ Round(x)

ä Members of a category can be recognised by certain properties:
(Orange(x) ∧ Round(x) ∧ Diameter(x) = 9.5′′ ∧ x ∈ Balls)⇒

x ∈ Basketballs

ä A category as a whole has some properties:
Dogs ∈ DomesticatedSpecies

24/32



Other relations between categories

Two or more categories are disjoint iff they have no members in common:
Disjoint(s) ⇔ ∀ c1, c2

(
(c1 ∈ s ∧ c2 ∈ s ∧ c1 6= c2)⇒

Intersection(c1, c2) = {}
)

If members of a given category s constitute all elements of another
category c , we have an exhaustive decomposition:
ExhaustiveDecomposition(s, c) ⇔ ∀ i

(
i ∈ c ⇔ ∃ c2 c2 ∈ s ∧ i ∈ c2

)
A disjoint exhaustive decomposition is a partition:
Partition(s, c) ⇔ (Disjoint(s) ∧ ExhaustiveDecomposition(s, c))

25/32



Physical composition

ä Objects can be part of other objects.

• This can be expressed using the PartOf predicate.

ä For instance:
PartOf (Gramatneusiedl ,Austria);
PartOf (Austria,CentralEurope);
PartOf (CentralEurope,Europe);
PartOf (Europe,Earth).

ä The PartOf predicate is transitive and reflexive:
PartOf (x , y) ∧ PartOf (y , z)⇒ PartOf (x , z);
PartOf (x , x).

å We can conclude PartOf (Gramatneusiedl ,Earth).

26/32



Physical composition (ctd.)

ä It is also useful to define composite objects with definite parts but
no particular structure.

ä Example: we might want to say “The apples in this bag weigh one
kilogram”

• might be tempted to ascribe the weight to the set of apples in
this bag, but this would be a mistake because sets have no
weight.
=⇒ Introduce new concept: a bunch.

• E.g., if the apples are Apple1, Apple2, Apple3, then

BunchOf ({Apple1,Apple2,Apple3})

denotes the composite object with the three apples as parts
(not elements)

å can use the bunch as a normal, unstructured object.

27/32



Physical composition (ctd.)

We can define BunchOf by logical minimisation in terms of PartOf :

1. each element of s is part of BunchOf (s):

∀ x x ∈ s ⇒ PartOf (x ,BunchOf (s)).

2. BunchOf (s) is the smallest object satisfying Condition 1:

∀ y [∀ x x ∈ s ⇒ PartOf (x , y)]⇒ PartOf (BunchOf (s), y)

(i.e., BunchOf (s) must be part of any object that has all the
elements of s as parts).

28/32



Substances and objects

ä A significant portion of reality seems to defy individuation—the
division into distinct objects.

• Example:

– Suppose I have some butter and some aardvark in front of
me.

– We can say there is one aardvark but there is no obvious
number of “butter-objects”, as any part of a butter-object
is also a butter object.

å We call elements defying individuation stuff.

+ The distinction things vs. stuff corresponds to the following
distinction from linguistics:

• count nouns: aardvarks, cars, rockets, theorems, . . .

• mass nouns: butter, water, energy, . . .

29/32



Substances and objects (ctd.)

To represent stuff in our ontology, we need to have as objects at least the
gross “lumps” of stuff we interact with.

ä E.g., we may recognise a lump of butter as the same butter that was
left on the table yesterday.

å In this sense, it is an object like the aardvark, say we call it
Butter3.

ä We also define the category Butter—its elements are all those
things of which we might say “It’s butter”, including Butter3.

• Any part of a butter-object is also a butter-object:

(x ∈ Butter ∧ PartOf (y , x))⇒ y ∈ Butter .

• We can say that butter is yellow, melts at around 30 degrees, is
less dense than water, has high fat content.

• But butter has no particular shape, size, or weight.

30/32



Substances and objects (ctd.)

Important distinction:

ä intrinsic properties: belong to the very substance of the object,
rather than to the object as a whole.

• When you cut a substance in half, the pieces retain the same
set of intrinsic properties—things like density, boiling point,
flavor, color, ownership, etc.

ä extrinsic properties: those which are not retained under subdivision.

• Examples: weight, length, shape, function, etc.

31/32



Substances and objects (ctd.)

ä We can therefore say:

• a substance, or a mass noun, is a class of objects that includes
in its definition only intrinsic properties

• a count noun is a class that includes some extrinsic property in
its definition.

ä Consequently:

• The category Stuff is the most general substance category,
specifying no intrinsic properties.

• The category Thing is the most general discrete object
category, specifying no extrinsic properties.

+ All physical objects belong to both categories, so the categories are
coextensive—they refer to the same entities.

32/32


