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D3-1 The Binding Task



Binding Tasks

• Goal: Save resources by sharing of functional units and registers.

Sequencing graph

Binding of operations to 
functional units 

Operation Binding

Lifetime of variables

Binding of variables to registers 

Register Binding
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Binding after Scheduling

Sequencing graph

Scheduled Sequence Graph  

Scheduling

Scheduled Sequence Graph with 
Binding 

Operation Binding

Concurrent operations can be scheduled 
to be executed in parallel.

Scheduling restricts binding: 
Concurrent operations scheduled to be 
executed in parallel can not be bound 
to the same functional unit.
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Binding before Scheduling

Concurrent operations can be bound to 
the same functional unit.

Sequencing graph

Sequence Graph with Binding 

Operation Binding

Scheduled Sequence Graph with 
Binding 

Scheduling
Binding restricts scheduling: 
Concurrent operations  bound to the 
same functional unit can not be 
executed in parallel (in same clock 
cycle).
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D3-2 Graph Coloring



• The cover of a set    , is a set of subsets of     such that their union is equal to    . 

• The partition of    is a cover of     , such that all subsets in the cover are disjoint.   
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Graph Theory – Cover and Partition



• A Clique of an undirected graph         ,      is a subset of the 
nodes    , in which all nodes are fully connected between each 
other.

• A Clique-Cover of an undirected graph             , is a set of 
cliques of the graph, such that their union is equal to     . 

• A Clique-Partition is a disjoint clique-cover.
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Graph Theory - Cliques



• A coloring of an undirected graph              , is a division of the nodes    into subsets such 
that:
• Each node is assigned a color.

• The two end nodes of each edge must have different colors.

• The minimal number of colors that allows a coloring 

 of                  is called the chromatic number           .        
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Graph Theory – Graph Coloring



• In the complementary graph                                , the nodes  
• that are connected with an edge in the original graph                  , are not 

connected.

• that are not connected with an edge in the original graph                   , 
are connected.

• A clique-partitioning of the undirected graph               , can be 
found by a coloring of its complementary graph  

                                

ACA
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Graph Theory – Complementary Graph



• Example:
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Coloring

Clique-Partitioning
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Graph Theory – Example Graph Coloring



• Interval Graph:

• Set of nodes describes intervals in space or time:

• Edges between nodes exist, if their intervals overlap.
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Graph Theory – Interval Graphs
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D3-3 Operation Binding



Func. Unit Types and Operation Types

• Type of functional units:

• Set of func. unit types:

• Index of functional unit:

• A functional unit is defined by its type and index, e.g. (ALU,1) 

• Operation: 

• Set of operation types:

• Operation type: 
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Executability 

• Operation is executable on functional units, if the operation is supported 
by the functional unit.

• Cover: (NFU for auxiliary nodes in sequence graph with no HW)

• Bipartite graph:

k + - > < * NOP LOOP BR CALL

ALU x x x x

MULT x

NFU x x x x

ALU
MULT






+

− NFU

NOP

LOOP

CALL

BR
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Operation-Compatibility-Graph

• Operations are compatible,  
• if they can be executed on the same functional unit and

• if either one operation always starts after the other has finished

• or if they are on alternative paths in the control flow, such that only one of them is executed.

• Operation-compatibility-graph:  
• Set of nodes are the operations.

• Edges connect compatible operations                                                          

• Cliques in the compatibility-graph are sets of operations that can be bound to the same functional unit.  
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Operation-Conflict-Graph

• Operations are incompatible, 
• if they must be executed on different functional units.

• if they are executed in parallel due to given schedule.

• Operation-conflict-graph:  
• Nodes are the operations:

• Edges connect nodes of incompatible operations:

• Interval graph can be seen as a special case of a conflict graph, in which 
overlaps of intervals produce conflicts.

• Conflict-graph and compatibility-graph are complementary.
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Operation Binding

• Problem formulation:

 Mapping:

 such that

 and
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Operation Binding

• Each operation is bound to one functional unit, which is identified by resource type index     
and instance index      :    

• The operation must be executable on the functional unit:

• Two operations that are bound to same functional unit must be compatible:
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Operation Binding

• Example: Condition
   

B1: t1=a+b

    t2=c+d

    if e>f got B2

    t3=t1-e

    g=t2*t3

    got B3

B2: t4=t1-f

    g=t2*t4     

B3: z=z+g

Sequence graph: 
  

BR

NOP

NOP

−
−



NOP
NOP

NOP

+

NOP



Program part: 
  

+

+ 
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• Example: Condition
   

Sequencing graph with schedule:  
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Compatibility-Graph:

  
 

Alternative Control flow

  Different Clock Cycles 
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Operation Binding



• Example: Condition
   

Sequencing graph with schedule:  
 

BR

NOP

NOP

−
−



NOP
NOP

NOP

+

NOP

+

+ 

v0 v4 v6v7

v9

v10v11

v13

v14

Conflict-Graph: 
  

Conflict due to schedule

  Conflict due to different 

functional unit type 

v1 v2 v3 v8
v12 v5
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Operation Binding



• Example: Condition
   

ALU

MULT






+

−

Binding : 

NFU

NOP

LOOP

CALL

BR

v0 v4 v6v7

v9

v10v11

v13

v14

Conflict-Graph with Coloring: 
  

Conflict due to schedule

  Conflict due to different 

functional unit type 

v1 v2 v3 v8v12 v5
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Operation Binding



Left-Edge-Algorithm

• Algorithm to color an interval graph with minimum number of colors

• Worst-case complexity:

• Published by Hashimoto & Stevens, DAC 1971  
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Algorithm:
LeftEdge(G_I(V_I,E_I)) {

Sort intervals I[i]=[l[i] r[i]] in list L by increasing l[i]

Set color number c=0;

repeat {

 Goto start of List L

 Set S={}

 Set r_act=0;

 repeat {

  Select next interval I[s]=[l[s] r[s]] from List L

  if (l[s] >= r_act) {

   Insert I[s] in set S

   Set r_act=r[s]

   Delete I[s] from List L

  }

until (End of List L reached)

Assign color c to all intervals in set S

Select next color number: c=c+1;

}

until (List L is empty)

}
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Left-Edge-Algorithm



• Input:
• Given Schedule

• Interval graph of the execution times for the operations.

• Operation-conflict graph for each functional unit type.

• Left-Edge Algorithm is applied for each functional unit type with a disjoint set of colors.

• Output: Binding of operations to the functional units.
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Operation Binding with Left-Edge Algorithm





+

−

s_prev1 s_prev2 coeff

 


t6

t7

t10

t8

t9

power

Three address code:

B3: t6= s_prev1 * s_prev1

    t7= s_prev2 * s_prev2

    t8= s_prev1 * s_prev2

    t9= t8 * coeff

    t10= t6+t7

    power= t10 – t9

• Example 1: Basic block B3 of the Goertzel algorithm:

return (s_prev1 * s_prev1) + (s_prev2 * s_prev2) - (s_prev1 * s_prev2 * coeff);
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Operation Binding with Left-Edge Algorithm



• Example: SGU for basic block B3 of Goertzel algorithm
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Data flow graph Sequencing graph unit
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Operation Binding with Left-Edge Algorithm
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• Example: SGU for basic block B3 of Goertzel algorithm

• List Schedule for 2x MULT, 1x ALU

C
lo
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 C
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le
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Operation Binding with Left-Edge Algorithm



v6v6

v4

v5v3

v2v1

Operations-Conflict-Graph (MULT)

Operations-Conflict-Graph (ALU)
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• Example: SGU for basic block B3 of Goertzel algorithm

• List Schedule for 2x MULT, 1x ALU
C

lo
ck

 C
yc

le
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Operation Binding with Left-Edge Algorithm



v6v6

v4

v5v3

v2v1

Operations-Conflict-Graph (MULT)

Operations-Conflict-Graph (ALU)
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• Example: SGU for basic block B3 of Goertzel algorithm

• List Schedule for 2x MULT, 1x ALU

(MULT,1) (MULT,2) (ALU,1)

C
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ck
 C

yc
le

ACA
V1-0 31

Operation Binding with Left-Edge Algorithm
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D3-4 Register Binding



• Registers store values of variables in between operations in the data path.

• Live variables: Variables are live from their generation until their last use (lifetime). After 
their last use they are called dead.

• Register Sharing: Number of registers is decreased by storing variables with non-
overlapping lifetimes in the same register..
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Register Binding



• Variables are incompatible, if their lifetimes overlap.  

• Register-conflict graph:
• Variables are the nodes

• Incompatible variables are connected by an edge.

• Interval graph 

• Left-Edge Algorithm can compute minimal coloring.

• Coloring defines cliques of variables that can share one register.
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Register Binding



• We first need to run a Global Live Variable Analysis

• For each basic block Bx mark variables live 
• IN[Bx]: at entry as result of clock cycle 0: Input variables or variables 

computed in previous block that are used in this basic block. 

• Out [Bx]: at exit as operand of clock cycle (latency+1): Output variables, 
that are used in successor basic blocks.

• For all other clock cycles mark variables as operand or results 
of operation.

• Lifetime: Interval between variable being for the first time the 
result of an operation until being the last time operand of an 
operation

Clock cycle X: a=b+c

b  c  a 

Operand Result
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Local Live Variable Analysis
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• Example: SGU for basic block B3 of Goertzel algorithm

• List Schedule for 2x MULT, 1x ALU
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Local Live Variable Analysis
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Register Binding with Left-Edge Algorithm
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• Example: SGU for basic block B3 of Goertzel algorithm

• List Schedule for 2x MULT, 1x ALU
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Register Binding with Left-Edge Algorithm
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D3-5 Datapath Generation



• Shows data flow between functional units and registers.

• Number of multiplexers can be determined.

• Required control signals (activation signals) can be 
determined.  

• Allows to generate RTL description of data path.

• Degree of freedom to minimize multiplexers: Choice of  
equivalent functional unit inputs.
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Data Flow Graph with Schedule and Binding



• Example: SGU for basic block B3 of Goertzel algorithm
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Data Flow Graph with Schedule and Binding
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• Example: SGU for basic block B3 of Goertzel algorithm
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Data Flow Graph with Schedule and Binding
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D3-5 Control Unit Generation



Overview

• Control unit
• generates as outputs

• Control signals for data flow in data 
path (activation signals)

• Control signals for control flow in data 
path

• Control signal for the interface to the 
HW module

• Processes as inputs

• status signals from the data path

• status signals from the interface

• Finite state machine with data 
spec. (FSMD) derived from 
schedule

• Activation signals for 
operation derived from 
binding

• Interface control specification

RTL description of control 
unit 

Control unit synthesis
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Finite State Machines(FSM)

• Finite State Machine (FSM)

• FSM is 6-tuple:
• Input alphabet:

• Output alphabet:

• Set of states:

• Set of starting states:

• State transition relation:

• Output relation:

• FSM is deterministic, if there is a single starting state:
and state transition and output relation are functions: 

𝑓: 𝑋 × 𝐼 → 𝑋; 𝑔: 𝑋 × 𝐼 → 𝑂

• FSM is completely specified, if the state transition and output relation are completely defined.   
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State  Diagram

• Graphical representation of a FSM

• Directed graph

• Nodes represent the states:

• Edges represent state transitions with labels        ,

 whereby                        and                        .     
•  State transition, if transition event    occurs.

• Output event     happens, when state transition occurs.   
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Synchronous Implementation

• Control unit described as FSM

• Synchronous: 
• Common clock signal for data path and control unit

• State transition of FSM of control unit at predefined clock event  
(e.g. rising edge)

• Description:
• State coding

• Next State logic

• Output logic

DP_Status

DP_Control

Control_IN Data_INControl_OUT Data_OUT

Control Unit Data path

clock

HW Module Interface
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MUX,y

MUX,x

cMUXx out1

0 a

1 b

cMUXx

cMUXy[0]

cMUXy[1]

cMUXy[1] cMUXy[0] out2

0 0 c

0 1 d

1 0 e

1 1 f

• Example: 2 and 4 outputs

a b

outx

outy

c d e f Control Unit
(Mux-Control)
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Multiplexer Control



• Example: ALU with 4 

Operations (+,-,<,<=)

(ALU,x)

cALUx[0]

Op cALUx[1] cALUx[0] a,b stALUx out

+ 0 0 a+b

- 0 1 a-b

< 1 0 a<b 0

< 1 0 a>=b 1

<= 1 1 a<=0 0

<= 1 1 A>b 1

cALUx[1]

stALUx

a b

out

Control Unit
(ALU-Control)
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ALU-Control



Register Control

• Example: Register with Enable

D

Clk

Q

En

Control Unit
(Register Control)

cEn_x

Rx
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• Example 1: Start, Ready, Acknowledge

HW Module 
Interface

Control Unit
(Interface Control)

Start ReadyAck

Start=1

Ack=1/Ready=0

Start=0

/Ready=1

Ack=0

Rising clock edge clock is impizit
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Interface Control



• Example 2: Start, Ready, Acknowledge, Reset

Control unit
(Interface Control)

Start ReadyAck

Start=1

Ack=1 | Reset=1 / Ready=0

Start=0

Reset=1

Reset=1

Reset=0

Reset=0/Ready=1

Reset=0 & Ack =0

Reset=0

HW Module 
Interface

Rising clock edge clock is impizit

Reset
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Interface Control



• The activation signals of an operation are all control signals required for its execution.

• Activation signals may include:
• The multiplexer control signals to  establish connection between input registers, functional unit and 

output register

• Register enable signal to write result to output register

• ALU control signals to select correct operation
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Activation Signals For Operations
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• Example: SGU for basic block B3 of Goertzel algorithm
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Activation Signals for Hold and Read 

• Read activation signal is used to enter input values into the
register.

• Hold signal is used to keep value of variable in register.
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• Example: SGU for 
basic block B3 of 
Goertzel algorithm
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• The FSM with data specification describes the schedule and the control flow of the data 
path and the HW module interface.

• The operations of the data path are assigned to the states of the FSMD. 

• The FSMD has one state transition for each clock cycle.

• Transitions may depend on status signals from the data path or interface.  
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(MC2)

(MC2)

Hold t8
Hold t6

Hold t6

Hold t9

• Example: SGU for basic block B3 of Goertzel algorithm

Ack=1/Ready=0

-/Ready=1

Reset state 
transitions omitted.

v1 

v1 

v2
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(MC1) (MC1)
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(MC1) (MC1)
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Hold power

Start=1

Start=0

Ack=0

Ack=0

Ack=1/Ready=0
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State Assignment

• Number of state variables: 

• Number of possible states: 

• Minimal number of state variables:  

• State coding:

State Binary One-hot Almost one-hot

x0
000 00001 0000

x1
001 00010 0001

x2
010 00100 0010

x3
011 01000 0100

x4
100 10000 1000
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State name State variables

x0 000

x1 001

x2 010

x3 011

x4 100

x5 101

x6 110

• Example: SGU for basic block B3 of Goertzel algorithm
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Next-State and Output Logic

• Output logic:
• Inputs: State variables

• Output: Activation signals for the operations

• Next state logic:
• Inputs: State variables and status variables

• Outputs: State variables in next state
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100 0 1 DC 0 DC DC DC DC 0 0 0 DC 0

101 1 1 DC DC DC DC DC DC 0 0 1 0 1

110 1 0 DC DC DC DC DC DC DC DC DC 1 DC

• Example: SGU for basic block B3 of Goertzel algorithm
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000

X 1 X XXXX 000

• Example: SGU for basic block B3 of Goertzel algorithm (Reset 
transitions not shown in state transition diagram are includes in 
next state logic)
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Ack=0
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• Output/next state logic implemented as combinatorial circuit

DP_Control

Control_IN

Data_IN

Control_OUT

Data_OUT

Output logic

Data path
HW Module
 Interface Next state 

logic

State
Register

(SR)

Control Unit

DP_Status
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• Example: SGU for basic block B3 of Goertzel algorithm
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