
D3 –High Level Synthesis (HLS) – Binding and HW Generation

Advanced Computer Architecture

Daniel Mueller-Gritschneder

V1-0 ACA 2

D3-1 The Binding Task

Binding Tasks

• Goal: Save resources by sharing of functional units and registers.

Sequencing graph

Binding of operations to
functional units

Operation Binding

Lifetime of variables

Binding of variables to registers

Register Binding

ACA
V1-0 3

Binding after Scheduling

Sequencing graph

Scheduled Sequence Graph

Scheduling

Scheduled Sequence Graph with
Binding

Operation Binding

Concurrent operations can be scheduled
to be executed in parallel.

Scheduling restricts binding:
Concurrent operations scheduled to be
executed in parallel can not be bound
to the same functional unit.

ACA
V1-0 4

Binding before Scheduling

Concurrent operations can be bound to
the same functional unit.

Sequencing graph

Sequence Graph with Binding

Operation Binding

Scheduled Sequence Graph with
Binding

Scheduling
Binding restricts scheduling:
Concurrent operations bound to the
same functional unit can not be
executed in parallel (in same clock
cycle).

ACA
V1-0 5

V1-0 ACA 6

D3-2 Graph Coloring

• The cover of a set , is a set of subsets of such that their union is equal to .

• The partition of is a cover of , such that all subsets in the cover are disjoint.

ACA
V1-0 7

Graph Theory – Cover and Partition

• A Clique of an undirected graph , is a subset of the
nodes , in which all nodes are fully connected between each
other.

• A Clique-Cover of an undirected graph , is a set of
cliques of the graph, such that their union is equal to .

• A Clique-Partition is a disjoint clique-cover.

ACA
V1-0 8

Graph Theory - Cliques

• A coloring of an undirected graph , is a division of the nodes into subsets such
that:
• Each node is assigned a color.

• The two end nodes of each edge must have different colors.

• The minimal number of colors that allows a coloring

 of is called the chromatic number .

ACA
V1-0 9

Graph Theory – Graph Coloring

• In the complementary graph , the nodes
• that are connected with an edge in the original graph , are not

connected.

• that are not connected with an edge in the original graph ,
are connected.

• A clique-partitioning of the undirected graph , can be
found by a coloring of its complementary graph

ACA
V1-0 10

Graph Theory – Complementary Graph

• Example:

2

13

6

8

7

2

13

6

8

7
2

13

6

8

7

2

13

6

8

7

Coloring

Clique-Partitioning

ACA
V1-0 11

Graph Theory – Example Graph Coloring

• Interval Graph:

• Set of nodes describes intervals in space or time:

• Edges between nodes exist, if their intervals overlap.

ACA
V1-0 12

Graph Theory – Interval Graphs

V1-0 ACA 13

D3-3 Operation Binding

Func. Unit Types and Operation Types

• Type of functional units:

• Set of func. unit types:

• Index of functional unit:

• A functional unit is defined by its type and index, e.g. (ALU,1)

• Operation:

• Set of operation types:

• Operation type:

ACA
V1-0 14

Executability

• Operation is executable on functional units, if the operation is supported
by the functional unit.

• Cover: (NFU for auxiliary nodes in sequence graph with no HW)

• Bipartite graph:

k + - > < * NOP LOOP BR CALL

ALU x x x x

MULT x

NFU x x x x

ALU
MULT






+

− NFU

NOP

LOOP

CALL

BR

ACA
V1-0 15

Operation-Compatibility-Graph

• Operations are compatible,
• if they can be executed on the same functional unit and

• if either one operation always starts after the other has finished

• or if they are on alternative paths in the control flow, such that only one of them is executed.

• Operation-compatibility-graph:
• Set of nodes are the operations.

• Edges connect compatible operations

• Cliques in the compatibility-graph are sets of operations that can be bound to the same functional unit.

ACA
V1-0 16

Operation-Conflict-Graph

• Operations are incompatible,
• if they must be executed on different functional units.

• if they are executed in parallel due to given schedule.

• Operation-conflict-graph:
• Nodes are the operations:

• Edges connect nodes of incompatible operations:

• Interval graph can be seen as a special case of a conflict graph, in which
overlaps of intervals produce conflicts.

• Conflict-graph and compatibility-graph are complementary.

ACA
V1-0 17

Operation Binding

• Problem formulation:

 Mapping:

 such that

 and

ACA
V1-0 18

Operation Binding

• Each operation is bound to one functional unit, which is identified by resource type index
and instance index :

• The operation must be executable on the functional unit:

• Two operations that are bound to same functional unit must be compatible:

ACA
V1-0 19

Operation Binding

• Example: Condition

B1: t1=a+b

 t2=c+d

 if e>f got B2

 t3=t1-e

 g=t2*t3

 got B3

B2: t4=t1-f

 g=t2*t4

B3: z=z+g

Sequence graph:

BR

NOP

NOP

−
−



NOP
NOP

NOP

+

NOP



Program part:

+

+ 

ACA
V1-0 20

• Example: Condition

Sequencing graph with schedule:

BR

NOP

NOP

−
−



NOP
NOP

NOP

+

NOP

+

+ 

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

Compatibility-Graph:

Alternative Control flow

 Different Clock Cycles

ACA
V1-0 21

Operation Binding

• Example: Condition

Sequencing graph with schedule:

BR

NOP

NOP

−
−



NOP
NOP

NOP

+

NOP

+

+ 

v0 v4 v6v7

v9

v10v11

v13

v14

Conflict-Graph:

Conflict due to schedule

 Conflict due to different

functional unit type

v1 v2 v3 v8
v12 v5

ACA
V1-0 22

Operation Binding

• Example: Condition

ALU

MULT






+

−

Binding :

NFU

NOP

LOOP

CALL

BR

v0 v4 v6v7

v9

v10v11

v13

v14

Conflict-Graph with Coloring:

Conflict due to schedule

 Conflict due to different

functional unit type

v1 v2 v3 v8v12 v5

ACA
V1-0 23

Operation Binding

Left-Edge-Algorithm

• Algorithm to color an interval graph with minimum number of colors

• Worst-case complexity:

• Published by Hashimoto & Stevens, DAC 1971

ACA
V1-0 24

Algorithm:
LeftEdge(G_I(V_I,E_I)) {

Sort intervals I[i]=[l[i] r[i]] in list L by increasing l[i]

Set color number c=0;

repeat {

 Goto start of List L

 Set S={}

 Set r_act=0;

 repeat {

 Select next interval I[s]=[l[s] r[s]] from List L

 if (l[s] >= r_act) {

 Insert I[s] in set S

 Set r_act=r[s]

 Delete I[s] from List L

 }

until (End of List L reached)

Assign color c to all intervals in set S

Select next color number: c=c+1;

}

until (List L is empty)

}

ACA
V1-0 25

Left-Edge-Algorithm

• Input:
• Given Schedule

• Interval graph of the execution times for the operations.

• Operation-conflict graph for each functional unit type.

• Left-Edge Algorithm is applied for each functional unit type with a disjoint set of colors.

• Output: Binding of operations to the functional units.

ACA
V1-0 26

Operation Binding with Left-Edge Algorithm



+

−

s_prev1 s_prev2 coeff

 


t6

t7

t10

t8

t9

power

Three address code:

B3: t6= s_prev1 * s_prev1

 t7= s_prev2 * s_prev2

 t8= s_prev1 * s_prev2

 t9= t8 * coeff

 t10= t6+t7

 power= t10 – t9

• Example 1: Basic block B3 of the Goertzel algorithm:

return (s_prev1 * s_prev1) + (s_prev2 * s_prev2) - (s_prev1 * s_prev2 * coeff);

ACA
V1-0 27

Operation Binding with Left-Edge Algorithm

• Example: SGU for basic block B3 of Goertzel algorithm



+

−

 



NOP

NOP



+

−

s_prev1 s_prev2 coeff

 


t6

t7

t10

t8

t9

power

Data flow graph Sequencing graph unit

ACA
V1-0 28

Operation Binding with Left-Edge Algorithm

v1

1

2

3

4

5

6

7

 



+



−

NOP

NOP

v2

v3 v5

v4

v0

v6

v7

• Example: SGU for basic block B3 of Goertzel algorithm

• List Schedule for 2x MULT, 1x ALU

C
lo

ck
 C

yc
le

ACA
V1-0 29

Operation Binding with Left-Edge Algorithm

v6v6

v4

v5v3

v2v1

Operations-Conflict-Graph (MULT)

Operations-Conflict-Graph (ALU)

v3

v1 v5

v2

v4 v6

1

2

3

4

5

6

7

v2

v5

v1

v3

v4

v0

v7

• Example: SGU for basic block B3 of Goertzel algorithm

• List Schedule for 2x MULT, 1x ALU
C

lo
ck

 C
yc

le

ACA
V1-0 30

Operation Binding with Left-Edge Algorithm

v6v6

v4

v5v3

v2v1

Operations-Conflict-Graph (MULT)

Operations-Conflict-Graph (ALU)

v3

v1 v5

v2

v4 v6

1

2

3

4

5

6

7

v2

v5

v1

v3

v4

v0

v7

• Example: SGU for basic block B3 of Goertzel algorithm

• List Schedule for 2x MULT, 1x ALU

(MULT,1) (MULT,2) (ALU,1)

C
lo

ck
 C

yc
le

ACA
V1-0 31

Operation Binding with Left-Edge Algorithm

V1-0 ACA 32

D3-4 Register Binding

• Registers store values of variables in between operations in the data path.

• Live variables: Variables are live from their generation until their last use (lifetime). After
their last use they are called dead.

• Register Sharing: Number of registers is decreased by storing variables with non-
overlapping lifetimes in the same register..

ACA
V1-0 33

Register Binding

• Variables are incompatible, if their lifetimes overlap.

• Register-conflict graph:
• Variables are the nodes

• Incompatible variables are connected by an edge.

• Interval graph

• Left-Edge Algorithm can compute minimal coloring.

• Coloring defines cliques of variables that can share one register.

ACA
V1-0 34

Register Binding

• We first need to run a Global Live Variable Analysis

• For each basic block Bx mark variables live
• IN[Bx]: at entry as result of clock cycle 0: Input variables or variables

computed in previous block that are used in this basic block.

• Out [Bx]: at exit as operand of clock cycle (latency+1): Output variables,
that are used in successor basic blocks.

• For all other clock cycles mark variables as operand or results
of operation.

• Lifetime: Interval between variable being for the first time the
result of an operation until being the last time operand of an
operation

Clock cycle X: a=b+c

b c a

Operand Result

ACA
V1-0 35

Local Live Variable Analysis

s
_
p
r
e
v
1

1

2

3

4

5

6



+

−

s_prev1 s_prev2 coeff

 

t6

t7

t10

t8

t9

power
s
_
p
r
e
v
2

c
o
e
f
f

t8 t6

t7 t9

t10

p
o
w
e
r

• Example: SGU for basic block B3 of Goertzel algorithm

• List Schedule for 2x MULT, 1x ALU
C

lo
ck

 C
yc

le

ACA
V1-0 36

Local Live Variable Analysis

1

2

3

4

5

6



+

−

s_prev1 s_prev2 coeff

 

t6

t7

t10

t8

t9

power

t8 t6

t7

t9 t10

• Example: SGU for basic block B3 of Goertzel algorithm

• List Schedule for 2x MULT, 1x ALU
C

lo
ck

 C
yc

le

t8 t6

t7

t9

p
o
w
e
r

ACA
V1-0 37

Register Binding with Left-Edge Algorithm

1

2

3

4

5

6



+

−

s_prev1 s_prev2 coeff

 

t6

t7

t10

t8

t9

power

• Example: SGU for basic block B3 of Goertzel algorithm

• List Schedule for 2x MULT, 1x ALU
C

lo
ck

 C
yc

le

R1 R2 R3

t8 t6

t7

t9

t8 t6

t7
t9

t10

power

ACA
V1-0 38

Register Binding with Left-Edge Algorithm

V1-0 ACA 39

D3-5 Datapath Generation

• Shows data flow between functional units and registers.

• Number of multiplexers can be determined.

• Required control signals (activation signals) can be
determined.

• Allows to generate RTL description of data path.

• Degree of freedom to minimize multiplexers: Choice of
equivalent functional unit inputs.

ACA
V1-0 40

Data Flow Graph with Schedule and Binding

• Example: SGU for basic block B3 of Goertzel algorithm

R2

1

2

3

4

C
lo

ck
 C

yc
le

(MULT,1) (MULT,2)

s_prev1 s_prev2

coeff

R1

(MULT,2) (MULT,1)
R2

R2R3 R1

(MULT,1) (MULT,2)

R1

(MULT,2) (MULT,1)
coeff

s_prev1 s_prev2

t6

t6

t6t9

s_prev2

s_prev2

t7

t8

t8

ACA
V1-0 41

Data Flow Graph with Schedule and Binding

5

6
(ALU,1)

R2R3

R3

R1

• Example: SGU for basic block B3 of Goertzel algorithm
C

lo
ck

 C
yc

le

R1

R1

(ALU,1)

t9 t6 t7

t9
t10

power

ACA
V1-0 42

Data Flow Graph with Schedule and Binding

(ALU,1)

s_prev2

M
u

x,
5

D

Clk

Q
En

R1

Clk

coeff

s_prev1

Clk

Clk

En
3

En
2

cM
u

x1

*
(MULT,1)

power

M
u

x,
6

M
u

x,
7

M
u

x,
1

Clk

M
u

x,
2

M
u

x,
3

M
u

x,
4

*
(MULT,2)

Clk

D

Clk

Q
En

R2

D

Clk

Q
En

R3

cM
u

x2

cM
u

x3
cM

u
x4

cM
u

x5

En
1

cM
u

x6

cM
u

x7

cA
LU

ACA
V1-0 43

V1-0 ACA 44

D3-5 Control Unit Generation

Overview

• Control unit
• generates as outputs

• Control signals for data flow in data
path (activation signals)

• Control signals for control flow in data
path

• Control signal for the interface to the
HW module

• Processes as inputs

• status signals from the data path

• status signals from the interface

• Finite state machine with data
spec. (FSMD) derived from
schedule

• Activation signals for
operation derived from
binding

• Interface control specification

RTL description of control
unit

Control unit synthesis

ACA
V1-0 45

Finite State Machines(FSM)

• Finite State Machine (FSM)

• FSM is 6-tuple:
• Input alphabet:

• Output alphabet:

• Set of states:

• Set of starting states:

• State transition relation:

• Output relation:

• FSM is deterministic, if there is a single starting state:
and state transition and output relation are functions:

𝑓: 𝑋 × 𝐼 → 𝑋; 𝑔: 𝑋 × 𝐼 → 𝑂

• FSM is completely specified, if the state transition and output relation are completely defined.

ACA
V1-0 46

State Diagram

• Graphical representation of a FSM

• Directed graph

• Nodes represent the states:

• Edges represent state transitions with labels ,

 whereby and .
• State transition, if transition event occurs.

• Output event happens, when state transition occurs.

ACA
V1-0 47

Synchronous Implementation

• Control unit described as FSM

• Synchronous:
• Common clock signal for data path and control unit

• State transition of FSM of control unit at predefined clock event
(e.g. rising edge)

• Description:
• State coding

• Next State logic

• Output logic

DP_Status

DP_Control

Control_IN Data_INControl_OUT Data_OUT

Control Unit Data path

clock

HW Module Interface

ACA
V1-0 48

MUX,y

MUX,x

cMUXx out1

0 a

1 b

cMUXx

cMUXy[0]

cMUXy[1]

cMUXy[1] cMUXy[0] out2

0 0 c

0 1 d

1 0 e

1 1 f

• Example: 2 and 4 outputs

a b

outx

outy

c d e f Control Unit
(Mux-Control)

ACA
V1-0 49

Multiplexer Control

• Example: ALU with 4

Operations (+,-,<,<=)

(ALU,x)

cALUx[0]

Op cALUx[1] cALUx[0] a,b stALUx out

+ 0 0 a+b

- 0 1 a-b

< 1 0 a<b 0

< 1 0 a>=b 1

<= 1 1 a<=0 0

<= 1 1 A>b 1

cALUx[1]

stALUx

a b

out

Control Unit
(ALU-Control)

ACA
V1-0 50

ALU-Control

Register Control

• Example: Register with Enable

D

Clk

Q

En

Control Unit
(Register Control)

cEn_x

Rx

ACA
V1-0 51

• Example 1: Start, Ready, Acknowledge

HW Module
Interface

Control Unit
(Interface Control)

Start ReadyAck

Start=1

Ack=1/Ready=0

Start=0

/Ready=1

Ack=0

Rising clock edge clock is impizit

ACA
V1-0 52

Interface Control

• Example 2: Start, Ready, Acknowledge, Reset

Control unit
(Interface Control)

Start ReadyAck

Start=1

Ack=1 | Reset=1 / Ready=0

Start=0

Reset=1

Reset=1

Reset=0

Reset=0/Ready=1

Reset=0 & Ack =0

Reset=0

HW Module
Interface

Rising clock edge clock is impizit

Reset

ACA
V1-0 53

Interface Control

• The activation signals of an operation are all control signals required for its execution.

• Activation signals may include:
• The multiplexer control signals to establish connection between input registers, functional unit and

output register

• Register enable signal to write result to output register

• ALU control signals to select correct operation

ACA
V1-0 54

Activation Signals For Operations

(ALU,1)

s_prev2

M
u

x,
5

D

Clk

Q
En

R1

Clk

coeff

s_prev1

Clk

Clk

En
3

En
2

cM
u

x1

*
(MULT,1)

power

M
u

x,
6

M
u

x,
7

M
u

x,
1

Clk

M
u

x,
2

M
u

x,
3

M
u

x,
4

*
(MULT,2)

Clk

D

Clk

Q
En

R2

D

Clk

Q
En

R3

cM
u

x2

cM
u

x3
cM

u
x4

cM
u

x5

En
1

cM
u

x6

cM
u

x7

cA
LU

ACA
V1-0 55

(ALU,1)

s_prev2

M
u

x,
5

D

Clk

Q
En

R1

Clk

coeff

s_prev1

Clk

Clk

En
3

En
2

cM
u

x1

*
(MULT,1)

power

M
u

x,
6

M
u

x,
7

M
u

x,
1

Clk

M
u

x,
2

M
u

x,
3

M
u

x,
4

*
(MULT,2)

Clk

D

Clk

Q
En

R2

D

Clk

Q
En

R3

cM
u

x2

cM
u

x3
cM

u
x4

cM
u

x5

En
1

cM
u

x6

cM
u

x7

t6= s_prev1 * s_prev1

0 0 1

MC1,MC2
MC2

cA
LU

ACA
V1-0 56

(ALU,1)

s_prev2

M
u

x,
5

D

Clk

Q
En

R1

Clk

coeff

s_prev1

Clk

Clk

En
3

En
2

cM
u

x1

*
(MULT,1)

power

M
u

x,
6

M
u

x,
7

M
u

x,
1

Clk

M
u

x,
2

M
u

x,
3

M
u

x,
4

*
(MULT,2)

Clk

D

Clk

Q
En

R2

D

Clk

Q
En

R3

cM
u

x2

cM
u

x3
cM

u
x4

cM
u

x5

En
1

cM
u

x6

cM
u

x7

t7= s_prev2 * s_prev2

1 1 101

cA
LUMC1,MC2

MC2

ACA
V1-0 57

(ALU,1)

s_prev2

M
u

x,
5

D

Clk

Q
En

R1

Clk

coeff

s_prev1

Clk

Clk

En
3

En
2

cM
u

x1

*
(MULT,1)

power

M
u

x,
6

M
u

x,
7

M
u

x,
1

Clk

M
u

x,
2

M
u

x,
3

M
u

x,
4

*
(MULT,2)

Clk

D

Clk

Q
En

R2

D

Clk

Q
En

R3

cM
u

x2

cM
u

x3
cM

u
x4

cM
u

x5

En
1

cM
u

x6

cM
u

x7

t8= s_prev1 * s_prev2

0 0 110

cA
LUMC1,MC2

MC2

ACA
V1-0 58

(ALU,1)

s_prev2

M
u

x,
5

D

Clk

Q
En

R1

Clk

coeff

s_prev1

Clk

Clk

En
3

En
2

cM
u

x1

*
(MULT,1)

power

M
u

x,
6

M
u

x,
7

M
u

x,
1

Clk

M
u

x,
2

M
u

x,
3

M
u

x,
4

*
(MULT,2)

Clk

D

Clk

Q
En

R2

D

Clk

Q
En

R3

cM
u

x2

cM
u

x3
cM

u
x4

cM
u

x5

En
1

cM
u

x6

cM
u

x7

t9= t8 * coeff

1 1 1

cA
LUMC1,MC2

MC2

ACA
V1-0 59

(ALU,1)

s_prev2

M
u

x,
5

D

Clk

Q
En

R1

Clk

coeff

s_prev1

Clk

Clk

En
3

En
2

cM
u

x1

*
(MULT,1)

power

M
u

x,
6

M
u

x,
7

M
u

x,
1

Clk

M
u

x,
2

M
u

x,
3

M
u

x,
4

*
(MULT,2)

Clk

D

Clk

Q
En

R2

D

Clk

Q
En

R3

cM
u

x2

cM
u

x3
cM

u
x4

cM
u

x5

En
1

cM
u

x6

cM
u

x7

t10= t6+t7

01

cc1

00

cA
LU

0

ACA
V1-0 60

(ALU,1)

s_prev2

M
u

x,
5

D

Clk

Q
En

R1

Clk

coeff

s_prev1

Clk

Clk

En
3

En
2

cM
u

x1

*
(MULT,1)

power

M
u

x,
6

M
u

x,
7

M
u

x,
1

Clk

M
u

x,
2

M
u

x,
3

M
u

x,
4

*
(MULT,2)

Clk

D

Clk

Q
En

R2

D

Clk

Q
En

R3

cM
u

x2

cM
u

x3
cM

u
x4

cM
u

x5

En
1

cM
u

x6

cM
u

x7

Power = t10-t9

11

cc1

00

cA
LU

1 0

ACA
V1-0 61

SG
 n

o
d

e

M
u

lt
i-

C
yc

le

O
p

er
at

io
n

En
1

En
2

En
3

cM
u

x1

cM
u

x2

cM
u

x3

cM
u

x4

cM
u

x5
[1

]

cM
u

x5
[0

]

cM
u

x6

cM
u

x7

cA
LU

v1 MC1
MC2

t6=s_prev1*s_prev1

1
0
0

0
0

v2 MC1
MC2

t8=s_prev1*s_prev2

1
0
0

0
0 1 0

v3 MC1
MC2

t7=s_prev2*s_prev2

1
1
1

1
1 0 1

v4
t10=t6+t7 1 0 0 0 0

v5 MC1
MC2

t9=coeff*t7

1
1
1

1
1

v6
power=t10-t9 1 0 0 1 0 1

• Example: SGU for basic block B3 of Goertzel algorithm

ACA
V1-0 62

Activation Signals For Operations

Activation Signals for Hold and Read

• Read activation signal is used to enter input values into the
register.

• Hold signal is used to keep value of variable in register.

ACA
V1-0 63

(ALU,1)

s_prev2

M
u

x,
5

D

Clk

Q
En

R1

Clk

coeff

s_prev1

Clk

Clk

En
3

En
2

cM
u

x1

*
(MULT,1)

power

M
u

x,
6

M
u

x,
7

M
u

x,
1

Clk

M
u

x,
2

M
u

x,
3

M
u

x,
4

*
(MULT,2)

Clk

D

Clk

Q
En

R2

D

Clk

Q
En

R3

cM
u

x2

cM
u

x3
cM

u
x4

cM
u

x5

En
1

cM
u

x6

cM
u

x7

Hold t6

0

cc1

cA
LU

ACA
V1-0 64

(ALU,1)

s_prev2

M
u

x,
5

D

Clk

Q
En

R1

Clk

coeff

s_prev1

Clk

Clk

En
3

En
2

cM
u

x1

*
(MULT,1)

power

M
u

x,
6

M
u

x,
7

M
u

x,
1

Clk

M
u

x,
2

M
u

x,
3

M
u

x,
4

*
(MULT,2)

Clk

D

Clk

Q
En

R2

D

Clk

Q
En

R3

cM
u

x2

cM
u

x3
cM

u
x4

cM
u

x5

En
1

cM
u

x6

cM
u

x7

Hold t8

0

cc1

cA
LU

ACA
V1-0 65

(ALU,1)

s_prev2

M
u

x,
5

D

Clk

Q
En

R1

Clk

coeff

s_prev1

Clk

Clk

En
3

En
2

cM
u

x1

*
(MULT,1)

power

M
u

x,
6

M
u

x,
7

M
u

x,
1

Clk

M
u

x,
2

M
u

x,
3

M
u

x,
4

*
(MULT,2)

Clk

D

Clk

Q
En

R2

D

Clk

Q
En

R3

cM
u

x2

cM
u

x3
cM

u
x4

cM
u

x5

En
1

cM
u

x6

cM
u

x7

Hold t9

0

cc1

cA
LU

ACA
V1-0 66

(ALU,1)

s_prev2

M
u

x,
5

D

Clk

Q
En

R1

Clk

coeff

s_prev1

Clk

Clk

En
3

En
2

cM
u

x1

*
(MULT,1)

power

M
u

x,
6

M
u

x,
7

M
u

x,
1

Clk

M
u

x,
2

M
u

x,
3

M
u

x,
4

*
(MULT,2)

Clk

D

Clk

Q
En

R2

D

Clk

Q
En

R3

cM
u

x2

cM
u

x3
cM

u
x4

cM
u

x5

En
1

cM
u

x6

cM
u

x7

Hold Power

10

cc1

cA
LU

ACA
V1-0 67

O
p

er
at

io
n

En
1

En
2

En
3

cM
U

X
7

Hold t6 0

Hold t8 0

Hold t9 0

Hold power 0 1

• Example: SGU for
basic block B3 of
Goertzel algorithm

ACA
V1-0 68

Activation Signals for Hold and Read

• The FSM with data specification describes the schedule and the control flow of the data
path and the HW module interface.

• The operations of the data path are assigned to the states of the FSMD.

• The FSMD has one state transition for each clock cycle.

• Transitions may depend on status signals from the data path or interface.

ACA
V1-0 69

FSM with Data Specification

(MC2)

(MC2)

Hold t8
Hold t6

Hold t6

Hold t9

• Example: SGU for basic block B3 of Goertzel algorithm

Ack=1/Ready=0

-/Ready=1

Reset state
transitions omitted.

v1

v1

v2

v2

(MC1) (MC1)

(MC2)

v3

v3

v5

v5

(MC1) (MC1)

(MC2)

v4

v6

Hold power

Start=1

Start=0

Ack=0

Ack=0

Ack=1/Ready=0

ACA
V1-0 70

FSM with Data Specification (FSMD)

State Assignment

• Number of state variables:

• Number of possible states:

• Minimal number of state variables:

• State coding:

State Binary One-hot Almost one-hot

x0
000 00001 0000

x1
001 00010 0001

x2
010 00100 0010

x3
011 01000 0100

x4
100 10000 1000

ACA
V1-0 71

State name State variables

x0 000

x1 001

x2 010

x3 011

x4 100

x5 101

x6 110

• Example: SGU for basic block B3 of Goertzel algorithm

ACA
V1-0 72

State Assignment

Next-State and Output Logic

• Output logic:
• Inputs: State variables

• Output: Activation signals for the operations

• Next state logic:
• Inputs: State variables and status variables

• Outputs: State variables in next state

ACA
V1-0 73

St
at

e
va

ri
ab

le
s

(S
V

)

R
ea

d
y

En
1

En
2

En
3

cM
u

x1

cM
u

x2

cM
u

x3

cM
u

x4

cM
u

x5
[1

]

cM
u

x5
[0

]

cM
u

x6

cM
u

x7

cA
LU

000 0 DC DC DC 0 0 0 0 DC DC DC DC DC

001 0 1 1 DC 0 0 0 0 1 0 DC DC DC

010 0 0 0 DC 1 1 1 1 DC DC DC DC DC

011 0 1 0 1 1 1 1 1 0 1 DC DC DC

100 0 1 DC 0 DC DC DC DC 0 0 0 DC 0

101 1 1 DC DC DC DC DC DC 0 0 1 0 1

110 1 0 DC DC DC DC DC DC DC DC DC 1 DC

• Example: SGU for basic block B3 of Goertzel algorithm

ACA
V1-0 74

Next-State and Output Logic

Start Reset Ack SV SV next

0 0 X 000 000

1 0 X 000 001

X 0 X 001 010

X 0 X 010 011

X 0 X 011 000

X 0 X 100 101

X
X

0
0

0
1

101
101

110
000

X
X

0
0

0
1

110
110

110
000

X 1 X XXXX 000

• Example: SGU for basic block B3 of Goertzel algorithm (Reset
transitions not shown in state transition diagram are includes in
next state logic)

Start=1

Start=0

Ack=0

Ack=1

Ack=1

Ack=0

ACA
V1-0 75

Next-State and Output Logic

• Output/next state logic implemented as combinatorial circuit

DP_Control

Control_IN

Data_IN

Control_OUT

Data_OUT

Output logic

Data path
HW Module
 Interface Next state

logic

State
Register

(SR)

Control Unit

DP_Status

ACA
V1-0 76

FSM Implementation

Interface

addr

req

ack

Control Unit

Start
Ack
Ready

En
3

cM
u

x1
cM

u
x2

cM
u

x3
cM

u
x4

cM
u

x5
cM

u
x6

cM
u

x7
cA

LU

En
3

cM
u

x1
cM

u
x2

cM
u

x3
cM

u
x4

cM
u

x5
cM

u
x6

cM
u

x7
cA

LU

d
p

_d
at

i1

p
o

w
er

dati

dato

Start
Ack

Ready

Data path

Clk

Clk

Clk

addr

dato

dati

ack

req

Clk

• Example: SGU for basic block B3 of Goertzel algorithm

d
p

_d
at

o

d
p

_d
at

i2
d

p
_d

at
i3

s_
p

re
v1

s_
p

re
v2

co
ef

f

En
2

En
2

En
1

En
1

ResetReset

ACA
V1-0 77

FSM Implementation

	Folie 1
	Folie 2
	Folie 3: Binding Tasks
	Folie 4: Binding after Scheduling
	Folie 5: Binding before Scheduling
	Folie 6
	Folie 7: Graph Theory – Cover and Partition
	Folie 8: Graph Theory - Cliques
	Folie 9: Graph Theory – Graph Coloring
	Folie 10: Graph Theory – Complementary Graph
	Folie 11: Graph Theory – Example Graph Coloring
	Folie 12: Graph Theory – Interval Graphs
	Folie 13
	Folie 14: Func. Unit Types and Operation Types
	Folie 15: Executability
	Folie 16: Operation-Compatibility-Graph
	Folie 17: Operation-Conflict-Graph
	Folie 18: Operation Binding
	Folie 19: Operation Binding
	Folie 20: Operation Binding
	Folie 21: Operation Binding
	Folie 22: Operation Binding
	Folie 23: Operation Binding
	Folie 24: Left-Edge-Algorithm
	Folie 25: Left-Edge-Algorithm
	Folie 26: Operation Binding with Left-Edge Algorithm
	Folie 27: Operation Binding with Left-Edge Algorithm
	Folie 28: Operation Binding with Left-Edge Algorithm
	Folie 29: Operation Binding with Left-Edge Algorithm
	Folie 30: Operation Binding with Left-Edge Algorithm
	Folie 31: Operation Binding with Left-Edge Algorithm
	Folie 32
	Folie 33: Register Binding
	Folie 34: Register Binding
	Folie 35: Local Live Variable Analysis
	Folie 36: Local Live Variable Analysis
	Folie 37: Register Binding with Left-Edge Algorithm
	Folie 38: Register Binding with Left-Edge Algorithm
	Folie 39
	Folie 40: Data Flow Graph with Schedule and Binding
	Folie 41: Data Flow Graph with Schedule and Binding
	Folie 42: Data Flow Graph with Schedule and Binding
	Folie 43
	Folie 44
	Folie 45: Overview
	Folie 46: Finite State Machines(FSM)
	Folie 47: State Diagram
	Folie 48: Synchronous Implementation
	Folie 49: Multiplexer Control
	Folie 50: ALU-Control
	Folie 51: Register Control
	Folie 52: Interface Control
	Folie 53: Interface Control
	Folie 54: Activation Signals For Operations
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62: Activation Signals For Operations
	Folie 63: Activation Signals for Hold and Read
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68: Activation Signals for Hold and Read
	Folie 69: FSM with Data Specification
	Folie 70: FSM with Data Specification (FSMD)
	Folie 71: State Assignment
	Folie 72: State Assignment
	Folie 73: Next-State and Output Logic
	Folie 74: Next-State and Output Logic
	Folie 75: Next-State and Output Logic
	Folie 76: FSM Implementation
	Folie 77: FSM Implementation

