Y Informatics

Advanced Computer Architecture
D3 —High Level Synthesis (HLS) — Binding and HW Generation

Daniel Mueller-Gritschneder

D3-1 The Binding Task

V1-0 ACA

Binding Tasks

V1-0

Sequencing graph

<

{ Operation Binding

<

Binding of operations to
functional units

Lifetime of variables

a0

[Register Binding J

<

Binding of variables to registers

e Goal: Save resources by sharing of functional units and registers.

ACA

Binding after Scheduling

V1-0

Sequencing graph

a0

[Scheduling J

<

Scheduled Sequence Graph

{ Operation Binding }

<

Scheduled Sequence Graph with
Binding

ACA

Concurrent operations can be scheduled
to be executed in parallel.

Scheduling restricts binding:
Concurrent operations scheduled to be
executed in parallel can not be bound
to the same functional unit.

Binding before Scheduling

Sequencing graph

<

Operation Binding

<

Sequence Graph with Binding

a0

J Concurrent operations can be bound to
the same functional unit.

)

: Binding restricts scheduling:
[Scheduling J ,
Concurrent operations bound to the
@ same functional unit can not be
Scheduled Sequence Graph with executed in parallel (in same clock
Binding cycle).

V1-0 ACA 5

D3-2 Graph Coloring

V1-0 ACA

Graph Theory — Cover and Partition

* The cover of a set .S, is a set of subsets of §' such that their union is equal to S.

* The partition of S'is a cover of .S, such that all subsets in the cover are disjoint.

V1-0 ACA 7

Graph Theory - Cliques

* A Clique of an undirected graph G(V, E)is a subset of the
nodesV, in which all nodes are fully connected between each
other.

* A Clique-Cover of an undirected graph G(V, E)s a set of
cliques of the graph, such that their union is equal to V.

* A Clique-Partition is a disjoint clique-cover.

V1-0 ACA 8

Graph Theory — Graph Coloring

* A coloring of an undirected graphG(V, F) is a division of the nodes Vinto subsets such
that:

* Each node is assigned a color.
* The two end nodes of each edge must have different colors.

* The minimal number of colors that allows a coloring
of G(V, E) is called the chromatic number X(G).

V1-0 ACA 9

Graph Theory — Complementary Graph

* In the complementary graph G(V,V x V\E), the nodes

e that are connected with an edge in the original graph G(V, E), are not
connected.

* that are not connected with an edge in the original graph G(V, E),
are connected.

* A clique-partitioning of the undirected graph G(V, E) can be
found by a coloring of its complementary graph G(V,V x V\E)

V1-0 ACA 10

Graph Theory — Example Graph Coloring

* Example:

G(V, E)

V1-0 ACA 11

Graph Theory — Interval Graphs

* Interval Graph: G;(V;, Er)

* Set of nodes describes intervals in space or time:

V[— {Il,IQ, ...,IS} with IS — [ls ?“S]

* Edges between nodes exist, if their intervals overlap.

V1-0 ACA 12

V1-0

D3-3 Operation Binding

ACA

13

Func. Unit Types and Operation Types

* Type of functional units: k. € K

* Set of func. unit types: K = {ALU, MULT, ...}
* Index of functional unit: z- = 1,2, ...
* A functional unit is defined by its type and index, e.g. (ALU, 1)

* Operation: O = {NOP,+, —, >, <, %, ...}
 Set of operation types: v;
* Operation type: o(v;) € O

V1-0 ACA 14

Executability

e Operation is executable on functional units, if the operation is supported
by the functional unit.

e Cover: (NFU for auxiliary nodes in sequence graph with no HW)

* Bipartite graph:

k + - > < * NOP LOOP BR | CALL
ALU X X X X
MULT X
NFU X X X X

;

(vop
@<z
(&

V1-0 15

Operation-Compatibility-Graph

e Operations are compatible,
* if they can be executed on the same functional unit and
* if either one operation always starts after the other has finished
e orif they are on alternative paths in the control flow, such that only one of them is executed.

* Operation-compatibility-graph: GL(V, ET)
* Set of nodes are the operations. |/ — {v; :i=1,2,..n}
* Edges connect compatible operations
EtT ={(vi,v5) : 1,5 =1,2,...,n}
* Cliques in the compatibility-graph are sets of operations that can be bound to the same functional unit.

V1-0 ACA 16

Operation-Conflict-Graph

e Operations are incompatible,
* if they must be executed on different functional units.
 if they are executed in parallel due to given schedule.

* Operation-conflict-graph: G (V,E™)
* Nodes are the operations: 1/ — {vi:i=1,2,..n}
* Edges connect nodes of incompatible operations:
E™ ={(vi,vj) 14,7 =1,2,...,n}
* Interval graph can be seen as a special case of a conflict graph, in which
overlaps of intervals produce conflicts.
e Conflict-graph and compatibility-graph are complementary.

V1-0 ACA 17

Operation Binding

 Problem formulation:

Mapping: b:V—>Kx1,2,3,..

B(vi) = (kr,zr) mite=1,...,n
such that (kr,0(v;)) € Ey
and ﬁ(vz) 7& ﬁ(?}j) Vi,j : (”Ui,”Uj) c b~

V1-0 ACA 18

Operation Binding

e Each operation is bound to one functional unit, which is identified by resource type index
and instance index k.

* The operation must be executable on the functional unit: <5

B(v;) = (kryz,) miti=1,..n

* Two operations that are bound to same functional unit must be compatible:

(kr,0(v;)) € Eg
B(vi) # B(vy) Vi (vi,v5) € B~

V1-0 ACA 19

Operation Binding

* Example: Condition

Program part:

Sequence graph:

Bl: tl=a+b
t2=c+d
1f e>f got B2
t3=tl-e
g=t2*t3
got B3

B2: t4=tl-f
g=t2*t4

B3: z=z+g

Up | NOP —— -
P =~
m 7 -
/ =~
/ v
I
/1, U7
Uy /// 012
- P d
BR «Z ’Ug
N (5
\ V13
v W QE’G’
5\+ \
1
) 'y ’Ulo ’014
Vs [NOP ‘\\\
N " /7
S o -

V1-0 ACA

20

Operation Binding

. Compatibility-Graph:
 Example: Condition

Sequencing graph with schedule:

to =1
Up | NOP em - t1:1
N\ ' 3 =
’Ul_|_U2_|_ < ’I/ @ 11 £, =3
” Ll (Dvi2 tg=7
BR ::\ ’Ug tr =3
> ts = 4
A NN v 8
“l AW Y fug @ 13 t9:5

-
>
2
O €
<
-
-
7
<
p—t
o
‘&
=
—
P
~ ~+
[
N = O
Il
= O O

~ -7 t13 =9 Alternative Control flow

— Different Clock Cycles

V1-0 ACA 21

o]0]
=
©
=
o

C
RS,
i)

(©

| -

)

o
@

e Example: Condition

Conflict-Graph:

—— Conflict due to schedule
— Conflict due to different
functional unit type

Sequencing graph with schedule:

NoasEAS U IniNe)

N O~ M O

0
01234567891
R R R A)

112
113
t14

1
V14 t11

VAR S _\
/
\ ~ 7
~ ~ - 7
o \
S \r,
\V lyy
o e |s &
@)
z nué_. s 2
L
S\ = g
-+ -
-)
M

22

ACA

V1-0

Operation Binding

* Example: Condition

Conflict-Graph with Coloring: Binding :

(kl,Zl) = (NFU, 1)

(kQ, Zz) = (ALU, 1)

W

(&
Bl

(kg, Zg) = (ALU, 2)

(Fa,24) = (MULT, 1)

- —— Conflict due to schedule
— Conflict due to different
functional unit type

(8l

V1-0 ACA 23

Left-Edge-Algorithm

* Algorithm to color an interval graph with minimum number of colors

» Worst-case complexity: O(|V| - log(|V]))

e Published by Hashimoto & Stevens, DAC 1971

V1-0 ACA 24

Left-Edge-Algorithm

Algorithm:

LeftEdge (G I(V _I,E I)) {

Sort intervals I[i]=[1[1i] r[i]] in list L by increasing 1[i]
Set color number c=0;
repeat ({

Goto start of List L

Set S={}

Set r act=0;

repeat ({

Select next interval I[s]=[1l[s] r[s]] from List L

if (1[s] >= r act) {
Insert I[s] in set S
Set r act=r[s]
Delete I[s] from List L
}
until (End of List L reached)
Assign color ¢ to all intervals in set S
Select next color number: c=c+l;
}
until (List L is empty)

V1-0 ACA 75

Operation Binding with Left-Edge Algorithm

* Input:
* Given Schedule
* Interval graph of the execution times for the operations.
* Operation-conflict graph for each functional unit type.

» Left-Edge Algorithm is applied for each functional unit type with a disjoint set of colors.

e Output: Binding of operations to the functional units.

V1-0 ACA 26

Operation Binding with Left-Edge Algorithm

* Example 1: Basic block B3 of the Goertzel algorithm:

return (s prevl * s prevl) + (s prev2Z * s prevZ2) - (s prevl * s prevZ * coeff);

s prevl s _prevz coeff
Three address code:

B3: to= s prevl * s prevl
t/7/= s prev2Z * s prevz
t8= s prevl * s prevZ
t9= t8 * coeff
t1l0= to+t7
power= tl1l0 — t9

V1-0 ACA 27

Operation Binding with Left-Edge Algorithm

 Example: SGU for basic block B3 of Goertzel algorithm

Data flow graph Sequencing graph unit

s prevl S _prevz coeff

V1-0 ACA 28

Operation Binding with Left-Edge Algorithm

* Example: SGU for basic block B3 of Goertzel algorithm

e List Schedule for 2x MULT, 1x ALU

et e B N B E D L

= Clock Cycle

N o o BWwWN

V1-0 ACA 29

Operation Binding with Left-Edge Algorithm

* Example: SGU for basic block B3 of Goertzel algorithm

g * List Schedule for 2x MULT, 1x ALU
o
x Operations-Conflict-Graph (MULT)
O
1 v,
2 VI v2 -----------------------------
R b o R
. V3 | Vs |77 77T
............................. Operations-Conflict-Graph (ALU)
5 v,
e Vel @ W
7 Vs
V1-0 ACA 30

Operation Binding with Left-Edge Algorithm

* Example: SGU for basic block B3 of Goertzel algorithm

g * List Schedule for 2x MULT, 1x ALU
U . .
E (MULT1) (MULT.2) (ALU.1) Operations-Conflict-Graph (MULT)
[
1 v,
2 - VI --------- VZ _________________
i o B e B
. Vs 7777777 Vs |77 77777t TTTe
_________________________ . Operations-Conflict-Graph (ALU)
5 Vv,
o v | &
7 Vs

V1-0 ACA 31

V1-0

D3-4 Register Binding

ACA

32

Register Binding

* Registers store values of variables in between operations in the data path.

* Live variables: Variables are live from their generation until their last use (lifetime). After
their last use they are called dead.

* Register Sharing: Number of registers is decreased by storing variables with non-
overlapping lifetimes in the same register..

V1-0 ACA 33

Register Binding

Variables are incompatible, if their lifetimes overlap.

Register-conflict graph:
* Variables are the nodes
* Incompatible variables are connected by an edge.
* Interval graph

Left-Edge Algorithm can compute minimal coloring.

Coloring defines cliques of variables that can share one register.

V1-0 ACA 34

Local Live Variable Analysis

We first need to run a Global Live Variable Analysis

* For each basic block Bx mark variables live

* IN[Bx]: at entry as result of clock cycle O: Input variables or variables
computed in previous block that are used in this basic block.

* Out [Bx]: at exit as operand of clock cycle (latency+1): Output variables,
that are used in successor basic blocks.

For all other clock cycles mark variables as operand or results
of operation.

Lifetime: Interval between variable being for the first time the
result of an operation until being the last time operand of an
operation L oc 4

Clock cycle X: a=b+c

Result

V1-0 ACA 35

Local Live Variable Analysis

* Example: SGU for basic block B3 of Goertzel algorithm
e List Schedule for 2x MULT, 1x ALU

Clock Cycle

o U A~ W N

V1-0 36

Register Binding with Left-Edge Algorithm

* Example: SGU for basic block B3 of Goertzel algorithm
e List Schedule for 2x MULT, 1x ALU

Clock Cycle

V1-0 ACA 37

Register Binding with Left-Edge Algorithm

* Example: SGU for basic block B3 of Goertzel algorithm
e List Schedule for 2x MULT, 1x ALU

Clock Cycle

V1-0 ACA 38

V1-0

D3-5 Datapath Generation

ACA

39

Data Flow Graph with Schedule and Binding

* Shows data flow between functional units and registers.
 Number of multiplexers can be determined.

e Required control signals (activation signals) can be
determined.

* Allows to generate RTL description of data path.

* Degree of freedom to minimize multiplexers: Choice of
equivalent functional unit inputs.

V1-0 ACA 40

Data Flow Graph with Schedule and Binding

* Example: SGU for basic block B3 of Goertzel algorithm

* ‘ * § S_preVZ
1 (MULT, 1) (MULT,2)
s _prevl 7 1 ¥ S prev2
2 (MULT,1) (MULT,2)
£ . 4
> t8
[T Rl """"""""""""
=z
é coeff V v ! s prev2 _¥ v
(MULT;2) s (MULT,1)
_____________________________ R1 |-~ ..
|
4 coeff : ¥ S prev2 _¥ v
(MULT,2) (MULT 1)
L 2 L 2
t9 T
---------------- HCEIN R -y T
Vio ACA

41

Data Flow Graph with Schedule and Binding

 Example: SGU for basic block B3 of Goertzel algorithm

Clock Cycle

V1-0 ACA 42

]
S
s
/\
cMux7/ W,v\ LXNIA\

cMux6

»D Q
En
O~ cik

Clk

En
o> ik

Clk

En3
En2

Enl
cMux5

\A/\/\/

cALU D—

AN

cMux4
cMux3

cMux2
cMux1

VNV VY

ACA

V1-0

D3-5 Control Unit Generation

ACA

44

Overview

* Finite state machine with data e Control unit

spec. (FSMD) derived from * generates as outputs
SCh?dU.le . * Control signals for data flow in data
* Activation signals for path (activation signals)

operation derived from

* Control signals for control flow in data
binding @ path
* Interface control specification

* Control signal for the interface to the

HW module
* Processes as inputs
@ status signals from the data path
{ Control unit synthesis J status signals from the interface
RTL description of control
unit
V1-0 ACA 45

Finite State Machines(FSM)

Finite State Machine (FSM)

FSM is 6-tuple:
* Input alphabet: 1
e OQOutput alphabet: O
« Set of states: X
* Set of starting states: [t C X
+ State transition relation: f C (X x I X X)

* Outputrelation: g C (X x O x X)

FSM is deterministic, if there is a single starting state: | R|=1
and state transition and output relation are functions:
X xD)->X;g:(X xI) >0

FSM is completely specified, if the state transition and output relation are completely defined.

V1-0 ACA 46

State Diagram

Graphical representation of a FSM
Directed graph Gz(V. E)

* Nodes represent the states: z; € X

* Edges represent state transitions with labels ¢/a,

whereby (z;,e,z;) € f and (z;,a,z;) €g.
e State transition, if transition evente occurs.
* Output event a happens, when state transition occurs.

62/@2

afo((@}) et

63/@3

V1-0 ACA 47

Synchronous Implementation

e Control unit described as FSM

e Synchronous:

 Common clock signal for data path and control unit

 State transition of FSM of control unit at predefined clock event
(e.g. rising edge)

* Description: ‘clock
e State coding
. (I\)lel(t S:e:te.loglc ‘L DP_ControI\ 1’
e Output logic }
Control Unit d Data path

DP Status

Control_OUT [] Control_IN [Data_OUT [] Data_IN { ‘

HW Module Interface

V1-0 ACA 48

Multiplexer Control

 Example: 2 and 4 outputs

a b
cMUXx outl l l
cMUXXx
.
1 b l
outx
c d e f Control Unit
cMUXy[1] | cMUXy[0] out2 (Mux-Control)
0 0 c cMUXy|[0]
<€
1 0 e cMUXy[1]
)) f U ouy

V1-0 ACA 49

ALU-Control

- Example: ALU with 4 Op | CcALUX[1] | cALUX[0] ab | SstALUX out
Operations (+,-,<,<=) . 0 0 b
- 0 1 a-b
< 1 0 a<b 0
< 1 0 a>=b 1
<= 1 1 a<=0 0
<= 1 1 A>b 1

a b
ﬂ ﬂ cALUx[0]
\

~ <
(ALU,x) / Control Unit
cALUx[1] (ALU-Control)
u out
>
StALUx
ACA

V1-0 .

Register Control

 Example: Register with Enable

V1-0

Control Unit
(Register Control)

En

cEn_x

Rx

>C|k

ACA

51

Interface Control

« Example 1: Start, Ready, Acknowledge

Rising clock edge | clock is impizit

Start=0

Control Unit
(Interface Control)

T Start TAck l Ready

HW Module
Interface

Start=1

/Ready=1
Ack=1/Ready=0

Ack=0

V1-0 ACA 52

Interface Control

« Example 2: Start, Ready, Acknowledge, Reset

Rising clock edge | clock is impizit

Reset=1

Start=0

Control unit
(Interface Control)

TStartT Ackl ReadyT Reset

HW Module
Interface

Reset=0

Reset=0/Ready=1
Ack=1 | Reset=1 / Ready=0
Reset=0 & Ack =0

V1-0 ACA 53

Activation Signals For Operations

* The activation signals of an operation are all control signals required for its execution.

* Activation signals may include:

* The multiplexer control signals to establish connection between input registers, functional unit and
output register

* Register enable signal to write result to output register
e ALU control signals to select correct operation

V1-0 ACA 54

]
S
s
/\
cMux7/ W,v\ LXNIA\

cMux6

»D Q
En
O~ cik

Clk

En
o> ik

Clk

En3
En2

Enl
cMux5

\A/\/\/

cALU D—

AN

cMux4
cMux3

cMux2
cMux1

VNV VY

ACA

(@] O O 0 (] Q S 2
MC1,MC2 ===z ¢ S o oo s =
MC?2 RREE G =Y 5
\/A\/A\/A\/ X Z \A/\/\/
0 0 1 !
L \V 4? ~
j R1 X
I 0 =
—] 3 » D Qp-@—p
3 En
s_prevl E v ‘ él)I?>CIk

T]

S_prev2 [:

X
-
>
x
S—
3 (MULT, 1)
-]
> =
NY
g B!
3 —)
| = *
(MULT,2)

O

R3
D Q

En
>Clk

Clk

ACA

to= s prevl * s prevl

power

NIv3
Tug
u
eud
g9XNIAID
/XNAID

(@] O O 0
MC1,MC2 S £23
MC2 SR WXR

yd \A/\/\/

)
__</
o
[T

power

— 0
s
\ 4
= x
[Ty
j@)
Mux,7
A4

|

s_prevl Eﬁ

S_prev2 [: r-’ ZJ
=

> *

(MULT; 1)

@)
=~

Mux,?2
VA

«

Y

R3 |
D Q

En
O > Clk
Clk >

t7= s prev2 * s prev2

(@]

o)

®

—h
A4

\ 4

Mux,3

\ 4

*

(MULT,2)

ACA

(@] O O 0 (@] o Q Q
MC1,MC2 ===z ¢ S o oo s =
MC?2 REBE AR 5
\/A\/A\/A\/ < 7 \A/\/\/
ol [10] 1 ,
L \V 4? I~
j R1 3 >
L0 S power
— X oD qle—b
/EJ En
—
s _prevl E v C>’:>C”<
Clk
s_prev2 X L
) z
* ¢
’ N (MULT, 1)
> >
NY
" m |
X
S |ef— R3
coeff | =
[: * - » D Q
(MULT,2) En
O-> Clk
CW:>

t8= s prevl * s prev2

ACA

cMux7/
cMux6

En3
En2

Enl
cMux5

cALU

cMux4
cMux3

cMux2
cMux1

MC1,MC2
MC2

En
o> ik

Clk

r\ 9'XnIA /

R3

En

%DQ

\A/\/\/

O[> Clk

Clk
t9= t8 * coeff

59

ACA

V1-0

En3
En2

Enl
cMux5

cALU

cMux4
cMux3

cMux2
cMux1

ccl

> Clk

» D Q

O

Clk

t1l0= to+t7

60

ACA

V1-0

(@] (@]
ccl § §
X X
R N

EXNIAID
XN
NIv3
GXNIAID
u
u
eug
gXN|AD
/XN

=

Mux,7
A4

power
s _prevl E v
—
s_prev2 [: Ll
>
* ®
S
N (MULT,1)
>
> 2\ “%
\ 4
< =
5 |- R3
coeff [»| = * P
(MULT,2) En
O >Clk
Clk >

Power = tl1l0-t9

V1-0 ACA

Activation Signals For Operations

V1-0

Example: SGU for basic block B3 of Goertzel algorithm

Q — | =
9 S 5 d |l ||| D2 o 5
e |2 | E AN EIEIEIE IR ELE
e | = o S|a|lo|lS|IS|3S|3S]2]2]33]F
A § 8. o O O O % % o| ©
v] MC1 t6=s prevl*s prevl 0 0

MC2 1 0 0
v, MC1 t8=s prevl*s prevZ 0 0

MC2 1 0|10 1]0
V3 MC1 t7=s prev2*s prevZ 1 1

MC2 1 1 1 0|1
Vv, t1l0=te+t7 1 0 0 0 0
Vs MC1 t9=coeff*t7 1 1

MC2 1 1|1
Vg power=t10-t9 1 0 0 1 0 1

ACA

62

Activation Signals for Hold and Read

* Read activation signal is used to enter input values into the
register.

* Hold signal is used to keep value of variable in register.

V1-0 ACA 63

cMux7/

cMux6

R3

o D Q
En
O~ cik

Clk

En3
En2

Enl
cMux5

Hold to6

cALU

cMux4
cMux3

cMux2
cMux1

ccl

ACA

cMux7/

cMux6

R3

o D Q
En
O~ cik

Clk

En3
En2

Enl
cMux5

Hold t8

cALU

cMux4
cMux3

cMux2
cMux1

ccl

ACA

cMux7/

cMux6

R3

o D Q
En
O~ cik

Clk

En3
En2

Enl
cMux5

Hold t9

cALU

cMux4
cMux3

cMux2
cMux1

ccl

ACA

cMux7/

cMux6

R3

o D Q
En
O~ cik

Clk

Hold Power

En3
En2

Enl
cMux5

cALU

cMux4
cMux3

cMux2
cMux1

ccl

ACA

Activation Signals for Hold and Read

e Example: SGU for
basic block B3 of
Goertzel algorithm

c
s 2
+ — o~ o
© c c c 2
O (I (I (I S
o (@)
@)

Hold t6 0

Hold t8 0

Hold t9 0

Hold power 0 1

V1-0 ACA 68

FSM with Data Specification

* The FSM with data specification describes the schedule and the control flow of the data
path and the HW module interface.

* The operations of the data path are assigned to the states of the FSMD.
 The FSMD has one state transition for each clock cycle.

* Transitions may depend on status signals from the data path or interface.

V1-0 ACA 69

FSM with Data Specification (FSMD)

* Example: SGU for basic block B3 of Goertzel algorithm

(MC2) .,(MC2)
Start=1 Vi V2

MC1) Hold t8
Vg(MC1) V5() Hold t6

p{MC1) v2(|v|c1)

v3(MC2) ngCZ) Hold t6

Ack=1/Ready=0

Hold power (<L

Ack=0 Reset state
transitions omitted.

V1-0 ACA 70

State Assignment

State coding:

V1-0

Number of state variables: n;¢

Number of possible states: |X| — IMbit

Minimal number of state variables: ny;; = [log,| X |

State Binary One-hot Almost one-hot

X 000 00001 0000
0

X 001 00010 0001
1

X 010 00100 0010
2

X 011 01000 0100
3

X 100 10000 1000
4

ACA

71

State Assignment

* Example: SGU for basic block B3 of Goertzel algorithm

State name State variables
Xy 000
X; 001
X, 010
X3 011
Xy 100
X5 101
X4 110

V1-0 ACA 72

Next-State and Output Logic

e Output logic:
* Inputs: State variables
e QOutput: Activation signals for the operations

* Next state logic:
* Inputs: State variables and status variables
* QOutputs: State variables in next state

V1-0 ACA 73

9
o]0)
o

-
s
-
o
s}
>

@)

O
C
(¢
Q
=
(©
]

ufh

s
x
Q

=z

* Example: SGU for basic block B3 of Goertzel algorithm

N1v2

DC

DC

DC

DC

DC

/XN

DC

DC

DC

DC

DC

9XN|AID

DC

DC

DC

DC

DC

[0]sxnIAD

DC

DC

DC

[T]sxnIAD

DC

DC

DC

ZXNIAID

DC

DC

DC

EXNIAID

DC

DC

DC

ZXNIAID

DC

DC

DC

TIXNAID

DC

DC

DC

eud

DC

DC

DC

[4E

DC

DC

DC

DC

Tud

DC

Apeay

(AS)
sa|qelJen

a1e1s

000

001

010

011

100

101

110

74

ACA

V1-0

Next-State and Output Logic

* Example: SGU for basic block B3 of Goertzel algorithm (Reset
transitions not shown in state transition diagram are includes in
next state logic)

Start Reset | Ack SV SV next
Start=1
0 0 X 000 000
1 0 X 000 001
X 0 X 001 010
X 0 X 010 011
X 0 X 011 000
X 0 X 100 101
X 0 0 101 110
Ack=1 X 0 1 101 000
X 0 0 110 110
X 0 1 110 000
X 1 X XXXX 000

V1-0 ACA 75

FSM Implementation

e Output/next state logic implemented as combinatorial circuit

Control Unit
[m=——m e m —————
Control_OUT :
< f Output logic | >
| 1 DP_Control
: i; State :
Register Data path
<:> HW Module I (gSR) I P
Interface Il Next state j I
Control IN g logic I
> g y DP_Status
I |< I
< Data_IN >
Data_OUT

V1-0 ACA y

FSM Implementation

* Example: SGU for basic block B3 of Goertzel algorithm

Interface Control Unit
dd Start Start
aadr addr Ack Ack
dato dato Ready p——— Ready
dati dati Reset Reset
req req ™ N2 g
Tow® ® AN NN ON
ack ack 559, e 2w 33 3XEXT
Clk | D> Clk 282 g PCk 5 5555555553
111 §_
m A 4 Y VY VvV VvV Vvy
ENd g NN ON
8338 = dam 55333533
59 & GEE 3333333
»> Clk Data path
ACA

V1-0 77

	Folie 1
	Folie 2
	Folie 3: Binding Tasks
	Folie 4: Binding after Scheduling
	Folie 5: Binding before Scheduling
	Folie 6
	Folie 7: Graph Theory – Cover and Partition
	Folie 8: Graph Theory - Cliques
	Folie 9: Graph Theory – Graph Coloring
	Folie 10: Graph Theory – Complementary Graph
	Folie 11: Graph Theory – Example Graph Coloring
	Folie 12: Graph Theory – Interval Graphs
	Folie 13
	Folie 14: Func. Unit Types and Operation Types
	Folie 15: Executability
	Folie 16: Operation-Compatibility-Graph
	Folie 17: Operation-Conflict-Graph
	Folie 18: Operation Binding
	Folie 19: Operation Binding
	Folie 20: Operation Binding
	Folie 21: Operation Binding
	Folie 22: Operation Binding
	Folie 23: Operation Binding
	Folie 24: Left-Edge-Algorithm
	Folie 25: Left-Edge-Algorithm
	Folie 26: Operation Binding with Left-Edge Algorithm
	Folie 27: Operation Binding with Left-Edge Algorithm
	Folie 28: Operation Binding with Left-Edge Algorithm
	Folie 29: Operation Binding with Left-Edge Algorithm
	Folie 30: Operation Binding with Left-Edge Algorithm
	Folie 31: Operation Binding with Left-Edge Algorithm
	Folie 32
	Folie 33: Register Binding
	Folie 34: Register Binding
	Folie 35: Local Live Variable Analysis
	Folie 36: Local Live Variable Analysis
	Folie 37: Register Binding with Left-Edge Algorithm
	Folie 38: Register Binding with Left-Edge Algorithm
	Folie 39
	Folie 40: Data Flow Graph with Schedule and Binding
	Folie 41: Data Flow Graph with Schedule and Binding
	Folie 42: Data Flow Graph with Schedule and Binding
	Folie 43
	Folie 44
	Folie 45: Overview
	Folie 46: Finite State Machines(FSM)
	Folie 47: State Diagram
	Folie 48: Synchronous Implementation
	Folie 49: Multiplexer Control
	Folie 50: ALU-Control
	Folie 51: Register Control
	Folie 52: Interface Control
	Folie 53: Interface Control
	Folie 54: Activation Signals For Operations
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62: Activation Signals For Operations
	Folie 63: Activation Signals for Hold and Read
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68: Activation Signals for Hold and Read
	Folie 69: FSM with Data Specification
	Folie 70: FSM with Data Specification (FSMD)
	Folie 71: State Assignment
	Folie 72: State Assignment
	Folie 73: Next-State and Output Logic
	Folie 74: Next-State and Output Logic
	Folie 75: Next-State and Output Logic
	Folie 76: FSM Implementation
	Folie 77: FSM Implementation

