
VU Einführung in Artificial Intelligence

SS 2024

Hans Tompits

Institut für Logic and Computation
Forschungsbereich Wissensbasierte Systeme

www.kr.tuwien.ac.at



Planning



Planning—General Considerations

Planning = coming up with a sequence of actions that will achieve
some goal.

ä Reasoning about the results of actions is central to the operation of
an intelligent agent.

ä One way to represent actions is to use first-order logic expressing
things like

∀ t, such-and-such is the result at t + 1 of doing action at t.

ä In what follows, we describe an approach to planning which avoids
explicit times and focusses instead on states.

å A state results from another state by applying some action.

1/53



Planning—General Considerations (ctd.)

ä In dealing with reasoning about actions, three problems have in this
context been identified in the literature:

• the frame problem,

• the ramification problem, and

• the qualification problem.

ä The frame problem deals with the question how to represent things
which stay unchanged after performing some action.

• Indeed, most things stay the same when applying a single
action

å a large number of so-called frame axioms would be needed
in general to represent what does not change by
performing an action.

2/53



Planning—General Considerations (ctd.)

ä The ramification problem deals with the representation of implicit
effects.

• E.g., if a car moves from one position to another, so does

– any person in the car, the engine of the car, any dust
particle in the car, any bacteria in the driver, etc.

ä The qualification problem deals with the required preconditions (the
“qualifications”) ensuring that an action succeeds.

• E.g., if a robot needs to move a block A on top of another
block B, the following requirements may apply:

– B should have a clear top, A must not be too heavy, the
robot’s arm must not be broken, etc.

• The qualification problem thus deals with a correct
conceptualisation of things

å there is no general solution for it.

3/53



Search vs. planning

Applying standard search algorithms for large, real-world planning
problems quickly yields enormous search spaces due to irrelevant actions.

ä Consider the task of buying a copy of Wittgenstein’s Tractatus
logico-philosophicus from an online bookseller.

ä Suppose there is one buying action for each 13-digit ISBN number,
hence there are 1013 actions in total.

å The search algorithm would have to examine the outcome states of
all 1013 actions to find one satisfying the goal, having a copy of
ISBN 9783518281017.

4/53



Search vs. planning (ctd.)

ä A sensible planning agent, however, should be able to work back
from an explicit goal description like Have(ISBN9783518281017).

• To do this, the agent simply needs the general knowledge that
Buy(x) results in Have(x).

• Given this knowledge and the goal, the planner can decide in a
single unification step that Buy(ISBN9783518281017) is the
right action.

ä The next difficulty is to find a good heuristic function.

• Suppose the agent’s goal is to buy four different books online.

å There will be (1013)4 = 1052 plans of four steps!

å Searching without an accurate heuristic is out of the
question!

ä Also, the problem solver might be inefficient because it cannot take
advantage of problem decomposition, which means that it can work
on subgoals independently.

5/53



The Language of Planning Problems

+ In what follows, we are only concerned with classical planning
environments, which are

• fully observable,

• deterministic,

• finite,

• static (change happens only when the agent acts), and

• discrete (in time, actions, objects, and effects).

6/53



The Language of Planning Problems (ctd.)

ä Key issues of a good planning language:

• expressive enough to describe a wide variety of problems;

• restrictive enough to allow efficient algorithms.

ä Many different planning languages have been introduced in the
literature.

å These have been systematised within a standard syntax called
the Planning Domain Definition Language, or PDDL (Ghallab,
Howe, Knoblock, McDermott, 1998).

ä A base for most of the languages within PDDL is STRIPS (Fikes
and Nilsson, 1971), which we discuss in the following.

• “STRIPS” stands for “Stanford Research Institute Problem
Solver”.

• It was designed as the planning component of the software for
the Shakey robot project at SRI, which was one of the first
major planning systems.

7/53



The Language of Planning Problems (ctd.)

Shakey, the Robot (1966-72)
8/53



STRIPS—States and Goals
The syntax of STRIPS consists of the following items:

ä Representation of states: Planners decompose the world into logical
conditions and represent a state as a conjunction of positive literals,
referred to as fluents.

• Literals are atomic formulas or negations thereof (a positive
literal is just an atom)

– literals can be propositional or first-order, but first-order
literals must be ground (i.e., variable-free) and
function-free.

• For instance,

– Rich ∧ InJail may represent the state of some person,

– while At(x , y) or At(president(USA),White House) are
not allowed.

• Furthermore, the closed-world assumption is used, meaning
that any condition not mentioned in a state is assumed false.

9/53



STRIPS—States and Goals (ctd.)

ä Representation of goals: A goal is a partially specified state,
represented as a conjunction of positive ground literals, such as
Rich ∧ Famous or At(P2, LakeTahoe).

• A propositional state s satisfies a goal g if s contains all the
atoms in g (and possibly others).

• E.g., the state Rich ∧ Famous ∧ InJail satisfies the goal
Rich ∧ Famous.

10/53



STRIPS—Actions

ä Representation of actions: An action is specified in terms of the
preconditions that must hold before it can be executed and the
effects that ensue when it is executed.

• E.g., an action for flying a plane from one location to another
is:
Action(Fly(p, from, to),

Precond: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)

Effect: ¬At(p, from) ∧ At(p, to))

• More precisely:

– this is actually an example of an action schema,

– representing a number of different actions that can be
derived by instantiating the variables p, from, and to to
different constants.

11/53



STRIPS—Action Schemata
In general, an action schema consists of three parts:

ä The action name and parameter list—e.g., Fly(p, from, to).

ä The precondition: a conjunction of function-free positive literals
stating what must be true in a state before the action can be
executed.

+ Any variables in the precondition must also appear in the
action’s parameter list.

ä The effect: a conjunction of function-free literals describing how the
state changes when the action is executed.

• A positive literal P in the effect is true in the state resulting
from the action; a negative literal ¬P results in P being false.

• Variables in the effect must also appear in the action’s
parameter list.

+ Some planning systems divide the effect into the add list for positive
literals and the delete list for negative literals.

12/53



STRIPS—Semantics

An action is applicable in any state that satisfies the preconditions;
otherwise, the action has no effect.

ä For a first-order action schema, establishing applicability involves a
substitution for the variables in the precondition.

ä E.g., suppose the current state is described by

At(P1, JFK ) ∧ At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2)
∧Airport(JFK ) ∧ Airport(SFO).

This state satisfies the precondition

At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)

of action schema Fly(p, from, to) with substitution
{p/P1, from/JFK , to/SFO}.
å The concrete action Fly(P1, JFK ,SFO) is applicable.

13/53



STRIPS—Semantics (ctd.)

ä Starting in a state s, the result of executing an applicable action a is
a state s ′ that results from s by

• adding any positive literal P in the effect of a and

• removing any P where ¬P appears in the effect of a.

ä Thus, for our flight example, after executing Fly(P1, JFK , SFO), the
current state

At(P1, JFK ) ∧ At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2)
∧Airport(JFK ) ∧ Airport(SFO).

becomes

At(P1,SFO) ∧ At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2)
∧Airport(JFK ) ∧ Airport(SFO).

14/53



STRIPS—Semantics (ctd.)

Remarks:

ä If a positive effect is already in s it is not added twice, and if a
negative effect is not in s, then that part of the effect is ignored.

ä The definition of the semantics of STRIPS embodies the so-called
STRIPS assumption:

• Every literal not mentioned in the effect remains unchanged.

å This is the way STRIPS deals with the frame problem.

15/53



STRIPS—Semantics (ctd.)

ä Finally, a solution for a planning problem is an action sequence that,
when executed in the initial state, results in a state that satisfies the
goal.

+ Later on, we will allow solutions to be partially ordered sets of
actions, provided that every action sequence that respects the
partial order is a solution.

16/53



The Action Description Language ADL

ä A PDDL language more expressive than STRIPS is ADL (Pednault,
1986), the Action Description Language.

ä In ADL, the Fly action can, e.g., be written as follows:
Action(Fly(p : Plane, from : Airport, to : Airport),

Precond: At(p, from) ∧ from 6= to
Effect: ¬At(p, from) ∧ At(p, to))

ä Note:

• ADL allows typing—e.g., the notation p : Plane is an
abbreviation for Plane(p).

• The precondition from 6= to expresses that a flight cannot be
made from an airport to itself.

å This could not be expressed succinctly in STRIPS!

17/53



STRIPS vs. ADL

STRIPS ADL
Only positive literals in states: Positive and negative literals in states:
Rich ∧ InJail ¬Poor ∧ ¬Free
Closed-World Assumption: Open-World Assumption
Unmentioned literals are false Unmentioned literals are unknown

Effect P ∧ ¬Q means Effect P ∧ ¬Q means add P and ¬Q
add P and delete Q and delete ¬P and Q

Only ground atoms in goals: Quantified variables in goals:
Rich ∧ InJail ∃ x (At(P1, x) ∧ At(P2, x)) is the goal of having

P1 and P2 in the same place

Goals are conjunctions: Goals allow conjunction and disjunction:
Rich ∧ Famous ¬Poor ∧ (Famous ∨ Smart)

Effects are conjunctions Conditional effects are allowed:
when P : E means E is an effect
only if P is satisfied

No support for equality Equality is built in

No support for types Variables can have types, as in (p : Plane)

18/53



Remarks

ä STRIPS and ADL are adequate for many real-world domains, but
they have some significant restrictions.

• An important one is that ramifications of actions cannot be
represented in a natural way.

– Indirect actions, like dust particles moving with airplanes,
need to be represented as direct effects

å it would be more natural if these changes could be derived
from the location of the plane.

ä Also, classical planning systems do not attempt to address the
qualification problem.

19/53



Example: Air Cargo Transport

We describe in pure STRIPS notation the problem of loading and
unloading cargo onto and off planes and flying it from place to place.

ä We use three actions: Load , Unload , and Fly .

ä The actions affect two predicates:

• In(c , p): cargo c is inside plane p,

• At(x , a): object x is at airport a.

20/53



Example: Air cargo transport (ctd.)

Init(At(C1, SFO) ∧ At(C2, JFK) ∧ At(P1,SFO) ∧ At(P2, JFK) ∧ Cargo(C1)∧
Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(SFO) ∧ Airport(JFK))

Goal(At(C1, JFK) ∧ At(C2, SFO))

Action(Load(c, p, a),
Precond: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a),
Effect: ¬At(c, a) ∧ In(c, p))

Action(Unload(c, p, a),
Precond: In(c, p) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a),
Effect: At(c, a) ∧ ¬In(c, p))

Action(Fly(p, from, to),
Precond: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to),
Effect: ¬At(p, from) ∧ At(p, to))

ä The following plan is a solution to the problem:
[Load(C1,P1,SFO),Fly(P1, SFO, JFK ),Unload(C1,P1, JFK ),

Load(C2,P2, JFK ),Fly(P2, JFK ,SFO),Unload(C2,P2, SFO)].

21/53



Example: Air Cargo Transport (ctd.)
Init At(C1, SFO) ∧ At(C2, JFK) ∧ At(P1,SFO) ∧ At(P2, JFK) ∧ Cargo(C1)∧

Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(SFO) ∧ Airport(JFK))

Action(Load(C1,P1, SFO),
⇓ Precond: At(C1, SFO)∧At(P1, SFO)∧Cargo(C1)∧Plane(P1)∧Airport(SFO),

Effect: ¬At(C1, SFO) ∧ In(C1,P1))

s1 In(C1,P1) ∧ At(C2, JFK) ∧ At(P1, SFO) ∧ At(P2, JFK) ∧ Cargo(C1)∧
Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(SFO) ∧ Airport(JFK))

Action(Fly(P1, SFO, JFK),
⇓ Precond: At(P1,SFO) ∧ Plane(P1) ∧ Airport(SFO) ∧ Airport(JFK),

Effect: ¬At(P1,SFO) ∧ At(P1, JFK))

s2 In(C1,P1) ∧ At(C2, JFK) ∧ At(P1, JFK) ∧ At(P2, JFK) ∧ Cargo(C1)∧
Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(SFO) ∧ Airport(JFK))

Action(Unload(C1,P1, JFK),
⇓ Precond: In(C1,P1)∧At(P1, JFK)∧Cargo(C1)∧Plane(P1)∧Airport(JFK),

Effect: At(C1, JFK) ∧ ¬In(C1,P1))

s3 At(C1, JFK) ∧ At(C2, JFK) ∧ At(P1, JFK) ∧ At(P2, JFK) ∧ Cargo(C1)∧
Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(SFO) ∧ Airport(JFK))

22/53



Example: Air Cargo Transport (ctd.)
s3 At(C1, JFK) ∧ At(C2, JFK) ∧ At(P1, JFK) ∧ At(P2, JFK) ∧ Cargo(C1)∧

Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(SFO) ∧ Airport(JFK))

Action(Load(C2,P2, JFK),
⇓ Precond: At(C2, JFK)∧At(P2, JFK)∧Cargo(C2)∧Plane(P2)∧Airport(JFK),

Effect: ¬At(C2, JFK) ∧ In(C2,P2))

s4 At(C1, JFK) ∧ In(C2,P2) ∧ At(P1, JFK) ∧ At(P2, JFK) ∧ Cargo(C1)∧
Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(SFO) ∧ Airport(JFK))

Action(Fly(P2, JFK , SFO),
⇓ Precond: At(P2, JFK) ∧ Plane(P2) ∧ Airport(JFK) ∧ Airport(SFO),

Effect: ¬At(P2, JFK) ∧ At(P2, SFO))

s5 At(C1, JFK) ∧ In(C2,P2) ∧ At(P1, JFK) ∧ At(P2, SFO) ∧ Cargo(C1)∧
Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(SFO) ∧ Airport(JFK))

Action(Unload(C2,P2, SFO),
⇓ Precond: In(C2,P2)∧At(P2,SFO)∧Cargo(C2)∧Plane(P2)∧Airport(SFO),

Effect: At(C2, SFO) ∧ ¬In(C2,P2))

s6 At(C1, JFK) ∧ At(C2,SFO) ∧ At(P1, JFK) ∧ At(P2, SFO) ∧ Cargo(C1)∧
Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(SFO) ∧ Airport(JFK))

=⇒ s6 satisfies the goal At(C1, JFK ) ∧ At(C2, SFO).

23/53



Example: Blocks World

One of the most famous planning domains is the blocks world
=⇒ consists of a set of cube-shaped blocks sitting on a table.

ä The blocks can be stacked, but only one block can fit directly on
top of another.

ä A robot arm can pick up a block and move it to another position,
either on the table or on top of another block.

ä The arm can pick up only one block at a time, so it cannot pick up
a block that has another one on it.

ä The goal is always to build one or more stacks of blocks, specified in
terms of what blocks are on top of what other blocks.

24/53



Example: Blocks World (ctd.)

ä We use On(b, x) to indicate that block b is on x , where x is either
another block or the table.

ä The action Move(b, x , y) expresses that block b is moved from the
top of x to the top of y .

• One of the preconditions on moving b is that no other block be
on it.

• In ADL, we could state this as a sentence of first-order logic:
¬∃ x On(x , b), or, equivalently, ∀ x ¬On(x , b).

• In STRIPS, we use a new predicate, Clear(x), that is true when
nothing is on x .

25/53



Example: Blocks World (ctd.)

ä We can formally describe Move in STRIPS as follows:
Action(Move(b, x , y),

Precond: On(b, x) ∧ Clear(b) ∧ Clear(y),
Effect: On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧ ¬Clear(y))

ä But this action does not maintain Clear properly when x or y is the
table:

• for x = Table, we get Clear(Table), but the table should not
become clear,

• for y = Table, it has the precondition Clear(Table), but the
table does not have to be clear to move a block onto it.

26/53



Example: Blocks World (ctd.)

To fix this, we do the following:

1. We introduce another action to move a block b from x to the table:
Action(MoveToTable(b, x),

Precond: On(b, x) ∧ Clear(b),
Effect: On(b,Table) ∧ Clear(x) ∧ ¬On(b, x))

2. We interpret Clear(b) as “there is a clear space on b to hold a
block”
=⇒ Clear(Table) will always be true.

27/53



Example: Blocks World (ctd.)

ä One caveat in doing this:

• Nothing prevents a planner from using Move(b, x ,Table)
instead of MoveToTable(b, x)

– it will lead to a larger-than-necessary search space albeit to
no incorrect answers

– to avoid this, we can introduce the predicate Block and
add Block(b) ∧ Block(y) to the precondition of Move.

ä There is also the problem of spurious actions like Move(B,C ,C ).
=⇒ can be avoided by adding inequalities.

å The complete specification of the blocks world problem is given next
(in slightly generalised STRIPS notation, as discussed).

28/53



Example: Blocks World (ctd.)

Init(On(A,Table) ∧ On(B,Table) ∧ On(C ,Table)∧
Block(A) ∧ Block(B) ∧ Block(C) ∧ Clear(A) ∧ Clear(B) ∧ Clear(C))

Goal(On(A,B) ∧ On(B,C))

Action(Move(b, x , y),
Precond: On(b, x) ∧ Clear(b) ∧ Clear(y) ∧ Block(b) ∧ Block(y)∧

(b 6= x) ∧ (b 6= y) ∧ (x 6= y),
Effect: On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧ ¬Clear(y))

Action(MoveToTable(b, x),
Precond: On(b, x) ∧ Clear(b) ∧ Block(b) ∧ Block(x) ∧ (b 6= x),
Effect: On(b,Table) ∧ Clear(x) ∧ ¬On(b, x))

ä The following plan is a solution to the problem:
[Move(B,Table,C ),Move(A,Table,B)].

29/53



Planning with State-space Search

We now turn to the question of how to find plans.

ä The most straightforward approach is to use state-space search.

ä Two possibilities:

• forward state-space search (or progression planning): from
initial state to goal;

• backward state-space search (or regression planning): from goal
to initial state.

30/53



Planning with State-space Search (ctd.)

The two approaches illustrated: (a) progression planning; (b) regression
planning.

31/53



Progression Planning

ä We start in the problem’s initial state, considering sequences of
actions until we find a sequence that reaches a goal state.

ä The formulation of planning problems as state-space search
problems is as follows:

• The initial state of the search is the initial state of the planning
problem.

– Each state will be a set of positive ground literals;

– literals not appearing are false.

• The actions that are applicable to a state are all those whose
preconditions are satisfied.

– The successor state resulting from an action is generated
by adding the positive effect literals and deleting the
negative effect literals.

+ In case of a first-order logic language, we must apply a
unifier from the preconditions to the effect literals.

32/53



Progression Planning (ctd.)

ä The goal test checks whether the state satisfies the goal of the
planning problem.

ä The step cost of each action is typically 1.

+ Allowing different costs for different actions could be easily
realised, but this is seldom done for STRIPS planners.

Note: in the absence of function symbols, the state space of a planning
problem is finite

å any complete graph search algorithm (like A∗) yields a complete
planning algorithm!

33/53



Regression Planning

ä The main advantage of backward search is that it allows to consider
only relevant actions.

+ An action is relevant to a conjunctive goal if it achieves one of the
conjuncts of the goal.

34/53



Regression Planning (ctd.)

For instance:

ä Consider the cargo problem with 20 pieces of cargo, having the goal

At(C1,B) ∧ At(C2,B) ∧ . . . ∧ At(C20,B).

ä Seeking actions having, e.g., the first conjunct as effect, we find
Unload(C1, p,B) as relevant.

• This action will work only if its preconditions are satisfied.
=⇒ any predecessor state must include the preconditions

In(C1, p) ∧ At(p,B).

• Moreover, the subgoal At(C1,B) should not be true in the
predecessor state.
=⇒ The predecessor state description is

In(C1, p) ∧ At(p,B) ∧ At(C2,B) ∧ . . . ∧ At(C20,B).

35/53



Regression Planning (ctd.)

Besides insisting that actions achieve some desired goal, they should not
undo any desired literals.

ä Actions satisfying this restriction are called consistent.

ä E.g., Load(C2, p,B) would not be consistent with the current goal
as it would negate the literal At(C2,B).

36/53



Regression Planning (ctd.)

We can now describe the general process of constructing predecessors for
backward search.

ä Given a goal description G , let A be an action that is relevant and
consistent.

ä The corresponding predecessor is as follows:

• Any positive effects of A that appear in G are deleted.

• Each precondition literal of A is added, unless it already
appears.

å Any standard search algorithm can be used to carry out the search.

+ In the first-order case, satisfaction might require a substitution for
variables in the predecessor description.

37/53



Partial-order Planning

ä Forward and backward state-space search are particular forms of
totally ordered plan searches.

ä They explore only strictly linear sequences of actions and do not
take advantage of problem decomposition.

å Any planning algorithm that can place two actions into a plan
without specifying which comes first is called a partial-order planner.

38/53



Example

Consider a simple example of putting on a pair of shoes:

Init()

Goal(RightShoeOn ∧ LeftShoeOn)

Action(RightShoe, Precond : RightSockOn, Effect : RightShoeOn)

Action(RightSock, Effect : RightSockOn)

Action(LeftShoe, Precond : LeftSockOn, Effect : LeftShoeOn)

Action(LeftSock, Effect : LeftSockOn)

ä A partial-order planner should come up with the following
two-action sequences:
• [RightSock,RightShoe] to achieve the first conjunct of the goal

and

• [LeftSock, LeftShoe] for the second conjunct.

ä Then, the two sequences can be combined to yield the final plan.

ä In doing so, the planner manipulates the two subsequences
independently.

39/53



Example (ctd.)

40/53



Partial-order Planning—Basics

Partial-order planning can be implemented as a search in the space of
partial-order plans:

ä We start with an empty plan.

ä Then, we consider ways of refining the plan until we come up with a
complete plan that solves the problem.

ä The actions in this search are not actions in the world but actions
on plans:

• adding a step to the plan;

• imposing an ordering that puts one action before another;

• and so on.

å We will define the POP algorithm for partial-order planning (as an
instance of a search problem).

41/53



Partial-order Plans—Components

Each plan has the following four components:

1. a set of actions;

2. a set of ordering constraints;

3. a set of causal links;

4. a set of open preconditions.

42/53



Partial-order Plans—Components (ctd.)

The set of actions constitutes the elements for making up the steps of
the plan.

ä The actions are taken from the set of actions in the planning
problem.

ä The empty plan contains just the Start and Finish actions.

• Start has no preconditions and has as its effect all the literals in
the initial state of the planning problem.

• Finish has no effects and has as its preconditions the goal
literals of the planning problem.

43/53



Partial-order Plans—Components (ctd.)

ä An ordering constraint is a pair of actions of the form A ≺ B, read
as “A before B”.

• A ≺ B means that action A must be executed sometime before
action B, but not necessarily immediately before.

ä The ordering constraints must describe a proper partial order.

ä Any cycle, like A ≺ B and B ≺ A, represents a contradiction

å an ordering constraint cannot be added to the plan if it creates
a cycle.

44/53



Partial-order Plans—Components (ctd.)

ä A causal link between two actions A and B in the plan is an
expression of form A

p−→ B, read as “A achieves p for B”.

ä E.g., the causal link

RightSock
RightSockOn−→ RightShoe

asserts that RightSockOn is an effect of the RightSock action and a
precondition of RightShoe.

• It also asserts that RightSockOn must remain true from the
time of action RightSock to the time of action RightShoe.

• In other words, the plan may not be extended by adding a new
action C that conflicts with the causal link.

45/53



Partial-order Plans—Components (ctd.)

ä An action C conflicts with A
p−→ B if

1. C has the effect ¬p and

2. C could (according to the ordering constraints) come after A
and before B.

ä A precondition is open if it is not achieved by some action in the
plan.

ä Planners will work to reduce the set of open preconditions to the
empty set, without introducing a contradiction.

46/53



Shoe-and-sock Example Revisited

For instance, the final plan in the shoe-and-sock example has the
following components (omitting the ordering constraints that put every
other action after Start and before Finish):

Actions: {RightSock,RightShoe, LeftSock, LeftShoe, Start,Finish}

Orderings: {RightSock ≺ RightShoe, LeftSock ≺ LeftShoe}

Links: {RightSock
RightSockOn−→ RightShoe, LeftSock

LeftSockOn−→ LeftShoe,

RightShoe
RightShoeOn−→ Finish, LeftShoe

LeftShoeOn−→ Finish}

Open preconditions: {}

47/53



Partial-order Plans—Solutions

ä We define a consistent plan as a plan in which

• there are no cycles in the ordering constraints and

• no conflicts with the causal links.

ä A solution is a consistent plan with no open preconditions.

å Every linearisation of a partial-order solution is a total-order solution
whose execution from the initial state will reach a goal state.

å We can extend the notion of “executing a plan” from total-order
plans to partial-order plans:

• A partial-order plan is executed by repeatedly choosing any of
the possible next actions.

48/53



The POP Algorithm

ä The initial plan contains

• Start and Finish,

• the ordering constraint Start ≺ Finish,

• no causal links, and

• all the preconditions in Finish as open preconditions.

ä The successor function arbitrarily picks

• one open precondition p on an action B and

• generates a successor plan for every possible consistent way of
choosing an action A that achieves p.

49/53



The POP Algorithm (ctd.)

Consistency is enforced as follows:

1. The causal link A
p−→ B and the ordering constraint A ≺ B are

added to the plan.

• Action A may be an existing action in the plan or a new one.

• If it is new, add it to the plan and also add Start ≺ A and
A ≺ Finish.

2. We resolve conflicts between (i) the new causal link and all existing
actions and (ii) action A and all existing causal links, providing A is
new.

• A conflict between A
p−→ B and C is resolved by adding B ≺ C

or C ≺ A.

• We add successor states for either or both if they result in
consistent plans.

50/53



The POP Algorithm (ctd.)

ä The goal test checks whether a plan is a solution to the original
planning problem.

å Because only consistent plans are generated, the goal test just needs
to check that there are no open preconditions.

51/53



Planning—Summary

ä Planning systems are problem-solving algorithms that operate on
explicit propositional or first-order representations of states and
actions.

ä The PDDL family of planning languages allow a factored
representation of planning problems, containing STRIPS and ADL
as particular languages.

ä State-space search can operate in the forward direction
(“progression”) or the backward direction (“regression”).

ä Partial-order planning algorithms explore the space of plans without
committing to a totally ordered sequence of actions.

52/53



Planning—Summary (ctd.)

ä Different heuristics are defined in the literature to significantly prune
the search space.

ä A further approach to solve planning problems is by translating them
into formulas of propositional logic such that

• the plans of a given planning problem P are given by the
models of the associated formula A.

+ This method is referred to as planning as satisfiability.

53/53


