VU Einfuhrung in Artificial Intelligence

SS 2024

Hans Tompits

Institut fiir Logic and Computation
Forschungsbereich Wissensbasierte Systeme

www.kr.tuwien.ac.at

Planning

Planning—General Considerations

Planning = coming up with a sequence of actions that will achieve
some goal.

» Reasoning about the results of actions is central to the operation of
an intelligent agent.

» One way to represent actions is to use first-order logic expressing
things like

V t, such-and-such is the result at t 4+ 1 of doing action at t.

» In what follows, we describe an approach to planning which avoids
explicit times and focusses instead on states.

= A state results from another state by applying some action.

1/53

Planning—General Considerations (ctd.)

» In dealing with reasoning about actions, three problems have in this
context been identified in the literature:
e the frame problem,
e the ramification problem, and

e the qualification problem.

» The frame problem deals with the question how to represent things
which stay unchanged after performing some action.

e Indeed, most things stay the same when applying a single
action
= 3 large number of so-called frame axioms would be needed
in general to represent what does not change by
performing an action.

2/53

Planning—General Considerations (ctd.)

» The ramification problem deals with the representation of implicit
effects.
e E.g., if a car moves from one position to another, so does
— any person in the car, the engine of the car, any dust
particle in the car, any bacteria in the driver, etc.

» The qualification problem deals with the required preconditions (the
“qualifications”) ensuring that an action succeeds.

e E.g., if a robot needs to move a block A on top of another
block B, the following requirements may apply:

— B should have a clear top, A must not be too heavy, the
robot’s arm must not be broken, etc.

e The qualification problem thus deals with a correct
conceptualisation of things

= there is no general solution for it.

3/53

Search vs. planning

Applying standard search algorithms for large, real-world planning
problems quickly yields enormous search spaces due to irrelevant actions.
» Consider the task of buying a copy of Wittgenstein's Tractatus
logico-philosophicus from an online bookseller.
» Suppose there is one buying action for each 13-digit ISBN number,
hence there are 10'3 actions in total.
= The search algorithm would have to examine the outcome states of

all 10%3 actions to find one satisfying the goal, having a copy of
ISBN 9783518281017.

Wittgenstein
Tractatus
logico-philo-

4/53

Search vs. planning (ctd.)

» A sensible planning agent, however, should be able to work back
from an explicit goal description like Have(/SBN9783518281017).

e To do this, the agent simply needs the general knowledge that
Buy(x) results in Have(x).

e Given this knowledge and the goal, the planner can decide in a
single unification step that Buy(/SBN9783518281017) is the
right action.

» The next difficulty is to find a good heuristic function.
e Suppose the agent's goal is to buy four different books online.
w There will be (1013)* = 1052 plans of four steps!

= Searching without an accurate heuristic is out of the
question!

» Also, the problem solver might be inefficient because it cannot take
advantage of problem decomposition, which means that it can work
on subgoals independently.

5/53

The Language of Planning Problems

== |n what follows, we are only concerned with classical planning
environments, which are

fully observable,

deterministic,

finite,

static (change happens only when the agent acts), and
discrete (in time, actions, objects, and effects).

6/53

The Language of Planning Problems (ctd.)

» Key issues of a good planning language:
e expressive enough to describe a wide variety of problems;
e restrictive enough to allow efficient algorithms.
» Many different planning languages have been introduced in the
literature.
= These have been systematised within a standard syntax called
the Planning Domain Definition Language, or PDDL (Ghallab,
Howe, Knoblock, McDermott, 1998).
» A base for most of the languages within PDDL is STRIPS (Fikes
and Nilsson, 1971), which we discuss in the following.
e "STRIPS"” stands for “Stanford Research Institute Problem
Solver".
e It was designed as the planning component of the software for
the Shakey robot project at SRI, which was one of the first
major planning systems.

7/53

The Language of Planning Problems (ctd.)

Shakey, the Robot (1966-72)

8/53

STRIPS—States and Goals
The syntax of STRIPS consists of the following items:

» Representation of states: Planners decompose the world into logical

conditions and represent a state as a conjunction of positive literals,
referred to as fluents.

e Literals are atomic formulas or negations thereof (a positive
literal is just an atom)

— literals can be propositional or first-order, but first-order
literals must be ground (i.e., variable-free) and
function-free.

e For instance,
— Rich A InJail may represent the state of some person,

— while At(x, y) or At(president(USA), White_House) are
not allowed.

e Furthermore, the closed-world assumption is used, meaning
that any condition not mentioned in a state is assumed false.

9/53

STRIPS—States and Goals (ctd.)

» Representation of goals: A goal is a partially specified state,
represented as a conjunction of positive ground literals, such as
Rich A Famous or At(P,, LakeTahoe).

e A propositional state s satisfies a goal g if s contains all the
atoms in g (and possibly others).

e E.g., the state Rich A Famous N InJail satisfies the goal
Rich A Famous.

10/53

STRIPS—Actions

» Representation of actions: An action is specified in terms of the
preconditions that must hold before it can be executed and the
effects that ensue when it is executed.

e E.g., an action for flying a plane from one location to another
is:
Action(Fly(p, from, to),
PRECOND: At(p, from) A Plane(p) A Airport(from) A Airport(to)
EFrECT: —At(p, from) A At(p, to))

e More precisely:
— this is actually an example of an action schema,
— representing a number of different actions that can be
derived by instantiating the variables p, from, and to to
different constants.

11/53

STRIPS—Action Schemata

In general, an action schema consists of three parts:

>
>

The action name and parameter list—e.g., Fly(p, from, to).
The precondition: a conjunction of function-free positive literals
stating what must be true in a state before the action can be
executed.
1= Any variables in the precondition must also appear in the
action’s parameter list.
The effect: a conjunction of function-free literals describing how the
state changes when the action is executed.
e A positive literal P in the effect is true in the state resulting
from the action; a negative literal =P results in P being false.
e Variables in the effect must also appear in the action’s
parameter list.
Some planning systems divide the effect into the add list for positive
literals and the delete list for negative literals.

12/53

STRIPS—Semantics

An action is applicable in any state that satisfies the preconditions;
otherwise, the action has no effect.

» For a first-order action schema, establishing applicability involves a
substitution for the variables in the precondition.
» E.g., suppose the current state is described by
At(P1, JFK) N At(P2, SFO) A Plane(P1) A Plane(P>)
NAirport(JFK) A Airport(SFO).
This state satisfies the precondition
At(p, from) A Plane(p) A Airport(from) A Airport(to)

of action schema Fly(p. from, to) with substitution
{p/P1, from/JFK, to/SFO}.

= The concrete action Fly(Py, JFK,SFO) is applicable.

13/53

STRIPS—Semantics (ctd.)

» Starting in a state s, the result of executing an applicable action a is
a state s’ that results from s by
e adding any positive literal P in the effect of a and
e removing any P where =P appears in the effect of a.

» Thus, for our flight example, after executing Fly(P;, JFK, SFO), the
current state
At(P1, JFK) N At(P2, SFO) A Plane(P1) A Plane(P>)
NAirport(JFK) A Airport(SFO).

becomes
At(P1, SFO) N At(P», SFO) A Plane(P1) A Plane(P-)
NAirport(JFK) A Airport(SFO).

14/53

STRIPS—Semantics (ctd.)

Remarks:

» If a positive effect is already in s it is not added twice, and if a
negative effect is not in s, then that part of the effect is ignored.

» The definition of the semantics of STRIPS embodies the so-called
STRIPS assumption:

e Every literal not mentioned in the effect remains unchanged.
= This is the way STRIPS deals with the frame problem.

15/53

STRIPS—Semantics (ctd.)

» Finally, a solution for a planning problem is an action sequence that,
when executed in the initial state, results in a state that satisfies the
goal.

1= |Later on, we will allow solutions to be partially ordered sets of

actions, provided that every action sequence that respects the
partial order is a solution.

16/53

The Action Description Language ADL

» A PDDL language more expressive than STRIPS is ADL (Pednault,

1986), the Action Description Language.

» In ADL, the Fly action can, e.g., be written as follows:
Action(Fly(p : Plane, from : Airport, to : Airport),
PRECOND: At(p, from) A from # to
EFrECT: —At(p, from) N\ At(p, to))

» Note:

e ADL allows typing—e.g., the notation p : Plane is an
abbreviation for Plane(p).

e The precondition from # to expresses that a flight cannot be
made from an airport to itself.

= This could not be expressed succinctly in STRIPS!

17/53

STRIPS vs. ADL

STRIPS

ADL

Only positive literals in states:

Rich N InJail

Positive and negative literals in states:
—Poor A —Free

Closed-World Assumption:
Unmentioned literals are false

Open-World Assumption
Unmentioned literals are unknown

Effect P A —=Q means
add P and delete @

Effect P A —=Q means add P and —@
and delete =P and @

Only ground atoms in goals:
Rich A InJail

Quantified variables in goals:
dx (At(Pi,x) N At(P», x)) is the goal of having
P1 and P> in the same place

Goals are conjunctions:
Rich N Famous

Goals allow conjunction and disjunction:
—Poor A (Famous \V Smart)

Effects are conjunctions

Conditional effects are allowed:
when P : E means E is an effect
only if P is satisfied

No support for equality

Equality is built in

No support for types

Variables can have types, as in (p : Plane)

18/53

Remarks

» STRIPS and ADL are adequate for many real-world domains, but
they have some significant restrictions.
e An important one is that ramifications of actions cannot be
represented in a natural way.
— Indirect actions, like dust particles moving with airplanes,
need to be represented as direct effects
= it would be more natural if these changes could be derived
from the location of the plane.

» Also, classical planning systems do not attempt to address the
qualification problem.

19/53

Example: Air Cargo Transport

We describe in pure STRIPS notation the problem of loading and
unloading cargo onto and off planes and flying it from place to place.
» We use three actions: Load, Unload, and Fly.
» The actions affect two predicates:

e /n(c,p): cargo c is inside plane p,

e At(x,a): object x is at airport a.

20/53

Example: Air cargo transport (ctd.)

Init(At(Ci, SFO) A At(Co, JFK) A At(P1, SFO) A At(P2, JFK) A Cargo(Ci)A
Cargo(C2) A Plane(P1) A Plane(P2) A Airport(SFO) A Airport(JFK))

Goal(At(Cy, JFK) A At(Cs, SFO))

Action(Load(c, p, a),
PRECOND: At(c,a) A At(p, a) A Cargo(c) A Plane(p) A Airport(a),
EFrFeCT: —At(c,a) A In(c, p))

Action(Unload(c, p, a),
PRECOND: In(c, p) A At(p, a) A Cargo(c) A Plane(p) A Airport(a),
EFFECT: At(c,a) A —in(c, p))

Action(Fly(p, from, to),
PRECOND: At(p, from) A Plane(p) N\ Airport(from) A Airport(to),
EFFECT: —At(p, from) A At(p, to))

» The following plan is a solution to the problem:
[Load(Cy, P1, SFO), Fly(P1, SFO, JFK), Unload(Cy, P1, JFK),

Load(GCs, P>, JFK), Fly(P», JFK, SFO), Unload(Ca, P», SFO)].

21/53

Example: Air Cargo Transport (ctd.)

Init | At(Cr, SFO) A At(Ca, JFK) A At(Py, SFO) A At(P2, JFK) A Cargo(Ci)A
Cargo(C2) A Plane(Py) A Plane(P>) A Airport(SFO) A Airport(JFK))

Action(Load(Ci, P1, SFO),
(! PRECOND: At(Cy, SFO)AAt(P1, SFO)ACargo(Ci)APlane(P1)AAirport(SFO),
EFFECT: —At(Ci, SFO) A In(Gy, Py))

s1 | In(Cy, P1) A At(G, JFK) A At(Py, SFO) A At(P2, JFK) A Cargo(Ci)A
Cargo(G) A Plane(Py) A Plane(P) A Airport(SFO) A Airport(JFK))

Action(Fly (P, SFO, JFK),
() PRECOND: At(P1, SFO) A Plane(P1) A Airport(SFO) A Airport(JFK),
EFrFECT: —At(P1, SFO) A At(Py, JFK))

S In(C1, P1) A At(CQ, JFK) A At(Pl, JFK) A Ai’(:Dz7 JFK) A Cargo(C1)/\
Cargo(G) A Plane(Py) A Plane(P») A Airport(SFO) A Airport(JFK))

Action(Unload(Ci, P1, JFK),
[} PRECOND: In(Ci, P1)AAt(P1, JFK)ACargo(Ci)APlane(Py)AAirport(JFK),
EFFECT: At(Cyi, JFK) A —In(Cy, Py))

ss | At(GCi, JFK) A At(G, JFK) A At(P1, JFK) A At(P2, JFK) A Cargo(Ci)A
Cargo(G) A Plane(P1) A Plane(P>) A Airport(SFO) A Airport(JFK))

22/53

Example: Air Cargo Transport (ctd.)

S3

At(Cy, JFR) A At(Cy, JFK) A At(Pr, JFK) A At(Ps, JEK) A Cargo(Ci)A
Cargo(G) A Plane(P1) A Plane(P) A Airport(SFO) A Airport(JFK))

Action(Load(C,, P>, JFK)

PRECOND: At(Cy, JFK)AAt(P,, JFK)ACargo(Co)APlane(P2)AAirport(JFK),

EFFECT: —At(C, JFK) A In(Gy, P2))

S4

At(C, JFK) A In(Gy, P2) A At(Pr, JFK) A At(P2, JFK) A Cargo(Ci)A
Cargo(G) A Plane(Py) A Plane(P) A Airport(SFO) A Airport(JFK))

Action(Fly(P,, JFK, SFO),
PRECOND: At(P2, JFK) A Plane(P,) A Airport(JFK) A Airport(SFO),
ErrECT: —At(P2, JFK) A At(P>, SFO))

S5

At(C1, JFK) A /n(Cz, P2) A At(Pl, JFK) A Ai’(:Dz7 SFO) A Cargo(Cl)/\
Cargo(G) A Plane(Py) A Plane(P») A Airport(SFO) A Airport(JFK))

Action(Unload(Gy, P2, SFO),
PRECOND: In(Gy, P2)AAt(P2, SFO)ACargo(Go)APlane(P2)AAirport(SFO),
EFrFECT: At(C, SFO) A —In(Cy, P))

At(Ci, JFK) A At(Gy, SFO) A At(P1, JFK) A At(P2, SFO) N Cargo(Ci)A
Cargo() A Plane(P1) A Plane(P>) A Airport(SFO) A Airport(JFK))

— sp satisfies the goal At(Ci, JFK) A At(Cy, SFO).

23/53

Example: Blocks World

One of the most famous planning domains is the blocks world
— consists of a set of cube-shaped blocks sitting on a table.

» The blocks can be stacked, but only one block can fit directly on
top of another.

» A robot arm can pick up a block and move it to another position,
either on the table or on top of another block.

» The arm can pick up only one block at a time, so it cannot pick up
a block that has another one on it.

» The goal is always to build one or more stacks of blocks, specified in
terms of what blocks are on top of what other blocks.

24/53

Example: Blocks World (ctd.)

» We use On(b, x) to indicate that block b is on x, where x is either
another block or the table.

» The action Move(b, x, y) expresses that block b is moved from the
top of x to the top of y.

One of the preconditions on moving b is that no other block be
on it.

In ADL, we could state this as a sentence of first-order logic:
—dx On(x, b), or, equivalently, ¥ x —On(x, b).

In STRIPS, we use a new predicate, Clear(x), that is true when
nothing is on x.

25/53

Example: Blocks World (ctd.)

» We can formally describe Move in STRIPS as follows:
Action(Move(b, x, y),
PRECOND: On(b, x) A Clear(b) A Clear(y),
EFrFECT: On(b,y) A Clear(x) AN =On(b,x) A =Clear(y))

» But this action does not maintain Clear properly when x or y is the
table:

o for x = Table, we get Clear(Table), but the table should not
become clear,

e for y = Table, it has the precondition Clear(Table), but the
table does not have to be clear to move a block onto it.

26/53

Example: Blocks World (ctd.)

To fix this, we do the following:

1. We introduce another action to move a block b from x to the table:
Action(MoveToTable(b, x),
PRECOND: On(b, x) A Clear(b),
EFFECT: On(b, Table) A Clear(x) A ~On(b, x))

2. We interpret Clear(b) as “there is a clear space on b to hold a
block”
= Clear(Table) will always be true.

27/53

Example: Blocks World (ctd.)

» One caveat in doing this:

e Nothing prevents a planner from using Move(b, x, Table)
instead of MoveToTable(b, x)

— it will lead to a larger-than-necessary search space albeit to
no incorrect answers

— to avoid this, we can introduce the predicate Block and
add Block(b) N Block(y) to the precondition of Move.

» There is also the problem of spurious actions like Move(B, C, C).
— can be avoided by adding inequalities.

= The complete specification of the blocks world problem is given next
(in slightly generalised STRIPS notation, as discussed).

28/53

Example: Blocks World (ctd.)

Init(On(A, Table) A On(B, Table) A On(C, Table)A
Block(A) A Block(B) N Block(C) A Clear(A) A Clear(B) A Clear(C))
Goal(On(A, B) A On(B, C))
Action(Move(b, x, y),
PRECOND: On(b, x) A Clear(b) A Clear(y) A Block(b) A Block(y)A
(b#X)A(bF#y)A(x#Y),
EFFECT: On(b,y) A Clear(x) A =On(b, x) A =Clear(y))
Action(MoveToTable(b, x),
PRECOND: On(b, x) A Clear(b) A Block(b) A Block(x) A (b # x),
EFrFECT: On(b, Table) A Clear(x) A ~On(b, x))

» The following plan is a solution to the problem:
[Move(B, Table, C), Move(A, Table, B)].

29/53

Planning with State-space Search

We now turn to the question of how to find plans.

» The most straightforward approach is to use state-space search.

» Two possibilities:

e forward state-space search (or progression planning): from
initial state to goal,

e backward state-space search (or regression planning): from goal

to initial state.

30/53

Planning with State-space Search (ctd.)

The two approaches illustrated: (a) progression planning; (b) regression
planning.

AP, B —
—
Fly(P,,A,B) AtP,, A)
At(P‘) A) — \
@ At(P,, A)
Fly(P,,A,B) —] At(P,, A) —
At(P,, B) ~
~~ AP, , A)
~—
At(P,, B) Fly(P, ,A,B)
) - ~— At(P1 7 B)
® At(P,, B)
~— At(P, , B) . Fly(P,,A,B)
— At(P,, A)

31/53

Progression Planning

» We start in the problem’s initial state, considering sequences of
actions until we find a sequence that reaches a goal state.

» The formulation of planning problems as state-space search
problems is as follows:

e The initial state of the search is the initial state of the planning
problem.

— Each state will be a set of positive ground literals;
— literals not appearing are false.

e The actions that are applicable to a state are all those whose
preconditions are satisfied.

— The successor state resulting from an action is generated
by adding the positive effect literals and deleting the
negative effect literals.

1= |n case of a first-order logic language, we must apply a
unifier from the preconditions to the effect literals.

32/53

Progression Planning (ctd.)

» The goal test checks whether the state satisfies the goal of the
planning problem.

» The step cost of each action is typically 1.

1= Allowing different costs for different actions could be easily
realised, but this is seldom done for STRIPS planners.

Note: in the absence of function symbols, the state space of a planning
problem is finite

= any complete graph search algorithm (like A*) yields a complete
planning algorithm!

33/53

Regression Planning

» The main advantage of backward search is that it allows to consider
only relevant actions.

1= An action is relevant to a conjunctive goal if it achieves one of the
conjuncts of the goal.

34/53

Regression Planning (ctd.)
For instance:

» Consider the cargo problem with 20 pieces of cargo, having the goal
Af(Cl, B) VAN At(CQ, B) VAN Af(CQO, B)

» Seeking actions having, e.g., the first conjunct as effect, we find
Unload(Cy, p, B) as relevant.

e This action will work only if its preconditions are satisfied.
— any predecessor state must include the preconditions
In(Cy, p) A At(p, B).

e Moreover, the subgoal At(Cy, B) should not be true in the
predecessor state.

— The predecessor state description is

/n(Cl, p) VAN At(p, B) N At(Cg, B) VAN Al‘(Cgo7 B).

35/53

Regression Planning (ctd.)

Besides insisting that actions achieve some desired goal, they should not
undo any desired literals.
» Actions satisfying this restriction are called consistent.

» E.g., Load(C,, p, B) would not be consistent with the current goal
as it would negate the literal At(Cs., B).

36/53

Regression Planning (ctd.)

We can now describe the general process of constructing predecessors for
backward search.

» Given a goal description G, let A be an action that is relevant and
consistent.

» The corresponding predecessor is as follows:

e Any positive effects of A that appear in G are deleted.

e Each precondition literal of A is added, unless it already
appears.

= Any standard search algorithm can be used to carry out the search.

1= |n the first-order case, satisfaction might require a substitution for
variables in the predecessor description.

37/53

Partial-order Planning

» Forward and backward state-space search are particular forms of
totally ordered plan searches.

» They explore only strictly linear sequences of actions and do not
take advantage of problem decomposition.

= Any planning algorithm that can place two actions into a plan
without specifying which comes first is called a partial-order planner.

38/53

Example

Consider a simple example of putting on a pair of shoes:

Init()

Goal(RightShoeOn A LeftShoeOn)

Action(RightShoe, PRECOND : RightSockOn, EFFECT : RightShoeOn)
Action(RightSock, EFFECT : RightSockOn)

Action(LeftShoe, PRECOND : LeftSockOn, EFFECT : LeftShoeOn)
Action(LeftSock, EFFECT : LeftSockOn)

» A partial-order planner should come up with the following
two-action sequences:
e [RightSock, RightShoe| to achieve the first conjunct of the goal
and
o [LeftSock, LeftShoe| for the second conjunct.
» Then, the two sequences can be combined to yield the final plan.

» In doing so, the planner manipulates the two subsequences
independently.

39/53

Partial Order Plan:

Start
Left Right
Sock Sock
LeftSockOn RightSockOn
Left Right
Shoe Shoe

LeftShoeOn, RightShoeOn

Finish

Example (ctd.)

Total Order Plans:

Start Start Start Start Start Start
Right Right Left Left Right Left
Sock Sock Sock Sock Sock Sock
Left Left Right Right Right Left
Sock Sock Sock Sock Shoe Shoe
Right Left Right Left Left Right
Shoe Shoe Shoe Shoe Sock Sock
Left Right Left Right Left Right
Shoe Shoe Shoe Shoe Shoe Shoe
Finish Finish Finish Finish Finish Finish

40/53

Partial-order Planning—Basics

Partial-order planning can be implemented as a search in the space of
partial-order plans:

>
>

We start with an empty plan.

Then, we consider ways of refining the plan until we come up with a

complete plan that solves the problem.
The actions in this search are not actions in the world but actions
on plans:

e adding a step to the plan;

e imposing an ordering that puts one action before another;

e and so on.

We will define the POP algorithm for partial-order planning (as an
instance of a search problem).

41/53

Partial-order Plans—Components

Each plan has the following four components:

—

. a set of actions;
a set of ordering constraints;

a set of causal links;

ol

a set of open preconditions.

42/53

Partial-order Plans—Components (ctd.)

The set of actions constitutes the elements for making up the steps of
the plan.

» The actions are taken from the set of actions in the planning
problem.

» The empty plan contains just the Start and Finish actions.

e Start has no preconditions and has as its effect all the literals in
the initial state of the planning problem.

e Finish has no effects and has as its preconditions the goal
literals of the planning problem.

43/53

Partial-order Plans—Components (ctd.)

» An ordering constraint is a pair of actions of the form A < B, read
as “A before B".

e A < B means that action A must be executed sometime before
action B, but not necessarily immediately before.

» The ordering constraints must describe a proper partial order.

» Any cycle, like A < B and B < A, represents a contradiction

= an ordering constraint cannot be added to the plan if it creates
a cycle.

44/53

Partial-order Plans—Components (ctd.)

» A causal link between two actions A and B in the plan is an
expression of form A -2 B, read as “A achieves p for B".

» E.g., the causal link

RightSock RightShoe

asserts that RightSockOn is an effect of the RightSock action and a
precondition of RightShoe.

RightSockOn
—

e |t also asserts that RightSockOn must remain true from the
time of action RightSock to the time of action RightShoe.

e In other words, the plan may not be extended by adding a new
action C that conflicts with the causal link.

45/53

Partial-order Plans—Components (ctd.)

» An action C conflicts with A "~ B if
1. C has the effect —p and

2. C could (according to the ordering constraints) come after A
and before B.

» A precondition is open if it is not achieved by some action in the
plan.

» Planners will work to reduce the set of open preconditions to the
empty set, without introducing a contradiction.

46/53

Shoe-and-sock Example Revisited

For instance, the final plan in the shoe-and-sock example has the
following components (omitting the ordering constraints that put every
other action after Start and before Finish):

Actions: {RightSock, RightShoe, LeftSock, LeftShoe, Start, Finish}

Orderings: {RightSock < RightShoe, LeftSock < LeftShoe}

R:ghtSockOn LeftSockOn

Links: {RightSock
RightShoe

RightShoe, LeftSock LeftShoe,

Ri, htSh 0] L ftSh O
B0V Finish, LeftShoe = =23°"" Finish}

Open preconditions: {}

47/53

Partial-order Plans—Solutions

» We define a consistent plan as a plan in which

e there are no cycles in the ordering constraints and

e no conflicts with the causal links.

» A solution is a consistent plan with no open preconditions.

= Every linearisation of a partial-order solution is a total-order solution
whose execution from the initial state will reach a goal state.

= \\e can extend the notion of “executing a plan” from total-order
plans to partial-order plans:

e A partial-order plan is executed by repeatedly choosing any of
the possible next actions.

48/53

The POP Algorithm

» The initial plan contains
e Start and Finish,
e the ordering constraint Start < Finish,

e no causal links, and
e all the preconditions in Finish as open preconditions.

» The successor function arbitrarily picks
e one open precondition p on an action B and

e generates a successor plan for every possible consistent way of
choosing an action A that achieves p.

49/53

The POP Algorithm (ctd.)

Consistency is enforced as follows:

1. The causal link A -5 B and the ordering constraint A < B are
added to the plan.
e Action A may be an existing action in the plan or a new one.

e If it is new, add it to the plan and also add Start < A and
A < Finish.

2. We resolve conflicts between (i) the new causal link and all existing
actions and (ii) action A and all existing causal links, providing A is
new.

e A conflict between A -+ B and C is resolved by adding B < C
or C < A.

e We add successor states for either or both if they result in
consistent plans.

50/53

The POP Algorithm (ctd.)

» The goal test checks whether a plan is a solution to the original
planning problem.

= Because only consistent plans are generated, the goal test just needs
to check that there are no open preconditions.

51/53

Planning—Summary

Planning systems are problem-solving algorithms that operate on
explicit propositional or first-order representations of states and
actions.

The PDDL family of planning languages allow a factored
representation of planning problems, containing STRIPS and ADL
as particular languages.

State-space search can operate in the forward direction
(“progression”) or the backward direction (“regression”).

Partial-order planning algorithms explore the space of plans without
committing to a totally ordered sequence of actions.

52/53

Planning—Summary (ctd.)

» Different heuristics are defined in the literature to significantly prune
the search space.

» A further approach to solve planning problems is by translating them
into formulas of propositional logic such that

e the plans of a given planning problem P are given by the
models of the associated formula A.

1= This method is referred to as planning as satisfiability.

53/53

