
CHAPTER 3 

Human Perception and 
Information Processing 

This chapter deals with human perception and the different ways in which 
graphics and images are seen and interpreted. The early approach to the 
study of perception focused on the vision system and its capabilities. Later 
approaches looked at  cognitive issues and recognition. We discuss each ap- 
proach in turn and provide details. Significant parts of this chapter, in- 
cluding many of the figures, are based on the work of Christopher G. Healey 
(http://www.csc.ncsu.edu/faculty/healey/PP/index.html) [150], who has 
kindly granted permission for their reuse in this book. 

3.1 What Is Perception? 

We know that humans perceive data, but we are not as sure of how we 
perceive. We know that visualizations present data that is then perceived, 
but how are these visualizations perceived? How do we know that our visual 
representations are not interpreted differently by different viewers? How can 
we be sure that the data we present is understood? We study perception 
to better control the presentation of data, and eventually to harness human 
perception. 

There are many definitions and theories of perception. Most define per- 
ception as the process of recognizing (being aware of), organizing (gathering 
and storing), and interpreting (binding to knowledge) sensory information. 
Perception deals with the human senses that generate signals from the envi- 
ronment through sight, hearing, touch, smell and taste. Vision and audition 
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3. Human Perception and Information Processing 

Figure 3.1. Two seated figures, making sense at  a higher, more abstract level, but still dis- 
turbing. On closer inspection, these seats are not realizable. (Image courtesy 
N. Yoshigahara.) 

are the most well understood. Siinply put, perceptioil is the process by 
which we interpret the world around us, forming a mental representation of 
the environment. This represelltatioil is not isomorphic to the world, but it's 
subject to many correspondence differences and errors. The brain makes as- 
suinptions about the world to overcolne the inherent ambiguity in all sensory 
data, and in response to the task at  hand. 

Visual represelltations of objects are often misinterpreted, either because 
they do not inatch our perceptual system, or they were intended to be misin- 
terpreted. Illusions are a primary source of such misinterpretations. Figures 
3.1 and 3.2 highlight our inability to notice visual problems except on more 
detailed perusal. The drawings are those of physically no~lrealizable objects. 

Figure 3.2. Four # three. As in Figure 3.1, this object would have a problem being built (there 
are four boards on the left and three on the right). 



3. l .  What Is Perception? 

Figure 3.3. A more coinplex illusion: there are two people drawn as part of the face. 

Sometimes the ambiguity presented is easily seen, but more difficult to ex- 
plain. Sometimes it is not even perceived. 

Figure 3.3 highlights that on first glance an image may represent a pri- 
mary object, one that is perceived more obviously thail the secondary others 
that may require more effort or time. There are many such illusions, and 
these are easy to construct. In effect, the artist puts together a primary im- 
age out of secondary images. There may even be tertiary ones. Tools have 
been developed to support such imagery. For example, Rob Silvers uses a 
computational techilique to form an image con~posed of a lnosaic of smaller 
given iinages (see Figure 3.4 and Figure 3.5, which contains a detailed view). 

Our visual machinery also performs similar computatioi~s, but perhaps 
not as we would expect. Figure 3.6 highlight that our vision system is, 
foremost, not static, and secondly, often not under our full control. It is 
clear that there appear to be black squares being generated between the 
white spaces in Figure 3.6(a) and black circles in Fig~u-e 3.6(b). Why? If we 
forcibly stare at  an intersection of the spaces between the black squares, we 
can actually stop the "spots" from appearing. This is akin to our stopping 
breathing. When we visualize data, we need to make sure that no such 
interferences are present that would impede the understanding of what we 
are trying to convey in the visualizations. 



Figure 3.4. 

Figure 3.5. 

3. Human Perception and Information Processing 

Photomosaic of Benjamin F'ranklin using images of international paper money or 
bank notes. (Photomosaic@ by Robert Silvers, http://www.photomosaic.com.) 

Close-up v iew of the eye in Figure 3.4. (Photomosaic@ by Robert Silvers, http:// 
www.photomosaic.com.) 



3.1. What  Is Perception? 

Figure 3.6. The Hermann grid illusion: (a) illusionary black squares appear over the complete 
image as you gaze at it; (b) similar to (a) but even more dynamic and engaging. 

Similarly, Figure 3.7(a) and (b) highlight that there is more to our visual 
system than meets the eye (pun intended). In both of these images, we seem 
to have machinery forcing the interpretation of the objects we see in a specific 
manner. The study of perception is to identify not just this machinery, but 
the whole process of perception, from sensation to knowledge. What is 
causing the lines not to appear perfectly straight, or the triangle to stand 
out? More generally can we explain the causes of these and other illusions 
we see? These are the important questions we need to answer in order to 
be able to generate synthetic images that will represent data unambiguously 
and not pop out an artifact. 

Figure 3.7. (a) The Hering illusion: red lines are straight. (Use a straight edge to verify.) 
(b) The Kanizsa illusion: a triangle seems to pop out of the image even though no 
such triangle is drawn. 
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These illusions are due to our perceptual system's structure, and the 
assumptions it makes about an image or scene. The interpretations are due 
to a variety of reasons and are the result of how the process works. To 
understand this process and identify its structure, we first need to measure 
what we see and then develop models explaining the measured results. These 
models should also help explain the illusions. 

There are two main approaches to the study of perception. One deals 
with measures, and the other with ~qodels. Both are linked. Measurements 
can help in the development of a model, and in turn, a model should help 
predict future outcomes, which call then be measured to validate the model. 
We can measure low-level sensory perception (which line is longer) or higher- 
level perception (can you recognize the bird in this scene?). Each requires 
a different set of tools and approaches. This approach, however, still does 
not explain why we see these differences, or why we recognize objects. That 
requires a model of the process. 

Not paying attention to perception will lead to problems in visualiza- 
tion. For example, Figure 3.6 clearly shows how visual patterns can impact 
a display. We need to understand, at least rudimentarily, what aspects of 
visualization cannot be violated. Some of these involve color (perceived 
differently by individuals) and three-dimensional perception (forced inter- 
pretations by inherent perceptual assumptions, such as where a light source 
is typically placed). We will see several more examples later in this chapter. 

3.2 Physiology 

The main sensory component of vision involves the gathering and recording 
of light scattered from objects in the surrounding scene, and the forming of 
a two-dimensional function on the photoreceptors [187,302]. Photoreceptors 
are generally very small sensory devices that respond in the presence of 
photons that make up light waves. 

3.2.1 Visible Spectrum 

Visible light, the light waves that are capable of being perceived by hu- 
man eyes, actually represents a very small section on the electromagnetic 
spectrum (see Figure 3.8). This sub-spectrum ranges from about 380nm 
(nanometers) near ultraviolet, up through to about 700nm towards the in- 
frared. This range is very much dependent on the individual and generally 
shrinks in size after the age of twenty [233]. Color blindness and total blind- 
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3.2. Physiology 

Figure 3.8. The electromagnetic spectrum with an expanded visible light spectrum [233]. (Im- 
age courtesy Wikimedia Commons.) 

ness in humans are the result of an individual not responding to certain 
wavelengths. 

Beyond just the consideration of light is the importance of physical object 
properties. It is through the visual system that information concerning the 
external objects in the surrounding environment is captured. This exchange 
of information between the environment and the observer is presented to 
the eyes as variations of wavelengths. These variations are a result of ob- 
ject properties that include object geometry, scene illumination, reflectance 
properties, and sensor photoreceptor characteristics. 

3.2.2 Anatomy of the Visual System 

The human eye is a marvelous organ, yet its construction is quite simple. 
Figure 3.9 shows a horizontal cross-section of the right eye, viewed from 
above. This diagram provides names to most of the fundamental macro- 
structures that provide humans with the ability to see their surrounding 
environment. The major parts that directly involve the path taken by light 
waves include the cornea, iris, pupil, lens, and retina. Overall, the eye is a 
fluid-filled sphere of light-sensitive cells with one section open to the outside 
via a basic lens system, and connected to the head and brain by six motion- 
control muscles and one optic nerve. 

Lens System and Muscles. First, the six muscles are generally considered as 
motion controllers, providing the ability to look at objects in the scene. The 
action of looking at  specific areas in the environment involves orienting the 
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Figure 3.9. 

Pupil 
his C m e a  

Horizontal cross-section of the human eye, viewed from above. (Image courtesy 
Wikimedia Commons.) 

eye's optical system to the regions of interest through muscle contractions 
and relaxations. Also, the muscles tend to maintain the eye-level with the 
horizon when the head is not perfectly vertical. These muscles also play 
another important role in the stabilization of images. Continually making 
minor adjustments, eyes are never at rest, although we do not perceive these 
actions visually. In an engineered system, such motions are usually consid- 
ered as imperfections, yet they have been found to improve the performance 
of the human visual system [269]. 

The optical system of the eye is similar in characteristic to a double- 
lens camera system. The first component is the cornea, the exterior cover 
to the front of the eye. Acting as a protective mechanism against physical 
damage to the internal structure, it also serves as one lens focusing the 
light from the surrounding scene onto the main lens [128]. From the cornea, 
light passes through the pupzl, a circular hole in the iris, similar in function 
to an aperture stop on a photographic camera [233]. The iris is a colored 
annulus containing radial muscles for changing the size of the pupil opening. 
Thus, the pupil determines how much light will enter the rest of the internal 
chamber of the eye. The third major component is the lens, whose crystalline 
structure is similar to onion skin. Surrounded by the ciliary body, a set of 
muscles, the lens can be stretched and compressed, changing the thickness 
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3.2. Physiology 

and curvature of the lens and consequently adjusting the focal length of the 
optical system. As a result, the lens can focus on near and relatively far 
objects. The elasticity of the lens determines the range of shape changes 
possible, which is lost as one ages, leaving the lens in a slightly stretched 
state [128]. Once the light has passed through this lens system, the final 
light rays are projected onto the photoreceptive layer, called the retina. The 
process is not as precise as camera optics, however. As Overington states: 

An important point to note about the lens system is that is has very 
little facility built-in for correction of many of the aberrations which 
are normally corrected in good quality instrumental optical systems. 
This inevitably means that the image produced is far from perfect. 
Yet the apparent image perceived appears very sharp, whilst quite 
phenomenally fine subtleties in the image can be observed. [269, p. 71 

The Retina The retina of the human eye contains the photoreceptors respon- 
sible for the visual perception of our external world. It  consists of two types 
of photosensitive cells: rods and cones (see Figure 3.10) [128,233]. These 
two types of cells respond differently to light stimulation. Rods are primar- 
ily responsible for intensity perception, and cones for color perception. Rods 
are typically ten times more sensitive to light than cones. There is a small 
region at  the center of the visual axis known as the fovea that subtends 
1 to 2 degrees of visual angle. The structure of the retina is roughly radially 
symmetric around the fovea. The fovea contains only cones, and linearly, 

Figure 3.10. Human rod (left) and cone (right). (Image @ Colour4R~e.) 
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3. Human Perception and Information Processing 

there are about 147,000 cones per milliineter [128]. The fovea is the region 
of sharpest vision. Because the huinan eye contains a limited number of rods 
and cones (about 120 million rods and G million cones), it can only manage a 
certain amount of visual inforination over a given time frame. Additionally, 
the information transferred from these two types of cells is not equivalent. 

Another interesting fact is that the optic nerve only contains about one 
million fibers; thus the eye must perform a significant amount of visual pro- 
cessing before transmitting information to the brain. What inaltes the retina 
an unusual layer for light stimulation is the orientation of the photoreceptive 
cells. The whole layer of cells that maltes up the retina is actually backwards; 
the light rays must pass througl~ the output neurons and optic nerve fibers 
first, before reaching the photosensitive cells, which are also facing away from 
the light source. The reason suggested for this arrangement in all vertebrates 
is that "eyes are actually part of the brain and represent an outgrowth from 
it," and that "the cells of the retina are formed during development from 
the same cells that generate the central nervous system" ( [l281 p. 18). 

The eye contains separate systems for encoding spatial properties (e.g., 
size, location, and orientation), and object properties (e.g., color, shape, 
and texture). These spatial and object properties are important features 
that have been successfully used by researchers in psychology for simple 
taslts such as target detection, boundary detection, and counting. These 
properties have also been used extensively by researchers in visualization to 
represent high-dimensional data collections [384]. 

Rods. Rods are the most sensitive type of photoreceptor cells available ill the 
retina; consequently, they are associated with scotopic vision, night vision, 
operating in clusters for increased sensitivity in very low light conditions. 
As these cells are thought to be achromatic we tend to see objects at  nigllt 
in shades of gray. Rods do operate, however, within the visible spectruin 
between approximately 400 and 700 nm [233]. It has been noted that during 
daylight levels of illumination, rods become hyperpolarized, or completely 
saturated, and thus do not contribute to visioil 11281. 

Cones. On the other hand, cones provide photopic vision, i.e., are responsible 
for day vision. Also, they perform with a high degree of acuity, since they 
generally operate individually. There are three types of cones in the human 
eye: S (short), M (medium), and L (long) wavelengths [128]. These three 
types (see Figure 3.11) have been associated with color combinations using 
R (red), G (green), and B (blue). The long wavelength cones exhibit a 
spectrum peak at  560 nin, the medium wavelength cones peak at 530 nin, 
and the short wavelength cones peak at  around 420 nin. However, it must 
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3.2. Physiology 

Figure 3.1 l .  

Wavelength (nm) 

The retina layer contains the three types of cones (short, medium, and long) 
(Image courtesy Wikimedia Commons.) 

be noted that there are considerably fewer short cones, compared to the 
number of medium and long wavelength cones [269]. In spite of this, humans 
can visually perceive all the colors within the standard visible spectrum. 
Unlike rods, cones are not sensitive over a large fixed wavelength range, but 
rather over a small moving-window-based range. Cones tend to adapt to the 
average wavelength where there is sensitivity above and below their peaks, 
and a shift in their response curve occurs when the average background 
wavelength changes [128]. 

Blind Spot. Given that humans have two types of photoreceptors with three 
types of cones, how are these cells distributed on the retina? First, there is 
an overall distributioil of all cells across the retina, with the highest concen- 
tration occurring at the center of our visual field in the fovea and reducing 
in coverage towards the edges [128]. Where the optic nerve meets the retina, 
a blind spot occurs, due to the lack of photoreceptive cells. Second, there 
is a striking separation between the locations of rods and cones. The fovea 
consists of only cone receptors, and no rods, for highly detailed and exact 
vision [233]. Surrounding the fovea are three concentric bands: parafovea 
with an outer ring of 2.5-mm diameter, perzfovea with an outer ring of 5.5- 
inin diameter, and the peripheral retzna, covering approximately 97.25% of 
the total retina1 surface and consisting largely of rods [233]. Each of these 
areas is marked by a dramatic reduction in cones, and it is significant to 
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m- - 
Figure 3.12. Blind spot discovery by ider ing disappearance of target. 

note here that within the parafovea there already are significantly more rods 
than cones. 

The identification (more really verification) of one's blind spot can be 
done simply with this Optic Disk experiment (see Figure 3.12). Close your 
right eye and look directly a t  the number 3. You should see the yellow spot 
in your peripheral vision. Now, slowly move toward, or away from the screen 
or paper image. At some point, the yellow spot will disappear, as its sensory 
reflection hits the blind spot. 

There are some very interesting outcomes resulting from the physiology 
of human eyes. First, the photoreceptive cells are packed into the retina 
parallel to each other, and are not directed toward the pupil [128]. Thus, 
the eye obtains its best stimulation from light entering straight on through 
the pupil. 

Next, the rods and cones are packed in a hexagonal structure for op- 
timized coverage. Such a packing scheme, in conjunction with an initially 
blurred image, resulting from cell sampling, has been demonstrated to pro- 
vide near-optimal information transfers [269]. Another fascinating fact about 
the retina concerns the sampling rate of the photoreceptive cells. Through 
the effects of temporal smoothing, where receptors only respond every few 
milliseconds, humans perceive flickering lights up to a certain frequency, 
beyond which the eye only registers a constant light source [128]. 

I t  has been said that the United States Air Force tested pilots' ability to 
respond to changes in light by flashing a picture of an aircraft on a screen in 
a dark room for 11220th of a second. According to these anecdotal reports, 
pilots were consistently able to detect the afterimage of the flash, and were 
also able to identify the aircraft type. 

Finally, it has been shown that the human eye responds to ratios of 
intensities and not absolute values [128]. These ratios play an important 
part in adaptation and contrast sensitivity and the eye will adapt to changes 
in wavelength ranges. 
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Figure 3.1 3. A representation of a retina1 cross-section.(Image @ The Brain from Top to Bot- 

tom.) 

3.2.3 Visual Processing 

Signal processing in humans is performed by neurons, the elementary bio- 
logical components that make up the nervous system. This system operates 
on sequences of frequency-modulated pulses sent between two neurons in 
communication. Through chemical actions, each neuron stimulates other 
neurons-possibly hundreds to thousands of other nervous system cells- 
causing information to travel. 

Retinal Processing. The retina of the eye is actually a complex layer of many 
neurons and photoreceptive cells, as depicted in Figure 3.13. This illustration 
has the photoreceptors pointing up; thus, the front of the eye is pointing 
down, so that light first hits the bottom layer and progresses through the 
various layers, until it stimulates the rods and cones. The relatively large 
black bulbs represent the nucleus of each neuron. 

There are four neuron layers within the retina that perform initial image 
processing on the stimulations resulting from the individual photoreceptors, 
the cones and rods. Figure 3.13 is a highly stylized diagram of the human 
retina, showing the four layers plus the top layer of receptors; again, the 
light enters from the bottom. These four layers are composed of individual 
types of neuron cells, based on their connectivity properties: horizontal cells 
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3. Human Perception and Information Processing 

only connect sets of receptors, bipolar cells connect receptors to other layers, 
amacrine cells join numerous bipolar and ganglion cells, and ganglion cells 
transmit retinal stimulation from the eye to the brain is the optic nerve [233]. 

As mentioned previously, the retina develops directly from brain cells; 
thus the obvious ability for preprocessing of the stimulus image. Like the in- 
dividual groups of photoreceptive cells, there are also various types of bipolar 
and ganglion cells that have very distinct properties dealing with the combi- 
nations of rods and cones [269]. Some cones within the fovea are connected 
to individual ganglia via a single bipolar link. Rods on the outer periphery 
of the retina are grouped together and joined with bipolar cells, where sev- 
eral bipolar groups output to a single ganglion. Hence, the retina is already 
performing some kinds of image compression, and possibly segmentation. 
This reduction of retinal stimulation is required, as there are only about a 
million optic nerve fibers relaying image information to the brain, which is 
a hundred times less than the total number of rods and cones [4]. There is 
also other valuable information formed during this compression. Individual 
rods and cones by themselves do not provide much information, due to the 
limitations of the optic nerve. Furthermore, individual cones only respond 
to fixed wavelength ranges; thus one cell cannot provide color information. 
Consequently, it is through the combinations of photoreceptor stimuli that 
intensity and color descriptions can be obtained, which is believed to happen 
at a very early stage in visual processing [128]. 

, 
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Figure 3.14. The anatomy of the visual system. (Image courtesy Wikimedia Commons.) 
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3.2. Physiology 87 

The Brain. The brain is the center of all bodily functions and is composed 
of the majority of neurons found in the human nervous system. The overall 
structure of the brain is divided into two hemispheres, left and right, with 
the addition of a few smaller structures located under these hen~ispheres. 
Of importance is the fact these hemispheres have relative functional regions, 
one of which is designed for processing visual stimulation [233]. Before the 
optic nerves from each eye reach the inner regions of the brain they partially 
cross at  the optic chiasma-half the fibers from each eye cross to the op- 
posite side of the corresponding brain region (see Figure 3.14). Thus, each 
hemisphere receives visual information from both eyes, possibly to help with 
the perception of depth. As there is so much visual processing performed 
at both the eyes and within the brain, these linked organs forin an integral 
visual system [4]. 

3.2.4 Eye Movement 

Perhaps the most critical aspect of perception is the importance of eye move- 
ment in our understanding of scenes, and therefore images. It explains, for 
example, the illusionary black dots in the earlier figures [123,309,334]. There 
are a variety of eye movements performed for scene interpretation. 

Smooth pursuit movements. These are just as their name implies. The eyes 
move smoothly instead of in jumps. They are called pursuit because this 
type of eye movement is made when the eyes follow an object. For exain- 
ple, to inalte a pursuit n~oveinent, look at your forefinger at arms' length 
and then move your arm left and right while fixating on your fingertip. 
Such movements are also called conjugate eye m,ovements or coordinated eye 
movements. The angles from the normal to the face are equal (left and right 
as well as up and down). 

Vergence eye movements. These result from iloilconjugate movement and 
yield different angles to the face normal. Moving a finger closer to the face 
and staring at it will force the eyes inward, resulting in vergence movement. 
Defocusing to merge depths in illusions is another example. 

Saccadic eye movements. These result from multiple targets of interest (not 
necessarily conscious). The eye moves as much as 1000 degrees per second, 
bringing the gaze on those targets within 25 insec. It holds its position 
once on target. Selected targets are determined in the frontal part of the 
cerebral cortex. The selection is discriminatory, dependent on a variety of 
parameters, and somewhat random. 

l 
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3. Human Perception and Information Processing 

Figure 3.15. (a) The face used to study eye tracking. (b) The results of the tracking of the 
gaze. 

Saccadic masking. Saccadic masking or suppression occurs during two states 
between saccadic views. The gap produced is ignored (some say blocked). 
A continuous flow of information is interpreted, one that makes sense. The 
higher level visual system filters out the blurred images acquired by the low 
level one, and only the two saccadic stop views are seen. 

Marketing research has helped identify how to set up advertisements to 
force the visual focus on objects of interest. For example, when looking at 
the face in Figure 3.15(a), we find that the eye moves as in Figure 3.15(b). 
Note how the concentration of vertices highlights the targets to which the 
eye is attracted. The same tracking for the left image is shown on the right 
one in Figure 3.16. Note the role of the boundaries and the key focal points 
of faces. 

Figure 3.16. The right image shows the path followed by the eye in looking at the image on 
the left. Note the targets, whicll can easily be identified from the concentration of 
vertices of the path, and note the role of the boundary. 
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Figure 3.17. Classic model of the flow of sensory data for cognition (based on [72]). 

3.3 Perceptual Processing 

We use the classic model of information processing [72] for understanding 
the flow of sensory information, from the low level pre-attentive to the higher 
cognitive levels (Figure 3.17). This model highlights that memory is involved 
in post processing, but this is known to be only partially correct. Perception 
can be intrinsic and uncontrolled (preattentive) or controlled (attentive). 

Automatic or preattentive perception is fast and is performed in parallel, 
often within 250ms. Some effects pop out and are the result of preconscious 
visual processes. Attentive processes (or perception) transform these early 
vision effects into structured objects. Attentive perception is slower and uses 
short-term memory. It is selective and often represents aggregates of what is 
in the scene. Low-level attributes are rapidly perceived and then converted 
to higher-level structured ones for performing various tasks, such as finding 
a door in an emergency. We first focus on low-level attributes, then turn to 
higher level ones, and finally put it all together with memory models. 

3.3.1 Preattentive Processing 

For many years vision researchers have been investigating how the human 
visual system analyzes images. An important initial result was the discovery 
of a limited set of visual properties that are detected very rapidly and accu- 
rately by the low-level visual system. These properties were initially called 
preattentive, since their detection seemed to precede focused attention. We 
now know that attention plays a critical role in what we see, even at this 
early stage of vision. The term preattentive continues to be used, however, 
since it conveys an intuitive notion of the speed and ease with which these 
properties are identified. 

Typically, tasks that can be performed on large multielement displays in 
less than 200 to 250 inilliseconds (msec) are considered preattentive. Eye 
movements take at  least 200 msec to initiate, and random locations of the 
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Figure 3.18. 

Figure 3.19. 

(a) Target is present in a sea of blue circle (b) Target is absent. 
distractors. 

An example of searching for a target red circle based on a difference in llue. 

elements in the display ensure that attention cannot be prefocused on any 
particular location; yet viewers report that these tasks can be completed 
with very little effort. This suggests that certain information in the display 
is processed in parallel by the low-level visual system. 

A simple example of a preattentive task is the detection of a red circle 
in a group of blue circles (Figure 3.18). The target object has a visual prop- 
erty "red" that the blue distractor objects do not (all nontarget objects are 

(a) Target is absent in a sea of red square 
distractors. 

(b) Target is present. 

An example of searching for a target red circle based on a difference in curvature. 



Figure 3.20. 

3.3. Perceptual Processing 

(a) Target is absent in a sea of red square 
and blue circle distractors. 

(b) Target is present. 

An example of a conjunction search for a target red circle. 

considered distractors). A viewer can tell a t  a glance whether the target 
is present or absent. In Figure 3.18 the visual system identifies the target 
through a difference in hue, specifically, a red target in a sea of blue distrac- 
tors. Hue is not the only visual feature that is preattentive. In Figure 3.19 
the target is again a red circle, while the distractors are red squares. As 
before, a viewer can rapidly and accurately determine whether the target is 
present or absent. Here, the visual system identifies the target through a 
difference in curvature (or form). 

A unique visual property in the target (e.g., a red hue in in Figure 3.19(a) 
or a curved form in Figure 3.19(b)) allows it to '&pop out" of a display. A 
target made up of a combination of nonunique features (a conjunction target) 
normally cannot be detected preattentively. Figure 3.20 shows an example 
of conjunction search. The red circle target is made up of two features: 
red and circular. One of these features is present in each of the distractor 
objects (red squares and blue circles). This means the visual system has 
no unique visual property to search for when trying to locate the target. 
If a viewer searches for red items, the visual system always returns true, 
because there are red squares in each display. Similarly, a search for circular 
items always sees blue circles. Numerous studies have shown that this target 
cannot be detected preattentively. Viewers illust perforin a time-consuming 
serial search through the displays to confirm its presence or absence. 

If the low-level visual system can be harnessed during visualization, it 
can be used to draw attention to areas of potential interest in a display. 
This cannot be accomplished in an ad-hoc fashion, however. The visual 
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features assigned to different data attributes (the data-feature mapping) 
must take advantage of the strengths of our visual system, must be well- 
suited to the analysis needs of the viewer, and must not produce visual in- 
terference effects (e.g., conjunctioll search) that could mask information in a 

display. 
The following lists some of the visual features that have been identified 

as preattentive: length, width, size, curvature, number, terminators, inter- 
section, closure, hue, intensity, flicker, direction of motion, binocular luster, 
stereoscopic depth, 3D depth cues, and lighting direction. 

The key perceptual attributes associated with the above include lumi- 
nance and brightness, color, texture, and shape. Luminance is the measured 
amount of light coining from some place. Brightness is the perceived amount 
of light coming from a source. Perceived brightness is a nonlinear function of 
the amount of light emitted by the source, typically a power function S = a', 
where S = sensatioil and i = intensity. Note that these look very different 011 
a screen versus on paper. Texture is the characteristic appearance of an area 
or surface. Whereas texture applies to multiple sensory objects (the texture 
of a music, the texture of a fabric), shape is strictly a geometric attribute. 

Experiments in psychology have used these features to perform the fol- 
lowing preattentive visual tasks: 

Target detection. Users rapidly and accurately detect the presence or ab- 
sence of a "target" element with a unique visual feature within a field 
of distractor elements (Figures 3.18, 3.19, and 3.20); 

Boundary detection. Users rapidly and accurately detect a texture boundary 
between two groups of elements, where all of the elements in each group 
have a common visual property; 

Region tracking. Users track one or more elements with a unique visual fea- 
ture as they move in time and space; and 

Counting and estimation. Users count or estimate the number of elements 
with a unique visual feature. 

3.3.2 Theories o f  Preattentive Processing 

A number of theories have been proposed to explain how preattentive pro- 
cessing occurs within the visual system. We describe four well-known mod- 
els: feature integration theory, texton theory, similarity theory, and guided 
search theory. We also discuss briefly the phenomenon of postattentive vi- 
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(a) A boundary defined by a unique feature (b) A boundary defined by a conjunction of 
hue (red circles and red squares on the top, features (red circles and blue squares on the 
blue circles and blue squares on the bottom) left, blue circles and red squares on the right) 
is preattentively classified as horizontal. cannot be preattentively classified as vertical. 

Figure 3.21. A11 example of a boundary detection, from Treisman's experiments. 

sion, which shows that prior exposure to a scene does not help a viewer 
answer questions about the content of the scene. 

Feature Integration Theory. Anne Treisman was one of the original researchers 
to document the area of preattentive processing. She provided important 
insights into this phenomenon by studying two important problems. First, 
she tried to determine which visual properties are detected preattentively 
[359,360,362]. She called these properties "preattentive features" [361]. Sec- 
ond, she formulated a hypothesis about how the human visual system per- 
forms preattentive processing [358]. 

Treisman ran experiments using target and boundary detection to clas- 
sify preattentive features. For target detection, subjects had to determine 
whether a target element was present or absent in a field of background 
distractor elements (Figures 3.18 amd 3.20). Boundary detection involved 
placing a group of target elements with a unique visual feature within a 
set of distractors to see if the boundary could be preattentively detected 
(Figure 3.21). 

Treisman and other researchers measured preattentive task performance 
in two different ways: by respoilse time and by accuracy. In the response 
time model-viewers are asked to complete the task (e.g., target detection) 
as quickly as possible while still maintaining a high level of accuracy. The 
nuiilber of distractors in a scene is repeatedly increased. If taslr completion 
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time is relatively constant and below some chosen threshold, independent 
of the number of distractors, the task is said to be preattentive. If the task 
were not preattentive, viewers would need to search serially through each 
display to confirm a target's presence or absence. Increasing the number of 
elements in the display would therefore produce a corresponding increase in 
the time required to report on the target. 

In the accuracy model, the display is shown for a small, fixed exposure 
duration, tllen removed from the screen. Again, the number of distractors 
in the scene varies (i.e., increases) across trials. If viewers can coinplete the 
task accurately, regardless of the number of distractors, the feature used 
to define the target is assumed to be preattentive. A common exposure 
duration threshold is 200 to 250 msec, since this allows subjects oilly "one 
look" at  the scene. The human visual system cannot decide to change where 
the eye is loolting within this time frame. 

Treisman and others have used their experiments to compile a list of 
visual features that are detected preattentively, as meiltioned above. It is 
important to note that some of these features are asymmetric. For example, a 
sloped line in a sea of vertical lines call be detected preattentively. However, 
a vertical line in a sea of sloped lines cannot be detected preattentively. 
Another important consideratioil is the effect of different types of background 
distractors on the target feature. These factors must often be addressed when 
trying to design display techniques that rely on preatteiltive processing. 

To explain the phei~oinenon of preattentive processing, Treisman pro- 
posed a model of low-level human vision made up of a set of feature maps and 
a master map of locations. Each feature map registers activity in response 
to a specific visual feature. Treisman suggested a manageable number of fea- 
ture maps, including one for each of the oppoilent color primaries (green, red, 
yellow, and blue), as well as separate maps for orientation, shape, texture, 
and other preattentive features. 

When the human visual system first sees an image, all the features are 
encoded in parallel into their respective maps. A viewer can access a par- 
ticular map to check for activity, and perhaps to determine the amount of 
activity. However, the individual feature maps give no information about 
location, spatial arrangement, or relationships to activity in other maps. 

This framework provides a general l~ypothesis that explains how preat- 
tentive processing occurs. If the target has a unique feature, one can simply 
access the given feature map to see if any activity is occurring. Feature maps 
are encoded in parallel, so feature detection is almost instantaneous. A con- 
juilction target cannot be detected by accessing an individual feature map. 
Activity there inay be caused by the target, or by distractors that share the 

Raphael
Hervorheben

Raphael
Hervorheben



3.3. Perceptual Processing 

individual feature maps 
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Figure 3.22. Treisman's feature integration model for early vision; individual maps can be ac- 
cessed to detect feature activity; focused attention acts through a serial scan of 
the master map of locations 

given preattentive feature. To locate the target, one must search serially 
through the master map of locations, looking for an object with the correct 
combination of features. This use of focused attention requires a relatively 
large amount of time and effort. 

I11 later work, Treisman has expanded her strict dichotomy of features 
being detected as being either in parallel or in serial [359,362]. She now 
believes that parallel and serial represent two ends of a spectrum. "More" 
and "less" are also encoded on this spectrum, not just "present" and "ab- 
sent." The amount of differentiation between the target and the distractors 
for a given feature will affect searcl1 time. For example, a long vertical line 
can be detected immediately among a group of short vertical lines. As the 
length of the target shrinks, the search tiine increases, because the target 
is harder to distinguish from its distractors. At some point, the target line 
becomes shorter than the distractors. If the length of the target continues 
to decrease, search tiine decreases, because the degree of similarity between 
the target and the distractors is now decreasing. 

Treisinan has also extended feature integration to explain certain cases 
where conjunction search is preattentive. In particular, conjunction search 
tasks involving motion, depth, color, and orientation have been shown to 
be preattentive by Nakayama and Silverman [263], Driver et al. [86], and 
MTolfe et al. [399]. Treismail l~ypothesizes that a significant target-nontarget 
feature difference would allow individual feature maps to ignore nontarget 
information contained in the master map. For example, consider a search 



3. Human Perception and Information Processing 

for a green horizontal bar withill a set of red horizontal bars and green 
vertical bars. This should result in a conjuilction search, since horizontal 
and green occur within each of the distractors. In spite of this, Wolfe et 
al. [399] showed that search tiines are independent of display size. If color 
constituted a significant feature difference, the red color map could inhibit 
information about red horizoiltal bars. Thus, the search reduces to finding 
a green horizoiltal bar in a sea of greeil vertical bars, which can be done 
preattentively. 

Texton Theory. Bela Julesz was also instrumelltal in expanding our under- 
standing of what we "see" in all image. Julesz's initial investigations focused 
on statistical ailalysis of texture patterns [180-183,1851. His goal was to de- 
termine whether variatioils in a particular order statistic were seen (or not 
seen) by the low-level visual system. Examples of variations in order statis- 
tics iiiclude contrast (a  variation in a texture's first-order statistic), orienta- 
tion and regularity (a  variation of the second-order statistic), and curvature 
(a  variation of the third-order statistic). Unfortunately, Julsz's results were 
inconclusive. First-order variations were detected preattentively. In addi- 
tion, some (but not all) second-order variations were also preattentive, as 
were an even smaller set of third-order variations. 

Based on these findings, Julsz modified his theory of how preattentive 
processiilg occurs. He suggested that the early visual system detects a group 
of features called textons [179,184,185]. Textons can be classified into three 
general categories: 

elongated blobs (e.g., line segments, rectangles, ellipses) with specific 
properties such as hue, orientation, and width; 

terminators (ends of line segmeizts); 

crossings of line segments. 

Julesz believed that only a difference in textons or in their density can be 
detected preattentively. No positional information about neighboring tex- 
tons is available without focused attention. Like Treisman, Julesz suggested 
that preattentive processing occurs in parallel and focused attention occurs 
in serial. Figure 3.23 provides an example of textons that appear different 
i11 isolation, but have the same size, number of terminators, and join points. 
This shows that even when each appear very different in isolation, it may be 
difficult, if not impossible, to differentiate ally pattern when in a texture or 
grid. 

Julesz used texture segregation, the task of locating groups of similar 
objects and the boundaries that separate them, to demonstrate his theory 
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Figure 3.23. 

Figure 3.24. 

Two simple textons, easily differentiable. 

(other researchers, including Treisman, also used this type of task, for exam- 
ple, identifying the orientation of the boundary between groups of common 
elements in Figure 3.21). Figure 3.24 shows ail example of an image that 
supports the texton hypothesis. Although the two objects look very different 
in isolation, they are actually the same texton. Both are blobs with the same 
height and width. Both are made up of the same set of line segments, and 
each has two terminators. When both are oriented randomly in an image, 
one cannot preattentively detect the texture boundary between the target 
group and the background distractors. 

A target group of b-textons is difficult to detect in a background of a-textons when 
a random rotation is applied. 
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Similarity Theory. Some researchers do not support the dichotomy of serial 
and parallel search modes. Initial work in this area was done by Quinlail 
and Huinplireys [281]. They investigated conjunctioll searches by focusing 
on two factors. First, search time may depend on the n~unber of items of in- 
formation required to identify the target. Second, search tiine may depend 
on how easily a target call be distinguished from its distractors, regard- 
less of the presence of unique preattentive features. Treisman addressed 
this second factor in her later work [359]. Quinlan and Humphreys found 
that Treisman's feature integration theory was unable to explain the results 
they obtained from their experiments. Duncan and Humphreys developed 
their owl1 explanation of preattentive processing. Their illode1 assumes that 
search ability varies continuously, depending on both the type of task and 
the display conditions [88,89,258]. Search tiine is based on two criteria: T-N 
similarity and N-N similarity. T-N similarity is the amount of similarity be- 
tween the targets and nontargets. N-N similarity is the amount of similarity 
within the nontargets themselves. These two factors affect search time as 
follows: 

1. As T-N similarity increases, search efficiency decreases and search time 
increases. 

2. As N-N similarity decreases, search efficiency decreases and search tiine 
increases. 

3. T-N similarity and N-N similarity are related (see Figure 3.25); de- 
creasing N-N similarity has little effect if T-N similarity is low; in- 
creasing T-N similarity has little effect if N-N similarity is high. 

Treisman's feature integration theory has difficulty explaining the results 
of Figure 3.25. In both cases, the distractors seem to use exactly the same 
features as the target, nanlely oriented, connected lines of a fixed length. Yet 
experimental results show displays similar to Figure 3.25 on the left produce 
an average search time increase of 4.5 msec per additional distractor, while 
displays similar to Figure 3.25 on the right produce an average search time 
increase of 54.5 msec per additional distractor. 

In order to explain the above and other search phenomena, Duncan and 
Humphreys proposed a three-step theory of visual selection. The visual 
field is segmented into structural units. Individual structural units share 
some common property (e.g., spatial proximity, hue, shape, motion). Each 
structural unit may again be segmented into smaller units. This produces 
a hierarchical representatioll of the visual field. Within the hierarclly, each 
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(a) High N-N (nontarget-nontarget) similar- (b) Low N-N similarity increases the diffi- 
ity allows easy detection of target L. culty of detecting the target L. 

Figure 3.25. Example of N-N similarity affecting search efficiency for a target shaped like the 
letter L. 

structural unit is described by a set of properties (e.g., spatial location, hue, 
texture, size). This segmentation process occurs in parallel. 

Because access to visual short-term inemory is limited, Duncan and 
Huinpllreys assume that there exists a limited resource that is allocated 
among structural units. Because vision is being directed to search for par- 
ticular information, a template of the information being sought is available. 
Each structural unit is coinpared to this template. The better the match, the 
more resources are allocated to the given structural unit, relative to other 
units with a poorer match. 

Because units are grouped in a hierarchy, a poor match between the 
template and a structural unit allows efficient rejection of other units that 
are strongly grouped to the rejected unit. Structural units with a relatively 
large number of resources have the highest probability of access to the visual 
short-term memory. Thus, structural units that most closely match the 
template of information being sought are presented to the visual short-term 
memory first. Search speed is a function of the speed of resource allocatioil 
and the amount of competition for access to the visual short-term memory. 

Given these three steps, we can see how T-N and N-N similarity affect 
search efficiency. Increased T-N sinlilarity ineans that more structural units 
match the template, so competition for visual short-term ineinory access 
increases. Decreased N-N similarity ineans that we cannot efficiently reject 
large numbers of strongly grouped structural units, so resource allocation 
time and search time increase. 
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Guided Search Theory. More recently, Jeremy Wolfe has suggested a visual 
search theory that he calls "guzded search" [397,399,403]. He hypothesized 
that an activation map based on both bottom-up and top-down information 
is constructed during visual search. Attention is drawn to peaks in the acti- 
vation map that represent areas in the image with the largest combination 
of bottom-up and top-down influence. 

Like Treisman, Wolfe believes that early vision divides an image into 
individual feature maps (see Figure 3.26). In his theory, there is one map 
for each feature type (e.g., one map for color, one map for orientation, and 
so on). Within each map, a feature is filtered into multiple categories. For 
example, in the color map there might be independent representations for 
red, green, blue, and yellow. Wolfe had already found evidence to sug- 
gest that orientation is categorized into steep, shallow, right, and left [401]. 
The relationship between values within a feature map is different than the 
relationship between values from different maps (the relationship between 
"red" and "blue" is different than the relationship between "blue" and 
L L ~ h a l l o ~ 7 1 ) .  

Bottom-up activation follows feature categorization. It measures how 
different an element is from its neighbors. Differences for each relevant 
feature map are computed and combined (e.g., how different are the elements 
in terms of color, how different are they in terms of orientation?) The 
"metrics" used to measure differences in each feature map are still being 
investigated. 

Top-down actzvation is a user-driven attempt to find items with a specific 
property or set of properties. For example, visual search for a blue element 
would generate a top-down request that activates "blue" locations. Previ- 
ous work suggests subjects must specify requests in terms of the categories 
provided by each feature map [398,401]. Thus, subjects could search for 
LL~teep" or "shallow" elements, but not for elements rotated by a specific 
angle. Obviously, subjects should pick the category that best differentiates 
the target from its distractors. Finding the "best" category is often non- 
intuitive, however. Wolfe suggests this might explain cases where subjects' 
performance for a task improves over time. 

The activation map is a combination of bottom-up and top-down activa- 
tion. The weights assigned to these two values are task dependent. A con- 
junction search would place priority on top-down information, since bottom- 
up results are, in essence, useless. A search for a target with a unique feature 
would assign a high weight to bottom-up activation. Hills in the activation 
map marlc regions that generated a relatively large amount of bottom-up or 
top-down influence. There is no information in the activation map about 
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1; Orientation A bottom-UP A , 

shallow 

Figure 3.26. Framework for guided search, the user wants to find a green steep target; image is 
filtered into categories for each feature map. Bottom-up and top-down activation 
"mark" regions of the image; an activation map is built by combining bottom-up 
and top-down information, attention is draw to the highest "hills" in the map [150]. 

the source of a hill. High activation from a color map looks exactly the same 
as high activation from an orientation map. A subject's attention is drawn 
froin hill to hill in order of decreasing activation. 

Wolfe's theory easily explains traditional "parallel" visual search. Target 
elements produce the highest level of activation, regardless of the number 
of distractor elements. This causes the target to "pop-out" of the scene in 
time independent of the number of distractors. This also explains Duncan 
and Humphreys' similarity theory results. Low N-N similarity causes dis- 
tractors to report higher bottom-up activation, since they now differ from 
their neighbors. High T-N similarity causes a reduction in the target ele- 
meilts' bottom-up activation. Moreover, guided search also provides a pos- 
sible explanation for situations where conjunction search call be performed 
preattentively [263,399,400]. User-driven top-down activatioil may permit 
efficient searching for coiljunction targets. 

Postattentive Vision. Preattentive processing asks in part: "What visual prop- 
erties draw our eyes, and therefore our focus of attention, to a particular 
object in a sceae?" An equally interesting question is: "What happens to 
the visual representation of an object when we stop attending to it and look 
at something else?" Jeremy Wolfe addressed this questioil in his work on 
postattentive visioil [402]. The intuitive belief that a rich visual representa- 
tion accuinulates as we look at  more and more of a scene appears not to be 
true. This provides important insight into why the low-level visual system 
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performs the way it does. The results also act as a bridge between preat- 
tentive processing and the new area of change blindness, which shows that 
people are often "blind" to significant variations that occur between glances 
at  a scene. 

Attention to different objects may allow a viewer to learn what is in a 
scene (if the objects are familiar and recognizable), but it does not allow the 
viewer to see the scene in a different manner. In other words, the preattentive 
visual representation of an object after a viewer studies it and looks at 
something else appears to be identical to its representation before the viewer 
studied it. No additional information is "saved" in tlze visual system after 
the focus of attention shifts to a new location. 

Wolfe argues that if multiple objects are recognized siinultaneously in the 
low-level visual system, it would involve a search for links between the objects 
and their representation in long-term memory (LTM). LTM can be queried 
nearly instantaneously, compared to the 40-50 insec per item required to 
search a visual scene. Preattentive processing call help to rapidly draw the 
focus of attention to a target with a unique visual feature (e.g., little or no 
searching is required in the preattentive case). To remove this assistance, 
Wolfe desigued targets with two critical properties (Figure 3.27): 

The targets were formed fkom a conjuiiction of features (e.g., they 
could not be detected preattentively). 

The targets were arbitrary combinations of colors and shapes (e.g., 
they were not objects that could be semantically recognized and re- 
membered on the basis of familiarity). 

Wolfe initially tested two search types. In both cases, viewers were asked 
to answer as quickly as possible while maintaining a high level of accuracy 
(e.g., a response-time search): 

Traditional search. Text on a blank screen was shown to identify the target. 
This was followed by a display containing 4, 5 ,6,  7, or 8 potential target 
objects in a 3 X 3 array (formed by combinations of seven colors and 
five shapes (Figure 3.27 (top)). 

Postattentive search. The display to be searched was shown to the user for a 
specific duration (up to 300 msec). Text identifying the target was then 
inserted into the scene (Figure 3.27(bottom)). Results sliowed that 
the postattentive search was as slow (or slower) than the traditional 
search, with approximately 25-40 msec per object required for the 
target present trials. This implies that previewing the scene provides 
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Figure 3.27. Examples of search for color-and-shape conjunction targets, both with and with- 
out a preview of the scene: (top) no preview of the scene is shown (although text 
identifying the target is shown prior to the search)-in this case, the green verti- 
cal target is present; (bottom) a preview of the scene is shown, followed by text 
identifying the target; in this case, a white oblique target is not present. 

no advantage to the viewer for finding a conjunction target. In order 
to explore further, Wolfe studied a number of different search scenarios 
t o  test for any benefit from previewing the scene. 

These scenarios include: 

Repeated search. Viewers were asked to search the same display five tiines 
for five different targets. The display was shown with target text, and 
after an answer was provided (target present or absent), the target 
text changed to identify a new target. This experiment tested whether 
additional exposure to the display improved search performance. 

Repeated search with letters. Viewers searched in a manner identical to re- 
peated search, but with displays containing letters rather than combi- 
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nations of colors and shapes. This experiment tested whether the type 
of target used affected search performance. 

Repeated search versus memory search. Viewers were asked to search a group 
of five letters 350 times for a target letter. Half the viewers were shown 
the five letters. The other half were required to memorize the five 
letters prior to the target queries. This experiment tested whether a 
prolonged exposure to a set of objects improved search performance. 
It also tested to see how visual search and short-term memory search 
performance differed. 

In each case, viewers continued to require 20-50 msec per object to com- 
plete the search. Wolfe's conclusion was that sustained attention to the 
objects tested in his experiments did not make visual search more efficient. 
This has a significant potential impact for visualization design. In most 
cases, visualization displays are novel, and their contents cannot be com- 
mitted to long-term memory. This ineans that studying a display may offer 
no assistance in searching for specific data values. In this scenario, meth- 
ods that draw attention to areas of potential interest within a display (i.e., 
preattentive methods) would be critical in allowing viewers to rapidly and 
accurate explore their data. 

3.3.3 Feature Hierarchy 

Based on our understanding of low-level human vision, one promising strat- 
egy for multidimensional visualizatioll is to assign different visual features 
to different data attributes (e.g., building a data-feature mapping that maps 
data to a visual representation). This allows multiple data values to be shown 
simultaneously in a single image. One key requirement of this method is a 
data-feature mapping that does not produce visual interference. Interac- 
tions between different visual features hide or mask information in a display. 
Obviously, we want to avoid this situation during visualization. One simple 
example of visual interference is the conjunction search shown in Figure 3.20. 
If we want to search rapidly for combinations of data values, care must be 
taken to ensure that the resulting combinations contain at least one unique 
feature for the visual system to cue on. 

Other types of visual interference can also occur. An important type 
of interference results from a feature hierarchy that appears to exist in the 
visual system. For certain tasks, the visual system seems to favor one type 
of visual feature over another. For example, during boundary detection, 
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Figure 3.28. An example of hue-on-form feature hierarchy: (a) a horizontal hue boundary is 
preattentive identified when form is held constant; (b) a vertical hue boundary is 
preattentively identified when form varies randomly in the background. 

researchers have shown that the visual system favors color over shape (Fig- 
ures 3.28 and 3.29). Background variations in color interfere with a viewer's 
ability t o  identify the presence of individual shapes and the spatial patterns 
they form [46]. If color is held constant across the display, these same shape 
patterns are immediately visible. The interference is asymmetric: random 
variations in shape have no effect on a viewer's ability t o  see color patterns. 

Figure 3.29. Another example of hue-on-form feature hierarchy: (a) a vertical form boundary is 
preattentively identified when hue is held constant; (b) a horizontal form boundary 
cannot be preattentively identified when hue varies randomly in the background. 



3. Human Perception and Information Processing 

Callaghan also documented a lun~inance-on-hue preference during her 
experiments [44,45]. More recently, a hue-on-texture interference has been 
shown to exist [151,152,330,361]; random variations ill llue interfere with 
the identification of texture patterns, but not vice-versa. These hierar- 
chies suggest that the most important data attributes (as defined by the 
viewer) should be displayed with the most salient visual features, if possible. 
The data-feature mapping should avoid situations where the display of 
secondary data values masks the information the viewer wants 
to see. 

3.3.4 Change Blindness 

Recent research in visualization has explored ways to apply rules of percep- 
tion to produce images that are visually salient [384]. This work is based in 
large part on psycl~ophysical studies of the low-level l~umaa visual system. 
One of the most important lessons of the past twenty-five years is that human 
vision does not resemble the relatively faithful and largely passive process of 
modern photography [278,359,361,402,403]. The goal of human vision is not 
to create a replica or image of the seen world in our heads. A IIILIC~I better 
metaphor for vision is that of a dynamic and ongoing construction project, 
where the products being built are short-lived models of the external world 
that are specifically designed for the current visually guided tasks of the 
viewer [92,244,288,325]. There does not appear to be any general-purpose 
vision. What we "see" when confroilted with a new scene depends as much 
on our goals and expectatiolls as it does on the array of light that enters our 
eyes. 

These new findings differ from one of the initial ideas of preattentive 
processing, that only certain features in an image are recognized without 
the need for focused attention, and that other features cannot be detected, 
even when viewers actively search for these exact features. More recent 
work in preattentive vision has presented evidence to suggest that this strict 
dichotomy does not hold. Instead, "visible" or "not visible" represent two 
ends of a continuous spectrum. Issues like the difference between a target's 
visual features and its neighbors' features, what a viewer is searching for, and 
how the image is presented, can all have an effect on search performance. 
For example, Wolfe's guided search theory assumes both bottom-up (e.g., 
preattentive) and top-down (e.g., attention-based) activation of features in 
an image [397,399,403]. Other researchers have also studied the d ~ ~ a l  effects 
of preattentive and attention-driven demands on what the visual system 
sees [360,362]. Wolfe's discussion of postattentive vision also points to the 
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Figure 3.30. Only one image of many examples of change blindness, each image shows a frame 
from a sequence which contains a significant variation from the other frame; the 
animations are available on the book's web site. AI1 sequences courtesy of Ron 
Rensink; see his discussion of change blindness for additional resources [287]. See 
also the famous basketball example. 

fact that details of ail image cannot be remembered across separate scenes, 
except in areas where viewers have focused their attention [402]. 

New research in psychophysics has show11 that an interruption in what is 
being seen (i.e., a blink, an eye saccade, or a blank screen) renders us "blind" 
to significant changes that occur in the scene during the interruption. This 
change blindness phenomenon can be illustrated using a task sinlilar to a 
game that has amused children reading the comic strips for many years 
[244, 288,3251. Figure 3.30 shows a pair of images from a series of movies 
dealing with change blindness; each lnovie is made up of two separate images, 
wit11 a short blank interval separating them. A significant change occurs 
between the two images. Run the movies on the book's web site and try to 
locate the change. Many viewers have a difficult time seeing any difference 
and often have to be coached to look carefully to find it. Once they discover 
it, they realize that the difference is not a subtle one. Change blindness is 
not a failure to see because of limited visual acuity; rather, it is a failure 
based on inappropriate atteiltional guidance. Sonle parts of the eye and the 
brain are clearly responding differently to the two pictures. Yet this does 
not become part of our visual experience until attention is focused directly 
on the objects that vary. 

The presence of change blindness in our visual system has important 
implications for visualization. The images we produce are norn~ally novel 
for our viewers, so prior expectations cannot be used to guide their analyses. 
Instead, we strive to direct the eye, and therefore the mind, to areas of 
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interest or importance within a visualization. This ability forms the first step 
towards enabling a viewer to abstract details that will persist over subsequent 

, images. 
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, F4.2 -< . Dan Simons offers a wonderful overview of change blindness in his intro- 
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X" duction to the Visual Cognztzon special issue on change blindness and visual 

P ? < $  - I ) _  A 
memory [325]. We provide a brief summary of his list of possible explana- 

' . tions for why change blindness occurs in our visual system. Interestingly, 
none of these explanations by themselves can account for all of the change 
blindness effects that have been identified. This suggests that some combi- 
nation of these ideas (or some completely different hypothesis) is needed to 
properly model this phenomenon. 

Overwriting. One intuitive suggestion is that the current image is overwrit- 
ten, either by the blank between images, or by the image seen after the 
blank. Information that was not abstracted from the first image is lost. In 
this scenario, detailed change can only be detected for objects the viewer 
focuses on, and even then, only abstract differences may be recognized. 

First Impression. A second hypothesis is that only the initial view of a scene 
is abstracted. This is plausible, since the purpose of perception is to rapidly 
understand our surroundings. Once this is done, if the scene is not perceived 
to have changed, features of the scene should not need to be re-encoded. This 
means that change will not be detected, except for objects in the focus of 
attention. One example of this phenomenon is an experiment conducted 
by Simons and Levin [323,324]. Subjects were asked to view a short movie. 
During a cut scene in the movie, the central character was switched to a com- 
pletely different actor. Subjects were not told to search for any unexpected 
change in the movie (i.e., they were naive to the presence of the change). 
After viewing the movie, subjects were asked if they noticed anything odd. 
Nearly two-thirds of the subjects failed to report that the main actor was 
replaced. When queried, 70% of the subjects who failed to see the change 
described the central character using details from the initial actor, and not 
the replacement. This suggests that their first impression of the actors was 
the lasting one. 

Nothing Is Stored. A third explanation is that after a scene has been viewed 
and information has been abstracted, no details are represented internally. 
This model suggests that the world itself acts as a memory store; if we need to 
obtain specific details from the scene, we simply look at  it again. A somewhat 
weaker form of this model suggests that some detail is preserved between 
scenes (e.g., the details of the objects in the viewer's focus of attention). In 
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this way, we are blind to change unless it affects our abstracted knowledge 
of the scene, or unless it occurs where we are looking in the scene. 

Everything Is Stored, Nothing Is Compared. Another intriguing possibility is 
that details about each new scene are stored, but cannot be accessed until 
an external stimulus forces the access. For example, if a man suddenly be- 
comes a woman during a sequence of images, this discontinuity in abstracted 
knowledge might allow us to access the details of past scenes to detect the 
change. Alternatively, being queried about particular details in a past scene 
might also produce the stimulus needed to access this image history. In 
one study, an experimenter stops a pedestrian on the street to ask for di- 
rections [325]. During this interaction, a group of students walks between 
the experimenter and the pedestrian. As they do this, one of the students 
takes a basketball that the experimenter is holding. Aker providing the di- 
rections, the pedestrian is asked if anything odd or unusual changed about 
the experimenter's appearance. Only a very few pedestrians reported that 
the basketball had gone missing. When asked specifically about a basket- 
ball, however, more than half of the remaining subjects reported it missing, 
and many provided a detailed description. For example, one pedestrian re- 
ported, "Oh yeah, he did have a ball, it was red and white." Not only was 
the pedestrian able to recall the presence of the basketball when prompted; 
he was also able to provide specific details about its unique appearance. 

Feature Combination. A final hypothesis is that details from an initial view 
might be combined with new features from a second view to form a combined 
representation of the scene. Presumably, viewers would not be aware of 
which parts of their mental image come from the first scene, and which 
come from the second. The details being combined must make sense, and 
must be consistent with the viewer's abstract understanding of the scene; 
otherwise, the change will be recognized as [Liinpossible" or "out of place." 

3.4 Perception in Visualization 

Figure 3.31 shows several examples of perceptually motivated multidimen- 
sional visualizations: 

1. A visualizatioii of intelligent agents competing in simulated e-commerce 
auctions: the x-axis is mapped to time, the y-axis is mapped to auction 
(each row represents a separate auction), the towers represent bids by 
different agents (with color mapped to agent ID), height is mapped to 
bid price, and width is mapped to bid quantity. 
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Figure 3.3 1 .  Examples of perceptually motivated multidimensional visualizations: (a) a visu- 
alization of intelligent agents competing in simulated e-commerce auctions; (b) a 
visualization of a CT scan of an abdominal aortic aneurism; (c) a painter-like 
visualization of weather conditions over the Rocky Mountains. 

2. A visualization of a CT scan of an abdominal aortic aneurism: yellow 
represents the artery, purple represents the aneurism, and red repre- 
sents metal tines in a set of stents inserted into the artery to support 
its wall within the aneurism. 

3. A painter-like visualization of weather coizditions over the Rocky Moun- 
tains across Utah, Wyoming, and Colorado: temperature is mapped 
to color (dark blues for cold, to bright pinks for hot), precipitation is 
mapped to orientation (tilting right for heavier rainfall), wind speed 
is mapped to coverage (less background showing through for stronger 
winds), and pressure is mapped to size (larger strokes for higher pres- 
sure). 

We briefly describe how perceptual properties of color, texture, motion, 
and nonphotorealis~n have been used in visualization. 

Color is a common feature used in many visualization designs. Examples 
of simple color scales include the rainbow spectrum, red-blue or red-green 
ramps, and the grey-red saturation scale [383]. More sophisticated tech- 
niques attempt to control the difference viewers perceive between different 
colors, as opposed to the distance between their positions in RGB space. 
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This improvement allows: 

Perceptual balance. A unit step anywhere along the color scale produces a 
perceptually uniform difference in color. 

Distinguishability. Within a discrete collection of colors, every color is equally 
distillguishable from all the others (i.e., no specific color is "easier" or 
"harder" to identify). 

Flexibility. Colors can be selected froill any part of color space (e.g., the 
selection technique is not restricted to only greens, or oi~ly reds and 
blues). 

Color models such as CIE LUV, CIE Lab, or Munsell can be used to 
provide a rough measure of perceptual balance [30,65,260]. Within these 
models, Euclidean distance is used to estimate perceived color difference. 
More complex techniques refine this basic idea. Rheingans and Tebbs plot- 
ted a path through a perceptually balanced color model, then aslced viewers 
to define how attribute values map to positions along the path [290]. Nonlin- 
ear mappings emphasize differences in specific parts of an attribute's domain 
(e.g., in the lower end with a logarithmic mapping, or in the higher end with 
an exponential mapping). Other researchers have constructed rules to auto- 
matically select a colormap for a target data attribute [24,296]. Properties of 
the attribute, such as its spatial frequency, its continuous or discrete nature, 
and the type of analysis to be performed, are used to choose an appropriate 
color represent at ion. Ware constructed a color scale that spirals up around 
the luminance axis to maintain a uiliform simultaileous coiltrast error along 
its length [383]. His solution matched or outperformed traditional color 
scales for metric and form identification tasks. Healey and Enns showed that 
color distance, linear separation, and color category must all be controlled 
to select discrete collectioils of equally distillguishable colors [152,153]. 

Figure 3.32 shows historical weather conditions over the eastern United 
States for Marcli, with color mapped to temperature (blue and green for 
cold, to red and pink for hot), luminance mapped to wind speed (brighter 
for stronger winds), orientation mapped to precipitation (more tilted for 
heavier rainfall), size mapped to cloud coverage (larger for more cloudy), 
and frost frequency mapped to density (denser for higher frost). 

Healey's color selection technique combines different aspects of each of 
these methods. A single loop spiraling up around the Laxis (the luminai~ce 
pole) is plotted near the bouildary of our monitor's gamut of displayable 
colors in CIE LUV space. The path is subdivided into r nained color regions 
(i.e., a blue region, a green region, and so on). Here, n colors can the11 be 
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Figure 3.32. Example of color representations for weather maps: (a) a nonphotorealistic vi- 
sualization using simulated brush strokes to display the underlying data; (b) a 
traditional visualization of the same data using triangular glyphs. 

selected by choosing n / r  colors uniformly spaced along each of the r color 
regions. The result is a set of colors selected from a perceptually balanced 
color model, each with a roughly constant simultaneous contrast error, and 
chosen such that color distance and linear separation are constant within 
each named color region (Figure 3.32). 

3.4.2 Texture 

Texture is often viewed as a single visual feature. Like colol-, however, it 
can be decomposed into a collection of fundamental perceptual dimensions. 
Researchers in computer vision have used properties such as regularity, di- 
rectionality, contrast, size, and coarseness to perform automatic texture seg- 
mentation and classification [145,285,286,345]. These texture features were 
derived both from statistical analysis, and through experimental study. Re- 
sults from psychophysics have shown that many of these properties are also 
detected by the low-level visual system, although not always in ways that 
are identical to computer-based algorithms [3,76,179-181,183,330,362,403]. 

One promising approach in visualization has been to use perceptual tex- 
ture dimensions to represent multiple data attributes. Individual values of 
an attribute control its corresponding texture dimension. The result is a 
texture pattern that changes its visual appearance based on data in the un- 
derlying data set. Grinstein et al. visualized multidimensional data with 
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"stick-figure" icons whose limbs encode attribute values stored in a data 
element [140]; when the stick-men are arrayed across a display, they form 
texture patterns whose spatial groupings and boundaries identify attribute 
correspondence. Ware and Knight designed Gabor filters that modified their 
orientation, size, and contrast, based on the values of three independent 
data attributes [382]. Healey and Enns constructed perceptual texture ele- 
ments (or pexels) that varied in size, density, and regularity [151,152]; results 
showed that size and density are perceptually salient, but variations in reg- 
ularity are much more difficult to identify. More recent work found that 
2D orientation can also be used to encode information [391]; a difference of 
15 degrees is sufficient to rapidly distinguish elements from one another. A 
follow-on to these studies showed that certain 3D orientation properties can 
also be detected by the low-level visual system [237]. 

Interrante, Kim, and Hagh-Shenas have studied the use of different tex- 
ture types and orientations for showing the shape of an underlying 3D ob- 
ject. Initial experiments investigated textures that varied in luminance (e.g., 
greyscale patterns) [172,173,208]. More recent work has studied the use of 
relief textures. The textures were arrayed over the surface using orienta- 
tions that were either isotropic (e.g., all following a common direction), or 
anisotropic (e.g., following different directions based on a property at  that 
point on the surface). Preliminary results suggest that anisotropic textures 
that follow both the first or second principal curvature directions produce 
surface perception that is as good or better than either principal direction 
alone, or than other orientation rules [207]. 

3.4.3 Motion 

Motion is a third visual feature that is known to be perceptually salient. 
The use of motion is common in certain areas of visualization, for example, 
the animation of particles, dye, or glyphs to represent the direction and 
magnitude of a vector field (e.g., fluid flow visualization). Motion transients 
are also used to highlight changes in a data set across a user-selected data 
axis (e.g., over time for a temporal data set, or along the scanning axis for 
a set of CT or M R .  slices). As with color and texture, our interest is in 
identifying the perceptual dimensions of motion and applying them in an 
effective manner. Three motion properties have been studied extensively 
by researchers in psychophysics: flicker, direction of motion, and velocity of 
motion. 

For visualization purposes, our interest is in flicker frequencies F (the 
frequency of repetition measured in cycles per second) that are perceived as 
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discrete flashes by the viewer. Brown noted that frequency must vary from 
2-5% to produce a distii~guishable difference in flicker at the center of focus 
(1.02 5 A F 5 1.05), and at  100% or more for distiilguishable difference in 
flicker in the periphery (A F 2 2.0) [39,122,257]. 

Tynail and Sekuler showed that a decrease in a target object's velocity 
or an increase in its eccentricity increased identification time [367], although 
in all cases viewers responded rapidly (200-350 insec for targets in the pe- 
riphery, 200-310 msec for targets in the center of focus). In addition, van 
Doorn and Koenderink confirmed that higher initial velocities produce a 
faster response to a change in the velocity [163,250,372,373]. They claim 
this is due to the need for the target to traverse a "critical distance" before 
it can be detected. For a baseline velocity V; and a target velocity V2 = 2V1, 
approxiinately 100 insec is needed to see the velocity change from V1 to V2 

for slow Vi ( l0  per second) and approximately 50 msec for faster V1 (2' per 
second or higher). 

Researchers in psychology have used properties of motion to extend a 
viewer's ability to perform basic exploration tasks. Nakayama and Silvermail 
showed that coherent motio~l or stereoscopic depth can be used to separate 
elements into coherent groups, allowiilg viewers to search each group inde- 
pendently [263]. For example, consider searchiag for a red circle in a bacli- 
ground of red squares and blue circles, a situation that normally produces a 
time-consuming serial search for the target. If the red elements are animated 
to move up and the blue eleinents are animated to move down, however, the 
target is immediately visible. Applying different motion patterns to the red 
and blue groups allows a viewer's visual system to separate them and search 
them independently, producillg the rapid searcli for a curved element (a  red 
circle) in a baclcgroulld of linear elements (red squares). Similar results can 
be achieved by displayiilg the red and blue elements on different stereoscopic 
planes. Driver et al. showed that oscillatioll call also be used to separate 
eleineilts into independent visual groups, but only if the oscillation pattern 
is coherent [86]. For example, a viewer could identify a red circle in a set 
of red squares and blue circles if all the red items oscillate up and down 
in lock step, and all the blue elelneilts oscillate left and right in loclr step. 
If the elelneilts oscillate "out of phase," however (i.e., some red elements 
start moving down while others are still moving up), viewers are forced to 
revert to serial search. More sophisticated motion patterns have also been 
analyzed, althougl~ with less success in terms of achievillg high-speed search 
performance. Braddicli and Holliday studied both divergence (e.g., squares 
increase or decrease in size over a period of time, then snap baclc to their 
original size) and deformation (e.g., rectangles deform from tall and skinny 
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to  short and wide, then snap baclc to their original shape) [33]. Although the 
basic motion properties being shown can be rapidly identified in isolation, 
the coinbinations that form deformatioil and divergence were not detected 
by the low-level visual system. See also t l ~ e  iconic extensioils to pixels called 
m o z e l s  [414]. 

Properties of inotion have been extended to visualization design. Ani- 
mated inotion is used in flow visualizatioil to show the direction and speed 
of different flow patterns (e.g., by Kirby [210]). Kerlick proposed the use of 
animated glyphs to visualize 2D and 3D mn~~ltidimensional data sets [206]. 
He designed a set of "boids" to encode attribute values at  specific locations 
in the data set, for example, a sphere boid to query data values at  a user- 
selected location, or pyramid and dart boids that anilllate over a vector field 
to visualize its shape. Bartrain et al. studied the use of variations in color, 
shape, and illotion to "notify" viewers while they were engaged in a sepa- 
rate, atteiltion-demanding task [18]. Results showed that applying inotion 
to a static glyph significantly eased recognition, coinpared to changing the 
glyph's color or shape. This finding held both wllell the glyph was near the 
center of focus and when it was located on the periphery of the viewer's 
gaze. The authors also studied lzow distracting a secondary motion cue was 
judged to be. Flicker was the least distracting, followed by oscillating mo- 
tion, then divergeace, and finally movement over long distances. Related 
work by Bartraln et al. confirmed that different motion paths can be used 
to perceptually group glyphs in a manner similar to the worlc of Nalcayama 
and Silvermail [263] or Driver et al. 1191. The groups can then be searched 
independently for a target feature. 

3.4.4 Memory Issues 

Three types of memory are relevant to our study of perception in visualiza- 
tion: 

Sensory memory. Sensory lnenlory is high capacity information storage. It is 
effectively preattentive eye filters. Large quantities of information are 
processed very fast (less than 200 msec). Such learning is physical and 
can be harnessed by repeated actions. This explains the importance, 
for example, of positional learning in typing or playing piano (it feels 
alinost as if the memory is in the hand and fingers). 

Short-term memory. Short-term memory analyzes informatioil from both 
sensory and long-term storage. It has limited information capacity. 
It occurs at  a high level of processing, but the time span is limited 
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typically to less than 30 seconds. It represents the beginning of think- 
ing. It can be harnessed by grouping and repetition, by not requiring 
users to remember too many things, and by chunking. The chunks are 
grouped objects remembered as a unit, with the number limited to 5 
to 9 (see Section 3.5). 

Long-term memory. Long-term memory is complex and theoretically limit- 
less, much like a data warehouse. This storage is multicoded, redun- 
dantly stored, and organized in a complex network structure. Infor- 
mation retrieval is a key problem and access is unreliable and slow. It 
can be harnessed by using association mnemonics and chunking. 

The following was distributed as an example highlighting how memory 
supported the quick scanning of words in a document, showing that not all 
letters are needed. 

Rinadeg Oedrr 

Aoccdrnig to  a rscarhee at Cigdmabre Uinervtisy, it deosnJt mte-  
tar in waht oredr the ltteers in a wrod are, the olny iprmoatnt 
tihng is  taht the f n s t  and lsat ltteer be at the rghit pclae. The 
rset can be a taotl mses and you can sit11 raed it wouthit porbelm. 
Tihs is  bcuseae the huamn  mnid deos not  raed ervey lteter by 
istlef, but the wrod as a wlohe. 

In the next section we will see how memory can play a part in studying 
a visualization. 

3.5 Metrics 

How many distinct line lengths and orientations can humans accurately per- 
ceive? How many different sound pitches or volumes can we distinguish with- 
out error? What is our "channel capacity" when dealing with color, taste, 
smell, or any other of our senses? How are humans capable of recognizing 
hundreds of faces and thousands of spoken words? These and related issues 
are important in the study of data and information visualization. When 
designing a visualization, it is important to factor in human limitations to 
avoid generating images with ambiguous, misleading, or difficult-to-interpret 
information. Many efforts have been made to try and ascertain these limits, 
using experiments that test human performance on measuring and detecting 
a wide assortment of sensed phenomena. This section presents an overview 
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of some early seminal work on measuring perceptual capabilities and relate 
it to current work in data visualization. The sorts of questioils we would like 
to be able to answer include: 

What graphical entities can be accurately measured by humans? 

How many distinct entities can be used in a visualization without con- 
fusion? 

With what level of accuracy do we perceive various primitives? 
l 
1 How do we combine primitives to recognize complex phenomena? 

How should color be used to present information? 

The answers to these and other questions will enable us to design more 
effective visualizations, and to have a better understanding of how accurately 
we are cominunicating information with the visualization. 

3.5.1 Resource Model of Human Information Processing 

To be able to measure and compare human perceptual performance on var- 
ious phenomena, one needs a metric, a gauge or yardstick that can reliably 
evaluate perforinailce and associate numbers with the results of testing a 
group of subjects. George Miller, in 1956 [255], borrowed the concept of 
channel capacity from the field of information theory. Suppose that we as- 
sume the human being is a communicatioil channel, taking input (perceiv- 
ing some phenomena) and generating output (reporting on the phenomena). 
The overlap between input and output is the information about the phenom- 
ena that has been perceived correctly, and is thus the amount of transmitted 
information. \ 

For each primitive stimulus, whether it be visual, auditory, taste, touch, 
or smell, we measure the number of distinct levels of this stimulus that the 
average participant can identify with a high degree of accuracy. The results 
will follow an asymptotic behavior, e.g., at a certain point, increasing the 
number of levels being used causes an increase in the error rate, and no 
additional information will be extracted from the source stimulus. Miller 
called this level the "channel capacity" for information transfer by the hu- 
man. He measured it in bits (borrowing again from information theory), 
depending on the number of levels that the average human could measure 
with high accuracy. Thus if errors routinely begin when more than 8 levels 
of a phenomenon are tested, the channel capacity for this phenomenon is 3 
bits. 
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As in all experiments involving human subjects, it is important to estab- 
lish controls, so that only the single isolated phenomenon is being tested. 
Training time must therefore be limited, as some individuals can fine-tune 
their perceptual abilities much faster thail others. For the saille reason, we 
need to avoid including the results froin specialists. Clearly, a inusician will 
likely be more able to accurately perceive sound pitches than the average 
subject, and a cartographer or navigator will be able to identify spatial fea- 
tures inore readily than someone who does spatial analysis less frequently. 
Related to this is the aspect of context;  it is very important to design percep- 
tual experiments to be as context-free as possible, as we don't want to bias 
the results via associations and factors that have little to do with perception. 
Finally, the experimental data should be free of error and noise; while real 
data and phenomena are rarely noise-free, it is difficult to obtain accurate 
measurements from data of variable quality. 

There are many other guidelines for the design of perceptual experiments. 
This section, and the contents of the rest of the chapter, are merely meant to 
illustrate the general procedure for conducting this sort of analysis. Those 
wishing to understand the process in more detail are directed to the literature 
in perceptual psychology, social sciences, and humail factors analysis. 

3.5.2 Absolute Judgment of I D Stimuli 

A large number of experiments have been performed over the years to ascer- 
tain the ability of humans to judge absolute levels of different stimuli. In this 
section, we summarize a number of these experiments (from [255]) in terms 
of the number of bits in the channel capacity of humans, as defined earlier. 
For each, we provide the name of the researcher, the experimental set-up, 
and the number of levels that could, on average, be accurately measured. 

1. Sound  pitches (Pollack): Subjects were exposed to sets of pitches at  
equal logarithmic steps (from 100-8000 cps). The result was that the 
average listener could reliably distinguish 6 pitches. Varying the range 
didn't change the results appreciably; subjects who correctly classified 
5 high pitches or 5 low pitches could not accurately classify 10 when 
combined. This is a channel capacity of 2.5 bits. 

2. Sound  loudness  (Gardner):  In another auditory experiment, the loud- 
ness of a sound was varied between 15-110 dbs. On average, 5 levels 
were accurately discerned, for a capacity of 2.3 bits. 

3. Sal ini ty  (Beebe-Center): Taste perception had similar results. By vary- 
ing salt concentrations from 0.3 to 34.7 gm per 100 cc water, subjects 
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were found to be able to distinguish just under 4 levels, on average, 
corresponding to a capacity of 1.9 bits. 

4. Position on a line (Hake/Gardner): In an experiment much more rel- 
evant to data visualization, this experiment varied the position of a 
pointer located between two markers. Participants attempted to clas- 
sify its position either from a list of possibilities or on a scale of 0 to 
100. Most subjects were able to correctly label between 10 and 15 
levels, though this increased with longer exposure. This corresponds 
to a channel capacity of 3.25 bits. 

5. Sizes of squares (Eriksen/Hake): In another graphics-related experi- 
ment, the size of squares was varied. Surprisingly, the capabilities of 
humans to accurately classify the sizes was only between 4 and 5 levels, 
or 2.2 bits. 

G.  Color (Eriksen): As color is often used to convey information in vi- 
sualization~, it is important to understand how well this attribute is 
perceived. In experiments that varied single color parameters, it was 
found that users could correctly classify 10 levels of hue and 5 levels 
of brightness, or 3.1 and 2.3 bits, respectively. 

7. Touch (Gelard): In this unusual experiment, vibrators were placed at  
different locations on the chest area. Several parameters were varied 
individually, including location, intensity, and duration. The results 
estimated the capacity at 4 intensities, 5 durations, and 7 locations. 

8. Line geometry (Pollack): Lines have many attributes that can be used 
to convey information. In this experiment, line length, orientation, 
and curvature were tested. The results were: 2.6-3 bits for line length 
(depending on duration), 2.8-3.3 bits for orientation, and 2.2 bits for 
curvature with constant arc length (while only 1.G bits for constant 
chord length). 

To summarize these experiments, there appears t o  be some built-in limit 
on our capability to perceive and accurately measure 1D signals. The average 
from these experiments was 2.6 bits, with a standard deviation of .G bits. 
This means that if we want users of our visualization systems to be able to 
extract more than G or 7 levels of a data value with accuracy, we must look 
at other means. 
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3.5.3 Absolute Judgment of Multidimensional Stimuli 

One solution to the dilemma regarding this limitation on the number of levels 
of a data value that can be accurately ineasured is to use more than one 
stimulus simultaneously. A logical assumption would be that if we combine 
stiinulus A, with a channel capacity of CA bits (or 2 C ~  levels), and stimulus 
B, with a channel capacity of CB bits (or 2 C ~  levels), we should get a 
resulting capacity of approxilnately CA + CB,  or the product of the two 
numbers of levels. Unfortunately, experiments have shown otherwise: 

1. Dot i n  a square ( K l e m m e r / h c k ) :  Given that a dot in a square is 
actually two position measureinents (vertically and horizoi~tally) we 
should get a capacity that is twice that of gauging the position of a 
marker on a line (6.5 bits), but it was measured at 4.6 bits. 

2. Salinity and sweetness (Beebe-Center): In an experiment that com- 
bined sucrose and salt solutions, the total capacity should have been 
twice that of illeasuring salinity alone, or 3.8 bits. However, it was 
measured at 2.3 bits. 

3. Loudness and pitch (Pollack): The combination of two auditory chan- 
nels slzould have produced a capacity equal to the sum of the results 
for pitch and loudness in isolation, or 4.8 bits, but it was ineasured at  
3.1 bits. 

4. Hue an,d saturation (Halsey/Chapanis): Combining hue and saturation 
should have resulted in a capacity of 5.3 bits, but it was ineasured at  
only 3.6 bits. 

5. Size, brightness, and hue (Erilcsen): In an experiment combining ge- 
ometry and color, the size, hue, and brightness of shapes were varied. 
The sum of the individual capacities is 7.6 bits, but a capacity of only 
4.1 bits was observed. 

6. Multiple sound parameters (Pollaclc/Ficks): In a very ambitious exper- 
iment, G auditory variables (frequency, intensity, rate of interruption, 
on-time fraction, duration, and location) were varied. As individual 
stimuli, each had a capacity of 5 values, so the results should have 
been 15,600 combinations that could be accurately discerned. How- 
ever, the results were only 7.2 bits of channel capacity, or 150 different 
combinations. 
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To summarize, combiniilg different stimuli does enable us to increase the 
amount of information being communicated, but not at  the levels we might 
hope. The added stimuli resulted in the reduction of the discernibility of the 
individual attributes. With that said, however, having a little informatioil 
about a large number of parameters seeins to be the way we do things. This 
agrees with linguistic theory, which identifies 8 to 10 dimensions, where each 
can only be classified in two or three categories. 

We now look at strategies for improving the the information content of 
data visualizations by taking advantage of alternative perceptual skills. 

3.5.4 Relative Judgment 

Williain Cleveland and his colleagues have performed a number of experi- 
ments in graphical perception to better understand the ways information can 
be communicated via images [67]. Their emphasis, rather than oil absolute 
measurement (classification), was on relative judgment. Thus, the task they 
were interested in was the detection of differences, rather than extracting 
a numeric value. I11 Figure 3.33, it is much easier to detect and gauge the 
change in heights when the bars are surrounded by a box (a relative change). 

They studied how well humans gauge differences using the following 10 
graphical attributes (shown in Figure 3.34): 

1. angle; 

2. area; 

3. color hue; 

4. color saturation; 

Figure 3.33. The boxes on the left are not tne same size, but it is difficult to estimate the magni- 
tude of the difference. The same boxes are shown on the right. The encapsulating 
frame makes it easier to gauge the relative difference between them. 
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Figure 3.34. Exampl~, ,f graphical -uuAibutes used in perceptual experiments. Left column 
(from top): length, angle, orientation, hue. Right column: area, volume, position 
along a common scale, position along identical, nonaligned scales. 

5. density (amount of black); 

6. length (distance) ; 

7. position along a common scale; 

8. position along identical, nonaligned scales; 

9. slope; 

10. volume. 

Their experiments showed errors in perception ordered as follows (in- 
creasing error) : 

1. position along a common scale; 

2. position along identical, nonaligned scales; 

3. length; 

4. angle/slope (though error depends greatly on orientation and type); 

5. area; 

6. volume; 

7. color hue, saturation, density (although this was only informal testing). 
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Figure 3.35. Illustration of Stevens' Law. The size ratio for each pair is 1:4. This magnitude 
is readily apparent in the lines, but it is easily underestimated in the squares and 
cubes. 

This seems to support the idea that bar charts and scatterplots are ef- 
fective tools for communicating quantitative data, as they both depend on 
position along a common scale. It also suggests that pie charts are probably 
not as effective a mechanism, as one is either judging area or angles. 

Two important principles came into play with these experiments. The 
first, named Weber's Law, states that the likelihood of detecting a change 
is proportional to the relative change, not the absolute change, of a graph- 
ical attribute. Thus, the difference between a 25-centimeter line and a 26- 
centiineter line should be no easier to perceive than the difference between a 
2.5- and a 2.6-centimeter line. This means that simply enlarging an object 
or otherwise changing the range of one of its attributes will not, in general, 
increase its effectiveness at communicatiilg information. 

A second useful principle, known as Stevens' Law, states that the per- 
ceived scale in absolute measurements is the actual scale raised to a power. 
For linear features, this power is between 0.9 and 1.1; for area features, it 
is between 0.G and 0.9, and for volume features it is between 0.5 and 0.8. 
This means that as the dimensionality of an attribute increases, so increases 
the degree at which we underestimate it. This implies that using attributes 
such as the volume of a three-dimensional object to convey information is 
much less effective and much more error-prone than using area or, better 
yet, length (see Figure 3.35). 

3.5.5 Expanding Capabilities 

The experiments described in the previous three sections indicate that our 
abilities to perceive various stimuli, and graphical phenomena in particular, 
is fairly limited. If we need to coinmunicate information with a higher ca- 
pacity, we must investigate strategies for expanding our capabilities. One 
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way, as illustrated in the previous section, is to try and reconfigure the com- 
munication task to require relative, rather than absolute, judgment. Thus, 
in many cases, we can supplement a visualization so that the viewer just 
needs to gauge whether an item's attribute is greater than, less than, or 
equal to some other item's attribute. This is why adding grid lines and axis 
tick marks is a useful and powerful addition to a visualization. 

We can also increase capacity by increasing the dimensionality, as seen 
in the experiments on multiple stimuli. In most cases, adding another stim- 
ulus will lead to larger bit rates. However, there is likely to be a limit to 
the number of dimensions that can be reasonably managed. This span of 
perceptual dimensionality, accordiilg to Miller [255], is hypothesized to be 
about 10. Another problem with this solution is that in graphics there are a 
limited number of parameters that we can use (color, size, position, orienta- 
tion, line/fill style, and so on), although when we discuss glyphs in Chapter 7 
we will examine efforts to pack many more dimensions into the components 
of a composite graphical e~ltity. 

Another potential strategy is to reconfigure the problem to be a sequence 
of different absolute judgments, rather than simultaneous stimuli. 111 this 
manner, we might be able to overcome some of the loss of capacity that was 
shown in the experiments on measuring multiple stimuli. If the viewer is 
directed to examine a sequence of visualizations and compose the measure- 
ments from each, we may be able to achieve an improved communication 
rate. This leads to the analysis of immediate memory. 

3.5.6 The Relationship to Immediate Memory 

Many studies have examined human memory performance. Immediate (short- 
term) memory is used for very short-term recall, often immediately after a 
stimulus has been received. Many games have been devised that are based 
on one's immediate memory skills. Studies have shown the span of immedi- 
ate memory to be approximately 7 items. In other words, people, in general, 
can remember with accuracy a sequence of 7 or so stimuli. One question 
that might arise is whether this is related to OLW span of absolute judgment, 
as the capacities are similar. 

The answer is that they are unrelated. Absolute judgment is limited 
by the amount of information, while immediate memory is limited by the 
number of items, no matter how complex. Thus, they are measurements 
at different granularities; absolute judgment is measured in bits correspond- 
ing to distinct levels, while immediate memory involves chunks of varying 
size or complexity. Several experiments involving binary digits, decimal dig- 
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its, letters, syllables, words, and mixtures have shown that the nuinber of 
chunks that can be remembered is relatively constant. An interesting obser- 
vation is that we can reinenlber G or so monosyllabic words, but also G or so 
multisyllabic words. 

It  is conjectured that we "cl~~~illt" things at  the largest logical unit. But 
what is that logical unit? Can we increase its coinplexity to increase our 
capacity? This process is know11 as recoding. 

3.5.7 The Role o f  Recoding 

Recoding is the process of reorganizing information into fewer chunks, with 
more bits of information per chunk. For example, in the process of learning 
Morse code, one starts by connecting patterns of dots and dashes into letters, 
and then longer patterns into words. This process is also found in other 
avenues of learning, including music and dance. A similar concept, known 
as compilation, can be found in the artificial ixtelligence field as a form of 
machine learning. 

NIaily experiments have been designed to study the ability of humans 
to recode information in this manner. Experiments in recalling long strings 
of binary digits show nearly linear improveinent with chunk size. I11 other 
words, reinembering a sequence of N individual binary digits is coinparable 
to the effort of remembering a sequence of N binary digit chui~lts of length 
2 or 3. 

One problem is that the way we perform recoding differs from person to 
person. We remember events by creating a verbal recoding of what we saw, I 

and then elaborate from this coded version. This accounts for variatioas in 
witness testimonies to a crime or accident; in the recoding process, differ- 
ent aspects are chunked together, and depending on the complexity of the 
chunks, it inay be difficult to  recall exact details (we are convinced that our 
particular decoding is a very accurate depiction of what took place). It also 
explains how people can change their appearance fairly dramatically (inalte 
a major change in hair style, switch from glasses to contacts, gain or lose 
significant weight) and have it go uniloticed by friends and colleagues. As 
long as the new attributes fit within the decoded memories, the change may 
not be detected. 

3.5.8 The Role o f  Focus and Expectation 

Related to the use of multiple data coding attributes and secluences of de- 
cisions is the work reported by Cllapman [55], who observed that in images 
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with multiple attributes, but with observers only reporting on one, prior no- 
tification of focus resulted in significantly better results than post selection 
of focus. This may seem obvious, but it is important, as it indicates that 
people do better when focusing on a single attribute at a time. Recall from 
the experiments on judging multiple stimuli that the performance was worse 
(often much worse) than the combination of the capacities of the individual 
stimuli. Chapman's work indicates that if the user can focus attention on a 
small set of attributes (or one attribute), he or she can reduce the influence 
of the attributes that are outside of the focus group. Thus, if viewers can be 
trained to look for certain features in isolation and have forewarning as to 
what those features should be, their performance can be improved. If users 
are uniilformed as to the features containing the most relevant information, 
it is less likely that they will be able to extract the desired information at  
the desired accuracy. 

Tlzis seems directly related to change blindness, an attempt to probe the 
types of visual representations being built when looking at  a scene. The 
visual system makes assumptions to fill in details outside of the focus of 
attention. For example, if no motion transient is seen, the visual system 
may assume that the scene is static. This explains why one can 'Lmiss" a big 
change in a location not being focused on during an eye saccade. 

If this theory is accurate, pre-focusing the viewer on a particular feature 
or feature-value would help, as one would only need to build one Boolean 
map to search for and/or identify what is being looked for (the target). 
Without prefocusing, one would build maps with some other priority, possi- 
bly building and discarding multiple maps until one hits on the right one. 

3.5.9 Summary on Metrics 

Many factors are involved in communicatiilg information via the human 
perceptual system. The span of absolute judgment and immediate memory 
limits our ability to perceive information accurately. We can expand this 
ability by reformatting into multiple dimensions or sequences of chunks. We 
can also take advantage of the fact that our ability to perform relative judg- 
ment (detection) is more powerful than our absolute (measured) judgment 
abilities. 

In terms of the implications to data visualization, for applications where 
absolute judgment is required, the best we can do with a single graphical 
attribute is between 4 and 7 values. To get a larger range of recognizable 
levels, we must repose the problem in multiple dimensions, do a sequence of 
simple decisions, or perform some type of chunking. 
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Alternatively, we could redefine the problem in such a way that relative, 
rather than absolute, judgment could be used to focus attention, with a 
second, more quantitatively accurate, stage following the initial focus of 
attention. 

3.6 Related Readings 

Parts of the section on inetrics came from the excellent article by George 
Miller, "The Magic Number Seven, Plus or Minus Two: Some Limits on our 
Capacity for Processing Information" [255]. 

More recent work on graphical perception is from the chapter entitled 
"Graphical Perception" in Williain S. Cleveland, The Elements of Graphling 
Data 1671. 

Work on AI and cognition include, Kurzweil, Th,e Age of Spiritual Ma- 
chines 12261 and Loolts et al., "Novainente: An Integrative Architecture for 
Artificial General Intelligence" [239]. 

3.7 Exercises 

1. List the features you believe you use in recognizing a friend by sight 
and/or by sound. How might you use related features to communicate 
a data set? 

2. Design an experiment that would integrate an eye tracking study with 
a target discovery test. 

3. Design an experiment to identify which is better for visualizing a linear 
pattern in a large data set: a simple point plot, or a point plot where 
the points are circular, rectangular, colored, or vibrating. Guess at the 
outcome. 

4. Since about 8% of males are color deficient 12351 (with less than 1 % 
for females) mostly in the red and green ranges, how would you deal 
with color in the display of a scatterplot? 

3.8 Projects 

1. Take the scatterplot code you've written. Consider some perceptual 
attribute you've read about and are interested in. Generate a display 
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for a perceptual study, say a target (one objector or a pattern) to be 
identified within an area of distractors. Ask a few classmates if they 
can easily identify the target. 

2. Write a program to reproduce one of the perceptual experiments, vary- 
ing either a single graphical attribute or multiple ones. Start with two 
or three values for a given attribute, and increase this nuinher until you 
(or a willing friend) start making errors over a short sequence of sam- 
ples. Describe what feature you are testing, whether you are testing 
for absolute or relative judgment, and what your results are. 

3. Using the VIAT Windows-based software available on the book's web 
site, design an experiment for some of the perceptual features described 
in this chapter. 




