
Architectures

1 Intro
● Architectural Refinement

○ Domain > uses > Technical > uses > Platform
○ Architecture > structures > Components

● architecture specifies "load carrying" components, not details
● makes complexity manageable

2 Requirements
● should be

○ correct (users, stakeholders)
○ implementable
○ unambiguously defined
○ testable

● levels
○ Oranization Level
○ System Level
○ Component Level

● Functional
○ Use Cases

● Non-Functional (Design Time, Runtime, Org Env)

3 Principles
● (Loose) Coupling among

○ dependencies among components
○ keep complexity of structures low
○ increase changeability

● (High) Cohesion within
○ dependencies within a component
○ component can be understood or changedwithout looking at other 

components
● Design for Change

○ plan for foreseeable changes
○ consider requirements likely to arise
○ Risks

■ more development time
■ higher costs, memory, performance

● Separation of Concerns
○ Modularization vs "God Class"
○ Requirements
○ Complex Architecture Model into Views
○ Organizational Responsibilities
○ Aspect-Orientation...

● Information Hiding
○ hide implementation details behind an interface
○ present only really necessary parts > Facade Pattern

● More



○ Abstraction - Explicit Interfaces, Segregation of Interface and 
Implementation

○ Traceability, Self Documentation, Incremental Evolution

4 Styles
● describe fundamental structures of a software system and its properties
● Component types +Topology + Connectors + Semantic constraints
● Examples

○ Dataflow Systems
■ Batch Sequential, Pipes and Filters

○ Call-and-Return Systems
■ Main Prog, OO, Hierarchical Layers

○ Independent Components
■ Communication, Event Systems, Implicit Invocation

○ Virtual Machines
■ Interpreters, Rule-based Systems

○ Data-Centered-Systems (Repositories)
■ DBs, Hypertext Systems, Blackboards

5 Patterns
● Gang-of-Four Book Design Patterns
● reusable design expterise, time-proved solutions to commonly occuring 

problems
● also used for documentation and communication
● resolves/balances a system of forces (Memory, Costs, Performance, ...)
● describes consequences / positive negative
● Layers Pattern

○ problem
■ high- & low-level components decoupling

○ solution
■ layer has same level of abstraction
■ interface between layers

○ Indirection Layer Pattern: wrap access
● Batch Sequential Pattern

○ problem
■ complex task, can be sub-divided

○ solution
■ sub-steps separated
■ call next sequential step

○ processes batch of data per step
● Pipes and Filters Pattern

○ problem
■ flexibly compose individual sub-tasks 

○ solution
■ Filters

● independent components
■ Pipes

● connectors, data buffers
● Shared Repository Pattern

○ problem



■ share data, sequential architectures
■ common way: invocation parameters
■ inefficient for large data sets
■ information varies from invocation to invocation
■ long-term persistence

○ solution
■ central data store
■ scaleable, consistent, transactions...

○ Active Repository
■ registry of clients
■ notification mechanisms

○ Blackboard
■ heuristic computation by sub-tasks
■ step-wise improvement
■ control unit

6 Patterns by Views
● Data Flow and Tranformation View

○ Pipes and Filters
○ Batch Sequential

● Layered Decomposition View
○ Layers
○ Indirection Layer

● Data Repository View
○ Shared Respository
○ Active Respository
○ Blackboard

● Adaptation Infrastructure View
○ Microkernel

■ system family, different versions
■ services - internal / external servers

○ Reflection
■ unanticipated changes
■ meta level, meta-objects

○ Plugin
■ extend, runtime environments without re-compile
■ central (re-)config at runtime

○ Interceptor
■ extend reusable services
■ register for dispatchers > interceptor events

● Language Infrastructure View
○ Interpreter

■ parse/interpret language syntax / grammar at runtime
■ scripts, portable to interpreter platform implementations
■ simple eg: class per grammar rule

○ Virtual Machine
■ portability, code optimization, no runtime interpretation req
■ intermediary byte-code > VM implementation layer

○ Rule-Based-System
■ logical problems hard to express, nested if-statements
■ facts (data), rules (knowledge) + engine (application)



● Interaction Decoupling View
○ MVC

■ model, encapsulates data
■ views, display data to the user
■ controller, receives user input, transmits to the model

○ Presentation-Abstraction-Control
○ C2
○ Explicit Invocation

■ couple client-supplier
● performance
● direct communication
● block for result
● fixed topology

■ direct invocation by service name and parameters
■ synchronous, asynchronous

● fire and forget (no response)
● sync with server (ack, no result)
● poll object (result)
● result callback (result notification)

○ Implicit Invocation
■ de-couple client-supplier

● unknown supplier
● results not needed yet
● dynamic client add/removal

■ indirect invocation through
● publish-subscribe
● message queuing
● broadcast

● Component Interaction View
○ Client-Server
○ n-Tier Architectures
○ Publish-Subscribe
○ Peer-toPeer

● Distributed Communication View
○ Broker

■ hides communication complexity
■ requestor, invoker, marshaller, request handler

○ RPC
○ Message Queuing

7 Modeling
● Meta-models describe models > Modeling levels
● Modeling languages

○ meta-model = abstract syntax
○ notation = concrete syntax
○ informal description = semantics

● ADL
○ Architecture Description Languages 
○ readable, formal respresentation of architecture
○ Components

■ functional + non-functional aspects via interfaces



○ Connectors
■ component communication

○ Configuration
■ of components and connectors

○ eg: Acme, AADL, C2, Darwin, Wright
● UML

○ MOF Meta Object Facility
■ meta-meta model

○ OMG levels
■ M3 MOF - EBNF-Formalism
■ M2 UML - Java Grammar
■ M1 UML Model A - Java Program P
■ M0 instance A - Execution of Program P

○ instrastructure + meta-model superstructure
○ hard extension - meta-model, new UML language
○ soft extension - profile (steoreotypes, tags, constraints)

8 MDSD
● Model-Driven Software Development
● models as central artifacts
● domain-related for efficiency
● DSL

○ Domain Specific Languages
○ tailor-made language for a specific problem domain
○ specialized, expressive and easy to use
○ embedded

■ extends General Purpose Language (GPL)
■ often interpreted instead of generation

○ external
■ different format than target language
■ any syntax, not bound to host language or platform
■ transformations map to target platform

● Code Generation
○ eg using templates
○ alternative: interpreter

● Options
○ informal box-and-line diagrams

■ often not precise enough
○ use existing ADL

■ often no ADL fits exactly
○ use UML and extend UML meta-classes

■ tedious work
○ custom architecture meta-model

■ glossary of architecture concepts
■ clarifying

9 Views
● make complex systems understandable
● different

○ stakeholders



○ tasks
○ abstraction levels

● 4+1 View Model
○ Use Case view

■ centric
■ validates the others

○ Logical view
■ describes system in terms of abstractions
■ eg: class, sequence, collaboration diagrams

○ Development view
■ structure of modules, files, packages
■ eg: package diagram

○ Process view
■ process communication
■ eg: activity diagrams, process modeling languages

○ Physical view
■ installation, exection environment
■ eg: deployment diagrams

10 Decisions
● strategic (long-term and significant), not operational
● form architecture
● steps

○ prepare > make > communication > realize > evaluate
● problems

○ decisions get lost in models
● Decision Modeling

○ template or meta-model
○ capture key design issues, rationale
○ conscious design decisions
○ consider impact on NFRs and quality factors

11 Organisational
● organisation culture defines values and norms
● sub-organisations, internationalization, outsourcing
● Organizational Patterns
● Agile Methods
● Individuals

○ influence collaboration
○ require Social competences

● group
○ composition, heterogeneous
○ experienced, cooperative moderator
○ skills appointment
○ one or two creative team members

● TOGAF
○ Generic Skills
○ Business Skills and Methods
○ Enterprise Architecture Skills
○ Program or Project Management Skills



○ IT General Knowledge Skills
○ Technical IT Skills
○ Legal Environment

12 Prüfungsfragen
● Architecture decision modelling
● 4+1 View Modell
● Model Driven Software Development

○ Domain
○ Domain Driven Design
○ Domain Specific Languages

● MOF und UML
○ 4-Schichtige Modellierungsarchitektur des OMG

● Arten von Anforderungen bei Architekturen
● Architecture Modelling Options
● DSL

○ embedded vs external
● Patterns- problem- solution- comparison

○ Layer
○ Batch Sequential
○ Pipel and Filters


	1 Intro
	2 Requirements
	3 Principles
	4 Styles
	5 Patterns
	6 Patterns by Views
	7 Modeling
	8 MDSD
	9 Views
	10 Decisions
	11 Organisational
	12 Prüfungsfragen

