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1. Basic types of options 
 
 
Options are conditional forward transactions. They give the holder the right 
(but not the obligation) to buy or sell a specific amount of an underlying in-
strument. 
 
The holder does not have to exercise this right. Whether the holder will ex-
ercise his right will mainly be conditional on the price of the underlying asset. 
 
 
Typical underlyings are: stocks, bonds, stock indices, futures contracts, for-

eign exchange, commodities, interest rates, etc. 
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Basic types of options: Calls, Puts 
 
 Call option 
 Gives the HOLDER the right to BUY a particular amount of the underly-

ing, at a pre-specified price at any time up to expiration or on the expi-
ration date. 

 
 Pre-specified price: exercise price, strike price 
 
 
 Put option 
 Gives the HOLDER the right to SELL a particular amount of the under-

lying, at a pre-specified price at any time up to expiration or on the 
expiration date. 

 
  

 

  

 
4 



FMR_3-4 
 
 
 
 American and European options 
 Options can be either American or European style, a distinction that has 

nothing to do with the geographical location. 
 
 
 European options: Can be exercised only on the expiration date. 
 
 American options: Can be exercised at any time up to the expira-

tion date. 
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 There are 4 types of participants in options markets 

 
 Buyer of a call: long position, holder of an option (a call) 
 

 Buyer of a put: long position, holder of an option (a put) 
 

 Seller of a call: short position, writer of an option (a call) 
 

 Seller of a put: short position, writer of an option (a put) 
 
 
The holder (long position) has the right (but not the obligation) to exercise his 
option. 
 
In contrast: The writer (short position) has the obligation to buy the underly-
ing for cash (put option) or sell the underlying for cash (call option), if the hold-
er exercises his/her right. She has to wait whether the holder (long position) 
exercises his/her right.  
 

  

 
6 



FMR_3-4 
 
 
 
2. Payoff structures at maturity 
 
2.1 Payoff of a call option at maturity 
 
• The value of a call option at maturity (CT) depends on 2 variables: 
 
 The value of the underlying at maturity (ST), and the exercise price (X). 
 
 
• The holder of the call will exercise the right to buy the underlying for X only if 
 
 ST > X: [ ]XSC TT −=  and NOT if ST ≤ X: 0CT =  
 
 
Therefore: Payoff of a long position in a call option: 
 

 [ ]0,XSmaxC TT −=  
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The writer (short position) of an option receives a cash up front payment (i.e. 
the option price/option premium) but has potential liabilities later on. 
 
The writer's profit and loss is reverse to that of the purchaser (long position). 
 
 
Payoff to the short position in a call option: 
 

[ ] [ ]0,SXmin0,XSmax TT −=−−  
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Payoff of a call long and a call short position at maturity 
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Example 
 
Suppose an investor buys on January 9, 20xx, 100 February 20xx calls (= 1 
contract) on E.ON with a strike price of €14 and pays €1.60 per call option. 
This contract expires on the 3rd Friday in February 20xx and trades on EUREX. 
 
(a) How does the profit and loss profil at the expiration of this options contract 
look like? 
 
(b) Suppose E.ON trades at the expiration of the February 20xx contract at (i) 
€18, or (ii) €12. What is the percentage profit for the investor? 
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2.2 Payoff of a put option at maturity 
 
As the value of a call, the value of a put option at maturity (PT) also depends 
on the value of the underlying at maturity (ST), and the exercise price (X). 
 
• The holder of the put will exercise his right to sell the underlying for X only if 
 
 ST < X: [ ]TT SXP −=  and NOT if ST ≥ X: 0PT =  
 
 
Therefore: Payoff of a long position in a put option: 
 

[ ]0,SXmaxP TT −=  
 
 
Payoff of the short position in a put option:  [ ] [ ]0,XSmin0,SXmax TT −=−−  
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Payoff of a put long and a put short position at maturity 
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Example 
 
January 9, 20xx: Suppose an investor buys 100 June 20xx puts (= 1 contract) 
on Deutsche Post with a strike price of €16 and pays €1.23 per put option. 
This contract expires on the 3rd Friday in June 20xx and trades on EUREX. 
 
(a) How does the profit and loss profil at the expiration of this options contract 
look like? 
 
(b) Suppose Deutsche Post trades at the expiration of the June 20xx contract 
at (i) €20, or (ii) €10. What is the percentage profit for the investor? 
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3. Trading Strategies 
 
3.1 Straddle 
 
A straddle consists of a call and a put option with the same strike price and 
expiration date. 
 
 
Straddle long: long call + long put 
 
Straddle short: short call + short put 
 
 
The price of a straddle equals the sum of the call and the put option. At ma-
turity, the value of a long straddle is therefore: 
 
 [ ] [ ]0,SXmax0,XSmaxPC TTTT −+−=+   
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Value of a long straddle at expiration 
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A long straddle is appropriate when an investor is expecting a large move in 
the value of the underlying but does not know in which direction the move will 
be (i.e. increase in volatility). 
 
If the stock price is close to the strike price at expiration of the options, the 
straddle leads to a loss. 
 
However, if there is a sufficiently large move in either direction, a significant 
profit will result. 
 
 
A short straddle is appropriate if a decreasing volatility is expected. 
 
It is a highly risky strategy. Large movements in either direction can lead to 
huge (unlimited) losses. 
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3.2 Strangle 
 
A strangle consists of a call and a put option with the same expiration date 
but different strike prices XC (Call) and XP (Put), with 
 

XC  >  XP. 
 
The investor in a long strangle is beating that there will be a large price 
move but is uncertain whether it will be an increase or a decrease (strong in-
crease in volatility). 
 
To be profitable, the stock price has to move more in a long strangle than in 
a long straddle. However, the downside risk is less with a long strangle. 
 
The price of a strangle equals the sum of the call and the put option. At maturi-
ty the value of a long strangle is: 
 
 [ ] [ ]0,SXmax0,XSmaxPC TPCTTT −+−=+   
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Value of a long strangle at expiration 
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3.3 Protective put 
 
A protective put is a strategy where a long put position is used to hedge an 
existing position in the underlying (e.g. a portfolio of stocks). 

 

When the price of the underlying falls, profits in the put option will compensate 

for losses in the spot market position. 

 

However, the put option requires an initial investment, reducing the upside 

profit when the price of the underlying increases. 
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Example 
 
Suppose an investor owns a portfolio of OMV stocks trading at €80. She buys 
puts with an exercise price of €80 to hedge against decreasing stock prices. 
The price of the put is €2. 
 
Profit and loss at maturity (long OMV, long €80 put) in €: 
 

OMV share 
price 

Purchasing price 
(put) 

Value of the put at ma-
turity 

Value of total portfolio 

72 -2 8 78 
74 -2 6 78 
76 -2 4 78 
78 -2 2 78 
80 -2 0 78 
82 -2 0 80 
84 -2 0 82 
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3.4 Covered call writing 
 
Covered call writing is the sale of calls covered by an existing position in 
the underlying asset (e.g. a stock). 
 
It can be an interesting strategy for an investor who anticipates stable or fall-
ing prices but wants to hold his position in the underlying asset. 
 
The investor can increase the return on the portfolio by the option price re-
ceived. 
 
However, covered call writing limits the potential profit on rising prices. 
 
If, e.g. the price of the underlying is above the strike price of the sold call op-
tion, the long position in the call will exercise the option and buy the underlying 
for the strike price. 
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Example 
 
An investor holds a VAS position with a current price of €31.50 per share. She 
expects stable prices and sells calls with a strike price of €30 at a price of 
€2.20. 
 
Profit and loss at maturity (long VAS, short €30 call) in €: 
 

VAS share 
price 

Selling price of the 
call 

Value of the call short 
position at maturity 

Value of the total portfolio 

24 +2.20 0 26.20 
26 +2.20 0 28.20 
28 +2.20 0 30.20 
30 +2.20 0 32.20 
32 +2.20 -2 32.20 
34 +2.20 -4 32.20 
36 +2.20 -6 32.20 
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4. Valuation I: Upper and lower bounds 
 
Example 
 
An American call option has a current price of C0 = €10. The exercise price is 
€20 and the underlying has a current price of S0 = €40. 
 

 
 
 
 
 
 
 
 
 
 
  St 

0 

Ct 

X = 20 S0 = 40 

C0 = 10 
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The figure shows that the current option price is too low compared to the cur-
rent price of the underlying. Via buying the option and exercising it, an investor 
can buy the underlying at a total price below the current market price. 
 
 

Arbitrage portfolio: 
 

 t = 0 
Call long -10 
Exercise (buying the underlying for X = 20) -20 
Selling the underlying +40 
Arbitrage profit +10 
 
Consequence: The price of the call option will increase, and 
 

 the price of the underlying will drop 
 

 untill arbitrage opportunities do not exist anymore.  
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Lower valuation boundary (for the moment): 
 

[ ]0,XSmaxC 00 −≥  
 
 
Upper valuation boundary: 
 
A call never can be worth more than its underlying. 
 
 
Example: Price = € 45 
 

 t = 0 
Call short +45 
Stock long -40 
Arbitrage profit +5 
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Thus, the price of a call option only can lie in between the upper and the lower 
valuation boundary: 
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European options have the disadvantage that they cannot be exercised in 
advance (before maturity). 
 
 
But still if the boundaries are violated also for European options, an arbi-
trage portfolio can be generated. 
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Example: 
 
European Call option: Maturity T = 1 year, X = €100, S0 = €200, C0 = €100 
 
(a): r = 0% p.a. 
 
Arbitrage portfolio: 
 

 (t = 0) Value at maturity (t = T) 
Position Portfolio ST ≤ 100 ST > 100 
Call long -100 0 ST - 100 
Stock short +200 -ST -ST 
Investment (zero bond long) -100 = X 100 100 
Portfolio value 0 100 - ST ≥ 0 0 
 
  [ ]0,XSmaxC 00 −≥   
 

  

 
30 



FMR_3-4 
 
 
 
(b): r = 7% p.a. 
 
r: Continuously compounded risk-free rate of interest for an invest-

ment maturing in time T 
 
Arbitrage portfolio: 
 

 (t=0) Value at maturity (t=T=1 year) 
Position Portfolio ST ≤ 100 ST > 100 
Call long -100 0 ST - 100 
Stock short +200 -ST -ST 
Investment (zero bond long) -93.24 100 100 
Portfolio value +6.76 100 - ST ≥ 0 0 
 
And:  0.107.0Tr e100eX24.93 ⋅−⋅− ⋅=⋅=−  
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This leads to the lower boundary for European (CE) and American (CA) call op-
tions: 
 

[ ]0,eXSmaxCC Tr
0EA

⋅−⋅−≥≥  
 
 
 
 
 
 
 
 
 
 
 
 
  St 
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Ct 

X 

Upper 
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Lower boundary 

TreX ⋅−⋅  
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American Call Early exercise is valuable only if the dividend (Div) received 

(before maturity) when owning the stock is larger than 
TreXX ⋅−⋅−  
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European Put (PE): Lower boundary 
 
 (t = 0) Value at maturity (t = T) 
Portfolio components Portfolio ST ≤ X ST > X 
Put (PE) long -PE X - ST 0 
Loan (zero bond short) X⋅e-r⋅T -X -X 
Stock long -S0 ST ST 
Portfolio value -PE - S0 + X⋅e-r⋅T 0 ST - X > 0 
 
 -PE - S0 + X⋅e-r⋅T ≤ 0 
 
 PE ≥ X⋅e-r⋅T - S0 
 
 Thus, at t = 0: [ ]0

Tr
E SeX,0maxP −⋅≥ ⋅−  

  
 

  

 
34 



FMR_3-4 
 
 
 
European Put (PE) and American Put (PA): Lower boundary 
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5. Put-Call Parity 
 
The put-call parity describes an important relationship between the value of a 
European put and the value of a European call on the same underlying. 
 
Let us consider the following portfolio: 
 

(1) Long position: European put option with exercise price X and maturity t=T 
(2) Long position: Underlying (e.g. a stock) 
(3) Short position: Zero bond with a face value of X and a current (present) 

value of X⋅e-r⋅T 
 

 t = 0 t = T 
  ST < X ST ≥ X 
Put long -P0 X - ST 0 
Underlying long -S0 ST ST 
Zero bond short +X⋅e-r⋅T -X -X 
 -P0 - S0 + X⋅e-r⋅T 0 ST - X 

 Synthetic call = -P0 - S0 + X⋅e-r⋅T  
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As ( [ ]XS,0maxC TT −= ) and ( [ ]0,SXmaxP TT −= ) it follows that 
 

XSPC TTT −+=  
and for t = 0: 

Tr
000 eXSPC ⋅−⋅−+= . 

 
This relationship is known as the put-call parity. It shows that the value of a 
European call with a certain exercise price and exercise date is related to the 
value of a European put with the same exercise price and exercise date (and 
of course the same underlying). 
 
For a European put, the corresponding portfolio consists, therefore, of the fol-
lowing components: 
 

 • Call long 
 • Underlying short 
 • Zero bond (face value = X) long 
 
If the put-call parity does not hold, there are arbitrage opportunities.  
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Example 
 
Suppose that the current price of a European call is €12 and the price of the 
corresponding European put is €1. 
 
Both options have a time to maturity of 6 months, an exercise price of €72 and 
an underlying trading currently at €80. The 6-months discount factor (P(T)) is 
0.9535 (continuously compounded: e-r⋅T = 0.9535) 
 
Are these prices arbitrage free? If not, how does the corresponding arbitrage 
portfolio look like? 
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 Intrinsic value and time value 

 
Intrinsic value: Is the maximum of zero and the value the option would 

have if it is exercised immediately.  

S0

0

C0

X

Time value

Intrinsic value

out-of-the-money

at-the-money

in-the-money

C0,1

C0,3

C0,2
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 Factors affecting stock option prices 
 
 Call Put 
current stock price, S0 + - 
strike price, X - + 
time to expiration, T + + 
volatility of the stock price, σ + + 
risk-free interest rate, r + - 
dividends expected during the life of the option - + 
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 Option value before maturity 
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Example: Options on Siemens (11.2.2011, EUREX), 
stock price (close) = €94.68 

 
Calls 
 

Strike Last Settlement Price Trading Volume Open Interests 
110 

 
0.02 0 0 

105 
 

0.02 0 2,065 
100 

 
0.09 0 6,419 

98 0.15 0.24 25 5,484 
96 0.69 0.65 369 5,251 
94 1.58 1.57 231 4,458 
92 

 
3.03 0 2,722 

90 
 

4.80 0 267 
88 

 
6.72 0 102 

86 
 

8.72 0 4 
84 

 
10.71 0 0 

82 
 

12.71 0 75 
80 

 
14.70 0 0 
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Example: Options on Siemens (11.2.2011, EUREX), 
stock price (close) = €94.68 

 
Puts 
 

Strike Last Settlement Price Trading Volume Open Interests 
110 

 
15.32 0 209 

105 
 

10.32 0 406 
100 

 
5.40 0 526 

98 
 

3.56 0 891 
96 

 
1.95 0 551 

94 0.81 0.88 821 2,764 
92 0.41 0.34 21 2,479 
90 

 
0.11 0 4,030 

88 0.05 0.04 111 3,808 
86 0.03 0.02 200 4,765 
84 

 
0.02 0 1,424 

82 
 

0.01 0 3,377 
80 0.01 0.01 1 2,025 
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6. Valuation II: Binominal Model 
 
• The (remaining) maturity is divided into (small) sub-periods 
 
• In each sub-period: The price of the underlying can either increase by the 

factor u or decrease by the factor d: 
 

u > 1, d < 1 
 
• (u - 1) = relative value change of the underlying in case of a price increase 
 

• (1 - d) = relative value change of the underlying in case of a price decrease 
 
• For N sub-periods: 2N possible trails for the price development of the under-

lyings 
 

e.g.: 30 sub-periods  more than one billion possible price trails 
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6.1 One-step model 
 
 

Example: Replication model 
 
Call Option: Maturity = 3 months 

 Strike price = €100 

 S0 = €100 

 S0⋅u = €130 

 S0⋅d = €80 

 Zero bond (ZB): ZB0 = €99, ZB1 = €100, maturity = 3 months 

 Expected probabilities: q = (1-q) = 50% 
 
What is the arbitrage free value of the option? 
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Underlying: 
 
 
 
 
 
 
 
 
Zero bond: 
 
 
 
 
 
 
 
 
 
Call: 
 
 
 
 
 
 
 

Su = 100⋅1.3 = 130 

S0 = 100 

t = 3 Mon = T t = 0 

Sd = 100⋅0.8 = 80 

ZBu = 100 

ZB0 = 99 

ZBd = 100 

Cu = max[Su - X, 0] = 30 

C0 = ? 

Cd = max[Sd - X, 0] = 0 
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 Replication of C via S and ZB 
 
System of equations: S + ZB = C 

 130⋅h + 100⋅m = 30 

 80⋅h + 100⋅m = 0 

 50⋅h + 0 = 30 

 
h: Amount of the underlying in the replication portfolio (for one call) 
 

m: Amount of the zero bond in the replication portfolio (for one call) 
 

 6.0
50
30

SS
CCh

du

du ==
−
−

=   units 
 

 48.0
100

48
100

6.013030
ZB

hSC
ZB

hSCm
d

dd

u

uu −=
−

=
⋅−

=
⋅−

=
⋅−

=   units  

{ - 

 

  

 
48 



FMR_3-4 
 
 
 
Replication portfolio: 
 
 0.60 ⋅ Underlying LONG: 0.6⋅(-100) = -60.00 

 0.48 ⋅ Zero bond SHORT: 0.48⋅99 = 47.52 

 1.00 ⋅ Call LONG:  -12.48 
 
Thus, the arbitrage free value of the calls is €12.48. 
 
Check: 
 

 t = 0 t = T 
  Sd = 80 Su = 130 
h ⋅ Underlying LONG -60 48 78 
m ⋅ Zero bond SHORT +47.52 -48 -48 

= 1 ⋅ Call LONG -12.48 0 30 
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or 
 
 t = 0 t = T 
  Sd = 80 Su = 130 
h ⋅ Underlying LONG -60 48 78 
1 ⋅ Call SHORT +12.48 0 -30 

= m ⋅ Zero bond LONG -47.52 48 48 
 
Portfolio: • h units of the underlying (LONG) 

 • one call option SHORT 
 

  Only can earn the risk free rate 
 
Value of the portfolio: 
 

( ) ( ) ( ) ( )TPCdShTPCuShCSh d0u000 ⋅−⋅⋅=⋅−⋅⋅=−⋅  
  

Secure final wealth! 
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From this follows the value of the option: 
 

( ) ( )TPCuShShC u000 ⋅−⋅⋅−⋅=  
or 

( ) ( )TPCdShShC d000 ⋅−⋅⋅−⋅=  
 
 
P(T) = Discount factor for maturity T of the option (P(T) = e-r⋅T) 
 
 

( ) 48.12
100
99303.11006.01006.0C0 =⋅−⋅⋅−⋅=  

( ) 48.12
100
9908.01006.01006.0C0 =⋅−⋅⋅−⋅=  
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Thus, independent from the future share price development a secure end val-
ue is obtained. Through transformation, we receive the hedge ratio h: 
 

dSuS
CCh

00

du
⋅−⋅

−
=  

 
 
Thus, if the portfolio contains h units of the underlying it is riskless and yields 
as return the riskless interest rate r. 
 
 
  

 

  

 
52 



FMR_3-4 
 
 
 
To determine the current option value (C) based on Cox/Ross/Rubinstein 
(1979), a view more transformations are necessary: 
 

( ) CSheCuSh 0
Tr

u0 −⋅=⋅−⋅⋅ ⋅−  
 

( ) ( )0Tr0u ShC
e

1uShC ⋅+−⋅=⋅⋅+− ⋅−  

 

As 
du
CCSh du

0 −
−

=⋅  

 
We get 
 









−
−

+−⋅=





 ⋅

−
−

+− ⋅− du
CCC

e
1u

du
CCC du

Tr
du

u  

  
 

  

 
53 



FMR_3-4 
 
 

du
CC

e
1

du
CCuC

e
1C du

Tr
du

uTr −
−

⋅+
−
−

⋅−=⋅ ⋅−⋅−  

 

du

C
e

1

du
CuC

du
Cu

du

C
e

1

e
1C

dTrd
u

u
uTr

Tr −

⋅
−

−
⋅

++
−
⋅

−
−

⋅
=⋅

⋅−⋅−

⋅−  

 

d
Tr

u
Tr

Tr C
du

e
1u

C
du

d
e

1

e
1C ⋅

−

−
+⋅

−

−
=⋅

⋅−⋅−

⋅−  

 
 

When the two ratios on the right side are replaced by p bzw. (1-p), thus: 
 

du
de

du

d
e

1

p
TrTr

−
−

=
−

−
=

⋅⋅−
   and   ( )

du
eu

du
e

1u
p1

TrTr

−
−

=
−

−
=−

⋅⋅−
, 
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we receive the arbitrage-free value of the European call option according to 
the risk-neutral valuation based on Cox, Ross, and Rubinstein (1979): 
 
 ( )[ ]du

Tr Cp1CpeC ⋅−+⋅⋅= ⋅−  
 
Likewise, one receives for a European put option: 
 
 ( )[ ]du

Tr Pp1PpeP ⋅−+⋅⋅= ⋅−  
 
p: Probability for a price increase 

(1-p): Probability for a price decrease 
 
  In a risk-neutral world (pseudo-probabilities) 
 
  Both valuation methods (replication portfolio and risk-neutral val-

uation) provide the same result.  
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(a) C0 = €15: 
 
The call is too expensive. 
Strategy: Buy h shares, sell one call option, and finance the missing money 

(at t=0) via a loan. 

 
 t = 0 t = T 
 Portfolio Sd = 80 Su = 130 
h shares long -60 48 78 
1 Call short +15 0 -30 
Zero bond short (loan) +45 -45.455 -45.455 
 0 +2.545 +2.545 
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(b) C0 = €10: 
 
The call is too cheap. 
Strategy: Sell h shares, buy one call option, and invest the remaining money 

(at t=0). 

 
 t = 0 t = T 
 Portfolio Sd = 80 Su = 130 
h shares short 60 -48 -78 
1 Call long -10 0 30 
Zero bond long (investment) -50 +50.505 +50.505 
 0 +2.505 +2.505 
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6.2 Two-step model 
 

  

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

t = 0 t = t1 t = T 

S 
C 

Cu 

S⋅u 

Cd 

S⋅d 

S⋅u2   ⇒   Cuu 

S⋅u⋅d = S⋅d⋅u ⇒ Cud = Cdu 

∆t ∆t S⋅d2   ⇒   Cdd 
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• Relative change in the price of the underlying: modeled via u and d 
 (identical in each sub-period) 
 
• Sub-periods: in each case a length of ∆t 
 

 Risk-neutral probability p is the same in each node 
 
Repeated application of the Cox/Ross/Rubinstein (1979) valuation model. 
 
Starting point: Pay-off structure of C at maturity 
 
Value of the option at t = t1: ( )[ ]uduu

tr
u Cp1CpeC ⋅−+⋅⋅= ∆⋅−  

 

 ( )[ ]ddud
tr

d Cp1CpeC ⋅−+⋅⋅= ∆⋅−  
 
Value at t = 0: ( )[ ]du

tr Cp1CpeC ⋅−+⋅⋅= ∆⋅−  
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( ) ( ){ }dd
2

uduu
22tr Cp1Cp1p2CpeC ⋅−+⋅−⋅⋅+⋅⋅= ⋅∆⋅−  

 
 
p2 Probability that we reach at t = T the upper node. 
 
2⋅p⋅(1-p) Probability that we reach at t = T the middle node. 
 
(1-p)2 Probability that we reach at t = T the lower node. 
 
 
The price of the call option corresponds to the expected value of the pay-off 
structure at maturity in a risk-neutral world, discounted with the risk-less rate (= 
risk-neutral valuation). 
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Example 
 
S = €400, X = €420, (u - 1) = 10%, (1 – d) = -10%, e-r⋅∆t = 0.995. 

  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

S⋅u2 = €484   ⇒   Cuu = €64 

S⋅u⋅d = €396   ⇒   Cud = €0 

S⋅d2 = €324   ⇒   Cdd = €0 

S Z 

X 

S⋅u = 440 

Y 

S⋅d = 360 
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Calculation of the option prices for nodes X and Y. The risk-neutral probability 
p is: 
 

 5251256.0
9.01.1

9.0
995.0
1

du

d
e

1

du
dep

trtr
=

−

−
=

−

−
=

−
−

=
∆⋅−∆⋅

 

 
Node X: 
 ( )[ ]uduu

tr
u Cp1CpeC ⋅−+⋅⋅= ∆⋅−  

 ( )[ ]0525126.0164525126.0995.0 ⋅−+⋅⋅=  
 44.33€= . 
 
Node Y: 
 ( )[ ]ddud

tr
d Cp1CpeC ⋅−+⋅⋅= ∆⋅−  

 ( )[ ]0525126.010525126.0995.0 ⋅−+⋅⋅=  
 0€= . 
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Current value of C: 
 
 ( )[ ]du

tr Cp1CpeC ⋅−+⋅⋅= ∆⋅−  
 ( )[ ]0525126.0144.33525126.0995.0 ⋅−+⋅⋅=  
 47.17€= . 
 
 
If only the current option value is of interest: 
 
 ( ) ( ){ }dd

2
uduu

22tr Cp1Cp1p2CpeC ⋅−+⋅−⋅⋅+⋅⋅= ⋅∆⋅−  
 ( ) ( ){ }00645251256.0995.0 22 ++⋅⋅=  
 47.17€=  
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6.3 N-step model 

 
 

S

S⋅uN

∆t

t = 0
t = T

S

S⋅uN-1

S⋅dN-1

S⋅dN
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u and d depend on the volatility σ of the underlying. Based on the transfor-
mation of σ into u and d proposed by Cox, Ross, and Rubinstein (1979) we 
can calculate u and d as: 

 teu ∆⋅σ=   te
u
1d ∆⋅σ−==  

 
Value of a call option at maturity: 
 

[ ]XS,0maxC j,Nj,N −= ,     Ni0 ≤≤ , ij0 ≤≤  
 
N: Total number of sub-periods 
i: Number of sub-periods since t = 0 
j: Number of sub-periods with a price increase 
 

 
Valuation for node (i,j):  ( )[ ]j,1i1j,1i

tr
j,i Cp1CpeC +++

∆⋅− ⋅−+⋅⋅=  
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6.4 American Put Option 
 
At maturity: Value of an American option = Value of an European option 
 
In nodes before maturity: The value of the American put option is the maximum 
of 
 • the value of an identical European option in the same node 
 

 • the proceeds if the option is exercised early 
 
 
Thus, in each node it is necessary to check, whether an early exercise is fa-
vorable. 
 
In node (i,j) an American put option has a value of: 
 

( )( ) ( )[ ]{ }j,1i1j,1i
trjij

j,i Pp1Ppe,duSXmaxP +++
∆⋅−− ⋅−+⋅⋅⋅⋅−=   

 

  

 
66 



FMR_3-4 
 
 
 
Example 
 
Valuation of an American put option: T = 2 years, X = €110, S = €100 
 
2 sub-periods, share price ± 20% in each sub-period, 
P(∆t = 1Jahr) = 0.95 = e-r⋅∆t 
 
 
Risk-neutral probability p: 
 

 63158.0
8.02.1

8.0
95.0
1

du

d
e

1

du
dep

trtr
=

−

−
=

−

−
=

−
−

=
∆⋅−∆⋅
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Share price development: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

S2,2 = €144   ⇒   P2,2 = €0 

S2,1 = €96   ⇒   P2.1 = €14 

S2,2 = €64   ⇒   P2,0 = €46 

S = 100 

S1,1 = 120 

S1,0 = 80 
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Value of the option at node (1,1): 
 
 ( ) ( )[ ]{ }1,22,2

tr01
1,1 Pp1Ppe,duSXmaxP ⋅−+⋅⋅⋅⋅−= ∆⋅−  

 ( ) ( )[ ]{ }1463158.01063158.095.0,120110max ⋅−+⋅⋅−=  
 { }90.4,10max −= 90.4€=  
 
 
Thus, early exercise is not useful in node (1,1). Option value in node (1,0): 
 
 ( ) ( )[ ]{ }0,21,2

tr10
0,1 Pp1Ppe,duSXmaxP ⋅−+⋅⋅⋅⋅−= ∆⋅−  

 ( ) ( )[ ]{ }4663158.011463158.095.0,80110max ⋅−+⋅⋅−=  
 { }50.24,30max= 30€=  
 
Early exercise is useful in node (1,0). Instead of 24.50 (= value of a European 
put option) the value of the American put option amounts to €30 in this node. 
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The current value of this option (node (0,0)) can be calculated as 
 
 ( ) ( )[ ]{ }0,11,1

tr00
0,0 Pp1Ppe,duSXmaxP ⋅−+⋅⋅⋅⋅−= ∆⋅−  

 ( ) ( )[ ]{ }3063158.0190.463158.095.0,100110max ⋅−+⋅⋅−=  
 { }44.13,10max= 44.13€=  
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7. Valuation III: Black-Scholes-Merton Model 
 
Fischer Black and Myron Scholes (1973, Nobel Prize in Economics 1997) 
 
 Valuation equation for European call and put options ('standard model') 
 
 
Cornerstones during the derivation: 
 
(a) Price development of the underlying = random 

(and can be characterized via stochastic differential equations) 
 
(b) Pay-off structure of a call (put) option at maturity. 
 
(c) Itô’s Lemma („algorithm“ to solve stochastic differential equations). 
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As a result, one gets for the value of a European call option: 
 
 { } { }2

Tr
100 dNeXdNSC ⋅⋅−⋅= ⋅−  (BSM 1) 

 

with 

T

T
2
1r

X
Sln

d

20

1 ⋅σ

⋅





 σ⋅++








= ,   Tdd 12 ⋅σ−=  

 
N{•}: Cumulative density of the standard normal distribution 
 
Eq. (BSM 1) is also applicable for American calls on stocks if Div < (X - X⋅e-r⋅T) 
 
For European put options: 
 
 { } { }102

Tr
0 dNSdNeXP −⋅−−⋅⋅= ⋅−  (BSM 2) 
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Important assumptions: 
 
• Only for European options, especially not for American put options. 
 
• No payouts during maturity. 
 
• Constant volatility during maturity. 
 
• Constant interest rate r during maturity. 
 
• The price changes of the underlying are random. 
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 Cumulative density function of the standard normal distribution 
 

Φ(z)0,1 (µ = 0, σ = 1); e.g., N(1.0) = area from z = -∞ until 1.0 
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 Cumulative density function of the standard normal distribution 
 

Φ(z)0,1 (µ = 0, σ = 1); e.g., N(1.0) = 0.84134 
 

z \ * 0 1 2 3 4 5 6 7 8 9 
0.0* 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586 
0.1* 0.53983 0.54380 0.54776 0.55172 0.55567 0.55962 0.56356 0.56749 0.57142 0.57535 
0.2* 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409 
0.3* 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173 
0.4* 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793 
0.5* 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240 
0.6* 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490 
0.7* 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524 
0.8* 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327 
0.9* 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891 
1.0* 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214 
1.1* 0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298 
1.2* 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147 
1.3* 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91309 0.91466 0.91621 0.91774 
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 Cumulative density function of the standard normal distribution 
 

 Φ(z)0,1 (µ = 0, σ = 1) = probability that a variable with a standard normal 
distribution will be less than z 

z \ * 0 1 2 3 4 5 6 7 8 9 
1.4* 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189 
1.5* 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408 
1.6* 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449 
1.7* 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327 
1.8* 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062 
1.9* 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670 
2.0* 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169 
2.1* 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574 
2.2* 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899 
2.3* 0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158 
2.4* 0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361 
2.5* 0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520 
2.6* 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643 
2.7* 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736 
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 Cumulative density function of the standard normal distribution 
 

Φ(z)0,1 (µ = 0, σ = 1) 
 

z \ * 0 1 2 3 4 5 6 7 8 9 
2.8* 0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807 
2.9* 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861 
3.0* 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99896 0.99900 
3.1* 0.99903 0.99906 0.99910 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929 
3.2* 0.99931 0.99934 0.99936 0.99938 0.99940 0.99942 0.99944 0.99946 0.99948 0.99950 
3.3* 0.99952 0.99953 0.99955 0.99957 0.99958 0.99960 0.99961 0.99962 0.99964 0.99965 
3.4* 0.99966 0.99968 0.99969 0.99970 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976 
3.5* 0.99977 0.99978 0.99978 0.99979 0.99980 0.99981 0.99981 0.99982 0.99983 0.99983 
3.6* 0.99984 0.99985 0.99985 0.99986 0.99986 0.99987 0.99987 0.99988 0.99988 0.99989 
3.7* 0.99989 0.99990 0.99990 0.99990 0.99991 0.99991 0.99992 0.99992 0.99992 0.99992 
3.8* 0.99993 0.99993 0.99993 0.99994 0.99994 0.99994 0.99994 0.99995 0.99995 0.99995 

 

Note: Negative values are not shown, as the distribution is symmetric. Thus, Φ( − z) = 1 
− Φ(z). The asterisk * is a wildcard for subsequent decimal places shown in the col-
umns. 
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