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0 Introduction

0.1 Qubit

Is a �bit� that can be |0⟩, |1⟩or in a mixed state (superposition). If measured it can be
between |0⟩and |1⟩.

α|0⟩+ β|1⟩

|α|2 + |β|2 = 1

n such qubits can be in a superposition of 2n states: α0|00⟩+ α1|01⟩+ α2|10⟩+ α3|11⟩.
A quantum computer can deal with these 2n states in parallel.

A qubit can also be written in coordinate form, since the element |0⟩and |1⟩of the basis
are �xed:

� for |Ψ⟩ = α|0⟩+ β|1⟩ we write then |Ψ⟩ =
(
α
β

)

� Hence: |0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)

0.2 Entaglement

Explenation video: �Quantum Entanglement & Spooky Action at a Distance�

A system is entangled if the corresponding quantum state cannot be written as a tensor
product of its components.

For example in a 2 qubit system we either measure |00⟩ or |11⟩: 1√
2
|00⟩+ 1√

2
|11⟩

This is called a Bell state or ERP pair.

0.3 Problems with current quantum computers

Problems when circuits run on a quantum computer: Noise

Two sources of noise:

1. Gate in�delity: User-speci�ed gate does not precisely correspond to the physi-
cally implemented gate

2. Decoherence: Gradually over time, a quantum computer looses its �quantum-
ness�, e.g., due to interaction with the environment. Then it behaves more like a
classical computer.

Both e�ects limit the depth of quantum circuits in practice.
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1 Principles of Quantum Mechanics I

1.1 Classes of Operators

T is a linear operator with T : V 7→ V .
T ∗ : V 7→ V is de�ned as: ⟨x, Ty⟩ = ⟨T ∗x, y⟩ ∀x, y ∈ V
For unitary operators it holds that T ∗ = T−1 and further more ⟨x, y⟩ = ⟨Ix, y⟩ =
⟨T ∗Tx, y⟩ = ⟨Tx, Ty⟩ (unitary operators preserve the inner product).

T is ...

� self adjoined/hermitian, if T = T ∗ (Tx = T ∗x, ∀x ∈ V )

→ Eigenvalues are real numbers

� unitary, if TT ∗ = T ∗T = I (TT ∗x = T ∗Tx = x,∀x ∈ V )

� (orthogonal) projection, if T is self adjoined and T = T 2

Linear operator: A linear operator preserves vector addition and scalar multiplication

T (λx+ µy) = λT (x) + µT (y)

Unitary operator: A linear operator that preserves the norm of a quantum state and
is also reversible.
Mathematically an operator U statis�es following property, if it is unitary:

U †U = UU † = I

Where U † is the adjoint of U , meaning the conjugate transpose.

T ∗ is given in terms of the matrix A∗ = (Ā)T = (āji), e.g.:

A =

(
1 + 3i 2i
1 + i 1− 4i

)

A∗ =

(
1− 3i 1− i
−2i 1 + 4i

)

1.2 Bra- & Ket-Notation

The basic idea of this notation is that the inner product ⟨x, y⟩ of two vectors x, y can
be seen as the application of the �bra-vector� ⟨x| to the �ket-vector� |y⟩, i.e. one writes
⟨x|y⟩ for ⟨x, y⟩.
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Ket-vectors correspond to the usual vectors, whilst bra-vectors are seen as elements
of a �dual space�.

⟨Ψ| =
(
x1 x2 · · · xn

)

|Ψ⟩ =


x1
x2
...
xn


2 Principles of Quantum Mechanics II & Quantum

Gates

2.1 Postulates of Quantum Mechanics

2.1.1 Postulate I - Description of the state of a system

The state of an isolated physical system is completely described in terms of a state vector
in a complex Hilbert space (state space). 1

2.1.2 Postulate II - Time evolution of a system

The time evolution of a closed system is described by a unitary transformation on the
initial state. 2

|ψ(s+ t)⟩ = U(t)|ψ(s)⟩

Where U(t) is a unitary operator, |ψ(s)⟩ is the state of the system at time s and |ψ(s+ t)⟩
is the state of the system at time s+ t.

The time evolution can alternatively also be described as follows:

The time evolution of the state vector |ψ(t)⟩ is governed by the Schrödinger equation,
where H(t) is a Hamiltonian operator3 (the observable associated with the total energy
of the system).

iℏ
δ

δt
|ψ(t)⟩ = H(t)|ψ(t)⟩

where:

1Postulate 1 Wikipedia
2Postulate 3 Wikipedia
3Hamiltonian = total energy of a system, including both kinetic energy and potential energy
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i Imaginary number

ℏ Reduced planck's constant ℏ =
h

2π
δ

δt
Partial derivation

H(t) Hamiltonian operator (sometimes also Ĥ(t))

|ψ(t)⟩ State vector

2.1.3 Postulate III - Measurement on a system

Measurements are described by self-adjoint operators, called observables. Each observ-
able M has a spectral representation.

Possible values of measurements are given by the eigenvalues of M .
If directly before the measurement the system is in state |Ψ⟩, then p(m) = ⟨Ψ|Pm|Ψ⟩,
where Pm is the projection, gives the probability to measure the value m (square the
amplitude).

After the measurement of m, the system is in state
1√
p(m)

Pm|Ψ⟩, where the function

p(·) satis�es the boundary condition
∑

m p(m) =
∑

m ⟨ψ|Pm|Ψ⟩ = 1 (the sum of all
probablities of all states must be 1).

Two observables also obey the Heisenberg uncertainty relation, which states, that the
more precise we measure the phase/position of a qubit, the less precise (or more uncer-
tain) its amplitude/momentum get.

2.1.4 Postulate IV - Superposition Postulate

The state space of a composite system S is given by the tensor product of its parts.
That is, if S consists of n subsystems S1, ..., Sn and each Si is in state |Ψ⟩i(i = 1, ..., n),
then the state vector |Ψ⟩of the overall system S is given by

|Ψ⟩1 ⊗ · · · ⊗ |Ψ⟩n.
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2.2 Quantum Registers

Quantum registers are state vectors, that can be represented, by taking the tensor prod-
uct (⊗) of some (state) vectors.

|00⟩ = |ψ1
0⟩ ⊗ |ψ2

0⟩ =
(
1
0

)
⊗
(
1
0

)
=


1
0
0
0



|01⟩ = |ψ1
0⟩ ⊗ |ψ2

1⟩ =
(
1
0

)
⊗
(
0
1

)
=


0
1
0
0



|10⟩ = |ψ1
1⟩ ⊗ |ψ2

0⟩ =
(
0
1

)
⊗
(
1
0

)
=


0
0
1
0



|11⟩ = |ψ1
1⟩ ⊗ |ψ2

1⟩ =
(
0
1

)
⊗
(
0
1

)
=


0
0
0
1


2.2.1 Entanglement

Entaglement of qubits/qubit-registers is used to execute �calculations� simultaniously.
By measuring the property of one state, we immediately know the state of the other.

A system is entangled if the corresponding quantum state cannot be written as a tensor
product of its components (Postulate IV).

For example in a 2 qubit system we either measure |00⟩ or |11⟩: 1√
2
|00⟩+ 1√

2
|11⟩

2.3 Quantum Gates

Unitary operators over n-qubit quantum registers are called n-qubit quantum gates.
Quantum gates are represented by unitary 2n × 2n-matrices.

2.3.1 NOT gate (1-bit gate)

X :=

(
0 1
1 0

)
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Example:

X|0⟩ =
(
0 1
1 0

)(
1
0

)
=

(
0
1

)
= |1⟩

Application of the
√
NOT gate results in a quantum state that neither corresponds

to the classical bit 0 nor the classical bit 1:

√
NOT |0⟩ =

√
NOT

(
1
0

)

=
1

2

(
1 + i
1− i

)

=
1 + i

2

(
1
0

)
+

1− i

2

(
0
1

)

=
1 + i

2
|0⟩+ 1− i

2
|1⟩

Applying the
√
NOT gate multiple times reveals the classical NOT gate:√

NOT ·
√
NOT = NOT .

The X/NOT gate is a Pauli matrix. The other matrices include:

Y :=

(
0 −i
i 0

)
Z :=

(
1 0
0 −1

)
All Pauli gates applied to themselves reverse each other: X2 = Y 2 = Z2 = I (where I
is the identity matrix).

2.3.2 Hadamard gate (1-bit gate)

The Hadamard gate is one of the most useful gates in quantum computing.

H :=
1√
2

(
1 1
1 −1

)
Like the

√
NOT gate, it maps a computational basis into a superposition of states:

H|0⟩ = 1√
2
(|0⟩+ |1⟩)

H|1⟩ = 1√
2
(|0⟩ − |1⟩)
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With the application of the Hadamard gate to n qubits, we can generate 2n equaly dis-
tributed superpositions of |0⟩and |1⟩(every possible combination of bit strings of n bits).

The states H|0⟩ =
1√
2
(|0⟩ + |1⟩) and H|1⟩ =

1√
2
(|0⟩ − |1⟩) often also are called the

�plus� and �minus� state:

H|0⟩ = |+⟩ = 1√
2
(|0⟩+ |1⟩)

H|1⟩ = |−⟩ = 1√
2
(|0⟩ − |1⟩)

2.3.3 Phase, T - and Rotation gate (1-bit gate)

RX(α) = e−iαX/2 =

(
cos(α/2) −i sin(α/2)

−i sin(α/2) cos(α/2)

)
RY (α) = e−iαY/2 =

(
cos(α/2) − sin(α/2)
sin(α/2) cos(α/2)

)
RZ(α) = e−iαZ/2 =

(
e−iα/2 0
0 eiα/2

)
Ph(δ) = eiδ

(
1 0
0 1

)
�global phase shift�

2.3.4 CNOT gate (2-bit gate)

The CNOT -gate is a controlled NOT -gate.

CNOT :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



It works as follows:

CNOT |00⟩ = |00⟩
CNOT |01⟩ = |01⟩
CNOT |10⟩ = |11⟩
CNOT |11⟩ = |10⟩

The �rst bit is the control bit: if set, then the second qubit is inverted.

The CNOT gate is self-adjoint.
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Special CNOT gates: CNOT12 → control qubit 1 and target qubit 2.

The To�oli gate is a special case of the CNOT gate. It is esentially a CCNOT gate (so
two control bits): |110⟩ 7→ |111⟩ and |111⟩ 7→ |110⟩ and |xyz⟩ 7→ |xyz⟩ otherwise.

2.3.5 SWAP gate (2-bit gate)

The SWAP -gate (as the name suggests) swaps two bits: SWAP |xy⟩ 7→ |yx⟩

SWAP :=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


The SWAP gate can be derived from di�erent versions from the CNOT gate:

CNOT12CNOT21CNOT12

The SWAP gate is self-adjoint.

Special case: Fredkin or CSWAP gate:

|0yz⟩ 7→ |0yz⟩ and |1yz⟩ 7→ |1zy⟩

CSWAP :=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


2.4 Universality

The Pauli matrices Y and Z are universal, meaning, that each 1-qubit gate U can be
constructed out of a combination of X, Y and Z gates:

U = eiαRZ(β)RY (γ)RZ(δ)

for suitable α, β, γ, δ ∈ R.

Each n-qubit gate U (n > 1) can be represented in terms of RX(·), RY (·), RZ(·), Ph(·)
and CNOT .
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3 Preparatory concepts of the quantum algorithms

3.1 Gates with multiple control qubits

We can/could construct a CNOT gate with n control qubits by using n − 1 ancillary
(temporary) qubits to connect all the control qubits.

We can mitigate ancillary qubits by using gray code!

3.2 Reversibility of computation

Quanutm algorithms/circuits, that use unitary operations are by de�nition reversible
(because of the fact, that they are unitary).
If one wants to use irreversible computation we need extra space to make the computa-
tion reversible again!

Reversibility in quantum computing is needed, so no information is lost.
This is crucial to maintain the bene�ts of quanutm computing and entanglement.

The additional qubits we need, to make an irreversible computation reversible are called
�garbage qubits�. They serve as a temporal storage, to store the necessary information to
make an operation reversible. At the end of the computation the garbage qubits them-
selves need to be reset too (they cannot just be �thrown away�), otherwise it would be
like taking a measurement, which has unwanted sidee�ects on the actual computation.

Figure 1: Example of garbage in an AND computation of x1 ∧ x2 ∧ x3 and the uncom-
putation

An oracle can be made reversible, by inputing the input and the target and outputting
the input and the xor of the initial output state and the function output itself.
So output on qubit y with input x: y ⊕ f(x)

3.3 Phase kickback

Explenation video: �Phase Kickback�

In some operations the control qubit gets changed, while the target qubits remains un-
changed. It occures, if the state vector (target qubit) is an eigenvector of the operation
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U . To measure the phase kickback e�ect, the control qubit must be in a superposition
state (e.g. by applying a Hadamard gate �rst).

Phase oracle:

Uf |x⟩|−⟩ =
(
(−1)f(x)|x⟩

)
|−⟩

4 Algorithms of quantum computers I

4.1 Superdense coding

Explenation video: �Quantum Computing Course: 3.1 Superdense Coding�

Superdense coding is the concept of sending two (classical) bits worth of information
to another party, by using just one qubit.

Figure 2: Circuit for Superdense Coding

1. Prepare a superposition-/bell state by applying a Hadamard gate

2. Apply some gate(s) depending on the information to send

� 00: Apply the I operator (do nothing)

� 01: Apply the Z operator

� 10: Apply the X operator

� 11: Apply �rst the X and then the Z operator

3. To read out the encoded information the other party has to apply a CNOT gate

4. After applying the CNOT gate the Hadamard gate is applied aswell

5. The resulting state after the measurement corresponds to the bitstring that was
sent before encoding

12
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4.2 Quantum teleportation

Quantum states can be copied/teleported, but the original quantum state is destroyed
this way. This is because of a rule, that quantum states cannot be cloned.

Figure 3: Circuit for Quantum Teleportation

Idea:

� Sender and receiver both have an entangled pair

� The sender additionally has a superposition state which he/she wants to transfer

� By mearuring the superposition state and transmitting this measurements to the
receiver, we can reconstruct the superposition state in the entangled pair

4.3 The Algorithm of Deutsch

Explenation video: �Deutsch's Algorithm: An Introduction to Quantum Computing Or-
acles�

Given an oracle function f , where we do not know the implementation, is f constant
(always returns a certain number, either 0 or 1) or balanced (it returns 0 half the time
and 1 the other half of the time - e.g. NOT gate)?
With a classical computer we would need 2 calls to the function to determine if it is
constant or balanced. With quantum computers we only need 1 call!

(a) The Algorithm of Deutsch (original ver-

sion)

(b) The Algorithm of Deutsch (improved ver-

sion)
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1. Make a superposition state from |0⟩by applying a Hadamard gate to the input

|Ψ1⟩ = (H|0⟩) |0⟩ = |+⟩|0⟩ = 1√
2
(|0⟩+ |1⟩) |0⟩ = 1√

2
(|00⟩+ |10⟩)

2. Input them to the oracle function Uf

|Ψ2⟩ = Uf |Ψ1⟩ =
1√
2
(|0⟩|f(0)⟩+ |1⟩|f(1)⟩)

3. Constant or balanced?

� If f(0) = f(1), we measure halft the time |00⟩ and half of the time |01⟩
� If f(0) ̸= f(1), we measure halft the time |00⟩ and half of the time |11⟩

The improved version can use the phase oracle, to determine |Ψ3⟩. We then have

� |0⟩|−⟩, if f(0) = f(1)

� |1⟩|−⟩, if f(0) ̸= f(1)

4.4 The Algorithm of Deutsch and Jozsa

The problem is the same as for the Algorithm of Deutch, but with an arbitrary input
(but still outputs 0 or 1).

Figure 5: Circuit for the algorithm of Deutsch and Jozsa

Measurement of the �rst n qubits is 0 · ... · 0, if f(0) = f(1)
Measurement of the �rst n qubits has at least one 1, if f(0) ̸= f(1)

4.5 The Algorithm of Bernstein and Vazirani

The problem statement here is, to recover a secret bitstring, which is encoded in an
oracle function. In a conventional computer, we can query the oracle repeatedly, which
adds/xors the input and the secret and outputs the result. With the quantum approach,
we once again only need one oracle call. The circuit is the same as for the algorithm of
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Figure 6: Circuit for the algorithm of Bernstein and Vazirani

Deutsch and Jozsa, but the oracle function Uf is di�erent. For the state |Ψ2⟩ we get:

|Ψ2⟩ =
1√
2

 ∑
x∈{0,1}n

(−1)f(x)|x⟩

 |−⟩

=
1√
2

∑
x∈{0,1}n

(−1)x⊙z|x⟩

= H⊗n|z⟩|−⟩ for any |z⟩ = |zn−1 · · · z0⟩

which then gives:

|Ψ3⟩ = H⊗n
(
H⊗n|z⟩

)
|−⟩

= |z⟩|−⟩

Measuring the �rst n qubits, we can reconstruct s.

An optimization can be done. The Hadamard gates before and after can be om-
mited, since the oracle only uses CNOT gates to the input. This can be done, since
H · CNOT ·H = CNOT (control and target qubit get �ipped).

The problem with the algorithm is, that it requires as many qubits as there are input
bits. A space optimization would be to only use one output qubit, and after measureing
the bit, resetting it to the initial state |0⟩.

5 Algorithms of quantum computers II

5.1 Grover's Algorithm

Explenation videos: �A Visual Introduction to Grover's Algorithm and Re�ections�
�Grover's Algorithm | Simpli�ed | Quantum Computing�

The problem, that Grover's algorithm solves is, to �nd with high probability the unique
input to an oracle function that produces a particular output value. This can for example
be used in (heuristic) search problems

� Finding an item in an unstructured database
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� �nding a route between cities

� Finding a satisfying assignment

Let's consider the search algorithm setting.
We have a unordered list of elements of size N = 2n and we want to �nd the index of a
speci�c element.
We have a function f with following properties:

f(x) =

{
1 if x is the solution to the search problem

0 otherwise

A quantum oracle O = Uf performs the operation

Uf |x⟩|−⟩ = (−1)f(x)|x⟩|−⟩

where f(x) = 0 for all 0 ≤ x ≤ 2n except for the desired x0 for which f(x0) = 1.
We additionally have n qubits in the state |0⟩and one qubit in the state |1⟩. Grover's

Figure 7: Circuit for Grover's algorithm

algorithm works as follows:

1. Initialize all states in a superposition (apply the Hadamard gate)

2. Apply the Grover operator G

a) Apply the oracle function Uf , which negates the amplitude of the element x0
we are looking for

� Remember Uf |x⟩|−⟩ = (−1)f(x)|x⟩|−⟩ meaning if f(x) = 1 we negate the
amplitude

� For all other elements, the amplitude remains unchanged

b) Apply the Grover di�usion operator D

The matrix 2|0n⟩⟨0n| − In realizes a conditional phase shift. This means,
that the negative amplitude gets �ipped again to a positive amplitude (others
stay positive).

(2|0n⟩⟨0n| − In) |x⟩ =

{
|x⟩ if |x⟩ is |0n⟩
−|x⟩ otherwise
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This operator also automatically increases the amplitude of x0 and de-
creases the amplitudes in respect to the di�erence to the mean amplitude of
the other elements.

This causes the amplitude peak of the element x0 to be more prominent
and therefore easier to detect in a measurement

3. Apply the Grover operator G
⌊π
4

√
2n
⌋
times.

With each iteration the amplitude of x0 gets more prominent

NOTE: Success probability depends on choice of iterations. Applying the Grover oper-
ator G more than

⌊
π
4

√
2n
⌋
times, will decrease the amplitude of x0 again and scale up

the other elements. This therefore again decreases the probability of �nding the correct
index. The function is periodic.

� For �nding a single solution, run
⌊π
4

√
2n
⌋
times

� For �nding k solutions, run

⌊
π

4

√
2n

k

⌋
times

5.2 Simon's Algorithm

The problem, that Simon's algorithm solves is, that we want to �nd an input to a �1-1�
or �2-1� mapping oracle function f : {0, 1}n 7→ {0, 1}n, where the output f(x⊕ s) of the
input x has the same result as the initial input f(x). The oracle function has a secret
(bit) string s ∈ {0, 1}n, which is xor 'ed with the input. The problem now is, that we
want to �nd the secret string s from the oracle function.

f(x) = f(x⊕ s)

1. Input x into the function f

2. It produces the output f(x) = x⊕ s

3. We input x⊕ s again to f

4. We get f(x⊕ s)

5. Is f(x) = f(x⊕ s)?

Figure 8: Circuit for Simon's algorithm

Simon's algorithm works as follows:
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1. Initialize two quantum registers in a superposition (apply Hadamard gate)

The superpositions are all possible input strings for the oracle function

2. Input one set of superpositions to the oracle function Uf (input the second register)

3. The output is going to be
1√
2n

∑
x∈{0,1}n |x⟩|f(x)⟩

4. Perform a measurement on the second register

� Since all outputs are equally likely, this will give a random output f(x)

� It will simultaneously collapse the input states of the �rst register to all inputs,
which have the same output for f(x)!

� This means that the input states, which will remain are |x⟩ and |x⊕ s⟩!

5. Apply the Hadamard gate to the �rst (input) register, which will again give us the
states for the inputs

1√
2n+1

∑
y∈{0,1}n

[
(−1)x·y + (−1)(x⊕s)·y] |y⟩

=
1√
2n+1

∑
y∈{0,1}n(−1)x·y · [1 + (−1)s·y] |y⟩

6. Measure the �rst register (which will always give two results)

� An all 0 state for s · y = 1 (this will not be measured, since the amplitude of
this case is 0)

� A state for which s · y = 0

7. Repeat the algorithm n− 1 times to collect enough (independent) y's (y1, y2, ..., yn−1),
such that s · yk = 0

8. By solving the linear equations s · yk = 0 we can �nd out s

Remark: In step 7. we say �independent y's�, this refers to the fact, that a y, which is
a composition of (an-)other y does not contribute to �nding a solution. Getting such a
independent y has probability 1

4
.

6 Algorithms of quantum computers III

6.1 Quantum Fourier transform (QFT)

A fourier transform translates a signal from the time domain (signal over time) to a
frequency domain (what frequencies make up the signal). A discrete fourier transform
is actually just a fourier transform of a �nite, signal with discrete datapoints.

QFT |j⟩ = 1√
2n

2n−1∑
k=0

e
2πijk
2n |k⟩
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The above fromula creates a uniform distribution of amplitudes of the states, that differ
in their phase to each other. The increasing k actually tells us �how large the steps-size
around the unit circle� is.

Re

Im

1

i

-1

-i

Note that we can write the QFT as a tensor product.

Ψn =
(|0⟩+ e2πi0.j0|1⟩)⊗ (|0⟩+ e2πi0.j1j0|1⟩)⊗ · · · ⊗ (|0⟩+ e2πi0.jn−1···j0 |1⟩)√

2n

This means, that the states in Ψn are not entangled! So measuring qubits does not cause
other qubits to collapse. If we measure the qubits, we actually get the reverse order,
in which the bits were provided. To �x this we can apply SWAP gates and the end
to reorder the states before measuring. A simpler approach is also to just relabel the
qubits at the end.

6.2 Quantum Phase Estimation (QPE)

Quantum phase estimation (QPE) is used to estimate the phase of a given eigenvector
corresponding to a given (yet unknown) eigenvalue of a unitary operator. By �nding the
phase φ with high probability, we can determine the eigenvalue.

U |u⟩ = eiφ|u⟩

As can be seen in �gure 9 the algorithm works as follows:

Figure 9: Circuit for quantum phase estimation
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1. Initialize n qubits with |0⟩and use m qubits to describe |u⟩ (the eigenvector we
want the eigenvalue of)

2. Create a superposition of states in the �rst register for the phase estimation

3. Apply the controlled unitary operator CU a power of 2n−1 times. So CU2n−1

Note, that because |u⟩ is an eigenvector of U , phase kickback occures and we
apply a relative phase to the control qubit (�rst register)

4. Use the inverse QFT (QFT †) of the �rst register to get the phase estimation.

5. There can be an assiciated error in the accuracy of the measurement with 0 ≤
|δ| ≤ 1

2n+1

If δ = 0 the estimation is exact

7 Algorithms of quantum computers IV

7.1 Shor's Algorithm

Explenation videos: �How Quantum Computers Break The Internet... Starting Now� (Basic)
�11: Algorithms for order-�nding and factoring� (In-depth)

The problem, that Shor's algorithm solves is, Given an integer n > 2, �nd its prime
factors. The computation for classical computers is hard or even �provably infeasible�
for big numbers. The RSA encryption depends on exactly this principle and so does the
Di�e-Hellman key exchange.

7.1.1 Idea

We want to �nd the prime factors p, q of a number N (p · q = N):

1. Guess a number g, that does not share factors with N

2. Raise g to some numnber r, s.t. gr = m ·N + 1

Then to �nd r we calculate gx mod N = 1 for x ∈ {1, 2, ...}.
One can rewrite the equation to:

(
gr/2 + 1

)︸ ︷︷ ︸
a·p

·
(
gr/2 − 1

)︸ ︷︷ ︸
b·q

= m ·N

Note, that since we have gr/2 in the equation, r must be an even number. If r
is odd, we have to �nd another r

3. Use Euclids algorithm to �nd gcd(gr/2 ± 1, N) = p

4. Then N
p
= q
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7.1.2 Quantum implementation

The key computation, where we use quantum properties to speed up the computation
is in �nding the number r, s.t. gr = m ·N + 1.

If we have a superposition of gx we can calculate gx mod N . The remainder of the
calculation repeats periodically, meaning all following numbers, which share the same
remainder are spaced out by r. Then make a measurement and get a random x and
remainder. Notice, that now also the superposition collapses to only include x, which
share the same remainder.

1. Prepare two qubit registers

� The �rst contains a superposition of all numbers x for gx

� The second is initialized to |0⟩

2. Devide
gx

N
and store the remainder in the second register

Notice, that with this we have entangled the �rst and the second register

3. Measure the second register to obtain a random remainder

This collapses the �rst register to includ only exponends that share this same
remainder

4. Apply the QFT to get
1

r

The measurement has to be repeated multiple time to eventually derive
1

r
,

since when measuring we will always get a random multiple or the fraction c · 1
r

We can then use the Quanutm Phase Estimation (QPE) to approximate 1
r

Invert the fraction and we have r

Now we know gr = m ·N+ 1

5. If r is even we have turned our initial bad guess g into a better guess gr, which
likely shares factors with N (aslong as (gr ± 1) are not multiples of N)

After this we can continue classically with Euclids algorithm and �nd p and q.

NOTE: Choose a q (the number of qubits of the �rst register), s.t. q = 2l and
n2 ≤ q ≤ 2n2 to increase the chances of determining a unique r
The more qubits, the clearer we can derive r from the measurement(?). The upper
bound is just a practicality, since it is physically hard to have such many gates.
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