
Programm- & Systemverifikation
A bug’s life

Georg Weissenbacher
184.741

What went wrong?

▶ gv3.sys: Mobile processor power management
▶ Each driver routine runs at certain interrupt request level

IRQL Description
PASSIVE LEVEL User threads and kernel-mode operations
APC LEVEL Async procedure calls and page faults
DISPATCH LEVEL Thread scheduler and DPCs

. . .
POWER LEVEL Power failure
HIGH LEVEL Machine checks, catastrophic errors

▶ Kernel API imposes restrictions on calls, e.g.,
▶ ExAcquireFastMutex:

▶ acquires fast mutex with APCs to the current thread disabled.
▶ Callers must be running at IRQL ≤ APC LEVEL.

What went wrong?

▶ gv3.sys: Mobile processor power management
▶ Each driver routine runs at certain interrupt request level

IRQL Description
PASSIVE LEVEL User threads and kernel-mode operations
APC LEVEL Async procedure calls and page faults
DISPATCH LEVEL Thread scheduler and DPCs

. . .
POWER LEVEL Power failure
HIGH LEVEL Machine checks, catastrophic errors

▶ Kernel API imposes restrictions on calls, e.g.,
▶ ExAcquireFastMutex:

▶ acquires fast mutex with APCs to the current thread disabled.
▶ Callers must be running at IRQL ≤ APC LEVEL.

What went wrong?

▶ All deferred procedure calls run at DISPATCH LEVEL

KDEFERRED ROUTINE CustomDpc;

VOID MyDpc(

in struct KDPC *Dpc,

in opt PVOID DeferredContext,

in opt PVOID SystemArgument1,
in opt PVOID SystemArgument2

)

{
...

ExAcquireFastMutex (mutex);

...

ExReleaseFastMutex (mutex);

What is the output of this program?

#include <stdio.h>

int main (int argc , char** argv)

{

int c = 2147483642;

while ((c+1) > c)

{

printf ("%d\n", c);

c++;

}

return 0;

}

Let’s figure this out!

▶ gcc -g -o overflow overflow.c

▶ ./overflow

2147483642
2147483643
2147483644
2147483645
2147483646

▶ gcc -O3 -o overflow overflow.c

▶ ./overflow

2147483642
2147483643
. . .
2147483646
2147483647
-2147483648
-2147483647
. . .

Let’s figure this out!

▶ gcc -g -o overflow overflow.c

▶ ./overflow

2147483642
2147483643
2147483644
2147483645
2147483646

▶ gcc -O3 -o overflow overflow.c

▶ ./overflow

2147483642
2147483643
. . .
2147483646
2147483647
-2147483648
-2147483647
. . .

Let’s figure this out!

▶ gcc -g -o overflow overflow.c

▶ ./overflow

2147483642
2147483643
2147483644
2147483645
2147483646

▶ gcc -O3 -o overflow overflow.c

▶ ./overflow

2147483642
2147483643
. . .
2147483646
2147483647
-2147483648
-2147483647
. . .

Let’s figure this out!

▶ gcc -g -o overflow overflow.c

▶ ./overflow

2147483642
2147483643
2147483644
2147483645
2147483646

▶ gcc -O3 -o overflow overflow.c

▶ ./overflow

2147483642
2147483643
. . .
2147483646
2147483647
-2147483648
-2147483647
. . .

Let’s count to a million (the fast way)!

#include <stdio.h>

#include <pthread.h>

int c = 0;

void *count (void *parg)

{

for (unsigned i=0; i <5000000; i++)

c++;

}

int main (int argc , char** argv)

{

pthread_t thread1 , thread2;

pthread_create (&thread1 , NULL , count , NULL);

pthread_create (&thread2 , NULL , count , NULL);

pthread_join(thread1 , NULL);

pthread_join(thread2 , NULL);

printf ("%d\n", c);

return 0;

}

Let’s see how fast this really is . . .

▶ gcc -pthread -o threads threads.c

▶ ./threads

960225

▶ ./threads

1000000

▶ ./threads

658697

Let’s see how fast this really is . . .

▶ gcc -pthread -o threads threads.c

▶ ./threads

960225

▶ ./threads

1000000

▶ ./threads

658697

Let’s see how fast this really is . . .

▶ gcc -pthread -o threads threads.c

▶ ./threads

960225

▶ ./threads

1000000

▶ ./threads

658697

Let’s see how fast this really is . . .

▶ gcc -pthread -o threads threads.c

▶ ./threads

960225

▶ ./threads

1000000

▶ ./threads

658697

Let’s see how fast this really is . . .

▶ gcc -pthread -o threads threads.c

▶ ./threads

960225

▶ ./threads

1000000

▶ ./threads

658697

Let’s see how fast this really is . . .

▶ gcc -pthread -o threads threads.c

▶ ./threads

960225

▶ ./threads

1000000

▶ ./threads

658697

What does this program compute?

class Imaginary {

public:

float r; float i;

Imaginary (): r(0), i(0) { }

Imaginary (Imaginary &other) { *this = other; }

Imaginary operator= (const Imaginary other)

{

r = other.r; i = other.i;

}

};

int main (int argc , char** argv)

{

Imaginary i;

Imaginary j = i;

return j.i;

}

Let’s try it out!

▶ g++ -o recursion recursion.cpp

▶ ./recursion

Segmentation fault

Let’s try it out!

▶ g++ -o recursion recursion.cpp

▶ ./recursion

Segmentation fault

What the . . .

What’s wrong with these programs?

(I’ll tell you in a bit . . .)

What the . . .

What’s wrong with these programs?

(I’ll tell you in a bit . . .)

Outline of Lecture

▶ What is a bug?
▶ Classes of Bugs
▶ Cause and Symptom

▶ What do we need to understand bugs?
▶ Understand the Program
▶ Know the Programmer’s Intentions

What is a (software) bug?

“Know your enemy”
Sun Tzu, The Art of War

(executive summary of original quote)

What is a bug?

“flaw in a system that results in unintended behaviour”

What is a bug?

“flaw in a system that results in unintended behaviour”

What kinds of bugs are there?

L2 cache

Control unit
Instruction unit

Registers
L1 cache (instr)

L1 cache (data)

FPU

ALU

IO mgmt unit

Arithmetic bugs
overflow, division by 0,
precision/conversion errors

Ariane 5, flight 501

overflow.c

Logic bugs
infinite loops,
off-by-one

recursion.cpp

Resource bugs
NULL pointer deref, uninitialised variables, wrong data type for
instruction, access violations, resource leaks, buffer overflows

What kinds of bugs are there?

L2 cache

Control unit
Instruction unit

Registers
L1 cache (instr)

L1 cache (data)

FPU

ALU

IO mgmt unit

Arithmetic bugs
overflow, division by 0,
precision/conversion errors

Ariane 5, flight 501

overflow.c

Logic bugs
infinite loops,
off-by-one

recursion.cpp

Resource bugs
NULL pointer deref, uninitialised variables, wrong data type for
instruction, access violations, resource leaks, buffer overflows

What kinds of bugs are there?

L2 cache

Control unit
Instruction unit

Registers
L1 cache (instr)

L1 cache (data)

FPU

ALU

IO mgmt unit

Arithmetic bugs
overflow, division by 0,
precision/conversion errors

Ariane 5, flight 501

overflow.c

Logic bugs
infinite loops,
off-by-one

recursion.cpp

Resource bugs
NULL pointer deref, uninitialised variables, wrong data type for
instruction, access violations, resource leaks, buffer overflows

What kinds of bugs are there?

L2 cache

Control unit
Instruction unit

Registers
L1 cache (instr)

L1 cache (data)

FPU

ALU

IO mgmt unit

Arithmetic bugs
overflow, division by 0,
precision/conversion errors

Ariane 5, flight 501

overflow.c

Logic bugs
infinite loops,
off-by-one

recursion.cpp

Resource bugs
NULL pointer deref, uninitialised variables, wrong data type for
instruction, access violations, resource leaks, buffer overflows

What kinds of bugs are there?

L2 cache

Control unit
Instruction unit

Registers
L1 cache (instr)

L1 cache (data)

FPU

ALU

IO mgmt unit

Arithmetic bugs
overflow, division by 0,
precision/conversion errors

Ariane 5, flight 501

overflow.c

Logic bugs
infinite loops,
off-by-one

recursion.cpp

Resource bugs
NULL pointer deref, uninitialised variables, wrong data type for
instruction, access violations, resource leaks, buffer overflows

What kinds of bugs are there?

L2 cache

Control unit
Instruction unit

Registers
L1 cache (instr)

L1 cache (data)

FPU

ALU

IO mgmt unit

Arithmetic bugs
overflow, division by 0,
precision/conversion errors

Ariane 5, flight 501

overflow.c

Logic bugs
infinite loops,
off-by-one

recursion.cpp

Resource bugs
NULL pointer deref, uninitialised variables, wrong data type for
instruction, access violations, resource leaks, buffer overflows

What kinds of bugs are there?

L2 cache

Control unit
Instruction unit

Registers
L1 cache (instr)

L1 cache (data)

FPU

ALU

IO mgmt unit

Arithmetic bugs
overflow, division by 0,
precision/conversion errors

Ariane 5, flight 501

overflow.c

Logic bugs
infinite loops,
off-by-one

recursion.cpp

Resource bugs
NULL pointer deref, uninitialised variables, wrong data type for
instruction, access violations, resource leaks, buffer overflows

What kinds of bugs are there?

L2 cache

Control unit
Instruction unit

Registers
L1 cache (instr)

L1 cache (data)

FPU

ALU

IO mgmt unit

Arithmetic bugs
overflow, division by 0,
precision/conversion errors

Ariane 5, flight 501

overflow.c

Logic bugs
infinite loops,
off-by-one

recursion.cpp

Resource bugs
NULL pointer deref, uninitialised variables, wrong data type for
instruction, access violations, resource leaks, buffer overflows

What kinds of bugs are there?

Multi-Threading Bugs
▶ deadlock

(two tasks wait for same resource)

▶ livelock/starvation
(thread makes no progress)

▶ race condition
(two threads accessing resource at same time)

▶ Therac-25 bug,
Northeastern Blackout,
Dirty COW
(last lecture)

▶ our own threads.c?

▶ atomicity violation
(interruption of supposedly atomic action)

What kinds of bugs are there?

Multi-Threading Bugs
▶ deadlock

(two tasks wait for same resource)

▶ livelock/starvation
(thread makes no progress)

▶ race condition
(two threads accessing resource at same time)

▶ Therac-25 bug,
Northeastern Blackout,
Dirty COW
(last lecture)

▶ our own threads.c?

▶ atomicity violation
(interruption of supposedly atomic action)

What kinds of bugs are there?

Multi-Threading Bugs
▶ deadlock

(two tasks wait for same resource)

▶ livelock/starvation
(thread makes no progress)

▶ race condition
(two threads accessing resource at same time)

▶ Therac-25 bug,
Northeastern Blackout,
Dirty COW
(last lecture)

▶ our own threads.c?

▶ atomicity violation
(interruption of supposedly atomic action)

What kinds of bugs are there?

Multi-Threading Bugs
▶ deadlock

(two tasks wait for same resource)

▶ livelock/starvation
(thread makes no progress)

▶ race condition
(two threads accessing resource at same time)

▶ Therac-25 bug,
Northeastern Blackout,
Dirty COW
(last lecture)

▶ our own threads.c?

▶ atomicity violation
(interruption of supposedly atomic action)

What kinds of bugs are there?

Syntax/Semantics Bugs

▶ (Unintentional) use of wrong operator (= vs ==)
▶ Wrong assumptions about programming language semantics

▶ we will hear more about this!

What kinds of bugs are there?

Syntax/Semantics Bugs

▶ (Unintentional) use of wrong operator (= vs ==)
▶ Wrong assumptions about programming language semantics

▶ we will hear more about this!

What kinds of bugs are there?

Interfacing Bugs

▶ incorrect usage of API

▶ the blue screen from before

▶ incorrect protocol implementation
▶ incorrect hardware handling/assumptions about platform

What kinds of bugs are there?

Interfacing Bugs

▶ incorrect usage of API
▶ the blue screen from before

▶ incorrect protocol implementation
▶ incorrect hardware handling/assumptions about platform

What kinds of bugs are there?

Performance/Timing Bugs

▶ timing in real-time programs
▶ high computational complexity
▶ random disk/memory access (e.g., garbage collection)

What kinds of bugs are there?

Teamworking/Development Related Bugs

▶ documentation/implementation out of sync
▶ copy & paste errors
▶ wrong version of source code

A Different Classification

Bugs from a programmer’s point of view . . .

▶ Bohrbug named after Bohr

(plain and simple – like Bohr’s atomic model)

▶ Heisenbug named after Heisenberg

(disappears or alters its behavior if you try to debug it)

▶ Schrödinbug named after Schrödinger

(code that should have never worked but did – until you looked at it)

▶ Mandelbug named after Benoı̂t Mandelbrot

(cause too hard to understand, bug appears chaotic)

How to Debug [Ian Sommerville, 2007]

Locate bug

Design repair

Fix it

Re-Test

How “Bugs” come into being

1. programmer introduces a fault in the code

2. fault gets excited during execution, results in error

3. error propagates, results in system failure

How “Bugs” come into being

1. programmer introduces a fault in the code

2. fault gets excited during execution, results in error

3. error propagates, results in system failure

How “Bugs” come into being

1. programmer introduces a fault in the code

2. fault gets excited during execution, results in error

3. error propagates, results in system failure

Terminology: Fault, Error, Failure

1. fault – cause of an error (e.g., mistake in coding)

2. error – incorrect state that may lead to failure

3. failure – deviation from specified/desired behaviour

Terminology: Fault, Error, Failure

1. fault – cause of an error (e.g., mistake in coding)

2. error – incorrect state that may lead to failure

3. failure – deviation from specified/desired behaviour

(Standardised terminology: IEEE 610.12-1990)

Terminology: Fault, Error, Failure

1. fault – cause of an error (e.g., mistake in coding)

2. error – incorrect state that may lead to failure

3. failure – deviation from specified/desired behaviour

(Standardised terminology: IEEE 610.12-1990)

Terminology: Fault, Error, Failure

tim
e

memory locations
✓

✗

✗

✗

✗ ✗

✗ ✗

✗

E

Terminology: Fault, Error, Failure

tim
e

memory locations
✓
✗

✗

✗

✗ ✗

✗ ✗

✗

E

Terminology: Fault, Error, Failure

tim
e

memory locations
✓
✗

✗

✗

✗ ✗

✗ ✗

✗

E

Terminology: Fault, Error, Failure

tim
e

memory locations
✓
✗

✗

✗

✗ ✗

✗ ✗

✗

E

Terminology: Fault, Error, Failure

tim
e

memory locations
✓
✗

✗

✗

✗ ✗

✗ ✗

✗

E

Terminology: Fault, Error, Failure

tim
e

memory locations
✓
✗

✗

✗

✗ ✗

✗ ✗

✗

E

Terminology: Fault, Error, Failure

tim
e

memory locations
✓
✗

✗

✗

✗ ✗

✗ ✗

✗

E

Terminology: Fault, Error, Failure

tim
e

memory locations
✓
✗

✗

✗

✗ ✗

✗ ✗

✗

E

Terminology: Fault, Error, Failure

#include <stdio.h>

#include <string.h>

unsigned count (char* str , char elem)

{

unsigned i, c=0;

for (i = 1; i <= strlen (str); i++)

{

if (str[i] == elem)

c++;

}

return c;

}

int main(int argc , char** argv)

{

printf ("%d\n", count ("xyzyx", ’x’));

return 0;

}

Not every fault results in failure!

int power (int x, int y) { int r = y * y; return r; }

▶ power (2, 2) = 2 · 2 = 22✓

▶ power (2, 4) = 4 · 4 = 24✓

▶ power (1, 1) = 1 · 1 = 11✓

▶ power (2, 5) = 5 · 5 ̸= 25 E

Fault is not triggered in first 3 cases!

Not every fault results in failure!

int power (int x, int y) { int r = y * y; return r; }

▶ power (2, 2) = 2 · 2 = 22✓

▶ power (2, 4) = 4 · 4 = 24✓

▶ power (1, 1) = 1 · 1 = 11✓

▶ power (2, 5) = 5 · 5 ̸= 25 E

Fault is not triggered in first 3 cases!

Not every fault results in failure!

int power (int x, int y) { int r = y * y; return r; }

▶ power (2, 2) = 2 · 2 = 22✓

▶ power (2, 4) = 4 · 4 = 24✓

▶ power (1, 1) = 1 · 1 = 11✓

▶ power (2, 5) = 5 · 5 ̸= 25 E

Fault is not triggered in first 3 cases!

Not every fault results in failure!

int power (int x, int y) { int r = y * y; return r; }

▶ power (2, 2) = 2 · 2 = 22✓

▶ power (2, 4) = 4 · 4 = 24✓

▶ power (1, 1) = 1 · 1 = 11✓

▶ power (2, 5) = 5 · 5 ̸= 25 E

Fault is not triggered in first 3 cases!

Not every fault results in failure!

int power (int x, int y) { int r = y * y; return r; }

▶ power (2, 2) = 2 · 2 = 22✓

▶ power (2, 4) = 4 · 4 = 24✓

▶ power (1, 1) = 1 · 1 = 11✓

▶ power (2, 5) = 5 · 5 ̸= 25 E

Fault is not triggered in first 3 cases!

Not every fault results in failure!

int power (int x, int y) { int r = y * y; return r; }

▶ power (2, 2) = 2 · 2 = 22✓

▶ power (2, 4) = 4 · 4 = 24✓

▶ power (1, 1) = 1 · 1 = 11✓

▶ power (2, 5) = 5 · 5 ̸= 25 E

Fault is not triggered in first 3 cases!

Not every fault results in failure!

tim
e

memory locations
✓
✗

✗

✗

✓

Error is not propagated!

Not every fault results in failure!

tim
e

memory locations
✓
✗

✗

✗

✓

Error is not propagated!

Causes and Symptoms

▶ So what exactly causes the problem?

cause: fault, symptom:
{

error
failure

Causes and Symptoms

▶ Attempt of a more formal definition:
▶ Event A is a necessary cause of effect B if the presence of B

implies the presence of A.

Locating the cause is non-trivial

Rain in April Campfire in April Sun in May Campfire in June

Causes and Symptoms

cause: campfire, symptom:
{

fire spreads
wildfire

Locating the cause is non-trivial

Rain in April Campfire in April Sun in May Campfire in June

Wildfire (in April)

Locating the cause is non-trivial

Rain in April Campfire in April Sun in May Campfire in June

Wildfire (in April)

Locating the cause is non-trivial

Rain in April Campfire in April Wildfire (in April)

Locating the cause

▶ If it hadn’t rained in April,
there would not have been a wildfire in June

▶ Did the rain cause the wildfire in June?

Locating the cause

1. fault – cause of an error (e.g., mistake in coding)

2. error – incorrect state that may lead to failure

3. failure – deviation from specified/desired behaviour

Locate transition from correct to incorrect

Locating the cause

1. fault – cause of an error (e.g., mistake in coding)

2. error – incorrect state that may lead to failure

3. failure – deviation from specified/desired behaviour

Locate transition from correct to incorrect

Locating the cause

Locate transition from correct to incorrect

▶ What is correct, what is incorrect?
▶ Depends on programmer’s intention (often implicit!)

▶ State your intention!

Locating the cause

Locate transition from correct to incorrect

▶ What is correct, what is incorrect?
▶ Depends on programmer’s intention (often implicit!)
▶ State your intention!

Outline of Lecture

▶ What is a bug?
▶ Classes of Bugs
▶ Cause and Symptom

▶ What do we need to understand bugs?
▶ Understand the Program
▶ Know the Programmer’s Intentions

Understanding Programs

Programmer

C, C++

Compiler

Binary

CPU

▶ Programmer expresses intention in C/C++
▶ Compiler translates program to binary
▶ Processor executes (interprets) the binary

Programmer, compiler, CPU need to agree on
semantics

Understanding Programs

Programmer

C, C++

Compiler

Binary

CPU

▶ Programmer expresses intention in C/C++
▶ Compiler translates program to binary
▶ Processor executes (interprets) the binary

Programmer, compiler, CPU need to agree on
semantics

Definition of Programming Languages

Kathleen Booth (Birbeck College): Inventor of Assembler

Definition of Programming Languages

Kathleen Booth (Birbeck College): Inventor of Assembler

Definition of Programming Languages

Grace Murray Hopper (Navy Reserves): Inventor of COBOL

Definition of Programming Languages

Grace Murray Hopper (Navy Reserves): Inventor of COBOL

Definition of Programming Languages

Brian Kernighan (now Princeton, then Bell Labs)

Definition of Programming Languages

Brian Kernighan (now Princeton, then Bell Labs)

Definition of Programming Languages

Dennis Ritchie, (Lucent, Bell Labs) † Oct 2011

Definition of Programming Languages

Dennis Ritchie, (Lucent, Bell Labs) † Oct 2011

Definition of Programming Languages

Barbara Liskov (MIT): Inventor of CLU and Argus

Definition of Programming Languages

Barbara Liskov (MIT): Inventor of CLU and Argus

Definition of Programming Languages

Bjarne Stroustrup, now Texas A&M Univ., then AT&T

Definition of Programming Languages

Bjarne Stroustrup, now Texas A&M Univ., then AT&T

Definition of Programming Languages

James Gosling, now Typesafe Inc., then Sun Microsystems

Definition of Programming Languages

James Gosling, now Typesafe Inc., then Sun Microsystems

Definition of Programming Languages

Anders Hejlsberg (Microsoft)

Definition of Programming Languages

Anders Hejlsberg (Microsoft)

Programming Language Standards

▶ C (ISO/IEC 9899:2011)
▶ open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

▶ C++ (ISO/IEC 14882:2011)
▶ open-std.org/JTC1/SC22/WG21/docs/papers/2011/n3242.pdf

▶ Java SE 7
▶ docs.oracle.com/javase/specs/

▶ C#
▶ http://www.ecma-international.org/publications/

standards/Ecma-334.htm

open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
open-std.org/JTC1/SC22/WG21/docs/papers/2011/n3242.pdf
docs.oracle.com/javase/specs/
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-334.htm

Programming Language Standards

▶ C++ expressions defined by ISO/IEC 14882:2011, §5
▶ e.g., syntax for multiplicative expressions (§5.6):

multiplicative-expression:
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression

▶ semantics (meaning) of multiplicative operators:
▶ “3 The binary * operator indicates multiplication”
▶ “4 The binary / operator yields the quotient, and the binary %

operator yields the remainder from the division of the first
expression by the second. If the second operand of / or % is
zero the behavior is undefined. [. . .]”

Semantics of Programs

#include <stdio.h>

int main (int argc , char** argv)

{

int c = 2147483642;

while ((c+1) > c)

{

printf ("%d\n", c);

c++;

}

return 0;

}

Semantics of Programs

while ((c+1) > c)

{
printf ("...", c);

c++;

}

▶ ISO/IEC 14882:2011 §5.7 (Additive Operators)
“3 The result of the binary + operator is the sum of the operands.”

▶ ISO/IEC 14882:2011 §5.9 (Relational Operators)
“The operators < (less than), > (greater than), [. . .] all yield false or

true.”

▶ ISO/IEC 14882:2011 §5 (Expressions)
“4 If during the evaluation of an expression, the result is [. . .] not in the

range of representable values for its type, the behavior is undefined.”

Semantics of Programs

while ((c+1) > c)

{
printf ("...", c);

c++;

}

▶ ISO/IEC 14882:2011 §5.7 (Additive Operators)
“3 The result of the binary + operator is the sum of the operands.”

▶ ISO/IEC 14882:2011 §5.9 (Relational Operators)
“The operators < (less than), > (greater than), [. . .] all yield false or

true.”

▶ ISO/IEC 14882:2011 §5 (Expressions)
“4 If during the evaluation of an expression, the result is [. . .] not in the

range of representable values for its type, the behavior is undefined.”

Semantics of Programs

while ((c+1) > c)

{
printf ("...", c);

c++;

}

▶ ISO/IEC 14882:2011 §5.7 (Additive Operators)
“3 The result of the binary + operator is the sum of the operands.”

▶ ISO/IEC 14882:2011 §5.9 (Relational Operators)
“The operators < (less than), > (greater than), [. . .] all yield false or

true.”

▶ ISO/IEC 14882:2011 §5 (Expressions)
“4 If during the evaluation of an expression, the result is [. . .] not in the

range of representable values for its type, the behavior is undefined.”

Semantics of Programs

while ((c+1) > c)

{
printf ("...", c);

c++;

}

▶ ISO/IEC 14882:2011 §5.7 (Additive Operators)
“3 The result of the binary + operator is the sum of the operands.”

▶ ISO/IEC 14882:2011 §5.9 (Relational Operators)
“The operators < (less than), > (greater than), [. . .] all yield false or

true.”

▶ ISO/IEC 14882:2011 §5 (Expressions)
“4 If during the evaluation of an expression, the result is [. . .] not in the

range of representable values for its type, the behavior is undefined.”

Semantics of Programs

while ((c+1) > c)

{
printf ("...", c);

c++;

}

▶ ISO/IEC 14882:2011 §5.7 (Additive Operators)
“3 The result of the binary + operator is the sum of the operands.”

▶ ISO/IEC 14882:2011 §5.9 (Relational Operators)
“The operators < (less than), > (greater than), [. . .] all yield false or

true.”

▶ ISO/IEC 14882:2011 §5 (Expressions)
“4 If during the evaluation of an expression, the result is [. . .] not in the

range of representable values for its type, the behavior is undefined.”

“Undefined” semantics

▶ Here, undefined means “compiler-dependent”
(rather than undefined at run-time)

▶ Optimiser in gcc/g++ takes advantage under-specification
▶ simplifies ((c+1)>c) to true

▶ In debugging mode, gcc/g++ doesn’t apply optimisations
▶ ((c+1)>c) evaluates to false if c == INT MAX

▶ Turning debugger on results in Heisenbug

“Undefined” semantics

▶ Here, undefined means “compiler-dependent”
(rather than undefined at run-time)

▶ Optimiser in gcc/g++ takes advantage under-specification
▶ simplifies ((c+1)>c) to true

▶ In debugging mode, gcc/g++ doesn’t apply optimisations
▶ ((c+1)>c) evaluates to false if c == INT MAX

▶ Turning debugger on results in Heisenbug

“Undefined” semantics

▶ Here, undefined means “compiler-dependent”
(rather than undefined at run-time)

▶ Optimiser in gcc/g++ takes advantage under-specification
▶ simplifies ((c+1)>c) to true

▶ In debugging mode, gcc/g++ doesn’t apply optimisations
▶ ((c+1)>c) evaluates to false if c == INT MAX

▶ Turning debugger on results in Heisenbug

“Undefined” semantics

▶ Here, undefined means “compiler-dependent”
(rather than undefined at run-time)

▶ Optimiser in gcc/g++ takes advantage under-specification
▶ simplifies ((c+1)>c) to true

▶ In debugging mode, gcc/g++ doesn’t apply optimisations
▶ ((c+1)>c) evaluates to false if c == INT MAX

▶ Turning debugger on results in Heisenbug

Semantics of parallel programs

#include <stdio.h>

#include <pthread.h>

int c = 0;

void *count (void *parg)

{

for (unsigned i=0; i <5000000; i++)

c++;

}

int main (int argc , char** argv)

{

pthread_t thread1 , thread2;

pthread_create (&thread1 , NULL , count , NULL);

pthread_create (&thread2 , NULL , count , NULL);

pthread_join(thread1 , NULL);

pthread_join(thread2 , NULL);

printf ("%d\n", c);

return 0;

}

Semantics of parallel programs

▶ ISO/IEC 14882:2011 §1.7 (The C++ Memory Model)
“3 [. . .] Two threads of execution (1.10) can update and access separate

memory locations without interfering with each other”

▶ ISO/IEC 14882:2011 §1.10
(Multi-threaded executions and data races)
“3 [. . .] Two expression evaluations conflict if one of them modifies a

memory location and the other one accesses or modifies the same memory

location.”

Thread 1 Thread 2

Semantics of parallel programs

▶ ISO/IEC 14882:2011 §1.7 (The C++ Memory Model)
“3 [. . .] Two threads of execution (1.10) can update and access separate

memory locations without interfering with each other”

▶ ISO/IEC 14882:2011 §1.10
(Multi-threaded executions and data races)
“3 [. . .] Two expression evaluations conflict if one of them modifies a

memory location and the other one accesses or modifies the same memory

location.”

Thread 1 Thread 2

Semantics of parallel programs

▶ ISO/IEC 14882:2011 §1.7 (The C++ Memory Model)
“3 [. . .] Two threads of execution (1.10) can update and access separate

memory locations without interfering with each other”

▶ ISO/IEC 14882:2011 §1.10
(Multi-threaded executions and data races)
“3 [. . .] Two expression evaluations conflict if one of them modifies a

memory location and the other one accesses or modifies the same memory

location.”

Thread 1

c++

Thread 2

c++

Semantics of parallel programs

▶ ISO/IEC 14882:2011 §1.7 (The C++ Memory Model)
“3 [. . .] Two threads of execution (1.10) can update and access separate

memory locations without interfering with each other”

▶ ISO/IEC 14882:2011 §1.10
(Multi-threaded executions and data races)
“3 [. . .] Two expression evaluations conflict if one of them modifies a

memory location and the other one accesses or modifies the same memory

location.”

Thread 1

c = c+1

Thread 2

c = c+1

Semantics of parallel programs

▶ ISO/IEC 14882:2011 §1.10
(Multi-threaded executions and data races)
“14 The execution of a program contains a data race if it contains two

conflicting actions in different threads, at least one of which is not atomic,

and neither of them happens before the other. Any such data race results in

undefined behavior.”

Semantics of parallel programs

▶ Again, undefined means compiler-dependent

▶ gcc -S threads.c

c++

Compiler

movl c, %eax

addl $1, %eax

movl %eax, c

Semantics of parallel programs

▶ Again, undefined means compiler-dependent
▶ gcc -S threads.c

c++

Compiler

movl c, %eax

addl $1, %eax

movl %eax, c

Semantics of parallel programs

▶ Again, undefined means compiler-dependent
▶ gcc -S threads.c

c++

Compiler

movl c, %eax

addl $1, %eax

movl %eax, c

Semantics of parallel programs

movl c, %eax

addl $1, %eax

movl %eax, c

movl c, %eax

addl $1, %eax

movl %eax, c

Semantics of parallel programs

movl c, %eax

addl $1, %eax

movl %eax, c

movl c, %eax

addl $1, %eax

movl %eax, c

Semantics of parallel programs

movl c, %eax

addl $1, %eax

movl %eax, c

movl c, %eax

addl $1, %eax

movl %eax, c

Semantics of parallel programs

movl c, %eax

addl $1, %eax

movl %eax, c

movl c, %eax

addl $1, %eax

movl %eax, c

Semantics of parallel programs

movl c, %eax

addl $1, %eax

movl %eax, c

movl c, %eax

addl $1, %eax

movl %eax, c

Semantics of parallel programs

movl c, %eax

addl $1, %eax

movl %eax, c

movl c, %eax

addl $1, %eax

movl %eax, c

Semantics of high-level programming languages

class Imaginary {

public:

float r; float i;

Imaginary (): r(0), i(0) { }

Imaginary (Imaginary &other) { *this = other; }

Imaginary operator= (const Imaginary other)

{

r = other.r; i = other.i;

}

};

int main (int argc , char** argv)

{

Imaginary i;

Imaginary j = i;

return j.i;

}

Semantics of high-level programming languages

Imaginary (Imaginary &other) { *this = other; }
Imaginary operator= (const Imaginary

&

other)

{
r = other.r; i = other.i;

}

▶ C++ allows redefinition of operators such as = (assignment)

▶ C++ allows definition copy constructor
▶ Unintentional mutual recursion
▶ Fix: use reference &

Semantics of high-level programming languages

Imaginary (Imaginary &other) { *this = other; }
Imaginary operator= (const Imaginary

&

other)

{
r = other.r; i = other.i;

}

▶ C++ allows redefinition of operators such as = (assignment)

▶ C++ allows definition copy constructor
▶ Unintentional mutual recursion
▶ Fix: use reference &

Semantics of high-level programming languages

Imaginary (Imaginary &other) { *this = other; }
Imaginary operator= (const Imaginary

&

other)

{
r = other.r; i = other.i;

}

▶ C++ allows redefinition of operators such as = (assignment)
▶ C++ allows definition copy constructor

▶ Unintentional mutual recursion
▶ Fix: use reference &

Semantics of high-level programming languages

Imaginary (Imaginary &other) { *this = other; }
Imaginary operator= (const Imaginary

&

other)

{
r = other.r; i = other.i;

}

▶ C++ allows redefinition of operators such as = (assignment)
▶ C++ allows definition copy constructor

▶ Unintentional mutual recursion
▶ Fix: use reference &

Semantics of high-level programming languages

Imaginary (Imaginary &other) { *this = other; }
Imaginary operator= (const Imaginary

&

other)

{
r = other.r; i = other.i;

}

▶ C++ allows redefinition of operators such as = (assignment)
▶ C++ allows definition copy constructor
▶ Unintentional mutual recursion

▶ Fix: use reference &

Semantics of high-level programming languages

Imaginary (Imaginary &other) { *this = other; }
Imaginary operator= (const Imaginary

&

other)

{
r = other.r; i = other.i;

}

▶ C++ allows redefinition of operators such as = (assignment)
▶ C++ allows definition copy constructor
▶ Unintentional mutual recursion
▶ Fix: use reference &

Semantics of high-level programming languages

Imaginary (Imaginary &other) { *this = other; }
Imaginary operator= (const Imaginary &other)

{
r = other.r; i = other.i;

}

▶ C++ allows redefinition of operators such as = (assignment)
▶ C++ allows definition copy constructor
▶ Unintentional mutual recursion
▶ Fix: use reference &

Formal Semantics of Programming Languages

Language standards describe semantics informally in English.
This can be ambigous.

Formal Semantics prevent ambiguity:
▶ Operational. Defines steps of the computation (on a

machine) the program makes when executed (cf. transition
relation)

▶ Denotational. Mathematical function maps program
structures to respective meaning

▶ Axiomatic. Meaning determined indirectly by means of
assertions (defined via axioms and rules, cf. Hoare Logic)

Operational Semantics (Example)

ISO/IEC 14882:2011 §5.7 (Additive Operators)
“3 The result of the binary + operator is the sum of the operands.”

▶ Structural (small-step) operational semantics is
syntax-oriented.

▶ Defined by means of inference rules:

⟨x , σ⟩ → σ(x)

⟨n1 + n2, σ⟩ → n
(where n ≡ n1 + n2 (mod 64))

Small-Step Semantics

▶ → specifies one step of the program
▶ ⟨c, σ⟩ is a configuration:

▶ c is a command (or expression)
▶ σ is a store

▶ ⟨c, σ⟩ → ⟨c′, σ⟩ reduces configuration ⟨c, σ⟩ to ⟨c′, σ′⟩
▶ →∗ represents 0 or more steps of →
▶ ⟨skip, σ⟩ is the final configuration

Small-Step Semantics Rules

Evaluation of variables:

⟨x , σ⟩ → σ(x)

Arithmetic reduction:

⟨n1 + n2, σ⟩ → n
(where n ≡ n1 + n2 (mod 64))

Rule with premises:

⟨x , σ⟩ → n1 ⟨y , σ⟩ → n2

⟨x + y , σ⟩ → ⟨n1 + n2, σ⟩

Small-Step Semantics

Assignments:

⟨x := n, σ⟩ → ⟨skip, σ[x 7→ n]⟩

Substitution in assignments:

⟨e, σ⟩ →∗ n
⟨x := e, σ⟩ → ⟨x := n, σ⟩

Skip rule:

⟨skip; c, σ⟩ → ⟨c, σ⟩
Sequential execution:

⟨c0, σ⟩ → ⟨c′
0, σ⟩

⟨c0; c1, σ⟩ → ⟨c′
0; c1, σ⟩

Small-Step Semantics (Example)

Evaluate ⟨z := x + y , {x 7→ 3, y 7→ 2, z 7→ 1}⟩

1. Evaluate variables:
⟨x , {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → 3 ⟨y , {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → 2
⟨x + y , {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → ⟨3 + 2, {x 7→ 3, y 7→ 2, z 7→ 1}⟩

2. Reduce arithmetic expression:

⟨3 + 2, {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → 5

3. Substitution:
⟨3 + 2, {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → 5

⟨z := x + y , σ⟩ → ⟨z := 5, σ⟩

4. Assignment:

⟨z := 5, {. . . , z 7→ 1}⟩ → ⟨skip, {. . . , z 7→ 5}⟩

Small-Step Semantics (Example)

Evaluate ⟨z := x + y , {x 7→ 3, y 7→ 2, z 7→ 1}⟩

1. Evaluate variables:
⟨x , {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → 3 ⟨y , {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → 2
⟨x + y , {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → ⟨3 + 2, {x 7→ 3, y 7→ 2, z 7→ 1}⟩

2. Reduce arithmetic expression:

⟨3 + 2, {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → 5

3. Substitution:
⟨3 + 2, {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → 5

⟨z := x + y , σ⟩ → ⟨z := 5, σ⟩

4. Assignment:

⟨z := 5, {. . . , z 7→ 1}⟩ → ⟨skip, {. . . , z 7→ 5}⟩

Small-Step Semantics (Example)

Evaluate ⟨z := x + y , {x 7→ 3, y 7→ 2, z 7→ 1}⟩

1. Evaluate variables:
⟨x , {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → 3 ⟨y , {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → 2
⟨x + y , {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → ⟨3 + 2, {x 7→ 3, y 7→ 2, z 7→ 1}⟩

2. Reduce arithmetic expression:

⟨3 + 2, {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → 5

3. Substitution:
⟨3 + 2, {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → 5

⟨z := x + y , σ⟩ → ⟨z := 5, σ⟩

4. Assignment:

⟨z := 5, {. . . , z 7→ 1}⟩ → ⟨skip, {. . . , z 7→ 5}⟩

Small-Step Semantics (Example)

Evaluate ⟨z := x + y , {x 7→ 3, y 7→ 2, z 7→ 1}⟩

1. Evaluate variables:
⟨x , {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → 3 ⟨y , {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → 2
⟨x + y , {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → ⟨3 + 2, {x 7→ 3, y 7→ 2, z 7→ 1}⟩

2. Reduce arithmetic expression:

⟨3 + 2, {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → 5

3. Substitution:
⟨3 + 2, {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → 5

⟨z := x + y , σ⟩ → ⟨z := 5, σ⟩

4. Assignment:

⟨z := 5, {. . . , z 7→ 1}⟩ → ⟨skip, {. . . , z 7→ 5}⟩

Small-Step Semantics (Example)

Evaluate ⟨z := x + y , {x 7→ 3, y 7→ 2, z 7→ 1}⟩

1. Evaluate variables:
⟨x , {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → 3 ⟨y , {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → 2
⟨x + y , {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → ⟨3 + 2, {x 7→ 3, y 7→ 2, z 7→ 1}⟩

2. Reduce arithmetic expression:

⟨3 + 2, {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → 5

3. Substitution:
⟨3 + 2, {x 7→ 3, y 7→ 2, z 7→ 1}⟩ → 5

⟨z := x + y , σ⟩ → ⟨z := 5, σ⟩

4. Assignment:

⟨z := 5, {. . . , z 7→ 1}⟩ → ⟨skip, {. . . , z 7→ 5}⟩

Small-Step Semantics for Programming Constructs

Conditionals:

⟨b, σ⟩ → b′

⟨if b then c0 else c1, σ⟩ → ⟨if b′ then c0 else c1, σ⟩

⟨if true then c0 else c1, σ⟩ → ⟨c0, σ⟩

⟨if false then c0 else c1, σ⟩ → ⟨c1, σ⟩

Loops:

⟨while b do c, σ⟩ → ⟨if b then (c; while b do c) else skip, σ⟩

Small-Step Semantics for Programming Constructs

Conditionals:

⟨b, σ⟩ → b′

⟨if b then c0 else c1, σ⟩ → ⟨if b′ then c0 else c1, σ⟩

⟨if true then c0 else c1, σ⟩ → ⟨c0, σ⟩

⟨if false then c0 else c1, σ⟩ → ⟨c1, σ⟩

Loops:

⟨while b do c, σ⟩ → ⟨if b then (c; while b do c) else skip, σ⟩

Small-Step Semantics

▶ Rules determine how to evaluate program c in given store σ

▶ Alternative: Big-Step Semantics:

⟨c, σ⟩ ⇓ σ′

▶ σ′ is the store of final configuration ⟨skip, σ⟩
▶ Relation between Big-Step and Small-Step Operational

Semantics:

⟨c, σ⟩ ⇓ σ′ ⇔ ⟨c, σ⟩ →∗ ⟨skip, σ′⟩

Outline of Lecture

▶ What is a bug?
▶ Classes of Bugs
▶ Cause and Symptom

▶ What do we need to understand bugs?
▶ Understand the Program
▶ Know the Programmer’s Intentions

What is an “unintended behaviour”?

▶ Definition of fault/error/failure refers to “unintended behaviour”
▶ How do we know when/which program behaviour is

“unintended”?

▶ Programmer’s intentions need to be clear from the code

What is an “unintended behaviour”?

▶ Definition of fault/error/failure refers to “unintended behaviour”
▶ How do we know when/which program behaviour is

“unintended”?
▶ Programmer’s intentions need to be clear from the code

Making the programmer’s intention clear

▶ Comments
▶ KISS (Keep it Simple, Stupid)
▶ Assertions

Comments

▶ Be concise, brief
▶ Document the purpose of your code
▶ Explain what the code is doing

▶ How it’s done should be obvious from the code!

▶ Formatting: dictated by the tool you use (e.g., Doxygen)
▶ Update comments when you change the code!

Coding Style: KISS

▶ Conform to coding standards, follow style of existing code
▶ You are an engineer, not an artist!

▶ Avoid “nifty” language features (like overloading)
▶ unless it makes code easier to understand

▶ Industry standards exist in some fields (e.g., automotive)
▶ MISRA: Motor Industry Software Reliability Association

MISRA C/C++ Standard

▶ C/C++ are extremely powerful languages
▶ MISRA standard disallows/discourages use of certain

“features”

▶ “12.4 (req): The right-hand operand of a logical && or || shall
not contain sided effects.”

while (y != x && x--) ...

▶ “12.10 (req): The comma operator shall not be used”

x = (0, 1, 2);

▶ “13.6 (req): Numeric variables used for iteration counting in a
for loop shall not be modified in the loop body”

for (i = 0; i<20; i++) { ...i++; ...}

▶ “3.1 (req): Use of implementation-defined behaviour shall be
documented” (or better: avoided)

if ((x+1)>x) { ...}

MISRA C/C++ Standard

▶ C/C++ are extremely powerful languages
▶ MISRA standard disallows/discourages use of certain

“features”
▶ “12.4 (req): The right-hand operand of a logical && or || shall

not contain sided effects.”

while (y != x && x--) ...

▶ “12.10 (req): The comma operator shall not be used”

x = (0, 1, 2);

▶ “13.6 (req): Numeric variables used for iteration counting in a
for loop shall not be modified in the loop body”

for (i = 0; i<20; i++) { ...i++; ...}

▶ “3.1 (req): Use of implementation-defined behaviour shall be
documented” (or better: avoided)

if ((x+1)>x) { ...}

MISRA C/C++ Standard

▶ C/C++ are extremely powerful languages
▶ MISRA standard disallows/discourages use of certain

“features”
▶ “12.4 (req): The right-hand operand of a logical && or || shall

not contain sided effects.”

while (y != x && x--) ...

▶ “12.10 (req): The comma operator shall not be used”

x = (0, 1, 2);

▶ “13.6 (req): Numeric variables used for iteration counting in a
for loop shall not be modified in the loop body”

for (i = 0; i<20; i++) { ...i++; ...}

▶ “3.1 (req): Use of implementation-defined behaviour shall be
documented” (or better: avoided)

if ((x+1)>x) { ...}

MISRA C/C++ Standard

▶ C/C++ are extremely powerful languages
▶ MISRA standard disallows/discourages use of certain

“features”
▶ “12.4 (req): The right-hand operand of a logical && or || shall

not contain sided effects.”

while (y != x && x--) ...

▶ “12.10 (req): The comma operator shall not be used”

x = (0, 1, 2);

▶ “13.6 (req): Numeric variables used for iteration counting in a
for loop shall not be modified in the loop body”

for (i = 0; i<20; i++) { ...i++; ...}

▶ “3.1 (req): Use of implementation-defined behaviour shall be
documented” (or better: avoided)

if ((x+1)>x) { ...}

MISRA C/C++ Standard

▶ C/C++ are extremely powerful languages
▶ MISRA standard disallows/discourages use of certain

“features”
▶ “12.4 (req): The right-hand operand of a logical && or || shall

not contain sided effects.”

while (y != x && x--) ...

▶ “12.10 (req): The comma operator shall not be used”

x = (0, 1, 2);

▶ “13.6 (req): Numeric variables used for iteration counting in a
for loop shall not be modified in the loop body”

for (i = 0; i<20; i++) { ...i++; ...}

▶ “3.1 (req): Use of implementation-defined behaviour shall be
documented” (or better: avoided)

if ((x+1)>x) { ...}

MISRA C/C++ Standard

▶ C/C++ are extremely powerful languages
▶ MISRA standard disallows/discourages use of certain

“features”
▶ “12.4 (req): The right-hand operand of a logical && or || shall

not contain sided effects.”

while (y != x && x--) ...

▶ “12.10 (req): The comma operator shall not be used”

x = (0, 1, 2);

▶ “13.6 (req): Numeric variables used for iteration counting in a
for loop shall not be modified in the loop body”

for (i = 0; i<20; i++) { ...i++; ...}
▶ “3.1 (req): Use of implementation-defined behaviour shall be

documented” (or better: avoided)

if ((x+1)>x) { ...}

MISRA C/C++ Standard

▶ C/C++ are extremely powerful languages
▶ MISRA standard disallows/discourages use of certain

“features”
▶ “12.4 (req): The right-hand operand of a logical && or || shall

not contain sided effects.”

while (y != x && x--) ...

▶ “12.10 (req): The comma operator shall not be used”

x = (0, 1, 2);

▶ “13.6 (req): Numeric variables used for iteration counting in a
for loop shall not be modified in the loop body”

for (i = 0; i<20; i++) { ...i++; ...}

▶ “3.1 (req): Use of implementation-defined behaviour shall be
documented” (or better: avoided)

if ((x+1)>x) { ...}

MISRA C/C++ Standard

▶ C/C++ are extremely powerful languages
▶ MISRA standard disallows/discourages use of certain

“features”
▶ “12.4 (req): The right-hand operand of a logical && or || shall

not contain sided effects.”

while (y != x && x--) ...

▶ “12.10 (req): The comma operator shall not be used”

x = (0, 1, 2);

▶ “13.6 (req): Numeric variables used for iteration counting in a
for loop shall not be modified in the loop body”

for (i = 0; i<20; i++) { ...i++; ...}
▶ “3.1 (req): Use of implementation-defined behaviour shall be

documented” (or better: avoided)

if ((x+1)>x) { ...}

MISRA C/C++ Standard

▶ C/C++ are extremely powerful languages
▶ MISRA standard disallows/discourages use of certain

“features”
▶ “12.4 (req): The right-hand operand of a logical && or || shall

not contain sided effects.”

while (y != x && x--) ...

▶ “12.10 (req): The comma operator shall not be used”

x = (0, 1, 2);

▶ “13.6 (req): Numeric variables used for iteration counting in a
for loop shall not be modified in the loop body”

for (i = 0; i<20; i++) { ...i++; ...}
▶ “3.1 (req): Use of implementation-defined behaviour shall be

documented” (or better: avoided)

if ((x+1)>x) { ...}

MISRA C/C++ Standard

▶ Can be checked using static analysers (e.g. PC-Lint)
▶ Easier for humans and static analysers to check your code

Summary so far. . .

▶ Bugs come in many flavours
▶ Faults may lead to errors, which may lead to failure
▶ Causes of failures are hard to derive:

▶ detect deviation from intended behaviour instead
▶ We need to

▶ Understand what the program does (semantics)
▶ Understand what the programmer wants

Try this at home!

▶ GNU compiler part of your favourite Linux or BSD distribution
▶ For Windows:

▶ Cygwin (http://www.cygwin.org)
▶ Mininimalist GNU for Windows (http://www.mingw.org)

▶ For Mac:
▶ gcc/g++ part of XCode (free on AppStore for macOS)
▶ MacPorts (http://www.macports.org)
▶ Fink (http://fink.sf.net)
▶ Homebrew (http://brew.sh)

http://www.cygwin.org
http://www.mingw.org
http://www.macports.org
http://fink.sf.net
http://brew.sh

Assertions

Next lecture: Assertions

