Parallel Computing

Exercise sheet $1+$ Reference Solution

April 12, 2019

Disclaimer

This document contains the assignments from exercise-sheet 1 of the lecture 184.710 Parallel Computing 2019S, the reference solution as well as my personal solution.

The reference solution is given directly in the assignments in italics, my personal solution is always located in the Solution subsection of an exercise.

I cannot guarantee the correctness of any solution provided in this document.

Exercise 1

You are given the following PRAM algorithm (in pseudo-C code):

```
par (0 <= i<n) {
    a[i] = b[i] + c[i];
}
```

1. What does the PRAM algorithm do?

Element wise addition of the input arrays.
2. What is the asymptotic running time for inputs of size n ?

Time $O(1)$
3. What is the asymptotic number of operations?

Operations $O(n)$
4. Which PRAM model is needed, which will suffice?

EREW PRAM suffices

Solution

1. Given two input-arrays b, c of size n the algorithm calculates the sum of the two corresponding elements from the input-arrays.
2. $T_{p a r}(n)=O(1)$ (under the assumption that there are n processors).
3. $0 \mathrm{ps}(n)=O(n)$.
4. EREW PRAM is sufficient, because no processes access the same memory locations (only access to the i 'th position).

Exercise 2

Consider the following PRAM program $(n, p>0)$:

```
par (i=0; i<n; i+= n/p ) {
    for (j=0; j<n/p; j++) {
        a[i+j] = b[i+j] + c[i+j];
    }
}
```

1. What does this PRAM algorithm do on inputs b, c and n, p ?

Same as program before
2. For which inputs does it work considering n and p ?

Works only for n divisible by p
3. What is the asymptotic running time and number of operations as a function of n and p ?

Time $O(n / p)$, operations $O(n)$
4. Can this restriction (from 2) be lifted? Extend the program accordingly (within the same time bound).
One possible solution as follows:

```
par (i=0; i<n; i+= n/p ) {
    for (j=0; j<n/p && i+j<n; j++) {
        a[i+j] = b[i+j] + c[i+j];
    }
}
```


Solution

1. Given two input-arrays b, c of size n the algorithm splits the input arrays to chunks of size $\frac{n}{p}$ and calculates the sum of the two corresponding elements from the inputarrays sequentially in each chunk (and the chunks are worked in parallel).
2. $p \mid n$
3. $T_{p a r}(n, p)=O\left(\frac{n}{p}\right), \operatorname{Ops}(n, p)=O(n)$
4. Pseudo-code as below:
```
par (i=0; i<p; i++) {
    elems = n/p;
    rest = n%p;
    first = i * elems;
    if (i < rest){
            first+=i;
            elems++;
        } else {
            first+=rest;
    }
    for (j=0; j<elems; j++) {
            a[first+j] = b[first+j] + c[first+j];
    }
}
```


Exercise 3

Consider the following PRAM program, where n is a power of two:

```
for (k=1; k<n; k<<=1) {
    par (0<=i<k) {
        a[i+k] = a[i];
    }
}
```

1. What does this PRAM algorithm do?

Copies the value from $a[0]$ to all other elements of a.
2. What is the asymptotic running time of the algorithm?

Time $O(\log n)$
3. What is the largest number of processors used in any step?

In the last iterations uses $\frac{n}{2}$ processors.
4. What is the asymptotic, total number of operations performed by the algorithm?
$O(n)$ operations, $\Sigma_{i=0}^{\log (n)-1} 2^{i}=2^{\log n}-1=n-1$
5. Which PRAM model is required?

EREW PRAM

6. Assuming a stronger PRAM model, can the operation of the algorithm be done faster? How fast?
Time with CREW PRAM O(1)

Solution

1. The algorithm "flood-fills" the input array a with the value in $a[0]$ so that after the algorithm $a[i]=a[0] \forall i$ with $0<i<n$.
2. $T_{\text {par }}(n)=O(\log n)$
3. $\#$ processor $=\frac{n}{2}$
4. $0 \mathrm{ps}(n)=O(n)$
5. EREW PRAM is sufficient because read-operations to the same cell are sequential in the outer for-loop.
6. By choosing CREW PRAM $a[0]$ can be read parallel and the task can be completed in $T_{\text {par }}(n)=O(1)$ assuming $n-1$ processors.

Exercise 4

Devise an EREW PRAM algorithm the sum of n numbers (n is a power of two) stored in an array a. The output can be stored as $a[0]$, and the algorithm is allowed to destroy the input elements.

1. Give the pseudo-code of your PRAM algorithm.

A possible solution is to reverse the broadcast algorithm:

```
for (k=1; k<=log(n); k++) {
    par (i=0; i<n; i+=2^k) {
        a[i] = a[i] + a[i+2^(k-1)];
    }
}
```

Another possible solution:

```
for (k=n/2; k>0; k>>=1) {
    par (i=0; i<k; i++) {
        a[i] = a[i] + a[i+k];
    }
}
```

2. How fast can your algorithm be in number of parallel steps?
works in $O(\log n)$ time
3. How many operations does it perform?
$O(n)$ operations
4. Can it be improved (sped-up) by using a stronger CREW PRAM model? CREW does not help

Solution

1. Pseudo-code as below:
```
for (k=n/2; k>=1; k>>=1) {
    par (0<=i<k) {
        a[i] = a[i] + a[i+k];
    }
}
```

2. $T_{\text {par }}(n)=O(\log n)$
3. $0 \operatorname{ps}(n)=O(n)$
4. No, because the addition can only work on two inputs and the algorithm already operates on every input element.

Exercise 5

A problem of size n can be solved sequentially in at most $C n \log n$ operations for some constant C independent of n, but only $c n \log n$ operations can be efficiently parallelized to run in time $\frac{c n \log n}{p}$ time steps for some other constant c with $c<C$.

1. Assume n sufficiently large (larger than p), what is the maximum speed-up that this algorithm can achieve?
Amdahl, sequential fraction $s=\frac{(C-c)}{C}$, speed-up at most $1 / s=\frac{C}{C-c}$
2. Compute the maximum speed-up for $C=100, c=10$ and $C=100, c=99$.
$C=100, c=10 \rightarrow 1.11, C=100, c=99 \rightarrow 100$

Solution

1. Calculation of speed-up:

$$
\begin{aligned}
S_{p}(n) & =\frac{T_{s e q}(n)}{T_{p a r}(p, n)} \\
& =\frac{C n \log n}{\frac{c n \log n}{p}} \\
& =\frac{C p}{c}
\end{aligned}
$$

2. For $C=100, c=10$:

$$
\begin{aligned}
S_{p}(n) & =\frac{100}{10} p \\
& =10 p
\end{aligned}
$$

For $C=100, c=99$:

$$
S_{p}(n)=\frac{100}{99} p
$$

Exercise 6

An algorithm is running in $O\left(n^{2}\right)$ operations. We want a speed-up of 30 using all cores of a 32 -core processor.

1. How large can the sequential fraction be at the most to achieve this speed-up?

Amdahl, $\frac{1}{s+\frac{1-s}{p}}=S, \frac{1}{s+\frac{1-s}{32}}=30, s=\frac{32 / 30-1}{31} \approx 0.002$

Solution

1. Starting with Amdahl's law:

$$
\begin{array}{rlrl}
S_{p}(n) & =\frac{1}{s+\frac{r}{p}} & & \text { Amdahl's law } \\
& =\frac{1}{s+\frac{1-s}{p}} & \text { Amdahl's law: } s=(1-r) \\
s & =\frac{p-S_{p}(n)}{S_{p}(n) \cdot(p-1)} & & \text { standard math transformation } \\
& =\frac{32-30}{30 \cdot(32-1)} & & \\
& =\frac{1}{465} & &
\end{array}
$$

Exercise 7

A work-optimal algorithm $\left(O\left(n^{2}\right)\right.$ sequential time $)$ is running in parallel time $O\left(\frac{n^{2}}{p}+\sqrt{n}\right)$ operations (example: matrix-vector multiplication for square matrices). A speed-up of 90 with 100 cores is required.

1. How large must the input matrix and vector be?

$$
\begin{aligned}
\frac{n^{2}}{n^{2} / p+\sqrt{n}} & =S \\
\frac{n^{2}}{n^{2} / 100+\sqrt{n}} & =90 \\
n^{-3 / 2} & =\frac{1}{90}-\frac{1}{100} \\
\sqrt{n^{3}} & =900 \\
n & =\sqrt[3]{900^{2}} \approx 93.2
\end{aligned}
$$

vector: $n>93$, matrix: $n^{2}>8649$

Solution

1. To archive the desired speed-up the matrix M and the vector v need to be of size $|M|=n \times n,|v|=n$ for $n \geq 94$.

$$
\begin{aligned}
S_{p}(n) & =\frac{T_{s e q}(n)}{T_{\text {par }}(p, n)} \\
& =\frac{n^{2}}{\frac{n^{2}}{p}+\sqrt{n}}
\end{aligned}
$$

$$
n \approx 94 \quad \text { calculated with solver }
$$

Exercise 8

Another parallel algorithm is running in time $O\left(\frac{n^{2} \log n}{p}+n\right)$, and the best known sequential counterpart runs in $O\left(n^{2}\right)$ operations.

1. What is the speed-up of this algorithm?

$$
S=\frac{n^{2}}{\frac{n^{2} \log n}{p}+n},(\text { possibly } p \rightarrow \infty: n)
$$

2. What is the relative speed-up?

$$
S=\frac{n^{2} \log n+n}{\frac{n^{2} \log n}{p}+n},(\text { possibly } p \rightarrow \infty: n \log n+1)
$$

3. For a problem of size n (fixed), how many processors does the parallel algorithm need in order to be faster than the sequential algorithm?

$$
\begin{aligned}
& \frac{n^{2} \log n}{p}+n<n^{2} \\
& p>\frac{n^{2} \log n}{n^{2}-n}=\frac{n \log n}{n-1}
\end{aligned}
$$

Solution

1.

$$
\begin{aligned}
S_{p}(n) & =\frac{T_{\text {seq }}(n)}{T_{\text {par }}(p, n)} \\
& =\frac{n^{2}}{\frac{n^{2} \log n}{p}+n} \\
& =\frac{n p}{n \log n+p}
\end{aligned}
$$

2.

$$
\begin{aligned}
\operatorname{SRel}_{p}(n) & =\frac{T_{p a r}(1, n)}{T_{p a r}(p, n)} \\
& =\frac{n^{2} \log n+n}{\frac{n^{2} \log n}{p}+n} \\
& =\frac{p n \log n+p}{n \log n+p}
\end{aligned}
$$

3.

$$
\begin{aligned}
T_{\text {par }}(p, n) & <T_{\text {seq }}(n) \\
\frac{n^{2} \log n}{p}+n & <n^{2} \\
p & >\frac{n \log n}{n-1}
\end{aligned}
$$

Exercise 9

You are given the following running times for work-optimal parallel algorithms ($O\left(n^{2}\right.$) sequential time): $O\left(\frac{n^{2}}{p}+\log p\right), O\left(\frac{n^{2}}{p}+\log ^{2} p\right), O\left(\frac{n^{2}}{p}+p\right)$, and $O\left(\frac{n^{2}}{p}+p \sqrt{p}\right)$.

1. State the isoefficiency functions for each running time for fixed p.

Efficiency needs to stay constant.
$e=\frac{n^{2}}{p\left(\frac{n^{2}}{p}+\log p\right)}=\frac{n^{2}}{n^{2}+p \log p}$
$n^{2}(1-e)=e p \log p$
$n=\sqrt{\frac{e}{1-e} p \log p}$
Solved for n

Solution for other running-times:

$$
\begin{aligned}
& n=\sqrt{\frac{e}{1-e} p \log ^{2} p} \\
& n=\sqrt{\frac{e}{1-e} p^{2}} \\
& n=\sqrt{\frac{e}{1-e} p^{2} \sqrt{p}}
\end{aligned}
$$

2. For $O\left(\frac{n^{2}}{p}+\log p\right)$ and $O\left(\frac{n^{2}}{p}+p \sqrt{p}\right)$, compute this required input size n for $p=10$ and $p=100$ to maintain an efficiency of either $e=0.5$ or $e=0.9$. Round to the next larger integer.

$$
\begin{array}{rlrl}
n=\sqrt{\frac{e}{1-e} p \log p} & n=\sqrt{\frac{e}{1-e} p^{2} \sqrt{p}} \\
e / p & 10 & 100 \\
\hline 0.5 & 6 & 26 & e / p \\
0.9 & 18 & 78 & 0.5 \\
\hline & 10 & 100 \\
\hline & 0.9 & 54 & 949
\end{array}
$$

Solution

Note: $E(p, n)$ denotes the efficiency function, while e denotes a constant efficiency.

1. a) $O\left(\frac{n^{2}}{p}+\log p\right)$:

Efficiency:

$$
\begin{aligned}
E(p, n) & =\frac{T_{\text {seq }}(n)}{p \cdot T_{p a r}(p, n)} \\
& =\frac{n^{2}}{n^{2}+p \log p} \\
e & =\frac{f(p)^{2}}{f(p)^{2}+p \log p} \\
f(p) & =\sqrt{\frac{e p \log p}{1-e}}
\end{aligned}
$$

Express n in terms of p :
b) $O\left(\frac{n^{2}}{p}+\log ^{2} p\right)$:

$$
\begin{aligned}
E(p, n) & =\frac{n^{2}}{n^{2}+p \log ^{2} p} \\
f(p) & =\sqrt{\frac{e p \log ^{2} p}{1-e}}
\end{aligned}
$$

c) $O\left(\frac{n^{2}}{p}+p\right)$:

$$
\begin{aligned}
E(p, n) & =\frac{n^{2}}{n^{2}+p^{2}} \\
f(p) & =\sqrt{\frac{e p^{2}}{1-e}}
\end{aligned}
$$

d) $O\left(\frac{n^{2}}{p}+p \sqrt{p}\right)$:

$$
\begin{aligned}
E(p, n) & =\frac{n^{2}}{n^{2}+\sqrt{p^{5}}} \\
f(p) & =\sqrt{\frac{e \sqrt{p^{5}}}{1-e}}
\end{aligned}
$$

2. a) $O\left(\frac{n^{2}}{p}+\log p\right)$:

e / p	10	100
0.5	6	26
0.9	18	78

b) $O\left(\frac{n^{2}}{p}+p \sqrt{p}\right)$:

e / p	10	100
0.5	18	317
0.9	54	949

Exercise 10

You are given the following running times for work-optimal parallel algorithms $\left(O\left(n^{2}\right)\right.$ sequential time): $O\left(\frac{n^{2}}{p}+\log n\right), O\left(\frac{n^{2}}{p}+\log ^{2} n\right), O\left(\frac{n^{2}}{p}+n\right)$, and $O\left(\frac{n^{2}}{p}+n \sqrt{n}\right)$.

1. What is the maximum number of processors each of these algorithms can productively be used given a fixed but variable input size n ? We look for the number of processors for which asymptotically the running time is bounded. For example, in case of $O\left(\frac{n^{2}}{p}+\log ^{2} n\right)$: how many processors can be used before the running time becomes $O(\log n)$?
2. For $n=100$, compute the number of processors that can productively be used for each algorithm?

Remember, in big O notation $O\left(n^{2} / p+\log n\right)=O\left(\max \left\{n^{2} / p, \log n\right\}\right)$, thus the question is: When is $\log n$ larger than n^{2} / p ?

$$
\begin{aligned}
& p=\frac{n^{2}}{\log n}, \text { for } n=100 \rightarrow 1505 \\
& p=\frac{n^{2}}{\log ^{2} n}, 226 \\
& p=\frac{n^{2}}{n}, 100 \\
& p=\frac{n^{2}}{n \sqrt{n}}, 10
\end{aligned}
$$

