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Interleavings

Interleavings are all possible intertwinings of sequences of statements from threads

Example: T1: (a, c), T2: (b, d).
All possible interleavings are:
(a, c , b, d), (a, b, c , d), (a, b, d , c), (b, a, c , d), (b, a, d , c), (b, d , a, c).
The “local” orders a < c and b < d are preserved.

Interleavings graph is a representation of interleavings in the form of a graph.
Each path from the start node to the end node of the graph corresponds to an
interleaving.
The set of all such paths corresponds to the set of all possible interleavings.
(Examples follow . . . )

Due to different runtimes, different scheduling strategies, different hardware
architectures, the actual execution sequence can match any arbitrary interleaving.

For general considerations (correctness of a program, . . . ) one must therefore assume
all interleavings as possible.
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Introductory Example (with Interleavings Graph)

Thread 1 (A,B,C ,D) =
(0, 0, 0, 0)

Thread 2

a: A := 1; b: B := 2;
c: C := B; d: D := A;

(0, 0, 0, 0)start

(0, 2, 0, 0)

(0, 2, 0, 0)

(1, 0, 0, 0)

(1, 2, 0, 0)

(1, 2, 0, 1)
(1, 2, 0, 0)

(1, 0, 0, 0)

(1, 2, 0, 0)
(1, 2, 2, 0)

(1, 2, 0, 1)
(1, 2, 2, 1)
(1, 2, 2, 0)

a

b

c

c

d d

c

d

a

b

a

b
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Introductory Example

A Race Condition is a situation in which the result of an operation depends on the
temporally intertwined execution of certain other operations.

Implicit Assumption
Assignments occur atomically
only then are the interleavings correct

Question: Why is the result (1, 2, 0, 0) not possible?
Answer:

Instructions are executed in each thread in “program order”,
i.e., from front to back.

So, if (1, 2, 0, .) occurs, only instruction d is missing.

Instruction d can only deliver D=A=1, since a was executed before c.

−→ Sequentially Consistent Memory Model (SC)
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Sequential Consistency from the Programmer’s Perspective

Memory

Switch

C1 C2 Cn

A single global memory

Each core generates memory operations in program order

At an indeterminate point in time, a switch randomly selects a core and executes a
memory operation ( =⇒ “memory order”)
The switch serializes the memory operations

Note: This is not what the hardware does! But it can serve as a model for how we want to
think about hardware.
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Atomics
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Atomics

Assumption: The assignment of a 16-bit word occurs non-atomically, by copying the
two 8-bit halves separately.

Given are two threads T1 and T2 and a variable S with the content S=0.

T1 shall write the value -1 in two’s complement to S
S := (1111 1111 1111 1111)2.

T2 reads the value of S at a different time.

One should expect that T2 can only read 0 or -1.
But the following can happen:

1 First, the 1st half is copied to S.
2 In the second half of S, there are still all 0s.
3 We get: S = (1111 1111 0000 0000)2.
4 Before the second half is copied to S, T2 reads both halves and gets S=-128.

Question: If T1 first copies the second half, and then T2 reads both halves: What value
does T2 get?
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Atomics

We have seen: When multiple threads access common memory cells (variables), it may
be necessary to guarantee that operations on variables are executed atomically, i.e.,
indivisibly.

This can only be guaranteed by the hardware (CPU).

All common CPUs offer such atomic operations as instructions.
Programming languages also know atomic types and operations on atomic variables.

When multiple threads access the same memory area (variable) simultaneously, this is
called a Data Race.

. . . we will come back to this later. . .

9



Atomics

We have seen: When multiple threads access common memory cells (variables), it may
be necessary to guarantee that operations on variables are executed atomically, i.e.,
indivisibly.
This can only be guaranteed by the hardware (CPU).

All common CPUs offer such atomic operations as instructions.
Programming languages also know atomic types and operations on atomic variables.

When multiple threads access the same memory area (variable) simultaneously, this is
called a Data Race.

. . . we will come back to this later. . .

9



Atomics

We have seen: When multiple threads access common memory cells (variables), it may
be necessary to guarantee that operations on variables are executed atomically, i.e.,
indivisibly.
This can only be guaranteed by the hardware (CPU).

All common CPUs offer such atomic operations as instructions.

Programming languages also know atomic types and operations on atomic variables.

When multiple threads access the same memory area (variable) simultaneously, this is
called a Data Race.

. . . we will come back to this later. . .

9



Atomics

We have seen: When multiple threads access common memory cells (variables), it may
be necessary to guarantee that operations on variables are executed atomically, i.e.,
indivisibly.
This can only be guaranteed by the hardware (CPU).

All common CPUs offer such atomic operations as instructions.
Programming languages also know atomic types and operations on atomic variables.

When multiple threads access the same memory area (variable) simultaneously, this is
called a Data Race.

. . . we will come back to this later. . .

9



Atomics

We have seen: When multiple threads access common memory cells (variables), it may
be necessary to guarantee that operations on variables are executed atomically, i.e.,
indivisibly.
This can only be guaranteed by the hardware (CPU).

All common CPUs offer such atomic operations as instructions.
Programming languages also know atomic types and operations on atomic variables.

When multiple threads access the same memory area (variable) simultaneously, this is
called a Data Race.

. . . we will come back to this later. . .

9



Atomics

We have seen: When multiple threads access common memory cells (variables), it may
be necessary to guarantee that operations on variables are executed atomically, i.e.,
indivisibly.
This can only be guaranteed by the hardware (CPU).

All common CPUs offer such atomic operations as instructions.
Programming languages also know atomic types and operations on atomic variables.

When multiple threads access the same memory area (variable) simultaneously, this is
called a Data Race.

. . . we will come back to this later. . .

9



Synchronization and Communication
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Producer – Consumer

Task: A piece of data should be safely transferred from one thread to another thread.

More detailed: Thread T1 writes to variable D, Thread T2 shall read the value of
variable D.

Question: When may T2 read?

We introduce a flag F, which initially has the value F=0.

T1 writes D.

T1 sets flag F=1.

T2 reads F. If F=0, it continues to read F.

When T2 reads F=1, it can read D “safely”.
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Producer – Consumer

As source code:

T1 (D,F ,X ) =
(0, 0, 0)

T2

d: D := 42; if: if F=0 then goto if;
f: F := 1; x: X := D;

F . . . atomic!
D . . . atomic?
X . . . atomic?
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Producer – Consumer

T1 (D,F ,X ) =
(0, 0, 0)

T2

d: D := 42; if: if F=0 then goto if;
f: F := 1; x: X := D;

(0, 0, 0)start

(42, 0, 42)

(42, 0, 0)

(42, 0, 42)

(42, 1, 0)

(42, 1, 42)

[F 6= 0] : x
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[F = 0]
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f
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[F = 0]

[F = 0]
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Producer – Consumer

With the help of an atomic variable (flag F), data can be transferred “safely” from one
thread to another thread.

Synchronization, communication between threads

Disadvantage: Thread T2 is in a loop until the flag is set. T2 unnecessarily consumes
computing time and energy.

. . . we will come back to this later. . .
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Program & Execution Order

In addition to the atomic variables, executing the instructions in program order was
recognized as a prerequisite for the Sequentially Consistent memory model.

Modern computer architectures do not guarantee executing the instructions in program
order!
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Program Execution Hierarchy

Changing the Execution Order
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Program Execution Hierarchy

Hierarchy in program execution:
Level (Re-)Ordering

Source Code Program Order
Compiler Optimization of the code

(Moving and removing instructions)
CPU Instruction Scheduling, Out-of-Order Execution
Memory Write Buffer, Caches, . . .
Execution Execution Order

The result of the computation must be the same before and after reordering for
single-core computers, but not for multi-core computers.

Programmers (Computer Scientists) must know and consider that
Program Order 6= Execution Order (PO 6= EO)
Attention: Instructions from the calling and called subroutine can be “mixed”.
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SC Violation – Architecture without Caches

Speicher

T1

write buffer

T2

write buffer

Initial:

T1:
Flag1 := 1;
if Flag2 = 0 then
-- critical

Flag1 = Flag2 = 0

T2:
Flag2 := 1;
if Flag1 = 0 then
-- critical

Flag1 0
Flag2 0

CPU-Cores have Write-Buffer

Write operations go into the Write-Buffer

at an appropriate time, the Write-Buffer is transferred to memory

Advantage: no waiting time until the written data actually arrives in memory

Attention: Read operations can overtake write operations in the Write-Buffer
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SC Violation – Architecture without Caches

Speicher
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write buffer

T2

write buffer

Initial:

T1:
Flag1 := 1;
if Flag2 = 0 then
-- critical

Flag1 = Flag2 = 0

T2:
Flag2 := 1;
if Flag1 = 0 then
-- critical

Flag1 0
Flag2 0

Due to the Write-Buffer, the SC order (Write(Flag1), Read(Flag2), Write(Flag2) and
Read(Flag1)) is different from the memory order (Read(Flag2), Read(Flag1),
Write(Flag1) and Write(Flag2))
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Is there another possible memory order in this example?
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SC Violation – Architecture with Private Caches

SC requires that memory operations are executed atomically or instantaneously

Propagating changes to multiple cache copies is inevitably a non-atomic operation

Write-Atomicity:
Write operations must happen immediately; if one core can observe the result of a write
operation, then all cores can
Read operations are delayed until all cache copies have confirmed the receipt of the
last write operation.
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PO 6= EO

What are the implications of PO 6= EO?

Back to our introductory example
Thread 1 (A,B,C ,D) =

(0, 0, 0, 0)
Thread 2

a: A := 1; b: B := 2;
c: C := B; d: D := A;

Considering each thread by itself (what compilers & CPUs do), the instructions a and c
or b and d can be swapped, because the result remains the same.

Thread 1 (A,B,C ,D) =
(0, 0, 0, 0)

Thread 2

c: C := B; d: D := A;
a: A := 1; b: B := 2;

Now the result (A,B,C ,D) = (1, 2, 0, 0) is possible!
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PO 6= EO

Why is the result (A,B,C ,D) = (1, 2, 0, 0) bad?

It contradicts common sense!

It may be that two events X and Y are seen by one thread in the order X < Y (X
before Y ), but by another thread in the order Y < X (Y before X ).
(Example follows shortly)

Violation of temporal relativity!
(cf. “Special Theory of Relativity” by Albert Einstein)

Violation of causality!
−→ Relaxed Memory Model . . .
. . . has problems. We will see what those are shortly . . .
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Violation of Temporal Relativity – Example

T1 T2 T3 T4

a: A:=1; b: B:= 1; c: C := A; e: E := A
d: D := B; f: F := B

Initially A=B=C=D=E=F=0.

a, b, c, d, e, f can be executed in any order.

Order: (A,B,C ,D,E ,F ) = (0, 0, 0, 0, 0, 0) d→ (0, 0, 0, 0, 0, 0) b→ (0, 1, 0, 0, 0, 0) f→
(0, 1, 0, 0, 0, 1) e→ (0, 1, 0, 0, 0, 1) a→ (1, 1, 0, 0, 0, 1) c→ (1, 1, 1, 0, 0, 1).

T3 sees C=1 and D=0, therefore he concludes that a < b.

T4 sees E=0 and F=1, therefore he concludes that b < a.

Main cause: f is executed before e and d before c.
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Producer – Consumer (Relaxed Version)

Does our approach work in the Relaxed Memory Model?

T1 (D,F ,X ) =
(0, 0, 0)

T2

d: D := 42; if: if F=0 then goto if;
f: F := 1; x: X := D;

No!
Counterexample: f is executed before d.

Order: (D,F ,X ) = (0, 0, 0) f→ (0, 1, 0) if→ (0, 1, 0) x→ (0, 1, 0) d→ (42, 1, 0).

Data was not correctly transferred (X = 0 6= 42 = D).

The simplest form of communication and synchronization does not work in the
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Release/Acquire Memory Model

How can we integrate the new memory models so that sensible work is possible?

We need additional hardware tools.

Modern computer architectures offer so-called
Memory-Fences (Memory Barriers).

Moving instructions across Memory-Fences is prohibited.
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Release/Acquire Memory Model

Programming languages must offer adequate language features so that Memory-Fences
can be utilized.

Release and Acquire operations for atomic variables.
Temporal relativity can be ensured for atomic variables, but not for conventional
variables.

Responsible for this: Programmer / Computer Scientist.

Note: Automatic placement of Memory-Fences is not possible (undecidable problem)!
Equivalent to the Halting Problem
(There is no program that can automatically detect infinite loops in programs.)
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Sequential Consistency on Modern Computers

Hardware tools can also ensure SC.

Advantages:
1 Programmers do not have to worry.
2 Programs are easier to write and debug.
3 The correctness of such programs is easier to prove.

Disadvantages:
1 The HW instructions for SC are very expensive (slow).
2 The performance advantages of modern architectures are not utilized.
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Memory Models

The hardware must define memory models (how exactly does instruction scheduling,
caching, etc., happen)

Programming languages must specify which instruction reorderings the hardware is
allowed to perform (interface to HW).

Programming languages must describe the interactions between threads that take place
over memory, and how shared data can be defined and used (interface to the
programmer).
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Memory Model Operations

Store: atomic_store(atomic_var, value, memory_order)
stores value into the atomic variable atomic_var, where the Memory Order is
specified as: SC, Release, or Relaxed.

Load: atomic_load(atomic_var, memory_order)
returns the value of the atomic variable atomic_var, where the Memory Order
is specified as: SC, Acquire, or Relaxed.

Exchange: atomic_exchange(atomic_var1, atomic_var2, memory_order)
exchanges the values of the two atomic variables atomic_var1 and
atomic_var2, where the Memory Order is specified as: SC, Release_Acquire,
or Relaxed.
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Release/Acquire Memory Model

We still need to clarify what effects Release and Acquire have.

Release-Operation: Sets a Memory Fence so that no Load and Store operations that stand
in program order before the Release operation can be moved behind the
Release operation.

Acquire-Operation: Sets a Memory Fence so that no Load and Store operations that stand
in program order after the Acquire operation can be moved before the Acquire
operation.

Relaxed-Operation: Sets no Memory Fences.

The programmer must know what s/he is doing!
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Producer – Consumer (Release-Acquire Version)

T1 (D,F ,X ) = (0, 0, 0)
d: D := 42;
f: atomic_store(F,1,Release);

T2

if: if atomic_load(F,Acquire)=0 then goto if;
x: X := D;

Because of the Fence in f, d cannot be moved behind f.

Because of the Fence in if, x cannot be moved before if.

Therefore, communication and synchronization work in
the RA memory model!

Responsible for the correct use of SC, RA, Relaxed: Programmer/Computer Scientist.
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Programming Languages & Weak Memory Models

Java: first attempt at a memory model was incorrect;
from 5.0: SC.

C++: weak memory model
(SC, Release-Acquire, Relaxed, . . . );
from C++11 on.

C: weak memory model
(SC, Release-Acquire, Relaxed, . . . );
from C11 on.
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Processors & Weak Memory Models

Intel x86/64: SC

ARM: weak memory model

RISC-V: weak memory model
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Release/Acquire Memory Model

Can the RA memory model guarantee SC?

No!
RA orders the instructions only (thread-)locally, SC is a global property.

That’s why SC is slower than RA.

Why do we need Relaxed Memory Order?

Sometimes nothing bad can happen; then one can use Relaxed instead of Release or
instead of Acquire or even instead of SC.

Relaxed brings performance gains over RA.
(. . .more on the topic of performance later . . . )
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Relaxed Examples

The following examples are intended to show which RA operations can possibly be
relaxed.

For simplicity, let’s assume all variables starting with A, such as A, A1, A2, . . . , are
atomic and all other variables are non-atomic.

There should be no further instructions before and after the given instructions that can
be reordered.
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Relaxed Examples

T1

z: Z := 15;
y1: Y := 11;
a: atomic_store(A,1,Release);

T2

if: if atomic_load(A,Acquire)6=1 then goto if;
y2: Y := Z;

Initially A = 0

Can one of the RA be relaxed?

No!
Reason: Z is read in y2 (T2) but written in z (T1).

z therefore cannot be moved behind a, y2 not before if.

y1 also cannot be moved behind a, otherwise the value that Y received in y2 could be
overwritten.
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y2: Y := Z;

Initially A = 0

Can one of the RA be relaxed?

No!
Reason: Z is read in y2 (T2) but written in z (T1).
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Relaxed Examples

T1

y: Y := 42;
a1: atomic_store(A1,0,Release);
a2: atomic_store(A2,1,Release);

T2

if: if atomic_load(A1,Acquire)6=0 or
atomic_load(A2,Acquire)6=1 then goto if;

x: X := Y;

Initially A1 = 1, A2 = 0

The if loop is only exited if A1 = 0 and A2 = 1.

a1 can be relaxed because the order in which the two stores occur is irrelevant.

a2 cannot be relaxed because the last store in program order needs a Release.

Alternatively: relax a2, not a1?
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Relaxed Examples

T1

y: Y := 42;
a1: atomic_store(A1,0,Relaxed);
a2: atomic_store(A2,1,Release);

T2

if: if atomic_load(A1,Acquire)6=0 or
atomic_load(A2,Acquire)6=1 then goto if;

x: X := Y;

the second Load can be relaxed; the first cannot . . .

. . . provided the semantics of the programming language guarantees that the condition
of an If statement is evaluated from left to right.

Otherwise, a compiler could reorder subexpressions of the Boolean expression arbitrarily.
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Relaxed Examples

T1

y: Y := 42;
a: atomic_store(A,1,Release);

T2

x: X := atomic_load(A,Acquire);
if: if X6=1 then goto x;
z: Z := X+1;

Initial A=0

a can be relaxed because Y is not read in T2.
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Relaxed Examples

T1

y: Y := 42;
a: atomic_store(A,1,Relaxed);

T2

x: X := atomic_load(A,Acquire);
if: if X6=1 then goto x;
z: Z := X+1;

x can be relaxed because if is data-dependent on x and z is data-dependent on x.

Because of these data dependencies, if and z cannot be moved before x.

(z may be moved before if.)

If there are no other reasons against it, A may also be non-atomic
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Memory Models – Spectrum of Common Architectures

adapted from https://preshing.com/20120930/weak-vs-strong-memory-models/

49



Blocking Wait
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Blocking Wait

Disadvantage of the previous type of communication/synchronization: a thread is in a
loop until data can be read.

Wastes unnecessary computing time and energy.

Alternative: Blocking Wait.
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Semaphore

Counter, initialized to 1
Two operations:

Lock: Decrease counter by 1.
If counter ≥ 0, thread may continue execution.
If counter < 0, enqueue thread in a waiting queue
& stop execution.

Unlock: Increase counter by 1.
If counter > 0, thread may continue execution.
If counter ≤ 0, release 1st thread from waiting queue
& start execution.

Race condition!

Everything that is blue must be executed atomically.
Cf. lecture on the topic of “Operating Systems”
Memory Fences may be required to prevent code from the Critical Section (between Lock
and Unlock) from “wandering out”.
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Semaphore

Atomicity via HW instructions.

E.g.: Read-Modify-Write operations.

Different instructions for different processors.
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Higher Mechanisms

Disadvantage of Lock/Unlock: Correctness difficult to verify.

Is there an Unlock for every Lock?

Higher mechanisms in programming languages:
Monitors, Synchronized Objects (Java), Protected Objects (Ada), . . .
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Example

A central (global) Integer variable Z is to be increased by threads by a value.

The “simultaneous” access should be prevented by a semaphore S.

55



Example

A central (global) Integer variable Z is to be increased by threads by a value.

The “simultaneous” access should be prevented by a semaphore S.

55



Example

T
1: Lock(S);
2: Z_local := Z;
3: Z_local := Z_local + ...;
4: Z := Z_local;
5: Unlock(S);

Advantages:
Easy to understand.

No waste of computing time and energy.

Sequentially consistent.

Disadvantages:
If a thread crashes between Lock and Unlock, no other thread that calls
Semaphore-Lock can make progress.

Thread dispatching (starting and stopping of threads) takes a lot of time.

Read-Modify-Write operations are slow.
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Non-Blocking Wait
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Non-Blocking Wait

Instead of synchronization via semaphore or similar, direct use of Read-Modify-Write
operations.

Optimistic approach.

−→ Non-Blocking Wait
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Read-Modify-Write Operation

Function RMW(V, old_value, new_value)

returns true, if the atomic variable V still has the old value; V receives the new value
simultaneously.

returns false, otherwise. Implicitly old_value is set to new_value.
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Example

T (Z . . . atomic)
1: Z_local := Z;
2: if not RMW(Z,Z_local,Z_local + ...) then goto 1;

Advantages:
If few threads access the central variable simultaneously, very efficient.

If a thread crashes, other threads can still make progress.

Sequentially consistent and Release/Acquire memory model possible.

Disadvantages:
Difficult to understand for more complex algorithms.

Even more difficult to understand for more complex algorithms together with
Release/Acquire memory order.

suffers from ABA problem (to be explained on the next slides)

60



Example

T (Z . . . atomic)
1: Z_local := Z;
2: if not RMW(Z,Z_local,Z_local + ...) then goto 1;

Advantages:

If few threads access the central variable simultaneously, very efficient.

If a thread crashes, other threads can still make progress.

Sequentially consistent and Release/Acquire memory model possible.

Disadvantages:
Difficult to understand for more complex algorithms.

Even more difficult to understand for more complex algorithms together with
Release/Acquire memory order.

suffers from ABA problem (to be explained on the next slides)

60



Example

T (Z . . . atomic)
1: Z_local := Z;
2: if not RMW(Z,Z_local,Z_local + ...) then goto 1;

Advantages:
If few threads access the central variable simultaneously, very efficient.

If a thread crashes, other threads can still make progress.

Sequentially consistent and Release/Acquire memory model possible.

Disadvantages:
Difficult to understand for more complex algorithms.

Even more difficult to understand for more complex algorithms together with
Release/Acquire memory order.

suffers from ABA problem (to be explained on the next slides)

60



Example

T (Z . . . atomic)
1: Z_local := Z;
2: if not RMW(Z,Z_local,Z_local + ...) then goto 1;

Advantages:
If few threads access the central variable simultaneously, very efficient.

If a thread crashes, other threads can still make progress.

Sequentially consistent and Release/Acquire memory model possible.

Disadvantages:
Difficult to understand for more complex algorithms.

Even more difficult to understand for more complex algorithms together with
Release/Acquire memory order.

suffers from ABA problem (to be explained on the next slides)

60



Example

T (Z . . . atomic)
1: Z_local := Z;
2: if not RMW(Z,Z_local,Z_local + ...) then goto 1;

Advantages:
If few threads access the central variable simultaneously, very efficient.

If a thread crashes, other threads can still make progress.

Sequentially consistent and Release/Acquire memory model possible.

Disadvantages:
Difficult to understand for more complex algorithms.

Even more difficult to understand for more complex algorithms together with
Release/Acquire memory order.

suffers from ABA problem (to be explained on the next slides)

60



Example

T (Z . . . atomic)
1: Z_local := Z;
2: if not RMW(Z,Z_local,Z_local + ...) then goto 1;

Advantages:
If few threads access the central variable simultaneously, very efficient.

If a thread crashes, other threads can still make progress.

Sequentially consistent and Release/Acquire memory model possible.

Disadvantages:

Difficult to understand for more complex algorithms.

Even more difficult to understand for more complex algorithms together with
Release/Acquire memory order.

suffers from ABA problem (to be explained on the next slides)

60



Example

T (Z . . . atomic)
1: Z_local := Z;
2: if not RMW(Z,Z_local,Z_local + ...) then goto 1;

Advantages:
If few threads access the central variable simultaneously, very efficient.

If a thread crashes, other threads can still make progress.

Sequentially consistent and Release/Acquire memory model possible.

Disadvantages:
Difficult to understand for more complex algorithms.

Even more difficult to understand for more complex algorithms together with
Release/Acquire memory order.

suffers from ABA problem (to be explained on the next slides)

60



Example

T (Z . . . atomic)
1: Z_local := Z;
2: if not RMW(Z,Z_local,Z_local + ...) then goto 1;

Advantages:
If few threads access the central variable simultaneously, very efficient.

If a thread crashes, other threads can still make progress.

Sequentially consistent and Release/Acquire memory model possible.

Disadvantages:
Difficult to understand for more complex algorithms.

Even more difficult to understand for more complex algorithms together with
Release/Acquire memory order.

suffers from ABA problem (to be explained on the next slides)

60



Example

T (Z . . . atomic)
1: Z_local := Z;
2: if not RMW(Z,Z_local,Z_local + ...) then goto 1;

Advantages:
If few threads access the central variable simultaneously, very efficient.

If a thread crashes, other threads can still make progress.

Sequentially consistent and Release/Acquire memory model possible.

Disadvantages:
Difficult to understand for more complex algorithms.

Even more difficult to understand for more complex algorithms together with
Release/Acquire memory order.

suffers from ABA problem (to be explained on the next slides)

60



The ABA problem

The ABA problem occurs when multiple threads (or processes) accessing shared data
interleave.

Here is a sequence of events that illustrates the ABA problem:

1 Process P1 reads value A from some shared memory location,

2 P1 is preempted, allowing process P2 to run,

3 P2 writes value B to the shared memory location

4 P2 writes value A to the shared memory location

5 P2 is preempted, allowing process P1 to run,

6 P1 reads value A from the shared memory location,

7 P1 determines that the shared memory value has not changed and continues.
Thus an RWM operation may succeed, although it actually should not.

Although P1 can continue executing, it is possible that the behavior will not be correct due
to the “hidden” modification in shared memory.
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Solving the ABA problem with CAS

ABA problem can be solved via CAS operation by
counting the number of accesses to shared data.

Disadvantages:
counter has to be integrated into shared data word
(which complicates accessing the actual data or may require modifying pointer values)
or

use additional word for the counter
(which requires double word or multi word CAS that are not provided by all CPUs)
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Load-Link/Store-Conditional (LL/SC) Operation

alternative to CAS operation

equivalent to CAS

LL/SC is sometimes called load-reserved/store-conditional (LR/SC).
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Implementing LL/SC

Function LL(address) loads value stored at address

Function SC(address, value) stores value at address provided that there was no
interfering store to address. Returns true if successful, false otherwise.

LL: store address at cache line

any modification to any portion of the cache line (via conditional or ordinary store)
cause the store-conditional (SC) to fail

LL/SC operations are supported by DEC Alpha, PowerPC, MIPS, ARM, RISC-V, . . . .
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Load-Link/Store-Conditional (LL/SC) Operation

Advantages:

insensitive to ABA problem

instruction set: needs two words instead of three needed by CAS

Disadvantages:
sometimes fails if context switch occurs between LL and SC operation

sometimes fails if a second LL/SC occurs

no nesting of LL/SC operations
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Performance Comparison

Blocking vs. Non-Blocking (SC):

Intel x86
1 thread writes to a queue, 1 thread reads from a queue
Non-Blocking more than 100 times faster than Blocking
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Performance Gain Intel x86 through SC→AR-Relaxation
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Performance Gain ARM v8 through SC→AR-Relaxation
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Summary (1/2)

Memory Models:
Sequentially Consistent Memory Model: corresponds to common sense.

Due to various hardware and software optimizations for performance improvement,
SC is no longer given.

⇒ weak memory model: Relaxed Memory Model.
Practical compromise between programmers’ intuition and performance:
Release/Acquire Memory Model
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Summary (2/2)

Programming Multi-Threaded Applications:
If performance is not a major concern, prefer Blocking.

If Blocking, prefer higher language features (no semaphores!)

If performance is important, initially prefer SC (easier to understand!)

If SC is too slow, switch to RA (Relaxing very important, but difficult!)

SC→RA-Relaxation can also bring performance gains for SC-HW!

Prefer to use pre-made libraries with data structures or algorithms (already well tested!)

Freely accessible, open-source libraries are better!
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