
Real-Time Component Software

slide credits: H. Kopetz, P. Puschner

Overview

• OS services
• Task Structure & Interaction
• Input/Output
• Error Detection
• TT Component

2

Operating System and Middleware

3

Hardware

OS and Middleware

Application Software
Component

Interface
In Out

API

OS Services
• Secure boot of component software
• Reset, (re)start, reintegration of component SW
• Task management
• Task interaction
• Message communication interface

• Linking Interface (RTS)
• Config., control (TII), debug (TDI)

• I/O Handling
• Discretization
• Agreement

4

Tim
e predictability, determ

inism

Assumptions about Software
HRT Software
• Closed world assumption

• Tasks and task timing parameters known at design time
• Task communication, precedence known at design time
• I/O requirements known (values, timing)

➭ Pre-runtime preparation/analysis to provide runtime guarantees

SRT Software
• Open world assumption

• Tasks, task timing and QoS parameters, I/O requirements
➭ QoS assessment before runtime; at runtime: best effort

5

Task Management
• Component software: set of tasks that run in parallel.
• OS provides the execution environment for each task.
• Temporal and spatial isolation: HRT Software versus other SW
• HRT Tasks are cooperative, not competitive.
• Component = unit of failure

• No resource-intensive protection between HRT tasks
• Light-weight OS
• Stateless versus stateful tasks

6

Time Services
Clock synchronization, Sparse time

Timed services:
• Triggering actions, event time-stamping, duration measurement
• Message I/O
• Modeling physical second and calendar service

Role of event-occurrence time
• Time as data: timestamp of value / value change of RT entity.

Example: timekeeping in downhill skiing

• Time as control: computer system reacts immediately to event.
 Example: Emergency stop

7

Fault Tolerance, Redundancy
Determinism (1st attempt)

A model behaves deterministically if and only if, given a full set of
initial conditions (the initial state) at time to, and a sequence of
future timed inputs, the outputs at any future instant t are
entailed.

• Definition of determinism is intuitive,
• neglects the fact that in a real (physical) distributed system

clocks cannot be precisely synchronized,
• therefore a system-wide consistent representation of time (and

consequently state) cannot be established.
8

Determinism
Let us assume

• Q is a finite set of symbols denoting states
• S is a finite set symbols denoting the possible inputs
• D is a finite set of symbols denoting the possible outputs
• q0 ∈ Q is the initial state
• ti ∈ N is the infinite set of active sparse time intervals

then a model (processing, communication) is said to behave
deterministically iff, given a sequence of active sparse real-time
intervals ti, the initial state of the system q0(t0) ∈ Q at t0 (now), and
a sequence of future inputs ini(ti) ∈ S then the sequence of future
outputs outj(tj) ∈ D and the sequence of future states
qj(tj) ∈ Q is entailed. 9

Replica Determinism
A set of replicated RT-objects is replica determinate if all objects
of this set visit the same state within a specified interval of real
time and produce identical outputs.

The time interval of this definition is determined by the precision
of the clock synchronization.

10

Replica Determinism
Replica Determinism is needed for the following reasons:

• To implement consistent distributed actions.
• To improve the testability of systems – tests are only

reproducible if the replicas are deterministic.
• To facilitate the implementation of fault tolerance by active

replication.

Replica Determinism helps to make systems more intelligible!

11

Major Decision Point
How can we make sure, that both replicas take the same decision
at this major decision point?

12

Replica Determinism: Destroying Factors
Replica determinism can be destroyed by:

• Differing inputs (inconsistent order or sensor variations)
• Non-deterministic program constructs
• Dynamic preemptive scheduling decisions
• Explicit synchronization statements (e.g., Wait)
• Uncontrolled access to the global time and timeouts
• Differing processing speeds (diff. crystal resonators, clocks)
• Consistent comparison problem (software diversity)

This list is not complete!

14

Support for Replica Determinism
• Sparse value / time base
• Static or non-preemptive scheduling
• exact arithmetic
• agreement on input data and order

15

Error Detection Mechanisms
An RTOS must provide error detection in the temporal domain
and in the value domain
• Consistency checks, CRC checks
• Monitoring task execution times
• Monitoring interrupts (MINT)
• Double execution of tasks (time redundancy)
• Watchdogs – observable heart-beat signal

16

Task Models and Control
Simple task (S-Task)
• executes from the beginning to the end without any delay,

given the CPU has been allocated.

Complex task (C-Task)
• may contain one or more WAIT statements in the task

body.

17

Simple Task (S-Task)
• Can execute from beginning to

end without delay, given the CPU
has been allocated to it

• No blocking inside (no
synchronization, communication)

• Independent progress
• Inputs available in input data

structure at the task start
• Outputs ready in the output data

structure upon task completion
• API: input DS, output DS, g-state

18

S-Task

Input DS

Output DS

g-state

g-state

Complex Task (C-Task)
• May contain one or more WAIT

operations
• Possible dependencies due to

synchronization, communication
• Progress dependent on other

tasks in node or environment
• C-task timing is a global issue
• API: input DS, output DS, g-state,

shared DS, dependencies

19

C-Task

Input DS

Output DS

g-state

g-state

WAIT

Shared D
S

ARINC Standard WG 48-1999
HRT systems demands (taken from ARINC standard):

The Avionics Computing Resource (ACR) shall include
internal hardware and software management methods as
necessary to ensure that time, space and I/O allocations are
deterministic and static.
“Deterministic and static” means in this context, that time,
space and I/O allocations are determined at compilation,
assembly or link time, remain identical at each and every
initialization of a program or process, and are not dynamically
altered during runtime.

20

Time-Triggered Task Control
In strictly TT systems, the dispatcher controls the execution
of tasks, by interpreting the Task Descriptor List (TADL).

21

The TADL tables are generated and checked by a static
scheduler, before runtime.

Time
10
17
22
38
47

Action
Start T1
Send M5
Stop T1
Start T3
Send M3

Dispatcher

TADL

TT Resource Management
In a TT OS there is hardly any dynamic resource management.

• Static CPU allocation.
• Autonomous memory management. It needs little attention

from the operating system.
• Buffer management is minimal. No queues.
• Implicit, pre-planned synchronization fulfills synchronization

needs and precedence constraints → S-tasks only
• No explicit synchronization (e.g., mgmt. of semaphore

queues).

Operating systems become simple, can be formally analyzed.
Examples: TTOS, OSEK time 22

TT Task Structure
Basically the task structure in a TT system is static.
Limited means for data/situation dependent adaptation:
• Mode changes – navigate dynamically between statically

validated operating modes.
• Sporadic server tasks: Provide a laxity in the schedule

that can be consumed by a sporadic server task.
• Precedence graphs with exclusive or: dynamic selection

of one of a number of mutually exclusive alternatives (not
very effective!)

Advantages: low runtime complexity, predictability, guarantees
Disadvantages: low degree of flexibility, planning cost, resource
reservation based on worst-case assumption 23

TT Task States
Non preemptive system

24

Inactive Active

Task Activation

Task Termination or Error

Task Control – ET with S-Tasks
In an ET system, the task control is performed by a dynamic
scheduler that decides which task has to be executed next on
the basis of the evolving request scenario.

• Advantage:
Actual (and not maximum) load and task execution times
form the basis of the scheduling decisions.

• Disadvantage:
In most realistic cases the scheduling problem that has to
be solved on-line is NP hard.

25

ET Task States with S-Tasks
Preemptive system

26

Ready

Running

Preemption Scheduler
Decision

Task Activation

Task Termination

Inactive

Active

ET Task States with C-Tasks
Preemptive system

27

Task Activation

Task Termination

Inactive

Active

Ready

Running

Blocked

1

2

4

3

1 Scheduling Decision 3 Task executes WAIT for Event
2 Task Preemption 4 Blocking Event occurs

ET Resource Management
In ET OS the dynamic resource management is extensive:

• Dynamic CPU allocation.
• Dynamic memory management.
• Dynamic Buffer allocation and ET management of

communication activities
• Explicit synchronization between tasks, including

semaphore queue management and deadlock detection.
• Extensive interrupt management.
• Timeout handling of blocked tasks.

A formal timing analysis of ET operating systems is beyond the
state of the art (e.g., OSEK). 28

Task Interaction
Precedence constraints: restrictions on task sequence
(e.g., sequence of actions or outputs)
• TT: reflected in TT schedule (TADL)
• ET: WAIT

Exchange of data
• Messages
• Shared data structure ⇒ provision of integrity

• TT: Coordinated task schedules
 TT schedule guarantees mutex: deterministic, min. overhead

• ET: Semaphores

29

TT I/O: Sampling

30

Sampling PointsValue of an
Analog RT Entity

t

Sampling States vs. Events
Sampling refers to the periodic interrogation of the state of a RT
entity by a computer.

The duration between two sampling points is called the
sampling interval.
The length of the sampling interval is determined by the
dynamics of the real-time entity.

States can be observed by sampling.
Events cannot be sampled. They have to be stored in an
intermediate memory element (ME).

31

Sampling – Position of Memory Element

32

Push Button ME
Control

Data
Memory Element in Sensor Computer

Sampling – Role of the Memory Element

33

Value of RT Entity

Sampling Points

View of Observer without
Memory Element at RT Entity

t

View of Observer with Memory
Element at RT Entity

Sampling – Importance of MINT

34

RT Entity

Sampling Points

View of Observer with
Memory Element at RT
Entity

tMINT … minimum inter-arrival time

ET: Interrupt
An interrupt is a hardware mechanism that periodically monitors
(after the completion of each instruction – or CPU clock cycle)
the state of a specified signal line (interrupt line).

If the line is active and the interrupt is not disabled, control is
transferred after completion of the currently executing
instruction (from the current task) to an instruction (task)
associated with the servicing of the specified interrupt.

As soon as an interrupt is recognized, the state of the local
“interrupt memory” is reset.

35

Interrupt

36

ME
Control

DataPush Button

Memory
Element in
Computer

External event forces computer into interrupt service state.

Need for Agreement Protocols
If an RT entity is observed by two (or more) nodes of the
distributed system, the following may happen:

• The same event can be time-stamped differently by two
nodes – fundamental limit of time measurement.

• When reading an analog sensor, a dense quantity is
mapped onto a digital values – discretization error.
Even sensors of highest quality may yield readings
differing by a single-bit quantity.

➭Whenever a dense quantity is mapped onto a discrete
representation, agreement protocols are needed to get an
agreed view on multiple redundant sensor readings

37

Agreement Protocol
An agreement protocol provides a consensus on the value of an
observation and on the time when the observation occurred
among a number of fault-free members of an ensemble:

• First phase: exchange of the local observations to get a
globally consistent view to each of the partners

• Second phase: each partner executes the same algorithm
on the collected data (e.g., averaging) to come to the
same conclusion – the agreed value and time

Agreement always needs an extra round of communication and
thus weakens the responsiveness of a real-time system.

38

Component Autonomy and TT Comm.

Sender CNI Receiver

Control flow
Information flow

CNI

Information push Information pullTime-Triggered
Comm. system

39

Node Node

• One writer, one or more reader(s) with private CPUs
• Communication via shared memory
• Intervals between writes >> duration of writes

ReaderReader

Mutex at CNI

40

Writer ShMdata Readerdata

Writer: immediate (non-blocking) write
Reader:
• async. access, mask read delay jitter ➭ NBW variants, or
• synchronize node actions to TT network operation

Non-Blocking Write Protocol (NBW)
Node is fully autonomous; not synchronized to TT network

Demanded Protocol Properties (NBW):
Consistency: Read operations must return consistent results.
Non-Blocking Property: Readers must not block the writer.
Timeliness: The maximum delay of a reader during a read

operation must be bounded (or even constant).

41

Non-Blocking Write Protocol
Init:

42

CCF_old := CCF;
CCF := CCF_old + 1;
write to shared struct;
CCF := CCF_old + 2;

Writer:

CCF := 0; /* concurrency control flag */

start: CCF_begin := CCF;
if CCF_begin mod 2 = 1
then goto start;
read from shared struct;
CCF_end := CCF;
if CCF_end ≠ CCF_begin
then goto start;

Reader:

CCF arithmetics in practice: all CCF operations mod (2 * bigN)

Synchronous TT Component

Application Computer

TT Comm.
Controller

H
R

T
 S

ubsystem

Time-Triggered
State Message Port

Memory Element
for a Single State
Message

Synchronized Clock

Control Signal Port

Symbols

Time-Triggered Communication

43

Node synchronizes CNI access to TT Comm. Controller

Synchronization with Real-Time Clock

Master clock synchronization
• Programmed clock interrupt from connector unit

Planned window of inactivity before expected clock sync.
time allows slow CPUs to complete the same workload as
fast CPUs (needs bound on clock skew)

clock interrupt
fast CPU

slow CPU …

window of inactivity

44

Time-Predictable Component (2)

synchronized representation of global time
instruction counter “clock”,
synchronized to the local representation of global time

Data transfer triggered by progression of instruction counter clock

Data transfer triggered by progression of global-time representation

Programmable clock interrupt to synchronize the instruction-
counter clock with the global-time representation

Static schedule (instruction-counter interrupt for preemptions)

45

Points to Remember

• Separation HRT SW vs. other SW
• Time services and the role of time
• Pre-planned TT operation ➭ simple & verifiable SW
• Sampling I/O

• Application-dependent timing parameters

• Input agreement at system borders
• Component Autonomy and TT Cluster Communication
• Autonomous component with conflict masking
• Synchronous time-predictable TT component

46

