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Exercise 61
Recall that given a sequence a0, a1, a2, . . . , ak, . . . the function Â(z) =

∑
k≥0 ak

zk

k! is
called the exponential generating function (EGF) of the sequence.

First of all, we clarify what we are actually looking for. We’re looking for ordered
choices of indistinguishable balls. A similar example has been done in the lecture:

In this note z3/3! symbolises 3 red balls. The coefficient of it is 1, so there is exactly
1 possible way to choose 3 red balls. If they were labeled/distinguishable, there would
be 3! choices. This would give the term 3! z

3

3! = z3.
The taylor series expansion of this equation even starts with exactly this term 3! z

3

3! =
z3. Let n = 3. Denote red balls with r and blue balls with b. This means the balls are
indistinguishable. This way, we get the 3 configurations rrg,rgr,grr which fulfill the
requirement. We see that this is exactly the coefficient from the taylor series.

Consider the identities of sequence (left) and EGF (right)

1, 1, 1, 1, 1, 1, . . . , 1, . . . ez =
∑
n≥0

zn

n!

1, 0, 1, 0, . . . , 1, 0, . . .
1

2

(
ez + e−z

)
=

∑
n≥0

1 + (−1)n

2

zn

n!
(1)

1



For understanding the second identity, observe the first few terms of it have indeed its
sequence as coefficients.

∑
n≥0

1 + (−1)n

2

zn

n!
=

1 + (−1)0

2

z0

0!
+

1 + (−1)1

2

z1

1!
+

1 + (−1)2

2

z2

2!
+

1 + (−1)3

2

z3

3!
. . .

=
2

2
+

0

2

z1

1!
+

2

2

z2

2!
+

0

2

z3

3!
. . .

and that by the addition operation for EGF A(z)+B(z) =
∑

n≥0(an + bn)
zn

n! and the
first identity, the second identity really holds

∑
n≥0

1 + (−1)n

2

zn

n!
=

1

2

∑
n≥0

(1 + (−1)n)
zn

n!
=

1

2

∑
n≥0

zn

n!
+

∑
n≥0

(−z)n

n!

 =
1

2

(
ez + e−z

)
This second identity 1 shows the number of green balls.
We can think of solving problems on n elements as imposing a certain structure

on them, for example, the trivial structure of ”being a set”. To impose the trivial
structure on a given set is to give the elements only that structure which they already
have: the structure of a set. The point is, there is just one such structure on every
set. Thus the number of trivial ”being a set” structures on an n-element is f(n = 1)
for every n. The EGF for this trivial structure is therefore

Â(x) =
∑
n≥0

xn

n!
= ex (2)

This is the only restriction that we have for the set of blue balls. Consequently, 2
describes the blue balls.

The sequence with exactly a2 = 1 and every other element 0 gives the EGF x2

2! . We
use an analog argument for a4 = 1. This gives us EGF for the red balls.

Therefore, we finally get the EGF that describes required ordered choices of balls.

Â(z) =
∑
k≥0

ak
zk

k!
=

(
z2

2!
+

z4

4!

)
· 1
2

(
ez + e−z

)
· ex (3)

Using the identity ez =
∑

n≥0 z
n/n!
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Â(z) =

(
x2

2!
+

x4

4!

)
1

2

(
ex + e−x

)
ex

=

(
x2

2!
+

x4

4!

)
1

2
(e2x + 1)

=
1

2

(
x2

2!
+

x4

4!

)
+

1

2

(
x2

2!
+

x4

4!

)
e2x

=
1

2

(
x2

2!
+

x4

4!

)
+

1

2

(
x2

2!
+

x4

4!

) ∞∑
n=0

1

n!
2nxn

=
1

2

(
x2

2!
+

x4

4!

)
+

1

2
· x

2

2!

∞∑
n=0

1

n!
2nxn +

1

2
· x

4

4!

∞∑
n=0

1

n!
2nxn

=
1

2
· x

2

2!
+

1

2
· x

4

4!
+ g(x) + h(x)

to keep equations short, we define

g(x) =
1

2
· x

2

2!

∞∑
n=0

1

n!
2nxn

and

h(x) =
1

2
· x

4

4!

∞∑
n=0

1

n!
2nxn

Then using the index shift i = n+ 2

g(x) =
1

2
· x

2

2!

∞∑
n=0

1

n!
2nxn

=
1

4

∞∑
n=0

1

n!
2nxn+2

=
1

4

∞∑
i=2

1

(i− 2)!
2i−2xi

=
1

4

∞∑
i=2

1

(i− 2)!
· i(i− 1)

i(i− 1)

2i

4
xi

=
1

16

∞∑
i=2

i(i− 1)

i!
2ixi
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and using the index shift j = n+ 4

h(x) =
1

2
· x

4

4!

∞∑
n=0

1

n!
2nxn

=
1

48

∞∑
n=0

1

n!
2nxn+4

=
1

48

∞∑
j=4

1

(j − 4)!
2j−4xj

=
1

48

∞∑
j=4

1

(j − 4)!
· j(j − 1)(j − 2)(j − 3)

j(j − 1)(j − 2)(j − 3)

2j

16
xj

=
1

768

∞∑
j=4

j(j − 1)(j − 2)(j − 3)

j!
2jxj

changing i, j back to n and plugging g(x), h(x) again into the equation for Â(z) gives

Â(z) =
1

2
· x

2

2!
+

1

2
· x

4

4!
+

∞∑
n=2

1

16
2nn(n− 1)

xn

n!
+

∞∑
n=4

1

768
2nn(n− 1)(n− 2)(n− 3)

xn

n!

By inserting n we can calculate some coefficients and get the identities
∞∑

n=2

1

16
2nn(n− 1)

xn

n!
=

∞∑
n=5

(
1

16
2nn(n− 1)

xn

n!

)
+

1

2

x2

2!
+ 3

x3

3!
+ 12

x4

4!

and
∞∑

n=4

1

768
2nn(n− 1)(n− 2)(n− 3)

xn

n!
=

∞∑
n=5

(
1

768
2nn(n− 1)(n− 2)(n− 3)

xn

n!

)
+

1

2

x4

4!

and by the addition law for EGF to

Â(z) =
x2

2!
+ 3

x3

3!
+ 13

x4

4!
+

∞∑
n=5

2nn(n− 1)

(
1

16
+

1

768
(n− 2)(n− 3)

)
xn

n!

Hence

an =


1, n = 2

3, n = 3

13, n = 4

2nn(n− 1)
(

1
16 + 1

768 (n− 2)(n− 3)
)
, n > 5.
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Exercise 62
M = {1, 2, . . . , n} with the permutations form the symmetric group Sn.

Let Tn denote the number of solutions of π ◦ π = idM in Sn, the symmetric group
of degree n.

Lemma:
Tn = Tn−1 + (n− 1)Tn−2 (4)

Proof: Recall that the order of an element a of a group is the smallest positive integer
m such that am = id. Recall that a transposition is an exchange of two elements while
the others remain fixed. Recall that transpositions π, φ are disjoint if the elements
that are moved by π are disjoint to those moved by φ.

The only, elements of order two in Sn are those which are the product of disjoint
transpositions, and the identity element. The number of elements of order two which
can be obtained from the permutations of the digits 1, 2, . . . , n−1 alone are Tn−1. The
only other such elements are obtained from involving the digit n in a transposition
with some other digit and multiplying by any other permutation of order two involving
the remaining n− 2 digits. Their number is (n− 1)Tn−2. Thus the proof is complete
and we obtain recurrence 4.

Example: Let M = {1, 2}.

f = (12) f(1) = 1 f(2) = 2 f2(1) = 1 f2(2) = 2

g = (21) g(1) = 2 g(1) = 1 g(g(1)) = 1 g(g(2)) = 2

We see that f2, g2 are just the identity permutation id. Let now M ′ = {1, 2, 3}. We
now have to multiply transpositions involving 3 and some other digit by any other
permutation of the remaining 3 − 2 digits. There are exactly (3 − 1) · 1 possibilities:
(31)(11) and (32)(11). Therefore T2 = 4. Let now M ′′ = {1, 2, 3, 4}. We now have to
multiply transpositions involving 4 and some other digit by any other permutation of
the remaining 4−2 digits. There are exactly (4−1) ·4 possibilities: (41)(22), (41)(33),
(41)(23), (41)(32) and (42)(11), (42)(33), (42)(13), (42)(31) and (43)(11), (43)(22),
(43)(12), (43)(21). Therefore, T3 = 10.

Substitute Tn = n!an in recurrence 4. The substitution gives

n!an = (n− 1)!an−1 + (n− 1)(n− 2)!an−2

n!an = (n− 1)!an−1 + (n− 1)!an−2

nan = an−1 + an−2; a0 = a1 = 1 (5)

Consider the function y =
∑∞

i=0 aix
i. We know from the lecture that (an−1)n≥1 ↔

xA(x) and (nan)n≥0 ↔ xA′(x). This yields the differential equation

x dy/dx = xy + x2y
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We separate the variables, integrate both sides and use a0 = A = 1.

x dy = xy dx+ x2y dx

dy/y = dx+ x dx

dy/y = dx+ x dx

dy/y = dx(1 + x)

log(y) = x+
1

2
x2 +A′

y = exp(x+
1

2
x2 +A′)

y = exp(x+
1

2
x2) ·A

y = exp(x+
1

2
x2)

This is OEIS A000085. These numbers are also called telephone numbers. There
is a nice proof by Chowla, Herstein and Moore [1]. There is also a nice answer on
Stackexchange.

Exercise 63
Wolfram Alpha

Reindex to get

an+2 − 2(n+ 2)an+1 + (n+ 2)(n+ 1)an = 2(n+ 2)(n+ 2)!

Multiply by zn+2

(n+2)! and sum over n ≥ 0

∑
n≥0

an+2
zn+2

(n+ 2)!
−

∑
n≥0

2(n+ 2)an+1
zzn+1

(n+ 2)!
+

∑
n≥0

(n+ 2)(n+ 1)an
z2zn

(n+ 2)!
=

∑
n≥0

2(n+ 2)(n+ 2)!
zn+2

(n+ 2)!

Simplify and note that some parts are Â(z) =
∑

n≥0 an
zn

n! with some initial summands
missing∑

n≥0

an+2
zn+2

(n+ 2)!︸ ︷︷ ︸
Â(z)−a0

z0

0! −a1
z1

1!

−2z
∑
n≥0

an+1
zn+1

(n+ 1)!︸ ︷︷ ︸
Â(z)−a0

z0

0!

+z2
∑
n≥0

an
zn

n!︸ ︷︷ ︸
Â(z)

= 2
∑
n≥0

(n+ 2)zn+2

︸ ︷︷ ︸∑
n≥0(nz

n)−0z0−1z1
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We know from the lecture that (n · an)n≥0 ↔ zA′(z) and we know the differentia-
tion rule for OGF A′(z) =

∑
n≥0(n + 1)an+1z

n and from that we get
∑

n≥0 nz
n =

z
(∑

n≥0 z
n
)′

= z
(

1
1−z

)′
= z

(1−z)2 .
Furthermore, we know a0 = a1 = 1 and (z − 1)2 = (1− z)2 = z2 − 2z + 1,

Â(z)− 1− z − 2zÂ(z) + 2z + z2Â(z) =
2z

(1− z)2
− 2z

Â(z)(1− z)2 =
2z

(1− z)2
− 3z + 1

Â(z) =
2z

(1− z)4
− 3z

(1− z)2
+

1

(1− z)2
(6)

using the binomial theorem
∑

n≥0

(
n+k−1
k−1

)
zn = 1

(1−z)k
, we see

1

(1− z)2
=

∑
n≥0

(
n+ 1

1

)
zn =

∑
n≥0

(n+ 1)zn =
∑
n≥0

(n+ 1)!
zn

n!

and (the binomial can be calculated by definition n!/(k!(n− k)!))

1

(1− z)4
=

∑
n≥0

(
n+ 3

3

)
zn =

∑
n≥0

1

6
(n+ 1)(n+ 2)(n+ 3)n!

zn

n!

Substituting

Â(z) = 2z
∑
n≥0

1

6
(n+ 1)(n+ 2)(n+ 3)n!

zn

n!
− 3z

∑
n≥0

(n+ 1)!
zn

n!
+

∑
n≥0

(n+ 1)!
zn

n!

moving the constants in, applying index multiply zA(z) =
∑

n≥0 nan−1
zn

n! and apply-
ing addition rule

Â(z) =
∑
n≥0

1

3
n2(n+ 1)(n+ 2)n!

zn

n!
−

∑
n≥0

3nn!
zn

n!
+

∑
n≥0

(n+ 1)!
zn

n!

=
∑
n≥0

1

3
n2(n+ 1)(n+ 2)n!− 3nn! + (n+ 1)!

zn

n!

=
∑
n≥0

n!

(
1

3
n2(n+ 1)(n+ 2)− 2n+ 1

)
zn

n!

Exercise 66
We should have calculated all values, like 67.

7



Then P = {1, 2, 3, 4, 6, 12}.
We see that ∀x ∈ P : 1 | x holds, therefore 1 is the zero-element. We see that

∀x ∈ P : x | 12 holds, therefore 12 is the one-element.
Recall from the lecture that x ∧ y (”meet”) is the unique maximal element of all

common lower elements of x, y if it exists. For example, W = {u ∈ P : u | 2∧ u | 3} =
{1}. As |W | = 1, 1 is unique, therefore 2 ∧ 3 = 1. Recall from the lecture that x ∨ y
(”join”) is the unique minimal element of all common upper bounds of x, y if it exists.
For example, U = {u ∈ P : 2 | u ∧ 3 | u} = {6, 12}. 6 is the unique minimal element
in U , therefore 2 ∨ 3 = 6.

By exhaustively trying, we see that for all x, y ∈ P there is x∧y and x∨y. Therefore
(P, |) is a lattice. We know from the lecture, that the Möbius function can be computed
for lattices more easily.

Theorem from the lecture: Suppose L is a finite lattice with 0 and 1-
element. Suppose b ∈ L \{1}. Then the Möbius function can be computed
by µL(0, 1) = −

∑
x6=0 and x∧b=0 µL(x, 1)

That means we have to consider only those x for which x ∧ b is the zero-element. As
(P, |) is a finite lattice with 0 and 1-element, we can use the theorem. Let b = 4.

x W x ∧ b
2 1,2,4 4
3 1 1
4 1,2,4 4
6 1,2 2
12 1,2,4 4

As 1 is our zero-element and 12 our one-element, by applying the theorem we get

µ(0, 1) = −µ(3, 12) (7)
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Definition from the lecture: Let (P,≤) be a locally finite poset. Then the
Möbius function µ : P × P → R on P is defined as

∀x, y ∈ P :
∑

z∈[x,y]

µ(z, y) =

{
1 if x = y
0 if x 6= y

(8)

By this equation, we see that

• for x = y = 12 we have µ(12, 12) = 1

• for x = 6, y = 12 it holds µ(6, 12)+ µ(12, 12) = 0. As we know µ(12, 12) = 1, we
get µ(6, 12) = −1.

• for x = 3, y = 12 it holds µ(3, 12) + µ(6, 12) + µ(12, 12) = 0. Therefore we get
µ(3, 12) = 0

By equation 7 we get our final result

µ(0, 1) = 0.

Exercise 67
The relations yield the following Hasse diagram:

See Möbius equation 8. For all x ∈ P holds µ(x, x) = 1 by definition.
First:

• For x = 0, y = 1 holds µ(0, 1) + µ(1, 1) = 0. Therefore we get µ(0, 1) = −1.

• For x = 0, y = 2 holds µ(0, 2) + µ(2, 2) = 0. Therefore we get µ(0, 2) = −1.

• For x = 0, y = 3 holds µ(0, 3) + µ(3, 3) = 0. Therefore we get µ(0, 3) = −1.

Second:

• For x = 1, y = 4 holds µ(1, 4) + µ(4, 4) = 0. Therefore we get µ(1, 4) = −1.
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• For x = 2, y = 4 holds µ(2, 4) + µ(4, 4) = 0. Therefore we get µ(2, 4) = −1.

• For x = 3, y = 4 holds µ(3, 4) + µ(4, 4) = 0. Therefore we get µ(3, 4) = −1.

Third, for x = 0, y = 4 holds µ(0, 4) + µ(1, 4) + µ(4, 4) = 0. Therefore we get
µ(0, 4) = 0.

This is actually wrong:
Remark: The definition of the interval [x, y] = {z ∈ P : x ≤ z ≤ y} holds also in

equation 8 and allows choosing any of the elements 1, 2, 3 to get µ(0, 4). In other words,
we could have also used µ(0, 4)+ µ(2, 4)+ µ(4, 4) = 0 or µ(0, 4)+ µ(3, 4)+ µ(4, 4) = 0
to get the same result.

All other x, y are not related. Consequently, µ(x, y) = 0 for those.

Exercise 68
By definition an interval [(a, x), (b, y)] in the partial order P is equal to the cartesian
product of intervals in the first and second partial order [a, b]≤1 × [x, y]≤2.

If we can show that in the sum∑
(z1,z2)∈[(a,x),(b,y)]

µP1(a, b) · µP2(x, y)

the product µP1(a, b) ·µP2(x, y) is 1 if and only if (a, b) = (x, y) then we know that the
product is the Möbius function.

Because of the first observation on cartesian product of intervals we get the identity∑
(z1,z2)∈[(a,x),(b,y)]

µP1
(z1, x) · µP2

(z2, y) =
∑

z1∈[a,b]≤1

µP1
(z1, x) ·

∑
z2∈[x,y]≤2

µP2
(z2, y)

We know that the condition 1 if and only if x = y (from the Möbius equation 8) is
called Kronecker delta δx,y. The left and the right factor are both Möbius functions:
δa,b and δx,y. Therefore, the product is 1 if and only if a = x ∧ b = y. As a result, we
get ∑

(z1,z2)∈[(a,x),(b,y)]

µP1(z1, b) · µP2(z2, y) = δa,b · δx,y = S(a,x),(b,y)

This means that the product µP1(a, b) · µP2(x, y) has to be the Möbius function,
which is exactly what we wanted to show.

Additionally, we show that P is indeed a partial ordered set. Using the definition
(a, x) ≤ (b, y) ⇔ a ≤1 b ∧ x ≤2 y, the three conditions follow directly

1. Reflexivity: We know that ∀a ∈ P1 : a ≤1 a and ∀x ∈ P2 : x ≤2 x, therefore
∀(a, x) ∈ P : (a, x) ≤ (a, x).

2. Antisymmetry: We know that ∀a, b ∈ P1 : a ≤1 b ∧ b ≤1 a =⇒ a = b and
∀x, y ∈ P2 : x ≤2 y ∧ y ≤2 x =⇒ x = b, therefore ∀(a, x), (b, y) ∈ P : (a, x) ≤
(b, y) ∧ (b, y) ≤ (a, x) =⇒ (a, x) = (b, y)
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3. Transitivity: We know that ∀a, b, c ∈ P1 : a ≤1 b ∧ b ≤1 c =⇒ a ≤ c and
∀x, y, z ∈ P2 : x ≤2 y ∧ y ≤2 z =⇒ x ≤ z, therefore ∀(a, x), (b, y), (c, z) ∈ P :
(a, x) ≤ (b, y) ∧ (b, y) ≤ (c, z) =⇒ (a, x) ≤ (c, z)

Therefore, (P, µP ) is a locally finite poset with zero-element and it holds that
µP ((a, x), (b, y)) = µP1(a, b) · µP2(x, y)

Exercise 69
Let A1, A2, . . . , Am ⊆ M . Say Āj = M \Aj . The principle of inclusion-exclusion is∣∣∣∣∣∣M \

m⋃
j=1

Aj

∣∣∣∣∣∣ =
∣∣∣∣∣∣
m⋂
j=1

Āj

∣∣∣∣∣∣ =
∑

I⊆{1,2,...,m}

(−1)n · |∩i∈IAi| (9)

Considering that the intersection of the empty set is the universe , we get for m = 3

|M \ (A1 ∪A2 ∪A3)| =
∣∣Ā1 ∩ Ā2 ∩ Ā3

∣∣
= (−1)0|{}|
+ (−1)1|A1|+ (−1)1|A2|+ (−1)1|A3|
+ (−1)2|A1 ∩A2|+ (−1)2|A1 ∩A3|+ (−1)2|A2 ∩A3|
+ (−1)3|A1 ∩A2 ∩A3|
= |M |
− |A1| − |A2| − |A3|
+ |A1 ∩A2|+ |A1 ∩A3|+ |A2 ∩A3|
− |A1 ∩A2 ∩A3|

We can get this by the Möbius-Inversion formula by introducing a proper partial
order. We consider it to be

(
2{1,2,...,m},⊇

)
. We now have to define a proper function.

Suppose we have an element I ⊆ {1, 2, . . . ,m} of the partial order, then we define

f(I) =

∣∣∣∣∣∣
⋂
i∈I

Ai ∩
⋂
j /∈I

Āj

∣∣∣∣∣∣ (10)
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For example, then f({1}) =
∣∣A1 ∩ Ā2 ∩ Ā3

∣∣ and f({2, 3} =
∣∣Ā1 ∩A2 ∩A3

∣∣.
We now define

sf (I) =
∑
J⊇I

f(I) =

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ (11)

For example

sf ({1}) = f({1}) + f({1, 2}) + f({1, 3}) + f({1, 2, 3})
= |A1 ∩ Ā2 ∩ Ā3|+ |A1 ∩A2 ∩ Ā3|+ |A1 ∩ Ā2 ∩A3|+ |A1 ∩A2 ∩A3|
= |A1|

We see that in the second line A1 is always there.
By application of the theorem of Möbius-Inversion and considering that µ(J, I) =

(−1)|J|−|I| we get

f(I) =
∑
J⊇I

sf (J) · µ(J, I) =
∑
J⊇I

(−1)|J|−|I||
⋂
j∈J

Aj | (12)

This gives us a very general version of the principle of Inclusion-Exclusion.
For example, using I = {}

f({}) =

∣∣∣∣∣∣
n⋂

j=1

Āj

∣∣∣∣∣∣ =
∑

J⊆{1,2,...,m}

(−1)|J|

∣∣∣∣∣∣
⋂
j∈J

Aj

∣∣∣∣∣∣
Exercise 70
Informally
ϕ counts the positive integers up to a given integer n that are relatively prime to n.

ϕ(20) = ϕ(225) = 20(1− 1

2
)(1− 1

5
) = 20 · 1

2
· 4
5
= 8

In words: the distinct prime factors of 20 are 2 and 5; half of the twenty integers from
1 to 20 are divisible by 2, leaving ten; a fifth of those are divisible by 5, leaving eight
numbers coprime to 20; these are: 1, 3, 7, 9, 11, 13, 17, 19. More generally, this gives

ϕ(n) = n
∏
p|n

(
1− 1

p

)

which is known as Euler’s totient function. Using m = pqr yields

ϕ(m) = pqr

(
1− 1

p

)(
1− 1

q

)(
1− 1

r

)
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More formally
https://en.wikipedia.org/wiki/Euler%27s_totient_function#Computing_Euler'
s_totient_function Euler’s totient function ϕ counts the positive integers up to
a given integer n that are relatively prime to n. For n = pk1

1 pk2
2 . . . pkr

r , where
p1, p2, . . . , pr are the distinct primes diving n the function is

ϕ(n) = pk1−1
1 (p1 − 1)pk2−1

2 (p2 − 2) . . . pkr−1
r (pr − 1)

Remark: This is known as Euler’s product formula and equivalent to the formulation
in the informal argument above.

For all x in {p, q, r} holds: x is prime. Therefore, the only factor in its factorization
is x itself. As for all numbers, the prime factorization of m is unique (Fundamental
theorem of arithmetic). Hence, p, q, r are the distinct primes of m and p1q1r1 is the
only factorization of m.

Consequently, there are

ϕ(m) = p1−1(p− 1)q1−1(q − 1)r1−1(r − 1) = (p− 1)(q − 1)(r − 1)

numbers in the range 1, 2, . . . ,m that are relatively prime to m.
Proof of the used functions
Lemma: ϕ is a multiplicative function. This means that if gcd(m,n) = 1 then

ϕ(m)ϕ(n) = ϕ(mn).
Proof outline: Let A,B,C be sets of positive integers which are coprime to and less
than m,n,mn, respectively, so that |A| = ϕ(m) etc. Then there is a bijection between
A×B and C by the Chinese remainder theorem that we saw in the lecture.

Lemma: If p is prime and k ≥ 1, then ϕ(pk) = pk − pk−1 = pk−1(p− 1).
Proof: Since p is prime, the only possible values of gcd(pk,m) are 1, p, p2, . . . , pk and the
only way to have gcd(pk,m) > 1 is if m is a multiple of p, i.e. m = p, 2p, 3p, . . . , pk−1 =
pk and there are pk−1 such multiples less than pk. Therefore, other other pk − pk−1

numbers are all relatively prime to pk.
Proof of Euler’s product formula: By the fundamental theorem of arithmetic, if

n > 1 then there is a unique expression n = pk1
1 pk2

2 . . . pkr
r , where p1 < p2 < · · · < p3

are prime numbers and each ki ≥ 1. Using the multiplicative property of φ and the
formula for φ(pk) gives

ϕ(n) = ϕ(pk1
1 )ϕ(pk2

2 ) . . . ϕ(pkr
r )

= pk1−1
1 (p1 − 1)pk2−1

2 (p2 − 2) . . . pkr−1
r (pr − 1)

Remark: We could continue this proof to show the informal formulation above
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